
Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Solving String Constraints through
Hardware/Software Model Checking

Jie-Hong R. Jiang1 and Fang Yu2

1. Graduate Institute of Electronics Engineering
National Taiwan University, Taiwan

http://alcom.ee.ntu.edu.tw
2. Department of Management Information Systems

National Chengchi University, Taiwan
http://soslab.nccu.edu.tw

Meeting on String Constraints and Applications (MOSCA’19), May 6–9, 2019,
Bertinoro, Italy

MOSCA, August 28, 2019

1 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Input validation and sanitization is error-prone

• Programs that propagate and use malicious user inputs
without validation and sanitization, or with improper
validation and sanitization, are vulnerable to attacks such as
Injections in Web applications.

• These string-related vulnerabilities are notorious and widely
publicized [OWASP17].

2 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

String analysis techniques are needed

• It drives the need for automated tool support in analyzing
string manipulating programs.

• Hampi [Kiezun et al, ISSTA’09, Ganesh et al. CAV’11,
TOSEM’12]

• Z3str, Z3str2, Z3str3, and Z3strBV [Zheng et al. FSE’13,
CAV’15], [Berzish et al. FMCAD’17], [Subramanian et al.,
ICSE’17]

• CVC4 [Liang et al. CAV’14]
• S3, and S3P [Trinh et al., CCS’14, CAV’16]
• Norn and TRAU [Abdulla et al, CAV’14, CAV’15], [Abdulla et

al, PLDI’17]
• Sloth [Lin et al., POPL’16, Holik. et al., POPL’18]
• Stranger and ABC [Yu et al, TACAS’10], [Aydin et al., CAV’15

and FSE’18]
• Slog and Slent [Wang et al. CAV’16 and ASE’18]

3 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Solving complex string constraints remains challenging

• String constraint solving can be particularly hard when the
constraints involve complex string operations and involve both
string and integer variables.

• Specifically, it has been shown that solving string constraints
with replace all and length constraints is undecidable. [Chen
et al. POPL’18]

• The replace all operation defines the replace of a match
pattern with a replacement pattern for the sentence within a
given set of language.

• It is widely used in input sanitization functions in Web
applications.

4 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

A motivating example

Is the constraint satisfiable?

X1 ∈ a∗,

X2 ∈ b∗,

X3 = X1.X2,

X4 = replace(X3, a
+b, ba),

Len(X1) = Len(X2),

Len(X1) > Len(X4).

5 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Is the constraint satisfiable?

• (X3 = X1.X2) and (Len(X1) = Len(X2)) ensure that X3 is in
the language anbn, for n ≥ 0 being the lengths of X1 and X2.

• X4 is obtained by performing language to language
replacement on X3.

• For X4 = replace(X3, a
+b, ba), a substring of the form amb,

for some 1 ≤ m ≤ n, in the middle of anbn will be replaced
with ba.

• In this case, we have
Len(X4) = 2n − (m + 1) + 2 > n = Len(X1), which
contradicts the last constraint Len(X1) > Len(X4).

• Hence the set of constraints is unsatisfiable.

6 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

SMT-based string constraint solving

• The SMT-based approaches, e.g., S3, Z3STR3, CVC4, Norn,
for string constraint solving are native to deal with length
constraints.

• While these DPLL(T)-based solvers handle a variety of string
constraints, including word equations, regular expression
membership, length constraints, and (more rarely)
regular/rational relations; the solvers can not handle
replace-all operation.

• The work [Trinh et al., CAV’16] that extends S3 to S3P
addresses this issue with recurrence to reason such operations.

7 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

SMT-based string constraint solving

• Y = replace(X ,R1,R2) can be recursively defined:

((Y = X) ∧ X /∈ (Σ∗.R1.Σ
∗)) ∨

((X = X1.X2.X3) ∧ (X1 /∈ (Σ∗.R1.Σ
∗)) ∧

(X2 ∈ R1) ∧ (Y = X1.Y1.Y2) ∧ (Y1 ∈ R2) ∧
(Y2 = replace(X3,R1,R2)),

• However, the recursive operation may cause non-termination,
and lead to non-robust results of constraint solving.

8 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Automata-based string constraint solving

• For automata-based solvers, e.g., Stranger or ABC, the
replacement operation can be naturally achieved by
automata-based construction.

• However, the satisfying values of variables X1,X2,X3,X4 in
the above example are not regular due to the condition
imposed by the length constraints. They cannot be
represented precisely with finite-state automata.

• The regular approximation on string and length relations leads
imprecision.

9 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

The question is:

Can we take advantage on automata construction to model
complex string operations but also deal with length constraints
precisely?

10 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

The idea is:

Attach an integer variable to track the length information of an
automata.

• Such automata with length encoded integers are referred to as
length-encoded automata.

• A non-epsilon transition of an automaton should incur a
length increment by one, and thus the integer indicates the
length of the string currently taken by the automaton

• By setting the initial value of an integer to zero, after taking
an input sequence, the final value of the integer will be the
length of this sequence.

• Accepting conditions on n can then be added to restrict the
accepting language.

11 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Length-encoded Automata

To accept a simple language {aaaa}:
• Attach n to a finite automata A that accepts a∗.

• Add n = 0 to the initial state

• Add n = 4 to the accepting state

p
[n]

a

12 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Length-encoded automata

To accept the context free language {anbn | n ∈ N}:
• Concatenate two length encoded automata that recognize a∗

and b∗, respectively.

• n1 counts the number of a’s taken so far on state p, and n2
counts the number of b’s taken so far on state q.

• Add n1 = 0 and n2 = 0 to the initial state and n1 = n2 to the
accepting state.

p
[n1]

q
[n2]

a

ε

b

13 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Length-encoded automata

• To accept the language that satisfies the motivating example:

The constraint solving problem can be reduced to
the language emptiness checking problem.

14 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Language emptiness checking

To exploit software model checking algorithms to language
emptiness checking:

• We first represent the finite-state automaton
A = (Q,Σ, I ,O,T) with characteristic functions:

• I (~s) : Q → B,
• T (~x , ~s, ~s ′) : Σ× Q × Q → B, and
• O(~s) : Q → B,
• where ~x , ~s, and ~s ′ are the input, current-state, and next-state

variables, respectively,

15 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Language emptiness checking

To exploit software model checking algorithms to language
emptiness checking:

• A (finite) string σ1, . . . , σn is accepted if there exist states
q1, . . . , qn+1 such that

• I (q1) = 1 (for q1 being an initial state),
• O(qn+1) = 1 (for qn+1 being an accepting state), and
• the sequence q1, σ1, q2, σ2, . . . , qn+1 satisfies T (σi , qi , qi+1)

for i = 1, . . . , n

• This can be done by iteratively expanding transition relations
until that an accepting word has been found or a fixpoint has
been reached.

• The process may not terminate when states are infinite.

16 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Infinite-state automata construction

• We extend the characteristic functions of finite state
automata to infinite state automata.

• Insert auxiliary (integer) state variables to track length
information and restrict accepting languages

• We show how to construct corresponding characteristic
functions through automata manipulations.

• length tracking, intersection, union, concatenation, deletion,
replacement, reversion, prefix, suffix, substring, and index
tracking.

17 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Length Tracking: AL = TrkLen(A)

• Given a finite automaton A with its characteristic functions
T (~x , ~s, ~s ′), I (~s), and O(~s), AL = TrkLen(A), which embeds
an integer variable n to count the number of transitions in T ,
can be constructed as:

T L(~x , ~s, n, ~s ′, n′) = T (~x , ~s, ~s ′) ∧ (((~x 6= ε) ∧ (n′ = n + 1))

∨((~x = ε) ∧ (n′ = n)))

I L(~s) = I (~s)

OL(~s) = O(~s)

18 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Intersection: L(AInt) = L(A1) ∩ L(A2)

• ~s = (~s1, ~s2) and ~n = (~n1, ~n2).

• T ε denotes the transition relation derived from T with an
additional ε self-transition added to each state.

𝒔 𝒔′𝒏 𝒏′𝒙

𝑻𝟏
𝝐 𝑻𝟐

𝝐

𝑻𝑰𝑵𝑻

𝒔𝟐

𝑰𝟏 𝑰𝟐

𝑰𝑰𝑵𝑻

𝑶𝟏 𝑶𝟐

𝑶𝑰𝑵𝑻

𝒔𝟏 𝒔𝟐𝒔𝟏

19 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Union:L(AUni) = L(A1) ∪ L(A2)

• Assume |~s1| ≤ |~s2|. The state variables ~s1 of A1 are merged
into ~s2. ~s = (~s2, α), ~n = (~n1, ~n2).

• An auxiliary bit α is used to distinguish states of A1 (if α
valuates to 0) or A2 (if α valuates to 1).

𝒔𝟐 𝒔𝟐
′𝒏 𝒏′𝒙

𝑻𝟏 𝑻𝟐

𝑻𝑼𝑵𝑰

𝜶𝜶′ 𝜶𝜶′

𝒔𝟐

𝑰𝟏 𝑰𝟐

𝑰𝑼𝑵𝑰

𝜶 𝜶

𝒔𝟐

𝑶𝟏 𝑶𝟐

𝑶𝑼𝑵𝑰

𝜶 𝜶

20 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Concatenation: L(ACat) = L(A1).L(A2)

• Assume |~s1| ≤ |~s2|. The state variables ~s1 of A1 are merged
into ~s2. ~s = (~s2, α) and ~n = (~n1, ~n2).

• α is used to distinguish states on A1 (if α valuates to 0) or on
A2 (if α valuates to 1).

〈𝒔𝟐〉𝒎

𝑰𝟏

𝑰𝑪𝑨𝑻

𝜶

s2

𝑶𝟐

𝑶𝑪𝑨𝑻

𝜶

𝑻𝑪𝑨𝑻

𝒔𝟐 𝒔𝟐′n n′x

𝑻𝟏 𝑻𝟐

𝜶𝜶′ 𝜶𝜶′

𝑶𝟏 𝑰𝟐

𝒏
=
𝒏′

𝒙
=
𝝐

𝒏 𝟐
=
𝒏 𝟐′

𝒏 𝟏
=
𝒏 𝟏′𝜶 𝜶′

21 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Prefix: L(APfxk
) = {~σ|∃~ρ.[~σ~ρ ∈ L(A1)] ∧ len(~σ) = k}

• ~s = (~s1, α) and ~n = (~n1, k)
• k is used to track len(~σ), and α is used to distinguish prefix

states (if α valuates to 0) and tail states (if α valuates to 1).

𝑰𝟏

𝑰𝑷𝑭𝑿𝒌

𝜶

s1

𝑻𝑷𝑭𝑿𝒌

𝒔𝟏 𝒔𝟏′𝒏𝟏 𝒏𝟏′x

𝑻𝟏𝝐 𝑻𝟏

𝜶𝜶′ 𝜶𝜶′

𝒌′
=
𝒌

𝒙
=
𝝐

𝒙
≠
𝝐
∧
(𝒌

′
=
𝒌
+
𝟏)

y

𝒙
=
𝝐
∧
(𝒌

′
=
𝒌)

𝒙
=
𝝐
∧
(𝒌

′
=
𝒌)

𝒔 𝟏
=
𝒔 𝟏′

𝒏 𝟏
=
𝒏 𝟏′ 𝜶 𝜶′

s1

𝑶𝑷𝑭𝑿𝒌

𝜶

𝑶𝟏

22 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Take Away

• Encode length information to string automata as length
encoded automata

• Construct characteristic functions of length-encoded automata
through automata manipulations that correspond to string
and length constraints

• Leverage a symbolic model checker for infinite state systems
as an engine for language emptiness checking

23 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Tool Implementation and Settings

• The proposed method was implemented as a tool, called
Slent, using IC3ia [Cimtti et al. TACAS’14] as the backend
symbolic model checker for emptiness checking on string and
integer constraints.

• To evaluate the effectiveness of our tool, Slent is compared
against state-of-the-art mixed string and integer constraint
solvers, including ABC, CVC4, Norn, S3P, Trau, and
Z3STR3.

• Sloth does not support length constraint solving in the
current released version and is excluded from the comparison.

24 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Concatenation and length constraint solving

• RQ1: How Slent performs compared to other solvers in
solving pure concatenation and length constraints?

• 2000 test cases randomly sampled from the Kaluza
benchmarks that involve only string concatenation operations
and length constraints.

solver time (s) #SAT #UNSAT #TO

Z3STR3 56.46 1017 983 0
CVC4 88.89 1017 983 0
Norn 2025.30 1013 983 4
ABC 255.76 1013 983 4
S3P 137.90 1015 983 2
Trau 123.85 1017 983 0
Slent 1397.82 1013 983 4

25 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

String to string replace-all operation and length constraint
solving

• RQ2: How Slent performs compared to other solvers in
solving string-to-string replacement, concatenation and length
constraints?

• 236 test cases from the Stranger benchmarks with additional
length constraints inserted.

solver time(s) #SAT #UNSAT #TO #abort

ABC 2282.84 109(31) 111(0) 0 16
S3P 605.79 30(0) 114(3) 22 70
Trau 687.49 54(2) 139(22) 5 38
Slent 26692.55 88(0) 141(0) 7 0

26 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Language to language replace-all operation and length
constraint solving

• RQ3: How Slent performs compared to other solvers in
solving language-to-language replacement, concatenation and
length constraints?

• 101 test cases from the Stranger benchmarks with additional
length constraints inserted.

solver time (s) #SAT #UNSAT #TO #abort

ABC 977.80 46(2) 41(0) 1 13
Slent 4413.25 44(0) 38(0) 19 0

27 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Conclusion

• We present a novel symbolic model checking approach for
solving string and integer constraints based on length-encoded
automata.

• Our solver Slent is particularly suitable for solving complex
string and integer constraints.

• As Slent precisely maintains the relation among string and
length variables, no approximation is required for constraint
solving unlike other existing automata-based methods.

• The experiment shows the unique benefit of the proposed
method on solving constraints with replace-all operation over
string variables and with complex length relation.

• As Slent relies on off-the-shelf model checkers, it benefits
from model checker advancements. Its performance and
practicality may be improved over time.

28 / 29

Overview
Symbolic-model-checking constraint solving

Evaluation and Conclusion

Thank you

Slent is available at:
https://github.com/NTU-ALComLab/SLENT

29 / 29

	Overview
	Symbolic-model-checking constraint solving
	Evaluation and Conclusion

