
First-Order Logic

Yu-Fang Chen

Institute of Information Science
Academia Sinica

FLOLAC 2019

First-Order Logic

First-Order Logic (FOL)

also called (first-order) predicate logic, predicate calculus, . . .

can be seen as an extension of propositional logic.

with additional concepts: quantifiers, functions, predicates.

much more expressive than propositional logic!

a well-known example from calculus
I For all ε > 0 there exists some n0, such that for all n ≥ n0,

abs(f(n)− a) < ε.

quantifiers: for all ∀ and exists ∃
functions: abs, f ,−
predicates: >, ≥, <

FLOLAC 2019 First-Order Logic FLOLAC 2019 2 / 87

First-Order Logic

First-Order Logic (FOL)

also called (first-order) predicate logic, predicate calculus, . . .

can be seen as an extension of propositional logic.

with additional concepts: quantifiers, functions, predicates.

much more expressive than propositional logic!

a well-known example from calculus
I For all ε > 0 there exists some n0, such that for all n ≥ n0,

abs(f(n)− a) < ε.

quantifiers: for all ∀ and exists ∃
functions: abs, f ,−
predicates: >, ≥, <

FLOLAC 2019 First-Order Logic FLOLAC 2019 2 / 87

First-Order Logic — Examples

What is expressible in FOL? (informal examples)

“All men are mortal. Socrates is a man. Therefore Socrates is mortal.”(
(∀x . man(x)→mortal(x)) ∧man(Socrates)

)
→mortal(Socrates)

“All men are mortal. Elvis is immortal. Therefore Elvis is not a man.”(
(∀x . man(x)→mortal(x)) ∧ ¬mortal(Elvis)

)
→¬man(Elvis)

FLOLAC 2019 First-Order Logic FLOLAC 2019 3 / 87

First-Order Logic — Examples

What is expressible in FOL? (informal examples)

“All men are mortal. Socrates is a man. Therefore Socrates is mortal.”(
(∀x . man(x)→mortal(x)) ∧man(Socrates)

)
→mortal(Socrates)

“All men are mortal. Elvis is immortal. Therefore Elvis is not a man.”(
(∀x . man(x)→mortal(x)) ∧ ¬mortal(Elvis)

)
→¬man(Elvis)

FLOLAC 2019 First-Order Logic FLOLAC 2019 3 / 87

First-Order Logic — Examples

“Luke is a Jedi.”:
isJedi(Luke)

“Anakin is the father of Luke.”:

isFatherOf (Anakin,Luke) or
Anakin = fatherOf (Luke)

also means “Luke is a son of Anakin.”

“Gandalf is not the father of Luke.”:

¬isFatherOf (Gandalf ,Luke) or
¬(Gandalf = fatherOf (Luke))(
≡ |= Gandalf 6= fatherOf (Luke)

)

FLOLAC 2019 First-Order Logic FLOLAC 2019 4 / 87

First-Order Logic — Examples

“Luke is a Jedi.”:
isJedi(Luke)

“Anakin is the father of Luke.”:

isFatherOf (Anakin,Luke) or
Anakin = fatherOf (Luke)

also means “Luke is a son of Anakin.”

“Gandalf is not the father of Luke.”:

¬isFatherOf (Gandalf ,Luke) or
¬(Gandalf = fatherOf (Luke))(
≡ |= Gandalf 6= fatherOf (Luke)

)

FLOLAC 2019 First-Order Logic FLOLAC 2019 4 / 87

First-Order Logic — Examples

“Luke is a Jedi.”:
isJedi(Luke)

“Anakin is the father of Luke.”:

isFatherOf (Anakin,Luke) or
Anakin = fatherOf (Luke)

also means “Luke is a son of Anakin.”

“Gandalf is not the father of Luke.”:

¬isFatherOf (Gandalf ,Luke) or
¬(Gandalf = fatherOf (Luke))(
≡ |= Gandalf 6= fatherOf (Luke)

)
FLOLAC 2019 First-Order Logic FLOLAC 2019 4 / 87

First-Order Logic — Examples

“Anakin is the father of Luke and Leia.”:

isFatherOf (Anakin,Luke) ∧ isFatherOf (Anakin,Leia)

“Luke has a father.”:

∃x . isFatherOf (x,Luke)

“Luke has a father and Leia also has a father.”:

(∃x . isFatherOf (x,Luke)) ∧ (∃y . isFatherOf (y,Leia))

“Luke and Leia have the same father!”:

∃x . isFatherOf (x,Luke) ∧ isFatherOf (x,Leia)

FLOLAC 2019 First-Order Logic FLOLAC 2019 5 / 87

First-Order Logic — Examples

“Anakin is the father of Luke and Leia.”:

isFatherOf (Anakin,Luke) ∧ isFatherOf (Anakin,Leia)

“Luke has a father.”:

∃x . isFatherOf (x,Luke)

“Luke has a father and Leia also has a father.”:

(∃x . isFatherOf (x,Luke)) ∧ (∃y . isFatherOf (y,Leia))

“Luke and Leia have the same father!”:

∃x . isFatherOf (x,Luke) ∧ isFatherOf (x,Leia)

FLOLAC 2019 First-Order Logic FLOLAC 2019 5 / 87

First-Order Logic — Examples

“Anakin is the father of Luke and Leia.”:

isFatherOf (Anakin,Luke) ∧ isFatherOf (Anakin,Leia)

“Luke has a father.”:

∃x . isFatherOf (x,Luke)

“Luke has a father and Leia also has a father.”:

(∃x . isFatherOf (x,Luke)) ∧ (∃y . isFatherOf (y,Leia))

“Luke and Leia have the same father!”:

∃x . isFatherOf (x,Luke) ∧ isFatherOf (x,Leia)

FLOLAC 2019 First-Order Logic FLOLAC 2019 5 / 87

First-Order Logic — Examples

“Anakin is the father of Luke and Leia.”:

isFatherOf (Anakin,Luke) ∧ isFatherOf (Anakin,Leia)

“Luke has a father.”:

∃x . isFatherOf (x,Luke)

“Luke has a father and Leia also has a father.”:

(∃x . isFatherOf (x,Luke)) ∧ (∃y . isFatherOf (y,Leia))

“Luke and Leia have the same father!”:

∃x . isFatherOf (x,Luke) ∧ isFatherOf (x,Leia)

FLOLAC 2019 First-Order Logic FLOLAC 2019 5 / 87

First-Order Logic — Examples

“There is a person who does not have a father.”:

∃x ¬∃y . isFatherOf (y, x)(
≡ ∃x∀y . ¬isFatherOf (y, x)

)

“All children of a Jedi are Jedis.”:

∀x, y .
(
isJedi(y)∧(isFatherOf (y, x)∨isMotherOf (y, x))

)
→ isJedi(x)

FLOLAC 2019 First-Order Logic FLOLAC 2019 6 / 87

First-Order Logic — Examples

“There is a person who does not have a father.”:

∃x ¬∃y . isFatherOf (y, x)(
≡ ∃x∀y . ¬isFatherOf (y, x)

)
“All children of a Jedi are Jedis.”:

∀x, y .
(
isJedi(y)∧(isFatherOf (y, x)∨isMotherOf (y, x))

)
→ isJedi(x)

FLOLAC 2019 First-Order Logic FLOLAC 2019 6 / 87

First-Order Logic — Examples
There are infinitely many primes [Euclid, c. 300 BC]

∀x∃y . y > x ∧
(
∀z . (1 < z ∧ z < y)→ ymod z 6= 0

)

Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

∀n, x, y ∈ N . n > 2 → (¬∃z ∈ N . xn + yn = zn)

Goldbach Conjecture [Goldbach, 1742] (still open)

∀x . (x > 2 ∧ even(x))→(∃y, z . prime(y) ∧ prime(z) ∧ x = y + z)

Weak Goldbach Conjecture (proven in [Helfgott, 2013])

∀x . (x > 5 ∧ odd(x))→
(∃y, z, w . prime(y) ∧ prime(z) ∧ prime(w) ∧ x = y + z + w)

FLOLAC 2019 First-Order Logic FLOLAC 2019 7 / 87

First-Order Logic — Examples
There are infinitely many primes [Euclid, c. 300 BC]

∀x∃y . y > x ∧
(
∀z . (1 < z ∧ z < y)→ ymod z 6= 0

)
Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

∀n, x, y ∈ N . n > 2 → (¬∃z ∈ N . xn + yn = zn)

Goldbach Conjecture [Goldbach, 1742] (still open)

∀x . (x > 2 ∧ even(x))→(∃y, z . prime(y) ∧ prime(z) ∧ x = y + z)

Weak Goldbach Conjecture (proven in [Helfgott, 2013])

∀x . (x > 5 ∧ odd(x))→
(∃y, z, w . prime(y) ∧ prime(z) ∧ prime(w) ∧ x = y + z + w)

FLOLAC 2019 First-Order Logic FLOLAC 2019 7 / 87

First-Order Logic — Examples
There are infinitely many primes [Euclid, c. 300 BC]

∀x∃y . y > x ∧
(
∀z . (1 < z ∧ z < y)→ ymod z 6= 0

)
Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

∀n, x, y ∈ N . n > 2 → (¬∃z ∈ N . xn + yn = zn)

Goldbach Conjecture [Goldbach, 1742] (still open)

∀x . (x > 2 ∧ even(x))→(∃y, z . prime(y) ∧ prime(z) ∧ x = y + z)

Weak Goldbach Conjecture (proven in [Helfgott, 2013])

∀x . (x > 5 ∧ odd(x))→
(∃y, z, w . prime(y) ∧ prime(z) ∧ prime(w) ∧ x = y + z + w)

FLOLAC 2019 First-Order Logic FLOLAC 2019 7 / 87

First-Order Logic — Examples
There are infinitely many primes [Euclid, c. 300 BC]

∀x∃y . y > x ∧
(
∀z . (1 < z ∧ z < y)→ ymod z 6= 0

)
Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

∀n, x, y ∈ N . n > 2 → (¬∃z ∈ N . xn + yn = zn)

Goldbach Conjecture [Goldbach, 1742] (still open)

∀x . (x > 2 ∧ even(x))→(∃y, z . prime(y) ∧ prime(z) ∧ x = y + z)

Weak Goldbach Conjecture (proven in [Helfgott, 2013])

∀x . (x > 5 ∧ odd(x))→
(∃y, z, w . prime(y) ∧ prime(z) ∧ prime(w) ∧ x = y + z + w)

FLOLAC 2019 First-Order Logic FLOLAC 2019 7 / 87

Syntax
Syntax:

Alphabet:
I variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)

I function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, π/0,
42/0, (+1)/1, . . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(+1(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π,

+1(x) 7→ x+ 1, . . .

I predicate symbols (with /arity): p/3, = /2, isFatherOf /2, (= 0)/1,
isJedi/1, < /2, . . .
• to be used as, e.g., p(a, x, 9), = (x, 42), isFatherOf (Anakin,Luke),

(= 0)(x), isJedi(Anakin), < (x, π)
• we often simplify the notation: = (x, 42) 7→ x = 42, (= 0)(x) 7→ x = 0,
< (x, π) 7→ x < π, . . .

Signature = function symbols + predicate symbols
I can be seen as a parameter of an instance of FOL
I sometimes called vocabulary or language of FOL

FLOLAC 2019 First-Order Logic FLOLAC 2019 8 / 87

Syntax
Syntax:

Alphabet:
I variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)
I function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, π/0,

42/0, (+1)/1, . . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(+1(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π,

+1(x) 7→ x+ 1, . . .

I predicate symbols (with /arity): p/3, = /2, isFatherOf /2, (= 0)/1,
isJedi/1, < /2, . . .
• to be used as, e.g., p(a, x, 9), = (x, 42), isFatherOf (Anakin,Luke),

(= 0)(x), isJedi(Anakin), < (x, π)
• we often simplify the notation: = (x, 42) 7→ x = 42, (= 0)(x) 7→ x = 0,
< (x, π) 7→ x < π, . . .

Signature = function symbols + predicate symbols
I can be seen as a parameter of an instance of FOL
I sometimes called vocabulary or language of FOL

FLOLAC 2019 First-Order Logic FLOLAC 2019 8 / 87

Syntax
Syntax:

Alphabet:
I variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)
I function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, π/0,

42/0, (+1)/1, . . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(+1(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π,

+1(x) 7→ x+ 1, . . .

I predicate symbols (with /arity): p/3, = /2, isFatherOf /2, (= 0)/1,
isJedi/1, < /2, . . .
• to be used as, e.g., p(a, x, 9), = (x, 42), isFatherOf (Anakin,Luke),

(= 0)(x), isJedi(Anakin), < (x, π)
• we often simplify the notation: = (x, 42) 7→ x = 42, (= 0)(x) 7→ x = 0,
< (x, π) 7→ x < π, . . .

Signature = function symbols + predicate symbols
I can be seen as a parameter of an instance of FOL
I sometimes called vocabulary or language of FOL

FLOLAC 2019 First-Order Logic FLOLAC 2019 8 / 87

Syntax
Syntax:

Alphabet:
I variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)
I function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, π/0,

42/0, (+1)/1, . . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(+1(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π,

+1(x) 7→ x+ 1, . . .

I predicate symbols (with /arity): p/3, = /2, isFatherOf /2, (= 0)/1,
isJedi/1, < /2, . . .
• to be used as, e.g., p(a, x, 9), = (x, 42), isFatherOf (Anakin,Luke),

(= 0)(x), isJedi(Anakin), < (x, π)
• we often simplify the notation: = (x, 42) 7→ x = 42, (= 0)(x) 7→ x = 0,
< (x, π) 7→ x < π, . . .

Signature = function symbols + predicate symbols
I can be seen as a parameter of an instance of FOL
I sometimes called vocabulary or language of FOL

FLOLAC 2019 First-Order Logic FLOLAC 2019 8 / 87

Syntax
Syntax:

Grammar:
I term: t ::= x occurrence of a variable x ∈ X

| f(t1, . . . , tn) where f/n is a function symbol

I formula:
F ::= p(t1, . . . , tn) where p/n is a predicate symbol

| ⊥ | > | ¬F | F1 ∧ F2 | F1 ∨ F2 | F1→F2 | F1↔F2 PL
| ∃x . F exists, existential quantification
| ∀x . F for all, universal quantification

Example

∀x . p(x, f(3))→∃y . q(y, f(f(f(z))))

Precedence
I PL connectives: as for PL
I quantifiers: lowest—the scope of a quantifier extends to the right

FLOLAC 2019 First-Order Logic FLOLAC 2019 9 / 87

Syntax
Syntax:

Grammar:
I term: t ::= x occurrence of a variable x ∈ X

| f(t1, . . . , tn) where f/n is a function symbol
I formula:

F ::= p(t1, . . . , tn) where p/n is a predicate symbol
| ⊥ | > | ¬F | F1 ∧ F2 | F1 ∨ F2 | F1→F2 | F1↔F2 PL
| ∃x . F exists, existential quantification
| ∀x . F for all, universal quantification

Example

∀x . p(x, f(3))→∃y . q(y, f(f(f(z))))

Precedence
I PL connectives: as for PL
I quantifiers: lowest—the scope of a quantifier extends to the right

FLOLAC 2019 First-Order Logic FLOLAC 2019 9 / 87

Syntax
Syntax:

Grammar:
I term: t ::= x occurrence of a variable x ∈ X

| f(t1, . . . , tn) where f/n is a function symbol
I formula:

F ::= p(t1, . . . , tn) where p/n is a predicate symbol
| ⊥ | > | ¬F | F1 ∧ F2 | F1 ∨ F2 | F1→F2 | F1↔F2 PL
| ∃x . F exists, existential quantification
| ∀x . F for all, universal quantification

Example

∀x . p(x, f(3))→∃y . q(y, f(f(f(z))))

Precedence
I PL connectives: as for PL
I quantifiers: lowest—the scope of a quantifier extends to the right

FLOLAC 2019 First-Order Logic FLOLAC 2019 9 / 87

Syntax
Syntax:

Grammar:
I term: t ::= x occurrence of a variable x ∈ X

| f(t1, . . . , tn) where f/n is a function symbol
I formula:

F ::= p(t1, . . . , tn) where p/n is a predicate symbol
| ⊥ | > | ¬F | F1 ∧ F2 | F1 ∨ F2 | F1→F2 | F1↔F2 PL
| ∃x . F exists, existential quantification
| ∀x . F for all, universal quantification

Example

∀x . p(x, f(3))→∃y . q(y, f(f(f(z))))

Precedence
I PL connectives: as for PL
I quantifiers: lowest—the scope of a quantifier extends to the right

FLOLAC 2019 First-Order Logic FLOLAC 2019 9 / 87

Syntax

Definitions:
atomic formulae: those built with the rule p(t1, . . . , tn)

F is a subformula of G: (1) F is a formula and (2) F is a part of G
the matrix of F : obtained by removing all quantifiers in F

Example

F = ∃x1 . P1(x1, f1(x2)) ∨ ¬∀x2 . P2(x2, f2(c, f3(x3)))

what are the subformulae, terms, and matrix of F?

FLOLAC 2019 First-Order Logic FLOLAC 2019 10 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x . x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y . y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x . p(f(x), y)→∀y . p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write F (x1, . . . , xn) when free(F) = {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of F

F is ground (or closed) if free(F) = ∅

FLOLAC 2019 First-Order Logic FLOLAC 2019 11 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!

Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}

FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}

FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}

FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}

FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}

FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
Structure (or Interpretation) A = (UA, IA): provides the meaning to
the symbols

universe UA: a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment IA: a mapping that maps
I each function symbol f/n to a function fI :

n︷ ︸︸ ︷
UA × . . .× UA → UA

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I each predicate symbol p/n to a function pI :

n︷ ︸︸ ︷
UA × . . .× UA → B

• e.g.,
isJedi = {Luke 7→ T,Anakin 7→ T,Yoda 7→ T,ObiWan 7→ T, . . .}

• e.g., (<) = {(0, 1) 7→ T, (0, 2) 7→ T, (1, 2) 7→ T, . . .}
• e.g., (= 0) = {0 7→ T, 1 7→ F, 2 7→ F, . . .}
• e.g., isFatherOf = {(Anakin,Luke) 7→ T, . . .}

I each variable x ∈ X to a value from UA, e.g., {x 7→ 42, y 7→ 0}
FLOLAC 2019 First-Order Logic FLOLAC 2019 12 / 87

Semantics – Example of Structure
A structure A = (UA, IA) is suitable for F : IA is defined over all
predicate symbols, function symbols, and free variables of F .

Example
∀x . P (x, f(x)) ∧Q(g(a, z)) has a suitable structure A = (UA, IA)
defined as follows.

UA = N,
IA(P) = {(m,n) 7→ T | m < n} ∪ {(m,n) 7→ F | m ≥ n},
IA(Q) = {n 7→ T | n is prime} ∪ {n 7→ F | n is not prime},
IA(f) = fA = the successor function, hence fA(n) = n+ 1,
IA(g) = gA = the sum function, hence gA(n,m) = n+m,
IA(a) = 2, IA(z) = 3.

Observe that F is “true” under this structure.

Could you define a suitable structure in which F is “false”?

FLOLAC 2019 First-Order Logic FLOLAC 2019 13 / 87

Semantics – Example of Structure
A structure A = (UA, IA) is suitable for F : IA is defined over all
predicate symbols, function symbols, and free variables of F .

Example
∀x . P (x, f(x)) ∧Q(g(a, z)) has a suitable structure A = (UA, IA)
defined as follows.

UA = N,
IA(P) = {(m,n) 7→ T | m < n} ∪ {(m,n) 7→ F | m ≥ n},
IA(Q) = {n 7→ T | n is prime} ∪ {n 7→ F | n is not prime},
IA(f) = fA = the successor function, hence fA(n) = n+ 1,
IA(g) = gA = the sum function, hence gA(n,m) = n+m,
IA(a) = 2, IA(z) = 3.

Observe that F is “true” under this structure.
Could you define a suitable structure in which F is “false”?

FLOLAC 2019 First-Order Logic FLOLAC 2019 13 / 87

UA needs not to be a set of numbers.

Example
Below we define a suitable structure A = (UA, IA) for
F = ∀x . P (a, f(x)).

UA = all varaible free terms from the symbols of F =
{a, f(a)), f(f(a)), f(f(f(a))), . . .)},
IA(f) = fA, where fA(t) = t,
IA(a) = a,
IA(P) =?.

FLOLAC 2019 First-Order Logic FLOLAC 2019 14 / 87

Semantics

The value of terms:
A(x)

def
= IA(x), A(f(t1, . . . , tn))

def
= IA(f)(A(t1), . . . ,A(tn))

The truth value of a formula:
I A |= P (t1, . . . , tn) iff IA(P)(A(t1), . . . ,A(tn)) = T
A |= ¬F iff A 6|= F
A |= G ∧H iff A |= G and A |= H
A |= G ∨H iff A |= G or A |= H
A |= ∀x.G iff for all u ∈ UA, A[x7→u] |= G
A |= ∃x.G iff there exists u ∈ UA, A[x7→u] |= G

I A |= F means F is true in A, or A is a model of F .
I if F has a model, then F is satisfiable, otherwise unsatisfiable
I if A |= F for all possible suitable structure A, then F is valid
I substitution : A[x 7→u] is identical to A with the exception

IA[x 7→u]
(x) = u.

Question: we no more have Boolean variables! Is that a problem?

FLOLAC 2019 First-Order Logic FLOLAC 2019 15 / 87

Semantics

The value of terms:
A(x)

def
= IA(x), A(f(t1, . . . , tn))

def
= IA(f)(A(t1), . . . ,A(tn))

The truth value of a formula:
I A |= P (t1, . . . , tn) iff IA(P)(A(t1), . . . ,A(tn)) = T
A |= ¬F iff A 6|= F
A |= G ∧H iff A |= G and A |= H
A |= G ∨H iff A |= G or A |= H
A |= ∀x.G iff for all u ∈ UA, A[x7→u] |= G
A |= ∃x.G iff there exists u ∈ UA, A[x7→u] |= G

I A |= F means F is true in A, or A is a model of F .
I if F has a model, then F is satisfiable, otherwise unsatisfiable
I if A |= F for all possible suitable structure A, then F is valid
I substitution : A[x 7→u] is identical to A with the exception

IA[x 7→u]
(x) = u.

Question: we no more have Boolean variables! Is that a problem?

FLOLAC 2019 First-Order Logic FLOLAC 2019 15 / 87

Semantics

The value of terms:
A(x)

def
= IA(x), A(f(t1, . . . , tn))

def
= IA(f)(A(t1), . . . ,A(tn))

The truth value of a formula:
I A |= P (t1, . . . , tn) iff IA(P)(A(t1), . . . ,A(tn)) = T
A |= ¬F iff A 6|= F
A |= G ∧H iff A |= G and A |= H
A |= G ∨H iff A |= G or A |= H
A |= ∀x.G iff for all u ∈ UA, A[x7→u] |= G
A |= ∃x.G iff there exists u ∈ UA, A[x7→u] |= G

I A |= F means F is true in A, or A is a model of F .
I if F has a model, then F is satisfiable, otherwise unsatisfiable
I if A |= F for all possible suitable structure A, then F is valid
I substitution : A[x 7→u] is identical to A with the exception

IA[x 7→u]
(x) = u.

Question: we no more have Boolean variables! Is that a problem?

FLOLAC 2019 First-Order Logic FLOLAC 2019 15 / 87

Exercise
Consider the formula

F = ∀x.∃y. P (x, y, f(z)).

Define a structure A = (N, IA) that is a model of F , and another
structure B = (N, IB) that is not a model of F .

FLOLAC 2019 First-Order Logic FLOLAC 2019 16 / 87

Semantics — Examples

Consider the signature ({(+)/2}, {(=)/2})

Addition in N: A = (N, IA) where
I IA(+) = (+N)
I IA(=) maps pairs in {(n, n) | n ∈ N} to T and others to F
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)
Addition in R3: A = (R3, IA) where
I IA(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: A = ({0, 1}, IA)
I IA(+) = ∨

Modular addition in {0, 1, 2, 3}: A = ({0, 1, 2, 3}, IA) where
I IA(+) = {(x, y) 7→ x+ y mod 4}

FLOLAC 2019 First-Order Logic FLOLAC 2019 17 / 87

Semantics — Examples

Consider the signature ({(+)/2}, {(=)/2})
Addition in N: A = (N, IA) where
I IA(+) = (+N)
I IA(=) maps pairs in {(n, n) | n ∈ N} to T and others to F
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)

Addition in R3: A = (R3, IA) where
I IA(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: A = ({0, 1}, IA)
I IA(+) = ∨

Modular addition in {0, 1, 2, 3}: A = ({0, 1, 2, 3}, IA) where
I IA(+) = {(x, y) 7→ x+ y mod 4}

FLOLAC 2019 First-Order Logic FLOLAC 2019 17 / 87

Semantics — Examples

Consider the signature ({(+)/2}, {(=)/2})
Addition in N: A = (N, IA) where
I IA(+) = (+N)
I IA(=) maps pairs in {(n, n) | n ∈ N} to T and others to F
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)
Addition in R3: A = (R3, IA) where
I IA(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: A = ({0, 1}, IA)
I IA(+) = ∨

Modular addition in {0, 1, 2, 3}: A = ({0, 1, 2, 3}, IA) where
I IA(+) = {(x, y) 7→ x+ y mod 4}

FLOLAC 2019 First-Order Logic FLOLAC 2019 17 / 87

Semantics — Examples

Consider the signature ({(+)/2}, {(=)/2})
Addition in N: A = (N, IA) where
I IA(+) = (+N)
I IA(=) maps pairs in {(n, n) | n ∈ N} to T and others to F
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)
Addition in R3: A = (R3, IA) where
I IA(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: A = ({0, 1}, IA)
I IA(+) = ∨

Modular addition in {0, 1, 2, 3}: A = ({0, 1, 2, 3}, IA) where
I IA(+) = {(x, y) 7→ x+ y mod 4}

FLOLAC 2019 First-Order Logic FLOLAC 2019 17 / 87

Semantics — Examples

Consider the signature ({(+)/2}, {(=)/2})
Addition in N: A = (N, IA) where
I IA(+) = (+N)
I IA(=) maps pairs in {(n, n) | n ∈ N} to T and others to F
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)
Addition in R3: A = (R3, IA) where
I IA(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: A = ({0, 1}, IA)
I IA(+) = ∨

Modular addition in {0, 1, 2, 3}: A = ({0, 1, 2, 3}, IA) where
I IA(+) = {(x, y) 7→ x+ y mod 4}

FLOLAC 2019 First-Order Logic FLOLAC 2019 17 / 87

Exercise
The following formulas F1, F2, F3 express that the predicate P is
reflexive, symmetric, and transitive.

F1 = ∀x.P (x, x)
F2 = ∀x.∀y.(P (x, y)→P (y, x))
F3 = ∀x.∀y.∀z.((P (x, y) ∧ P (y, z))→P (x, z))

Show that none of them is a consequence of the other two by
presenting structures that are models of two of the formulas, but not for
the third one.

FLOLAC 2019 First-Order Logic FLOLAC 2019 18 / 87

Normal Forms

FLOLAC 2019 First-Order Logic FLOLAC 2019 19 / 87

Equivalences

Two formulas F and G are equivalent (written as F ≡ G) if
A(F) = A(F) for all suitable structures.

Example
Those we have seen in propositional logic

F ≡ ¬¬F (double negative elimination)
¬(F ∧G) ≡ ¬F ∨ ¬G (De Morgan’s law)
F ↔G ≡ (F →G) ∧ (G→F)

F ∧ (G ∧H) ≡ (F ∧G) ∧H (associativity)
F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) (distributivity)

FLOLAC 2019 First-Order Logic FLOLAC 2019 20 / 87

Non-Propositional Equivalences

There are of course new equivalences

1. ∀x. ¬F ≡ ¬∃x. F
∃x. ¬F ≡ ¬∀x. F

2. (∀x. F) ∧ (∀x . G) ≡ ∀x. F ∧G
(∃x. F) ∨ (∃x . G) ≡ ∃x. F ∨G

3. ∀x. F ◦G ≡ (∀x. F) ◦G if x /∈ free(G), ◦ ∈ {∧,∨}
∃x. F ◦G ≡ (∃x. F) ◦G if x /∈ free(G), ◦ ∈ {∧,∨}

4. ∀x.∀y. F ≡ ∀y.∀x. F
∃x.∃y. F ≡ ∃y.∃x. F

We sometimes write ∀x, y and ∃x, y as shorthand for ∀x.∀y and ∃x.∃y.

FLOLAC 2019 First-Order Logic FLOLAC 2019 21 / 87

Non-Propositional Equivalences (Correctness)

As an example, we prove the correctness of ∀x. F ∧G ≡ (∀x. F)∧G, if
x /∈ free(G). Let A = (UA, IA) be a structure suitable for both sides of
the equivalence.

A |= (∀x. F) ∧G
iff for all u ∈ UA,A[x 7→u] |= F and A |= G

iff for all u ∈ UA,A[x 7→u] |= F and A[x 7→u] |= G (x /∈ free(G))

iff for all u ∈ UA,A[x 7→u] |= F ∧G
iff A |= ∀x. F ∧G

FLOLAC 2019 First-Order Logic FLOLAC 2019 22 / 87

Non-Propositional Equivalences
Some examples with very similar looking formulas, but are not
equivalent

Equivalent

(∀x. F) ∧ (∀x . G) ≡ ∀x. F ∧G
(∃x. F) ∨ (∃x . G) ≡ ∃x. F ∨G

Inequivalent

(∀x. F) ∨ (∀x . G) 6≡ ∀x. F ∨G
(∃x. F) ∧ (∃x . G) 6≡ ∃x. F ∧G

Can you confirm this by exhibiting counterexamples?
FLOLAC 2019 First-Order Logic FLOLAC 2019 23 / 87

Negation Normal Form (NNF)

A formula is in Negation Normal Form (NNF) if ¬ appears only in front
of predicates

Example
Let

F : ¬∃n, x, y . n > 2 ∧ ∃z . xn + yn = zn.

The formula

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn)

is equivalent to F and is in NNF.

Question: how to get the NNF using the equivalence rules?

FLOLAC 2019 First-Order Logic FLOLAC 2019 24 / 87

Negation Normal Form (NNF)

A formula is in Negation Normal Form (NNF) if ¬ appears only in front
of predicates

Example
Let

F : ¬∃n, x, y . n > 2 ∧ ∃z . xn + yn = zn.

The formula

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn)

is equivalent to F and is in NNF.

Question: how to get the NNF using the equivalence rules?

FLOLAC 2019 First-Order Logic FLOLAC 2019 24 / 87

Negation Normal Form (NNF)

A formula is in Negation Normal Form (NNF) if ¬ appears only in front
of predicates

Example
Let

F : ¬∃n, x, y . n > 2 ∧ ∃z . xn + yn = zn.

The formula

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn)

is equivalent to F and is in NNF.

Question: how to get the NNF using the equivalence rules?

FLOLAC 2019 First-Order Logic FLOLAC 2019 24 / 87

Prenex Normal Form (PNF)
A formula is in Prenex Normal Form (PNF) is of the form

F = Q1x1 Qnxn︸ ︷︷ ︸
prefix

. G(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸
matrix

where Qi ∈ {∀,∃} and G is quantifier-free; {y1, . . . , ym} are the
free variables of F

Example
Let

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn).

The formula

H : ∀n, x, y, z . ¬(n > 2) ∨ ¬(xn + yn = zn)

is equivalent to G and is in PNF.

FLOLAC 2019 First-Order Logic FLOLAC 2019 25 / 87

Prenex Normal Form (PNF)
A formula is in Prenex Normal Form (PNF) is of the form

F = Q1x1 Qnxn︸ ︷︷ ︸
prefix

. G(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸
matrix

where Qi ∈ {∀,∃} and G is quantifier-free; {y1, . . . , ym} are the
free variables of F

Example
Let

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn).

The formula

H : ∀n, x, y, z . ¬(n > 2) ∨ ¬(xn + yn = zn)

is equivalent to G and is in PNF.

FLOLAC 2019 First-Order Logic FLOLAC 2019 25 / 87

Equivalence so far are not enough

They are sometimes enough to produce to produce a formula in PNF:

Example

∀x . (x = z ∨ ∃y . R(x, y)) ≡ ∀x.∃y . (x = z ∨R(x, y))

The subformula x = z does not have the variable y.

But in general, we need more rules, e.g.:

Example
∃x . P (x) ∧ ∃x . Q(x) ≡?

To convert this to PNF, we need to apply “variable renaming”

FLOLAC 2019 First-Order Logic FLOLAC 2019 26 / 87

Equivalence so far are not enough

They are sometimes enough to produce to produce a formula in PNF:

Example

∀x . (x = z ∨ ∃y . R(x, y)) ≡ ∀x.∃y . (x = z ∨R(x, y))

The subformula x = z does not have the variable y.

But in general, we need more rules, e.g.:

Example
∃x . P (x) ∧ ∃x . Q(x) ≡?

To convert this to PNF, we need to apply “variable renaming”

FLOLAC 2019 First-Order Logic FLOLAC 2019 26 / 87

Substitutions

We formalize variable renaming by substitutions

Definition
Given a variable x and a term t, we write F [x 7→ t] to denote the
formula obtained by substituting all free occurrence of x in F to t.

Exercise
If F = (∀x . P (x)) ∧Q(x), what is F [x 7→ f(x)]?

Exercise
Give a recursive definition of F [x 7→ t].

FLOLAC 2019 First-Order Logic FLOLAC 2019 27 / 87

Substitutable Terms

Unrestricted substitutions cause problems with “scoping”

Definition
A term t is substitutable for x in F if no variable in t occur bound in F

Example
y + 5 is not substitutable for x in the following formula

∀y . (x+ 3z = y)

Key: use only substitutable terms in substitution

FLOLAC 2019 First-Order Logic FLOLAC 2019 28 / 87

Substitution Lemma

Lemma
Suppose t is a term that is substitutable for x in F . Then

A |= F [x 7→ t] iff A[x 7→A(t)] |= F

Can be proved by structural induction. Detailed proof can be found in
the note of Eric Pacuit (https://pdfs.semanticscholar.org/
2b67/95e57bb5b2f63d46ced447952d9a00b0f33b.pdf, pages
8-9)

Corollary
Let y be a variable not in ∀x . F . Then

∀x . F = ∀y . (F [x 7→ y])

The same hold for the ∃ counterpart.

FLOLAC 2019 First-Order Logic FLOLAC 2019 29 / 87

https://pdfs.semanticscholar.org/2b67/95e57bb5b2f63d46ced447952d9a00b0f33b.pdf
https://pdfs.semanticscholar.org/2b67/95e57bb5b2f63d46ced447952d9a00b0f33b.pdf

Cleansing a Formula

By variable renaming in F , each variable can be made:
to occur only free or bound in F , and
to be quantified in F at most once.

Exercise
Cleansing the following formulas
∃y . R(x) ∧ ∃x . P (x)

∀x . (x 6= x+ 1) ∧ ∃y . (x = y)

FLOLAC 2019 First-Order Logic FLOLAC 2019 30 / 87

Conversion to PNF

Cleansing the formula
Convert to NNF
Keeping applying the equivalences to bring the quantifiers out

Exercise
Turn the following into PNF

∀x . (G(x, x) ∧ ¬(∃y . ¬G(x, y) ∧ ∀y . G(y, y))) ∧G(x, 0)

FLOLAC 2019 First-Order Logic FLOLAC 2019 31 / 87

Skolem Normal Form (SNF)

A formula in Skolem Normal Form (SNF) if it is in PNF and there is
no occurrence of an existential quantifier in it.
In general, it is not always possible to find an equivalent formula in
SNF for a given FOL formula.

Theorem
Every FOL formula can be converted into an equisatisfiable one in
SNF (possibly over a different alphabet)

FLOLAC 2019 First-Order Logic FLOLAC 2019 32 / 87

Skolemization

Methods to eliminate existential quantifiers

Lemma
Suppose F = ∀x1, . . . , xm.∃y . G and let f/n be a function symbol not
in G. The following formula is equisatisfiable to F

∀x1, . . . , xm.G[y 7→ f(x1, . . . , xm)].

FLOLAC 2019 First-Order Logic FLOLAC 2019 33 / 87

Conversion to SNF

Turn the formula into a cleansed one in PNF
Apply Skolemization from the outermost existential quantifier

Exercise
Turn the following formula into SNF

∀x . ∃y . ∀x′ . ∃y′ . R(x, y, x′, y′)

FLOLAC 2019 First-Order Logic FLOLAC 2019 34 / 87

Herbrand’s Theorem

FLOLAC 2019 First-Order Logic FLOLAC 2019 35 / 87

In a Nutshell

The theorem enables a systematic approach to decide if a FOL
formula is unsatisfiable or valid.
We know how to do it in propositional logic (the possible models
are finite).
This is not easy in FOL. The possible suitable structures of a FOL
can be an infinite set.

FLOLAC 2019 First-Order Logic FLOLAC 2019 36 / 87

Herbrand Universe

the Herbrand universe D(F) of a closed formula F in Skolem form
is the set of all ground (variable-free) terms that can be built from
the components of F .
when F does not contains any constant, we choose an arbitrary
constant, say a, and use it to build up the variable-free terms.
more precisely,
I Every constant in F is also in D(F). If F has no constant, then

a ∈ D(F).
I For all function f/k in F and for all terms t1, . . . , tk already in D(F),

the term f(t1, . . . , tk) ∈ D(F).

FLOLAC 2019 First-Order Logic FLOLAC 2019 37 / 87

Herbrand Universe
Recall below the formal definition of Harbrand universe.
I Every constant in F is also in D(F). If F has no constant, then

a ∈ D(F).
I For all function f/k in F and for all terms t1, . . . , tk already in D(F),

the term f(t1, . . . , tk) ∈ D(F).

Example
Consider the formulas

F = ∀x, y, z . P (x, f(y), g(z, x))

G = ∀x, y . Q(c, f(x), h(y, b))

.
The formula F does not contain a constant, Therefore

D(F) = {a, f(a), g(a, a), f(f(a)), f(g(a, a)), g(a, f(a)), . . .}

D(G) = {b, c, f(b), f(c), h(b, b), h(b, c), h(c, b), h(c, c), f(f(b)), . . .}
FLOLAC 2019 First-Order Logic FLOLAC 2019 38 / 87

Herbrand Structure

Let F be a closed form formula in SNF. A structure A = (UA, IA) is
called a Herbrand structure for F if the following holds

UA = D(F),

For all function symbol f/k in F and terms t1, t2, . . . , tk ∈ D(F),
A(f(t1, . . . , tk)) = f(t1, . . . , tk).
One can freely choose the mapping (interpretation) for predicate
symbols.

FLOLAC 2019 First-Order Logic FLOLAC 2019 39 / 87

Herbrand Structure

Example
The Herbrand structure A = (UA, IA) for
F = ∀x, y, z . P (x, f(y), g(z, x)) has the following properties.

UA = D(F) = {a, f(a), g(a, a), f(f(a)), f(g(a, a)), g(a, f(a)), . . .}

and

A(f(t)) = f(t),A(g(t1, t2)) = g(t1, t2), for all t, t1, t2 ∈ D(F)

The choice of IA(P) is still free. E.g., one can define
IA(P)(t1, t2, t3) = T iff g(t1, t2) = g(t2, f(t3)). (is A a model of F?)

FLOLAC 2019 First-Order Logic FLOLAC 2019 40 / 87

Facts about Herbrand Structure

Proposition
The value A(t) of a ground term t in a Herbrand structure A is t

Substitution lemma has a simplified form

Lemma
Suppose t is substitutable for x in F and A a Herbrand structure. Then

A |= F [x 7→ u] iff A[x 7→u] |= F

We call a Herbrand structure A of a formula F a Herbrand model for F ,
if it is a model of F .

FLOLAC 2019 First-Order Logic FLOLAC 2019 41 / 87

Herbrand’s Theorem

Theorem
Let F be a closed formula in Skolem normal form. Then F is satisfiable
iff F has a Herbrand model.

Example
Prove satisfiability of

∃x, y, z . (P (x)→P (y)) ∧ (P (y)→P (z)) ∧ ¬P (z)

Skolemize:
(P (a)→P (b)) ∧ (P (b)→P (c)) ∧ ¬P (c)

Herbrand model has the universe {a, b, c}
enumerate all such models.

FLOLAC 2019 First-Order Logic FLOLAC 2019 42 / 87

Proof of Herbrand’s Theorem

Assume a closed formula F that is in SNF.
Prove: exists a model A implies exists a Herbrand model H
Idea: Define H that “mimics” A

IH(P)(t1, . . . , tk) = T iff A |= P (t1, . . . , tk)

for all t1, . . . , tk ∈ D(F).
Claim: For all n (# quantifiers), A |= G implies H |= G.
I G is any closed formula in PNF that is built from the same function

symbols and predicate symbols of F
I Proof by induction on n
I n = 0 : G is a boolean combination of ground terms. Immediate.

FLOLAC 2019 First-Order Logic FLOLAC 2019 43 / 87

Proof of Herbrand’s Theorem

IH(P)(t1, . . . , tk) = T iff A |= P (t1, . . . , tk)

Claim: For all n (# quantifiers), A |= G implies H |= G.
I n > 0 : We have A |= ∀x . G′
I Problem: G′ is not ground, so (IH) cannot be applied.
I Key: use substitution lemma

A |= G
=⇒ A[x 7→u] |= G′ for all u ∈ UA (definition of ∀)
=⇒ A[x 7→A(t)] |= G′ for all t ∈ D(G) (A(t) ∈ UA)
=⇒ A |= G′[x 7→ t] for all t ∈ D(G) (by sub. lem.)
=⇒ H |= G′[x 7→ t] for all t ∈ D(G) (by IH)
=⇒ H[x 7→t] |= G′ for all t ∈ D(G) (by sub. lem.)
=⇒ H |= G (definition of ∀)

FLOLAC 2019 First-Order Logic FLOLAC 2019 44 / 87

Ground Resolution Theorem (a.k.a
Gödel-Herbrand-Skolem Theorem)

FLOLAC 2019 First-Order Logic FLOLAC 2019 45 / 87

Herbrand Expansion
Let F = ∀x1, . . . , xk . G be a closed formula in SNF, where G is
quantifier free.

Definition
The Herbrand expansion of F , denoted E(F), is defined as

E(F) = {G[x1 7→ t1][x2 7→ t2] · · · [xk 7→ tk] | t1, t2 . . . , tk ∈ D(F)}

Example

F = ∀x, y . P (x, f(y))

The elements in E(F) includes

P (a, f(a)) using [x 7→ a][y 7→ a]
P (f(a), f(a)) using [x 7→ f(a)][y 7→ a]

P (f(a), f(f(a))) using [x 7→ f(a)][y 7→ f(a)]
. . .

FLOLAC 2019 First-Order Logic FLOLAC 2019 46 / 87

Ground Resolution Theorem

Let F = ∀x1, . . . , xk . G be a closed formula in SNF.

Theorem (Gödel-Herbrand-Skolem)
The formula F is satisfiable

iff
E(F) is satisfiable in propositional logic

Observe that E(F) can be treated as formulas in propositional logic
because they do not contain variable.

Corollary
The formula F is unsatisfiable

iff
There is a finite unsatisfiable subset of E(F)

From compactness of propositional logic

FLOLAC 2019 First-Order Logic FLOLAC 2019 47 / 87

Proof of GRT

Theorem (Gödel-Herbrand-Skolem)
The formula F is satisfiable

iff
E(F) is satisfiable in propositional logic

Let F have the form F = ∀x1, x2, . . . , xn . F ∗.
F is satisfiable

Herbrand Thm⇐⇒ H |= F for a Herbrand model H
def. of ∀⇐⇒ H[x1 7→t1]...[xn 7→tn] |= F ∗, for all t1, t2, . . . , tn ∈ D(F)

Sub. Lemma⇐⇒ H |= F ∗[x1 7→ t1] . . . [xn 7→ tn], for all t1, t2, . . . , tn ∈ D(F)
def. of E(F)⇐⇒ H |= G, for all G ∈ E(F)
⇐⇒ H is a model of E(F)

FLOLAC 2019 First-Order Logic FLOLAC 2019 48 / 87

Glimore’s Procedure

Input: A closed formula F in SNF
Task: Determine whether it is unsatisfiable
Procedure:

Let E(F) = {F1, F2, . . . , Fn, . . .}
n := 0
While F1 ∧ . . . ∧ Fn is satisfiable:
n := n+ 1

return “unsatisfiable”

FLOLAC 2019 First-Order Logic FLOLAC 2019 49 / 87

Semi-decidability of FOL Validity

Input: A formula F
Task: Determine whether it is valid
Procedure:

1. Convert ¬F to a formula F ′ in SNF
2. Run Gilmore’s procedure on F ′

3. If “unsatisfiable” was returned in (2), return “valid”

Exercise
Use Gilmore’s procedure to show the formulas are valid

(∀x . P (x)→P (f(x)))→(∀x . P (x)→P (f(f(x))))

∀x.∃y . (P (x)→Q(y))→∃y.∀x . (P (x)→Q(y))

FLOLAC 2019 First-Order Logic FLOLAC 2019 50 / 87

Question

What happens if we run Gilmore’s procedure on the formula below?

F = ∀x . (x < s(x))

FLOLAC 2019 First-Order Logic FLOLAC 2019 51 / 87

Undecidability of FOL Validity

Theorem (Church-Turing)
FOL validity is undecidable.

Perhaps the most important in the theory of computation, and a
negative answer to the famous challenge (Entscheidungsproblem, in
English “Decision Problem”) posed by Hilbert and Ackermann in 1928.

FLOLAC 2019 First-Order Logic FLOLAC 2019 52 / 87

Resolution for FOL

FLOLAC 2019 First-Order Logic FLOLAC 2019 53 / 87

The Setup

The formula is now in Skolem Clausal Form:
a cleansed formula in SNF,

where the quantifier-free part (the matrix) is in CNF.

Example (Clause Form)
We often represent a CNF formula

(l1 ∨ l2 ∨ l3) ∧ (l4 ∨ l5)

in clause form (as a set of clauses) as follows

{{l1, l2, l3}{l4, l5}}

FLOLAC 2019 First-Order Logic FLOLAC 2019 54 / 87

Ground Resolution Procedure

Input: A closed formula F in SNF with E(F) = {F1, F2, . . . , Fn}
Task: Determine whether it is unsatisfiable
Procedure:

i := 0,M = ∅
While ⊥ /∈M :

n := n+ 1
M := M ∪ Fi

M := Res∗(M)
return “unsatisfiable”

FLOLAC 2019 First-Order Logic FLOLAC 2019 55 / 87

Remarks: Resolution Proof in Propositional Logic

Definition
Resolution proof rule:

{a1, a2, . . . , an, b1, b2, . . . , bn}

{b1, b2, . . . , bn,¬c}{a1, a2, . . . , an, c}

Lemma
A set of clauses that does not any inconsistent pair of propositions p,
¬p is satisfiable.

Example
{{p, q,¬r}{q, s}{p,¬r, s}} is satisfiable

FLOLAC 2019 First-Order Logic FLOLAC 2019 56 / 87

Remarks: Resolution Proof in Propositional Logic
Example
{{r}{p,¬r}{q,¬r}{¬p,¬q}} is unsatisfiable

Example

{} = ⊥

{¬q}

{¬p,¬q}{p}

{p,¬r}{r}

{q}

{r}{q,¬r}

Theorem
Resolution proof is sound and complete for propositional logic

FLOLAC 2019 First-Order Logic FLOLAC 2019 57 / 87

Ground Resolution Example

Example
Prove the following formula is UNSAT using ground resolution

F = ∀x . P (x) ∧ ¬P (f(x))

The matrix of F = {{P (x)}{¬P (f(x))}}

Already the first 2 ground substitutions [x 7→ a], [x 7→ f(a)], that is, the
first two elements in E(F) lead to UNSAT.

{P (a)} {¬P (f(a))} {P (f(a))} {¬P (f(f(a)))}

⊥

FLOLAC 2019 First-Order Logic FLOLAC 2019 58 / 87

Ground Resolution Diagrammatically

Substitution steps can be represented as an initial step of a resolution
proof for propositional logic.

⊥

¬R(f(c))

{¬R(f(x))}

[x 7→ c]

R(f(c))

{R(x)}

[x 7→ f(c)]

FLOLAC 2019 First-Order Logic FLOLAC 2019 59 / 87

Example
Prove the following formula is UNSAT using ground resolution

∀x, y . (¬P (x) ∨ ¬P (f(a)) ∨Q(y)) ∧ (P (y)) ∧ (¬P (g(b, x)) ∨ ¬Q(b))

Solution:

⊥

{¬Q(b)}

{¬P (g(b, a)),¬Q(b)}

{¬P (g(b, x)),¬Q(b)}

[x 7→ a]

{P (g(b, a))}

{P (y)}

[y 7→ g(b, a)]

{Q(b)}

{P (f(a))}

{P (y)}

[y 7→ f(a)]

{¬P (f(a)), Q(b)}

{¬P (x),¬P (f(a)), Q(y)}

[x 7→ f(a)]
[y 7→ b]

FLOLAC 2019 First-Order Logic FLOLAC 2019 60 / 87

Example
Prove the following formula is UNSAT using ground resolution

∀x, y . (¬P (x) ∨ ¬P (f(a)) ∨Q(y)) ∧ (P (y)) ∧ (¬P (g(b, x)) ∨ ¬Q(b))

Solution:

⊥

{¬Q(b)}

{¬P (g(b, a)),¬Q(b)}

{¬P (g(b, x)),¬Q(b)}

[x 7→ a]

{P (g(b, a))}

{P (y)}

[y 7→ g(b, a)]

{Q(b)}

{P (f(a))}

{P (y)}

[y 7→ f(a)]

{¬P (f(a)), Q(b)}

{¬P (x),¬P (f(a)), Q(y)}

[x 7→ f(a)]
[y 7→ b]

FLOLAC 2019 First-Order Logic FLOLAC 2019 60 / 87

Unification and General Resolution

FLOLAC 2019 First-Order Logic FLOLAC 2019 61 / 87

Problem with General Resolution

⊥

{¬Q(b)}

{¬P (g(b, a)),¬Q(b)}

{¬P (g(b, x)),¬Q(b)}

[x 7→ a]

{P (g(b, a))}

{P (y)}

[y 7→ g(b, a)]

{Q(b)}

{P (f(a))}

{P (y)}

[y 7→ f(a)]

{¬P (f(a)), Q(b)}

{¬P (x),¬P (f(a)), Q(y)}

[x 7→ f(a)]
[y 7→ b]

A blind (albeit systematic) enumeration of ground clauses will generate
lots of irrelevant ground clauses
Solution: do pattern matching like human (a.k.a. unification).

FLOLAC 2019 First-Order Logic FLOLAC 2019 62 / 87

Unification

Unification will allow us to do resolution with non-ground clauses.

FLOLAC 2019 First-Order Logic FLOLAC 2019 63 / 87

Simultaneous Substitution

A simultaneous substitution is a mapping from variables to terms
(not necessarily ground terms).
We write

θ = [x1 . . . , xn 7→ t1, . . . , tn]

to denote the simultaneous substitution θ that maps x1 to t1, x2 to
t2,. . ., xn to tn, and y to itself for every variable y /∈ {x1, . . . , xn}.

Example

F = P (x) ∧Q(f(y))

Then,
F [x, y 7→ y, f(a)] = P (y) ∧Q(f(f(a)))

.

FLOLAC 2019 First-Order Logic FLOLAC 2019 64 / 87

Composing Substitution

Given two substitutions θ1 and θ2 their composition θ1 ◦ θ2 is the
substitution mapping x to xθ1θ2.

Example
Let

θ1 = [x, y 7→ f(y), a]

and
θ2 = [y 7→ g(a)]

. Then θ1 ◦ θ2 = [x, y 7→ f(g(a)), a]

FLOLAC 2019 First-Order Logic FLOLAC 2019 65 / 87

Unifiers
A literal is a predicate or a negation of a predicate
A unifier for a set U of literals is a substitution that equates all
literals in U . If U has a unifier, then it is unifiable.

Example
U = {P (f(x), g(y)), P (f(f(a)), g(z))}
Some unifiers for U :
θ1 = [x, y, z 7→ f(a), a, a]
θ2 = [x, y 7→ f(a), z].

A most general unifier (mgu) for U is a unifier θ such that each
unifier θ′ can factor through θ, i.e.,

θ′ = θ ◦ γ for some substitution γ

Example
θ2 is an mgu for U . Note that θ1 = θ2 ◦ [z 7→ a].

FLOLAC 2019 First-Order Logic FLOLAC 2019 66 / 87

Unifiers

Question: when is it impossible to unify two literals?
1 if they start with different predicate symbols or we need to match

two different function symbols (obvious)
2 consider the following pair of literals

P (a, x), P (a, f(x))

We can never make them identical using any substitution because
the two terms x and f(x) we are trying to unify contain the same
variable.

FLOLAC 2019 First-Order Logic FLOLAC 2019 67 / 87

Unifiers

Example
The problem of trying to unify the pair of literal

P (x, f(y)) P (f(f(y)), g(a))

can be viewed as solving the system of two term equations:

x = f(f(y))

f(y) = g(a)

Based on the previous remark, this cannot be unified because the
second equation uses two different function symbols.

FLOLAC 2019 First-Order Logic FLOLAC 2019 68 / 87

Unification Theorem

Theorem
Every unifiable set of literals has an mgu.

The proof is given constructively, i.e., by giving an algorithm and
proving its correctness.

FLOLAC 2019 First-Order Logic FLOLAC 2019 69 / 87

Unification Algorithm

Input: A set U of literals
Output: An mgu for U , or “fail”
θ is identity substitution
repeat the following until θ is a unifier for U :

1 pick two distinct literals in Uθ and find the first position they differ.
2 if none of the corresponding symbols is a variable, “fail”
3 now they are diff on a variable x and a subterm t. If t contains x,

report “fail”.
4 θ := θ ◦ [x 7→ t]

return θ

Example
{P (f(x), g(y)), P (f(f(a)), g(z))}

FLOLAC 2019 First-Order Logic FLOLAC 2019 70 / 87

Exercise

Run unification algorithm on the following example:

Example
U = {P (g(y), f(x, h(x), y), P (x, f(g(z), w, z))}

Exercise
Show that unification algorithm (implemented in a straightforward way)
can have exponential running time.

Hint: consider the example below

L = {P (x1, x2, . . . , xn), P (f(x0, x0), f(x1, x1), . . . , f(xn−1, xn−1))}

FLOLAC 2019 First-Order Logic FLOLAC 2019 71 / 87

General Resolution

FLOLAC 2019 First-Order Logic FLOLAC 2019 72 / 87

Clashing Clauses
C1 and C2 are clauses with no common variables
They clash if there exists non-empty subset Di ⊆ Ci such that

unify(Di ∪ D̄1−i) 6= “fail”

.
Here D̄1−i negates every literal in the set

Example
Consider the two clauses

C1 = {P (f(x), g(y)), Q(x, y)}

C2 = {¬P (f(f(a)), g(z)), Q(f(a), z)}

Q: How do they clash?
[x, y 7→ f(a), z] is an mgu of the first formulas.

FLOLAC 2019 First-Order Logic FLOLAC 2019 73 / 87

Resolvent

C1 and C2 are two clashing clauses. A resolvent of C1, C2 is a clause
of the form

(C1θ \D1θ) ∪ (C2θ \D2θ)

if they clash on Di ⊆ Ci and unify(Di ∪ D̄1−i) = θ.

Example

C1 = {P (f(x), g(y)), Q(x, y)}

and

C2 = {¬P (f(f(a)), g(z)), Q(f(a), z)}

Q: Give at least one resolvent of C1 and C2

{Q(f(a), z)}

FLOLAC 2019 First-Order Logic FLOLAC 2019 74 / 87

Remarks on Resolvent
Most often, the two clauses we are trying to resolve will have
common variables, so we cannot compute the resolvent as stated
before.
We need to rename variables so that the clauses no longer have
ant common variables.

Example
Consider the two clauses

{P (f(x), y)} {¬P (x, a)}

The two literals contain common variable x. We rename the x in the
second literal to z

{P (f(x), y)} {¬P (z, a)}

and then the empty resolvent can be computed.

FLOLAC 2019 First-Order Logic FLOLAC 2019 75 / 87

General Resolution Rule

R

C2C1

denotes clashing clauses with a resolvent R

Preprocessing: before any resolution rule, rename the variables
so that V AR(C1) ∩ V AR(C2) = ∅.
Q: why this is okay?

FLOLAC 2019 First-Order Logic FLOLAC 2019 76 / 87

Proof and the Goal

The setting: we are given a set Σ of clauses
The aim: prove Σ is unsatisfiable
just like in resolutions for propositional logic, a proof is a sequence
of clauses

C1, C2, . . . , Cn

such that
for each i > 0, we have either

1 Ci ∈ Σ, or
2 Ci is a resolvent of two clauses Ca, Cb with a, b < i
3 Cn = ⊥ = {}

FLOLAC 2019 First-Order Logic FLOLAC 2019 77 / 87

General Resolution Rule

Input: A set Σ of clauses
Output: SAT or UNSAT
S := Σ

While ⊥ /∈ S
1 pick two clashing clauses C,C ′ ∈ Σ.
2 after a suitable variable renaming, pick a resolvent R
3 if ∀C ′′ ∈ Σ . R /∈ Rename(C ′′). S := S ∪ {R}
4 If no applications of the above three steps can increase S, return

SAT

return UNSAT

FLOLAC 2019 First-Order Logic FLOLAC 2019 78 / 87

Examples

Example
Prove UNSAT for the following sets of clauses by resolution

Σ =

{¬P (x), Q(x), R(x, f(x))},
{¬P (x), Q(x), S(f(x))},

{T (a)},
{P (a)},

{¬R(a, z), T (z)},
{¬T (x),¬Q(x)},
{¬T (y),¬S(y)}

FLOLAC 2019 First-Order Logic FLOLAC 2019 79 / 87

Examples

Example
Prove UNSAT for the following sets of clauses by resolution

Σ =

{¬P (x, y), P (y, x)},

{¬P (x, y),¬P (y, x), P (x, z)},
{¬P (x, f(x))},
{¬P (x, x)}

FLOLAC 2019 First-Order Logic FLOLAC 2019 80 / 87

Examples

Example
Prove UNSAT for the following formula

∃y∀x(shaves(y, x)→¬shaves(x, x))

FLOLAC 2019 First-Order Logic FLOLAC 2019 81 / 87

Soundness and Completeness
Soundness

a proof method is sound if it never proves a wrong formula:

` F ⇒ |= F

` F : F is provable

Theorem
The semantic argument is sound.

Completeness
a proof method is complete if it can prove every valid formula:

|= F ⇒ ` F

Theorem
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g.
natural deduction, Hilbert system).

FLOLAC 2019 First-Order Logic FLOLAC 2019 82 / 87

Soundness and Completeness
Soundness

a proof method is sound if it never proves a wrong formula:

` F ⇒ |= F

` F : F is provable

Theorem
The semantic argument is sound.

Completeness
a proof method is complete if it can prove every valid formula:

|= F ⇒ ` F

Theorem
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g.
natural deduction, Hilbert system).

FLOLAC 2019 First-Order Logic FLOLAC 2019 82 / 87

Soundness and Completeness
Soundness

a proof method is sound if it never proves a wrong formula:

` F ⇒ |= F

` F : F is provable

Theorem
The semantic argument is sound.

Completeness
a proof method is complete if it can prove every valid formula:

|= F ⇒ ` F

Theorem
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g.
natural deduction, Hilbert system).

FLOLAC 2019 First-Order Logic FLOLAC 2019 82 / 87

Soundness and Completeness

Theorem
If resolution generates ⊥, then the input set of clauses is unsatisfiable.

Theorem
For a given unsatisfiable set of clauses, resolution can generate ⊥.

FLOLAC 2019 First-Order Logic FLOLAC 2019 83 / 87

First Order Theories

A theory is a non-empty set T of formulas
often restricted to some syntactical restriction (e.g., only has
certain function symbols)
it is closed under consequence, i.e., if F1, F2, . . . , Fn ∈ T and G is
a consequence of F1, F2, . . . , Fn, then G ∈ T .
there are two different methods to define a particular theory: the
model theoretic method and axiomatic method.

FLOLAC 2019 First-Order Logic FLOLAC 2019 84 / 87

Model Theoretic Method

define a structure A first, and then take theory of A as the set of
formulas for which A is a model.

Th(A) = {F | A |= F}

it is clear that Th(A) is closed under consequence.

Example
Theories Th(N,+) and Th(N,+, ∗) are structures taking N as the
universe, the interpretation of + as the usual addition, and the
interpretation of ∗ as the usual multiplication. The former is called
Presburger arithmetic and the latter Peano arithmetic. The formulas
are restricted to consists of the functions symbols + and ∗ only. For
example

∀x, y . ((x+ y) ∗ (x+ y) = (x ∗ x) + (3 ∗ y))

FLOLAC 2019 First-Order Logic FLOLAC 2019 85 / 87

Axiomatic Method

define a set of formulas M (the axioms) and take the set of all
consequences of M as the theory associated with M .
a theory is called (finitely) axiomatizable if there exists a (finite)
axiom set that defines it. For example

Cons() = {F | F is valid}

The theory of groups:

M =

∀x, y, z . (f(f(x, y), z) = f(x, f(y, z))),

∀x . f(x, e) = x,
∀x.∃y . (f(x, y) = e)

FLOLAC 2019 First-Order Logic FLOLAC 2019 86 / 87

References and Acknowledgement

The main reference book: Uwe Schöning, Logic for Computer
Scientists.
Most of the slides are taken from

Anthony Lin (TU Kaiserslautern)
Ondrej Lengal (Brno University of Tech.)

FLOLAC 2019 First-Order Logic FLOLAC 2019 87 / 87

	Normal Forms
	Herbrand's Theorem
	Ground Resolution Theorem (a.k.a Gödel-Herbrand-Skolem Theorem)
	Resolution for FOL
	Unification and General Resolution
	General Resolution

