Satisfiability Modulo Theories

Hsin-Hung Lin August 26, 2019 FLOLAC'19

Based on slides from SAT/SMT/AR 2019 Credits: Albert Oliveras and Bruno Dutertre

FLOLAC'19

Introduction

Need of SMT

- Some problems are more naturally expressed in other logics than propositional logic
 - Software verification needs reasoning about equality, arithmetic, data structures, ...
 - First-Order Logic
- Example
 - Equality with Uninterpreted Functions (EUF) $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
 - EUF + Linear arithmetic $x \le y \land 2y \le x \land f(h(x) - h(y)) > f(0)$

From SAT to SMT

- SAT
 - Use propositional logic as the formalization language
 - Pros: high degree of efficiency
 - Cons: expressive but involved encodings
- SMT
 - Propositional logic + domain-specific reasoning
 - Pros: improves the expressivity
 - Cons: certain (but acceptable) loss of efficiency

SMT Problem

- Basic SMT Problem
 - Given a formula F in some logical theory T, determine whether F is satisfiable or not.
 - In addition, if F is satisfiable, provide a model of F
- DPLL(T)/CDCL(T) Approach
 - Combine a CDCL-based SAT Solver with a theory solver for T
 - The theory solver works on conjunctions of literals of T
- Combining Decision Procedures for Modularity
 - We don't want to write a global decision procedure
 - We have decision procedures for basic theories
 - We want to combine them to get a decision procedure for the combined theory.

Recall: SAT Decision procedure

- DPLL Algorithm, also called
- CDCL: Conflict-Driven-Clause-Learning
- Rules
 - Unit propagate
 - Decide
 - Fail
 - Backtrack / Backjump
 - Learning
 - Restart

DPLL - Example(1)

Model (M) || Formulae(F)

- $\emptyset \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d} \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d}\overline{2} \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d}\overline{2} 3 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d}\overline{2}34 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $\overline{1} \parallel \overline{1} \lor \overline{2}$, $2 \lor 3$, $\overline{1} \lor \overline{3} \lor 4$, $2 \lor \overline{3} \lor \overline{4}$, $1 \lor 4$
- $\overline{1}$ 4 || $\overline{1}$ \vee $\overline{2}$, 2 \vee 3, $\overline{1}$ \vee $\overline{3}$ \vee 4, 2 \vee $\overline{3}$ \vee $\overline{4}$, 1 \vee 4
- $\overline{1} 4 3^d \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $\overline{1} 4 3^d 2 \parallel \overline{1} \lor \overline{2}$, $2 \lor 3$, $\overline{1} \lor \overline{3} \lor 4$, $2 \lor \overline{3} \lor \overline{4}$, $1 \lor 4$ SAT

(Decide)

(UnitPropagate)

(UnitPropagate)

(UnitPropagate)

(Backtrack)

(UnitPropagate)

(Decide)

(UnitPropagate)

DPLL – Example(1)

Model (M) || Formulae(F)

- Ø || 1 v 2, 2 v 3, 1 v 3 v 4, 2 v 3 v 4, 1 v 4 (De
- 1^d || 1 (2) 2 v 3, 1 v 3 v 4, 2 v 3 v 4, 1 v 4
- $1^{d}\overline{2} \parallel \overline{1} \lor \overline{2}, 2 \lor \overline{3} \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d}\overline{2} 3 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor \overline{4}, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $1^{d}\overline{2} 3 4 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, \underline{2 \lor \overline{3} \lor \overline{4}}, 1 \lor 4$
- $\overline{1} \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $\overline{1}4 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $\overline{1} 4 3^d \parallel \overline{1} \lor \overline{2}, (2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$
- $\overline{1} 4 3^d 2 \parallel \overline{1} \lor \overline{2}$, $2 \lor 3$, $\overline{1} \lor \overline{3} \lor 4$, $2 \lor \overline{3} \lor \overline{4}$, $1 \lor 4$ SAT

(Decide)

(UnitPropagate)

(UnitPropagate)

(UnitPropagate)

(Backtrack)

(UnitPropagate)

(Decide)

(UnitPropagate)

SMT

DPLL – Example(2)

Model (M) || Formulae(F)

- $\emptyset \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (Decide)
- $1^d \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (Decide)
- $1^d 2 3^d \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 3^d 4 \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (Decide)
- $1^d 2 3^d 4 5^d \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 3^d 4 5^d \overline{6} \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (Backjump)
- $1^d \ 2 \ \overline{5} \parallel \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$

DPLL – Example(2)

Model (M) || Formulae(F)

- $1^d \parallel \overline{1} \lor 2 \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 \parallel \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}$ (Decide)
- $1^d 2 3^d \parallel \overline{1} \lor 2, \overline{3} \lor 4 \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 3^d 4 \parallel \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}$ (Decide)
- $1^d 2 3^d 4 5^d \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6} 6 \lor \overline{5} \lor \overline{2}$ (UnitPropagate)
- $1^d 2 3^d 4 5^d \overline{6} \parallel \overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $\underline{6 \lor \overline{5} \lor \overline{2}}$ (Backjump)
- $1^d \ 2 \ \overline{5} \parallel \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$ Learned Clause $\overline{5 \land 2} = \overline{5} \lor \overline{2}$

Theories of Interest - EUF

- Equality with Uninterpreted Functions, i.e. "=" is equality
- Consider formula $a * (f(b) + f(c)) = d \land b * (f(a) + f(c))) \neq d \land a = b$
- Formula is UNSAT, but no arithmetic reasoning is needed
- If we abstract the formula into $h(a,g(f(b),f(c))) = d \wedge h(b,g(f(a),f(c))) \neq d \wedge a = b$
- it is still UNSAT
- EUF is used to abstract non-supported constructions, e.g: Non-linear multiplication, ALUs in circuits

Theories of Interest - Arithmetic

- Bounds
 - $x \bowtie k$ with $\bowtie \in \{<, >, \le, \ge, =\}$
- Difference logic
 - $x y \bowtie k$, with $\bowtie \in \{<, >, \le, \ge, =\}$
- UTVPI (Unit Two Variable Per Inequality)
 - $\pm x \pm y \bowtie k$, with $\bowtie \in \{<, >, \le, \ge, =\}$
- Linear arithmetic
 - e.g: $2x 3y + 4z \le 5$
- Non-linear arithmetic
 - e.g: $2xy + 4xz^2 5y \le 10$
- Variables are either reals or integers
- Machine-inspired arithmetic
 - floating-point arithmetic

Theories of Interest - Arrays

- Two interpreted function symbols read and write
- Theory is axiomatized by:
 - $\forall a \forall i \forall v read(write(a, i, v), i) = v$
 - $\forall a \ \forall i \ \forall j \ \forall v \ (i \neq j \Rightarrow read(write(a, i, v), j) = read(a, j)$
- Sometimes extensionality is added:
 - $\forall a \forall b ((\forall i (read(a,i) = read(b,i))) => a = b$
- Is the following set of literals satisfiable?
 write(a, i, x) ≠ b ∧ read(b, i) = y ∧ read(write(b, i, x), j) = y ∧ a = b ∧ i = j
- Used for:
 - Software verification
 - Hardware verification (memories)

Theories of Interest – Bit-vectors

- Constants represent vectors of bits
- Useful both for hardware and software verification
- Different type of operations:
 - String-like operations: concat, extract, ...
 - Logical operations: bit-wise not, or, and, ...
 - Arithmetic operations: add, substract, multiply, ...
- Assume bit-vectors have size 3. Is the formula SAT? $a[0:1] \neq b[0:1] \land (a|b) = c \land$ $c[0] = 0 \land a[1] + b[1] = 0$

Combination of Theories

- In practice, theories are not isolated
- Software verifications needs arithmetic, arrays, bitvectors, ...
- Formulas of the following form usually arise:
 - $a = b + 2 \land A = write(B, a + 1, 4) \land (read(A, b + 3) = 2 \lor f(a 1) \neq f(b + 1))$
- The goal of SMT is to combine decision procedures for each theory

SMT in Practice

- GOOD NEWS: efficient decision procedures for sets of ground literals exist for various theories of interest
- **PROBLEM**: in practice, we need to deal with:
 - arbitrary boolean combinations of literals (Λ,V, ¬) (DNF conversion is not a solution in practice)
 - 2. multiple theories
 - 3. quantifiers
- We will only focus on (1) and (2), but techniques for (3) exist.

Eager and Lazy approach of SMT

Eager Approach

- Methodology: translate problem into equisatisfiable propositional formula and use off-the-shelf SAT solver
- Why "eager"?
 - Search uses all theory information from the beginning
- Characteristics:
 - Can use best available SAT solver
 - Sophisticated encodings are needed for each theory

Eager Approach – Example(1)

- First step
 - remove function/predicate symbols.
 - Assume we have terms f(a), f(b) and f(c).
- Ackermann reduction:
 - Replace them by fresh constants A, B and C
 - Add clauses:
 - $a = b \rightarrow A = B$
 - $a = c \rightarrow A = C$
 - $b = c \rightarrow B = C$
- Bryant reduction:
 - Replace f(a) by A
 - Replace f(b) by ite(b = a, A, B)
 - Replace f(c) by ite(c = a, A, ite(c = b, B, C))
- Now, atoms are equalities between constants

Eager Approach – Example(2)

- Second step
 - encode formula into propositional logic
 - Small-domain encoding:
 - If there are n different constants, there is a model with size at most *n*
 - $\log n$ bits to encode the value of each constant
 - a=b translated using the bits for a and b
 - Per-constraint encoding:
 - Each atom a=b is replaced by var $P_{a,b}$
 - Transitivity constraints are added
 - e.g. $P_{a,b} \wedge P_{b,c} \rightarrow P_{a,c}$

Lazy Approach

- Why "lazy"?
 - Theory information used lazily when checking T-consistency of propositional models
- Characteristics:
 - Modular and flexible
 - Theory information does not guide the search

Lazy Approach - Example

- Consider EUF and the CNF $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$ $1 \qquad 2 \qquad 3 \qquad 4$
- SAT solver returns model [1, $\overline{2}$, $\overline{4}$]
- Theory solver says T-inconsistent
- Send { 1, $\overline{2} \lor 3$, $\overline{4}$, $\overline{1} \lor 2 \lor 4$ } to SAT solver
- SAT solver returns model [1, 2, 3, $\overline{4}$]
- Theory solver says T-inconsistent
- SAT solver detects { 1, $\overline{2} \lor 3$, $\overline{4}$, $\overline{1} \lor 2 \lor 4$, $\overline{1} \lor \overline{2} \lor \overline{3} \lor 4$ }
- UNSATISFIABLE

Lazy Approach - Optimizations

- Several optimizations for enhancing efficiency
 - Check *T*-consistency only of full propositional models
 - Check *T*-consistency of partial assignment while being built
 - Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
 ➢ Given a *T*-inconsistent assignment *M*, identify a *T*-inconsistent subset M₀ ⊆ *M* and add ¬M₀ as a clause
 - Upon a *T*-inconsistency, add clause and restart
 - ➢Upon a *T*-inconsistency, backtrack to some point where the assignment was still *T*-consistent

Lazy Approach - T-propagation

- As pointed out the lazy approach has one drawback:
 - Theory information does not guide the search (too lazy)
- How can we improve that? For example:
 - Assume that a < b, b < c are in our partial assignment M.
 - If the formula contains a < c we would like to add it to M
- Search guided by *T*-Solver by finding *T*-consequences, instead of only validating it as in basic lazy approach.
- Naive implementation:
 - (1) add $\neg l$, (2) if *T*-inconsistent then infer *l*
- But for efficient Theory Propagation we need:
 - T-Solvers specialized and fast in it.
 - Fully exploited in conflict analysis
 - This approach has been named DPLL(T)

Lazy approach - Important points

- Important and benefitial aspects of the lazy approach: (even with the optimizations)
 - Everyone does what he/she is good at:
 - SAT solver takes care of Boolean information
 - Theory solver takes care of theory information
- Theory solver only receives conjunctions of literals
- Modular approach:
 - SAT solver and T-solver communicate via a simple API
 - SMT for a new theory only requires new *T*-solver
 - SAT solver can be embedded in a lazy SMT system with relatively little effort

DPLL(T)

DPLL(T)

- In a nutshell:
 - DPLL(T) = DPLL(X) + T-Solver
- DPLL(X):
 - Very similar to a SAT solver, enumerates Boolean models
 - Not allowed: pure literal, blocked literal detection, ...
 - Desirable: partial model detection
- T-Solver:
 - Checks consistency of conjunctions of literals
 - Computes theory propagations
 - Produces explanations of inconsistency/T-propagation
 - Should be incremental and backtrackable

DPLL(T) - Example

• Consider again EUF and the formula:

•
$$g(a) = c \land \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \land c \neq d$$

• 1 2 3 4

- Ø || 1, 2 V 3, 4
- 1 || 1, $\overline{2} \lor 3$, $\overline{4}$
- $1 \overline{4} \parallel 1, \overline{2} \lor 3, \overline{4}$ • $1 \overline{4} 2 \parallel 1, \overline{2} \lor 3, \overline{4}$
- $1 4 2 \parallel 1, 2 \vee 3, 4$ • $1 \overline{4} 2 \overline{2} \parallel 1, \overline{2} \vee 2, \overline{4}$
- 1 4 2 3 ∥ 1, 2 ∨ 3, 4
- UNSAT

- (UnitPropagate)
- (UnitPropagate)
- (T-Propagate)
- (T-Propagate)
- (Fail)

• UI**N**31

DPLL(T) - Overall algorithm

• High-level view gives the same algorithm as a CDCL SAT solver:

```
while(true){
    while (propagate_gives_conflict()){
        if (decision_level==0) return UNSAT;
        else analyze_conflict();
    }
    restart_if_applicable();
    remove_lemmas_if_applicable();
    if (!decide()) returns SAT; // All vars assigned
}
```

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool
do {

- // unit propagate
- if (unit_prop_gives_conflict()) then return true

// check T-consistency of the model

if (solver.is_model_inconsistent()) then return true

// theory propagate

solver.theory_propagate()

} while (someTheoryPropagation)
return false

DPLL(T) - Propagation (2)

- Three operations:
 - Unit propagation (SAT solver)
 - Consistency checks (T-solver)
 - Theory propagation (T-solver)
- Cheap operations are computed first
- If theory is expensive, calls to T-solver are sometimes skipped
- For completeness, only necessary to call T-solver at the leaves (i.e. when we have a full propositional model)
- Theory propagation is not necessary for completeness

Case Reasoning in Theory Solvers

- For certain theories, consistency checking requires case reasoning.
- Example: consider the theory of arrays and the set of literals
 - $read(write(A, i, x), j) \neq x$
 - $read(write(A, i, x), j) \neq read(A, j)$
 - Two cases:
 - i = j. LHS rewrites into $x \neq x$
 - $i \neq j$. RHS rewrites into $read(A, j) \neq read(A, j)$
 - CONCLUSION: *T*-inconsistent

Case Reasoning in Theory Solvers (2)

- A complete *T*-solver might need to reason by cases via internal case splitting and backtracking mechanisms.
- An alternative is to lift case splitting and backtracking from the *T*-Solver to the SAT engine.
- Basic idea: encode case splits as sets of clauses and send them as needed to the SAT engine for it to split on them.
- Possible benefits:
 - All case-splitting is coordinated by the SAT engine
 - Only have to implement case-splitting infrastructure in one place
 - Can learn a wider class of lemmas

Case Reasoning in Theory Solvers (3)

- Example:
 - Assume model contains literal s = read(write(A, i, t), j)
- DPLL(X) asks: "is it T-satisfiable"?
- T-solver says: "I do not know yet, but it will be helpful that you consider these theory lemmas:"

•
$$s = s' \land i = j \longrightarrow s = t$$

•
$$s = s' \land i \neq j \rightarrow s = read(A, j)$$

• We need certain completeness conditions (e.g. once all lits from a certain subset *L* has been decided, the *T*-solver should answer YES/NO)

DPLL(T) - Conflict Analysis

• Conflict analysis in SAT solvers:

DPLL(T) - Conflict Analysis (2)

• Conflict analysis in DPLL(T):

DPLL(T) - Conflict Analysis (3)

- What does explain_inconsistency return?
 - A (small) conjunction of literals $l_1 \wedge \cdots \wedge l_n$ such that:
 - They were in the model when T-inconsistency was found
 - It is *T*-inconsistent
- What is now reason(l) ?
 - If l was unit propagated, reason is the clause that propagated it
 - If *l* was T-propagated?
 - T-solver has to provide an explanation for *l*, i.e. a (small) set of literals *l*₁, ..., *l_n* such that:
 - They were in the model when l was T-propagated
 - $l_1 \wedge \cdots \wedge l_n \vDash_T l$
 - Then reason(l) is $\neg l_1 \lor \cdots \lor \neg l_n \lor l$

DPLL(T) - Conflict Analysis (4)

- Let M be of the form ..., c = b, ... and let F contain
 - $h(a) = h(c) \lor p$
 - $a = b \lor \neg p \lor a = d$
 - $a \neq d \lor a = b$
- Take the following sequence:
 - 1. Decide $h(a) \neq h(c)$
 - 2. UnitPropagate p (due to clause $h(a) = h(c) \lor p$)
 - 3. T-Propagate $a \neq b$ (since $h(a) \neq h(c)$ and c = b)
 - 4. UnitPropagate a = d (due to clause $a = b \lor \neg p \lor a = d$)
 - 5. Conflicting clause $a \neq d \lor a = b$

Explain: $(a \neq b)$ is from $\{h(a) \neq h(c), c = b\}$

 $h(a) = h(c) \lor p$, $a = b \lor \neg p \lor a = d$, $a \neq d \lor a = b$

- 1. Decide $h(a) \neq h(c)$
- 2. UnitPropagate p (due to clause $h(a) = h(c) \lor p$)
- 3. T-Propagate $a \neq b$ (since $h(a) \neq h(c)$ and c = b)
- 4. UnitPropagate a = d (due to clause $a = b \lor \neg p \lor a = d$)
- 5. Conflicting clause $a \neq d \lor a = b$

$$a = b \lor \neg p \lor a = d \qquad a \neq d \lor a = b$$

$$h(a) = h(c) \lor c \neq b \lor a \neq b \qquad a = b \lor \neg p$$

$$h(a) = h(c) \lor p \qquad h(a) = h(c) \lor c \neq b \lor \neg p$$

 $h(a) = h(c) \lor c \neq b$

T-Solver Example: Difference Logic

Difference logic

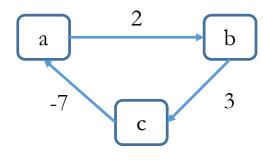
- Literals in Difference Logic are of the form $a b \bowtie k$, where
 - $\bullet \quad \bowtie \in \{\leq,\geq,<,>,=,\neq\}$
 - *a* and *b* are integer/real variables
 - *k* is an integer/real
- At the formula level,
 - a = b is replaced by p and
 - $p \leftrightarrow a \leq b \wedge b \leq a$ is added
- If domain is \mathbb{Z} then
 - a-b < k is replaced by $a-b \leq k-1$
- If domain is \mathbb{R} then
 - a-b < k is replaced by $a-b \leq k \delta$
 - δ is a sufficiently small real
 - δ is not computed but used symbolically (i.e. numbers are pairs (k, δ))
- Hence we can assume all literals are $a b \leq k$

Difference Logic - Remarks

- Note that any solution to a set of DL literals can be shifted
 - (i.e. if σ is a solution then $\sigma'(x) = \sigma(x) + k$ also is a solution)
- This allows one to process bounds $x \leq k$
 - Introduce fresh variable zero
 - Convert all bounds $x \leq k$ into $x zero \leq k$
 - Given a solution σ , shift it so that $\sigma(zero) = 0$
- If we allow (dis)equalities as literals, then:
 - If domain is \mathbb{R} consistency check is polynomial
 - If domain is \mathbb{Z} consistency check is NP-hard
 - e.g. k-colorability
 - $1 \leq c_i \leq k$ with $i = 1 \dots \# verts$ encodes k colors available
 - $c_i \neq c_j$ if *i* and *j* adjacent encode proper assignment

Difference Logic as a Graph Problem

• Given M = $\{a - b \le 2, b - c \le 3, c - a \le -7\}$, construct weighted graph G(M)



- Theorem:
 - M is T-inconsistent iff G(M) has a negative cycle

Difference Logic as a Graph Problem (2)

Theorem:

M is T-inconsistent iff G(M) has a negative cycle

⇐)

Any negative cycle

$$a_1 \xrightarrow{k_1} a_2 \xrightarrow{k_2} a_3 \longrightarrow \dots \longrightarrow a_n \xrightarrow{k_n} a_1$$

corresponds to a set of literals:

$$a_1 - a_2 \leq k_1 a_2 - a_3 \leq k_2 \dots a_n - a_1 \leq k_n$$

If we add them all, we get

$$0 \le k_1 + k_2 + \dots + k_n,$$

which is inconsistent since neg. cycle implies
$$k_1 + k_2 + \dots + k_n < 0$$

Difference Logic as a Graph Problem (3)

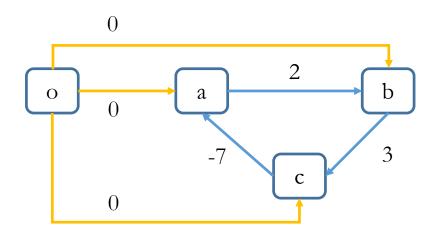
Theorem:

M is T-inconsistent iff G(M) has a negative cycle \Rightarrow)

Let us assume that there is no negative cycle.

- 1. Consider additional vertex o with edges $o \rightarrow v$ to all verts. v
- 2. For each variable x, let $\sigma(x) = -dist(o, x)$ [exists because there is no negative cycle]
- 3. σ is a model of M
 - If $\sigma \not\models x y \leq k$ then -dist(o, x) + dist(o, y) > k
 - Hence, dist(o, y) > dist(o, x) + k
 - But $k = weight(x \rightarrow y)!!!$

Solution of difference constraints



If G(M) has no negative cycle, then the solution of M is $\sigma(x) = dist(o, x)$

	if	С	—	а	\leq	-2
--	----	---	---	---	--------	----

if $c - a \leq -7$

 $\delta(a)=0$ $\delta(a)=0$ $\delta(b) = 0$ $\delta(b) = 0$ $\delta(c) = -2$ $\delta(c) = -7$

$$a - b = 0 \le 2$$

$$b - c = 2 \le 3$$

$$c - a = -2 \le -2$$

a - b = 0 < 2 $b - c = 7 \le 3$ c - a = -7 < -7

FLOLAC'19

1

Bellman-Ford: negative cycle detection

```
forall v \in V do d[v] := \infty endfor
forall i = 1 to |V|-1 do
forall (u,v) \in E do
if d[v] > d[u] + weight(u,v) then
d[v] := d[u] + weight(u,v)
p[v] := u
endif
```

endfor

Endfor

```
forall (u,v) \in E do

if d[v] > d[u] + weight(u,v) then

Negative cycle detected

Cycle reconstructed following p

endif

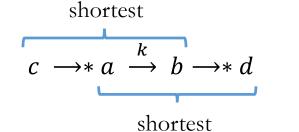
endfor
```

Consistency checks

- Consistency checks can be performed using Bellman-Ford in time (O(|V| · |E|))
 - Other more efficient variants exists
- Incrementality easy:
 - Upon arrival of new literal $a \xrightarrow{k} b$ process graph from u
- Solutions can be kept after backtracking
- Inconsistency explanations are negative cycles (irredundant but not minimal explanations)

Theory propagation

• Addition of $a \xrightarrow{k} b$ entails $c - d \leq k'$ only if



- Given a solution σ , each edge $a \xrightarrow{k} b$ (i.e. $a b \leq k$) has its reduced cost
 - $k \sigma(a) + \sigma(b) \ge 0$
- Shortest path computation more efficient using reduced costs, since they are non-negative [Dijkstra's algorithm]
- Theory propagation \approx shortest-path computations
- Explanations are the shortest paths

Theory Combination

Need for Theory Combination

• In software verification, formulas like the following one arise:

 $a = b + 2 \land A = write(B, a + 1, 4) \land$ (read(A, b + 3) = 2 $\lor f(a - 1) 6 = f(b + 1)$)

- Here reasoning is needed over
 - The theory of linear arithmetic (T_{LA})
 - The theory of arrays (T_A)
 - The theory of uninterpreted functions (T_{EUF})
- Remember that *T*-solvers only deal with conjunctions of literals.
- Given *T*-solvers for the three individual theories, can we combine them to obtain one for $(T_{LA} \cup T_A \cup T_{EUF})$?

Common Base Theories

Uninterpreted functions QF_UF

f(f(x))	=	a
g(a)	\neq	f(b)

Arithmetic QF_LRA, QF_LIA, ...

 $\begin{array}{rcl} 2x+y & \geqslant & 3 \\ x-y & > & 1 \end{array}$

Bitvectors	Arrays
QF_BV	QF_AX
$\mathtt{bvnot}(x) + 1 = x$	b = store(a, i, v)
bvuge(x, 0b0000)	$x \ = \ \texttt{select}(b,j)$

• Important: These theories have no non-logical symbol in common (the only thing they share is equality)

Purification

- If F is a formula in theory $T_1 \cup T_2$, we can always transform F into two parts
 - F_1 is in theory T_1
 - F_2 is in theory T_2
- F is satisfiable in $T_1 \cup T_2$ iff $F_1 \wedge F_2$ is satisfiable (also in $T_1 \cup T_2$)
- This is called purification.
- It's done by introducing new variables to remove mixed terms.

After Purification

- Purification of F produces formulas F_1 in T_1 and F_2 in T_2
- UNSAT Case:
 - If F_1 is unsat in T_1 or F_2 is unsat in T_2 then F is unsat in $T_1 \cup T_2$.
- SAT Case:
 - If F_1 is sat in T_1 and F_2 is sat in T_2 , is F satisfiable in $T_1 \cup T_2$?
 - F_1 has a model $M_1 : M_1 \vDash_{T_1} F_1$
 - F_2 has a model $M_2 : M_2 \vDash_{T_2} F_2$
 - Can we construct a model M such that $M \vDash_{T_1 \cup T_2} F$?

Purification Example

- Formula with mixed terms: $x \le y \land 2y \le x \land f(h(x) - h(y)) > f(0)$
- Purification:

(

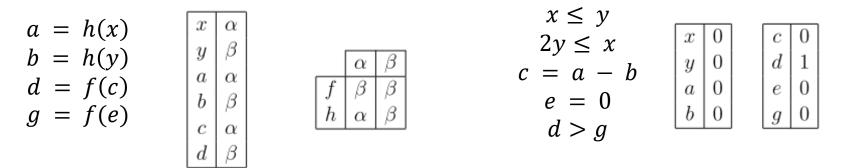
• Separate the uninterpreted function part and the arithmetic part

QF_UFQF_LRA
$$a = h(x)$$
 $x \le y$ $b = h(y)$ $2y \le x$ $d = f(c)$ $c = a - b$ $g = f(e)$ $e = 0$ $d > g$

Purification Example(2)

- QF_UF part is SAT
 - Possible model with domain = $\{\alpha, \beta\}$

- QF_LRA part is SAT
 - Possible model (with domain = \mathbb{R})



The two models are not consistent (F is UNSAT)

- One says $x \neq y$, the other says x = y
- Their domains have different cardinalities

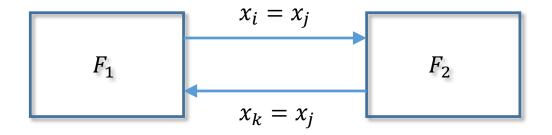
Nelson-Oppen Methond

Central Problem in Theory Combination

- Search for consistent models
 - Start with F in $T_1 \cup T_2$
 - Purify to get F_1 in T_1 and F_2 in T_2
 - Search for two models M_1 and M_2 such that:
 - $M_1 \vDash_{T_1} F_1$ and $M_2 \vDash_{T_2} F_2$
 - M_1 and M_2 have the same cardinality
 - M_1 and M_2 agree on equalities between shared variables
- Nelson-Oppen Method
 - A general framework for solving this problem
 - Originally proposed by Nelson and Oppen, 1979
 - Give sufficient conditions for consistent models to exist
 - Many extensions and variations

The Nelson-Oppen Method (Nelson & Oppen, 1979)

- The theory solvers propagate implied equalities between shared variables.
- If both sides are satisfiable and no-more equalities can be propagated, then F is satisfiable.



QF_UF	QF_LRA
a = h(x) b = h(y) d = f(c) g = f(e)	$x \le y$ $2y \le x$ c = a - b e = 0 d > g

Input formula after purification

QF_UF	QF_LRA	QF LRA deduces and propagates $x =$
a = h(x) b = h(y) d = f(c) g = f(e)	$x \le y$ $2y \le x$ c = a - b e = 0 d > g	
x = y	U	
	x = y	

y

QF_UF	QF_LRA
a = h(x) b = h(y) d = f(c) g = f(e)	$x \le y$ $2y \le x$ c = a - b e = 0
	d > g
$\begin{array}{l} x = y \\ a = b \end{array}$	x = y
	a = b

QF LRA deduces and propagates x = yQF UF propagates a = b

QF_UF	QF_LRA
a = h(x) b = h(y) d = f(c) g = f(e)	$x \le y$ $2y \le x$ c = a - b e = 0 d > g
$ \begin{array}{rcl} x &= y \\ a &= b \\ e &= c \end{array} $	$ \begin{array}{rcl} x &= y \\ a &= b \\ e &= c \end{array} $

QF LRA deduces and propagates x = yQF UF propagates a = bQF LRA propagates e = c

QF_UF	QF_LRA
a = h(x) b = h(y) d = f(c) g = f(e)	$x \le y$ $2y \le x$ c = a - b e = 0 d > g
$\begin{array}{l} x = y \\ a = b \end{array}$	x = y
e = c	a = b
d = g	e = c d = g

QF LRA deduces and propagates x = yQF UF propagates a = bQF LRA propagates e = cQF UF propagates d = gQF LRA concludes unsat

Nelson-Oppen – Restrictions

- Theories must meet the following restrictions to be decidable in combination:
 - T_1 , ..., T_n are quantifier-free first-order theories with equality.
 - There is a decision procedure for each of the theories T_1, \ldots, T_n .
 - The signatures are disjoint, i.e., for all $1 \le i < j \le n$, $\Sigma_i \cap \Sigma_j = \emptyset$.
 - T_1 , ..., T_n are theories that are interpreted over an infinite domain

Nelson-Oppen –Convex Case

- Deterministic Nelson-Oppen
- Assumptions
 - Given two signature-disjoint, stably-infinite and convex theories T_1 and T_2
 - Given a set of literals S over the signature of $T_1 \cup T_2$
- A theory T is stably-infinite iff every T-satisfiable quantifier-free formula has an infinite model
 - Examples: QF_UF and QF_LRA are stably infinite, QF_BV is not
- A theory *T* is convex iff

$$S \vDash_T a_1 = b_1 \lor \dots \lor a_n = b_n$$

 $\Rightarrow S \vDash a_i = b_i \text{ for some } i$

Convex Theories

• Definition

T is convex if, for every set of literals Γ , and every disjunction of variable equalities $x_1 = y_1 \lor \cdots \lor x_n = y_n$, such that

$$\Gamma \vDash x_1 = y_1 \lor \cdots \lor x_n = y_n ,$$

we have

$$\Gamma \vDash x_i = y_i$$

for some index *i*.

• Examples

- QF_UF and QF_LRA are convex
- QF_LIA, QF_BV, and QF_AX are not convex

Convex Theories - Example

- Linear arithmetic over \mathbb{R} (QF_LRA) is convex $x \le 3 \land x \ge 3 \Rightarrow x = 3$
- Linear arithmetic over \mathbb{Z} (QF_LIA) is not convex: while

 $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow x_3 = x_1 \lor x_3 = x_2$ is valid, neither

 $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow x_3 = x_1$

nor

$$x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow x_3 = x_2$$
 is valid.

Non-Convex Theories - Example

• QF_LIA: linear arithmetic over the integers $0 \le x \land x \le y \land y \le z \land z \le 1 \models x = y \lor y = z$

• QF_AX: array theory

$$b = store(a, i, v) \land x = select(b, j) \land$$

 $y = select(a, j) \models x = v \lor x = y$

Nelson-Oppen – Convex Case

- Given *n* signature-disjoint, stably-infinite and convex theories T_1, \ldots, T_n
 - 1. Purification: Purify F into F_1, \ldots, F_n .
 - 2. Apply the decision procedure for T_i to F_i . If there exists *i* such that F_i is unsatisfiable in T_i , return "UNSAT".
 - 3. Equality propagation: If there exist i, j such that $F_i T_i$ implies an equality between variables of F that is not T_j implied by F_j , add this equality to F_j and go to step 2.
 - 4. Return "SAT"

Example - Convex case

• Consider the following set of literals:

$$f(f(x) - f(y)) = a$$

$$f(0) = a + 2$$

$$x = y$$

- There are two theories involved: $T_{LA(\mathbb{R})}$ and T_{EUF}
- FIRST STEP:
 - purify each literal so that it belongs to a single theory

Example - Convex case F: f(f(x) - f(y)) = a, f(0) = a + 2, x = y

FLOLAC'19

72

a + 2

0

0

+ 2

• SECOND STEP: check satisfiability and exchange entailed equalities

 EUF
 Arithmetic

 $f(e_1) = a$ $e_2 - e_3 = e_1$
 $f(x) = e_2$ $e_4 = 0$
 $f(y) = e_3$ $e_5 = a + 2$
 $f(e_4) = e_5$ x = y

- The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$
- To merge the two models into a single one, the solvers have to agree on equalities between shared constants (interface equalities)
- This can be done by exchanging entailed interface equalities

• SECOND STEP: check satisfiability and exchange entailed equalities

EUF

$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_4 = 0$
$f(y) = e_3$	$e_5 = a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	

- The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$
 - EUF-Solver says SAT
 - Ari-Solver says SAT
 - $EUF \models e_2 = e_3$

• SECOND STEP: check satisfiability and exchange entailed equalities

EUF

$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_4 = 0$
$f(y) = e_3$	$e_5 = a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	
$e_1 = e_4$	

- The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$
 - EUF-Solver says SAT
 - Ari-Solver says SAT
 - $Ari \models e_1 = e_4$

• SECOND STEP: check satisfiability and exchange entailed equalities

EUF

$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_4 = 0$
$f(y) = e_3$	$e_5 = a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	$a = e_5$
$e_1 = e_4$	

- The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$
 - EUF-Solver says SAT
 - Ari-Solver says SAT
 - $EUF \models a = e_5$

• SECOND STEP: check satisfiability and exchange entailed equalities

EUF

$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_4 = 0$
$f(y) = e_3$	$e_5 = a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	$a = e_5$
$e_1 = e_4$	

- The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$
 - EUF-Solver says SAT
 - Ari-Solver says UNSAT
 - Hence the original set of lits was UNSAT

• Consider the following set of literals:

 $x \ge 1$ $x \le 2$ $f(x) \ne f(1)$ $f(x) \ne f(2)$

- There are two theories involved: $T_{LA(\mathbb{Z})}$ and T_{EUF}
- FIRST STEP:
 - purify each literal so that it belongs to a single theory

EUF	Arithmetic	
$f(x) \neq f(a)$	$x \ge 1$	Both theories are SAT
$f(x) \neq f(b)$	$x \le 2$	But F is UNSAT
	a = 1	
	b = 2	

Properties of Nelson-Oppen

- Soundness and Completeness
 - propagating implied equalities is sufficient for some theories but not others
 - the theories for which this is sufficient are called convex theories
 - for these theories, the method is sound and complete
- Termination
 - obvious if the number of shared variables is fixed
 - this is usually the case
 - some theory solvers (e.g., arrays) may dynamically add more variables but this can be bounded

More on Nelson-Oppen

- Can be extended to non-convex theories
 - the theory solvers propagate disjunctions of equalities
- Finding Implied Equalities
 - For QF_UF, decision procedures based on congruence closure give implied equalities for free.
 - It's harder and more expensive for other theories (e.g., linear arithmetic).
 - It gets worse for non-convex theories.
- Delayed Theory Combination
 - Attempt to construct an arrangement lazily in the CDCL(T) framework
 - Create interface equalities and let the SAT solver do the search
 - Different heuristics to decide when and what equalities to create

Nelson-Oppen Method-Non-convex case

Nelson-Oppen – The non-convex case

- Given a formula F that combines n signature-disjoint, stably-infinite theories T_1, \ldots, T_n
 - 1. Purification: Purify F into F_1, \ldots, F_n .
 - 2. Apply the decision procedure for T_i to F_i . If there exists i such that F_i is unsatisfiable in T_i , return "UNSAT".
 - 3. Equality propagation: If there exist i, j such that $F_i T_i$ -implies an equality between variables of F that is not T_j -implied by F_j , add this equality to F_j and go to step 2.
 - 4. Splitting: If there exists *i* such that
 - $F_i \Rightarrow (x_1 = y_1 \lor \cdots \lor x_k = y_k)$ but $\forall j \in 1, ..., k. F_i \Rightarrow x_j = y_j$,
 - Then apply Nelson-Oppen recursively to: $F \land x_1 = y_1, ..., F \land x_k = y_k$
 - If any of these subproblems is satisfiable, return "SAT". Otherwise return "UNSAT"
 - 5. Return "SAT"

• Consider the following set of literals:

 $x \ge 1$ $x \le 2$ $f(x) \ne f(1)$ $f(x) \ne f(2)$

- There are two theories involved: $T_{LA(\mathbb{Z})}$ and T_{EUF}
- FIRST STEP:
 - purify each literal so that it belongs to a single theory

EUF	Arithmetic	
$f(x) \neq f(a)$	$x \ge 1$	Both theories are SAT
$f(x) \neq f(b)$	$x \le 2$	But F is UNSAT
	a = 1	
	b = 2	

EUF	Arithmetic
$f(x) \neq f(a)$	$x \ge 1$
$f(x) \neq f(b)$	$x \le 2$
	a = 1
	b = 2

EUF	Arithmetic
$f(x) \neq f(a)$	$x \ge 1$
$f(x) \neq f(b)$	$x \le 2$
x = a	a = 1
	b = 2
UNSAT	x = a

Case separation: $(x = a) \vee (x = b)$

EUF	Arithmetic
$f(x) \neq f(a)$	$x \ge 1$
$f(x) \neq f(b)$	$x \le 2$
x = b	a = 1
	b = 2
UNSAT	x = b

- Consider the following UNSATISFIABLE set of literals: $1 \le x \le 2$
 - f(1) = af(x) = ba = b + 2f(2) = f(1) + 3
- There are two theories involved: $T_{LA(\mathbb{Z})}$ and T_{EUF}
- FIRST STEP:
 - purify each literal so that it belongs to a single theory

• F:

$$1 \le x \le 2$$

 $f(1) = a$
 $f(x) = b$
 $a = b + 2$
 $f(2) = f(1) + 3$

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

- The two solvers only share constants: $x, e_1, a, b, e_2, e_3, e_4$
 - Ari-Solver says SAT
 - EUF-Solver says SAT
 - $EUF \models a = e4$

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

- The two solvers only share constants: $x, e_1, a, b, e_2, e_3, e_4$
 - Ari-Solver says SAT
 - EUF-Solver says SAT
 - No theory entails any other interface equality, but...

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

- The two solvers only share constants: $x, e_1, a, b, e_2, e_3, e_4$
 - Ari-Solver says SAT
 - EUF-Solver says SAT
 - Ari $\models_T x = e_1 \lor x = e_2$. Let's consider both cases.

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_1$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_1$	

- The two solvers only share constants: $x, e_1, a, b, e_2, e_3, e_4$
 - Ari-Solver says SAT
 - EUF-Solver says SAT
 - $EUF \models_T a = b$, that when sent to Ari makes it UNSAT

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_2$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_2$	

- Let's try now with $x = e_2$
 - Ari-Solver says SAT
 - EUF-Solver says SAT
 - $EUF \models_T b = e_3$, that when sent to Ari makes it UNSAT

• SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic	EUF
$1 \leq x$	$f(e_1) = a$
$x \leq 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_2$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_2$	

• Since both $x = e_1$ and $x = e_2$ are UNSAT, the set of literals is UNSAT

Non-Deterministic Nelson-Oppen (Tinelli & Harandi, 1996)

- Assumptions
 - Two theories T_1 and T_2 that share no non-logical symbol and are stably infinite
 - F is a conjunction of literals of $T_1 \cup T_2$
 - F is purified to F_1 in T_1 and F_2 in T_2
- Stably Infinite Theories
 - A theory *T* is stably infinite if every formula that's satisfiable in *T* has an infinite model
 - Examples: QF_UF and QF_LRA are stably infinite, QF_BV is not

Variable Arrangements

- Definition
 - Let V be the set of all variables that are shared by F_1 and F_2
 - An arrangement of *V* is a conjunction of variable equalities and disequalities that define a partition of *V*
- Example
 - If $V = \{x_0, x_1, x_2, x_3\}$ and we partition V into three subsets $\{x_0, x_1\}, \{x_2\}$, and $\{x_3\}$ then the corresponding arrangement is

$$\begin{array}{l} x_0 = x_1 \ \land \ x_0 \neq x_2 \ \land \ x_1 \neq x_2 \ \land \\ x_0 \neq x_3 \ \land \ x_1 \neq x_3 \ \land \ x_2 \neq x_3 \end{array}$$

Non-Deterministic Nelson-Oppen (continued)

- Procedure
 - Guess a partition of the variables V and let \mathcal{A} be the corresponding arrangement
 - Check whether $F_1 \wedge \mathcal{A}$ is satisfiable in T_1 and $F_2 \wedge \mathcal{A}$ is satisfiable in T_2
- Theorem
 - If $F_1 \wedge \mathcal{A}$ is satisfiable in T_1 and $F_2 \wedge \mathcal{A}$ is satisfiable in T_2 then F is satisfiable in $T_1 \cup T_2$.
- Why this works (informally)
 - T_1 and T_2 are stably infinite. This implies that they have models of the same infinite cardinality.
 - The arrangement *A* forces the two models to agree on equalities between shared variables.

Non-Deterministic Nelson-Oppen (continued)

- Issues
 - How do we find the right arrangement?
 - The number of possible partitions of a set of n variables is known as Bell's number (B_n)
 - This grows very fast with n (e.g., B_{11} is 27644437)
 - We can't possibly try them all
 - How do we handle theories that are not stably infinite?

Model-Based Theory Combination

Model-Based Theory Combination

- Models are available
 - The theory solvers for T_1 and T_2 produce models when F_1 and F_2 are SAT:

 $M_1 \vDash_{T_1} F_1$ and $M_2 \vDash_{T_2} F_2$

- The Nelson-Oppen methods do not use these models
- Model-based theory combination: Make use of the models M_1 and M_2 :
 - if M_1 and M_2 are consistent, done
 - optionally, attempt to modify M_1 and M_2 to make them consistent
 - if that fails, add constraints to cause CDCL(T) to backtrack and search for other models

Combining a Theory with QF_UF

- Very Common Case
 - One theory is QF_UF and the other is either an arithmetic theory or QF_BV
- QF_UF has good properties
 - Deciding satisfiability is cheap (fast congruence closure algorithms)
 - These algorithms give the implied equalities for free
 - It's stably infinite
- Model-Based Combination With QF_UF
 - Works with an arbitrary theory T (non-convex, non-stably infinite)
 - Main components:
 - congruence closure
 - interface lemmas
 - model mutation and reconciliation

Congruence Closure

- Key problem in QF_UF Given a finite set of terms and some equalities between them $t_1 = u_1, ..., t_m = u_m$ find all the implied equalities
- Congruence Closure Algorithms Construct an equivalence relation ~ between terms such that if $t_i = u_i$ is an original equality then $t_i \sim u_i$ ~ is closed under the congruence rule: $v_1 \sim w_1, ..., v_k \sim w_k \Rightarrow f(v_1, ..., v_k) \sim f(w_1, ..., w_k)$ The ~ relation contains all the implied equalities: $t_1 = u_1, ..., t_n = u_n \Rightarrow t = u$ iff $t \sim u$

Congruence Closure Example

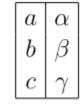
- Terms: a, b, f(a), f(f(a)), f(f(f(a)), f(b)
- Initial Equalities: f(f(a)) = a, f(a) = b
- Equivalence Relation
 - Initially
 - {a, f(f(a))} {b, f(a)} {f(b)} {f(f(f(a))}
 - Congruence: f(a) = f(f(f(a)))
 - $\{a, f(f(a))\} \{b, f(a), f(f(f(a)))\} \{f(b)\}$
 - Congruence: f(b) = f(f(a))
 - $\{a, f(f(a)), f(b)\}$ $\{b, f(a), f(f(a)))\}$
 - Done

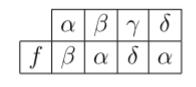
Checking Satisifiability in QF_UF

- A QF_UF formula can be written as a conjunction of equalities and disequalities:
 (t₁ = u₁ ∧ … ∧ t_n = u_n) ∧ (v₁ ≠ w₁ ∧ … ∧ v_m ≠ w_m)
- To check satisfiability
 - compute the congruence closure \sim of the equalities
 - if $v_i \sim w_i$ for some *i* then return UNSAT else return SAT
- Example
 - Formula: $f(f(a)) = a \land f(a) = b \land b \neq f(f(f(a)))$
 - Congruence closure: $\{a, f(f(a)), f(b)\} \{b, f(a), f(f(f(a)))\}$
 - So the formula is UNSAT

Building Models in QF_UF

- From a Congruence Closure
 - Basic idea: one element in the domain per equivalence class in the congruence closure
 - We can always ensure that every term t is interpreted as its class representative
- Example
 - Formula: $f(b) = a \land b = f(a) \land a \neq f(c)$
 - Congruence closure: $\{a, f(b)\} \{b, f(a)\} \{c\} \{f(c)\}\}$
 - Model:
 - domain = { $\alpha, \beta, \gamma, \delta$ }





Flexibility in QF UF Models

- Enlarging the domain
 - Let F be a satisfiable QF_UF formula and M a model of F
 - For any cardinal k > |M|, we can construct a new model M' of cardinality k that satisfies F
 - This implies that QF_UF is stably infinite
- Shrinking the domain
 - We can sometimes make the domain smaller by modifying the congruence closure
 - Previous example:
 - F is $f(b) = a \land b = f(a) \land a \neq f(c)$
 - Congruence closure: $\{a, f(b)\}\ \{b, f(a)\}\ \{c\}\ \{f(c)\}\$
 - We could merge $\{f(c)\}$ and $\{b, f(a)\}$ to get a new relation $\sim' : \{a, f(b)\} \{b, f(a), f(c)\} \{c\}$
 - A model built from \sim still satisfies F

Basic Model-Based Combination With QF_UF

- Assumptions
 - A formula F in $QF_UF \cup T$
 - After purification: F_1 in QF_UF and F_2 in T
 - V denotes the set of variables shared by F_1 and F_2
 - ~ is the equivalence relation computed by congruence closure from F_1
- Procedure
 - If F_1 is not satisfiable, return UNSAT
 - Get all equalities implied by F_1
 - Let H be the set of implied equalities that are between variables of V
 - Check whether $F_2 \wedge H$ is satisfiable in T; if not return UNSAT
 - Otherwise, get a model M for $F_2 \wedge H$.
 - If M does not conflict with relation ~ return SAT
 - Otherwise, add interface lemmas to force backtracking

Basic Model-Based Combination With QF_UF - Conflicts

- Conflicts
 - *M* conflicts with *E* if there are two shared variables *x* and *y* such that

 $M \models x = y$ but $x \nleftrightarrow y$

- conflicts in the other direction are not possible (since *M* ⊨ *H*)
- If there are no conflicts
 - M and \sim agree on equalities between shared variables
 - We can extend *M* by adding an interpretation for all the uninterpreted functions in the QF_UF part
 - We get a new model M' that satisfies F_2 and F_1

Interface Lemmas

- Interface lemma for *x* and *y*
 - A formula that encodes "x = y in T" \Rightarrow "x = y in QF_UF"
 - The exact formulation depends on the implementation and theory involved
- Examples
 - T is QF_LRA: we add the clause $x = y \lor x > y \lor y > x$
 - T is QF_BV: we add the clause $\neg(bveq x y) \lor x = y$
 - in these clauses, (x = y) must be an atom handled by the QF_UF solver
- If *M* conflicts with \sim on x = y, this lemma forces the SMT solver to backtrack and search for different models

Imrovements

- Model Mutation
 - Exploit flexibility in the Simplex-based arithmetic solver.
 - There may be many solutions to a set of linear arithmetic constraints.
 - Mutation: modify the Simplex model to give distinct values to distinct interface variables.
 - This reduces the risk of accidental conflicts

Improvements (continued)

- Model Reconciliation
 - Exploit flexibility in QF_UF to eliminate conflicts while keeping *M* fixed
 - If x and y are in conflict: $M \models x = y$ and $x \neq y$
 - To try to resolve this conflict:
 - tentatively merge the equivalence classes of x and y
 - propagate the consequences by congruence closure
 - accept the merge unless if makes the QF_UF part UNSAT or it would propagate new equalities to theory *T*