Satistiability Modulo
Theories

Hsin-Hung Lin
August 26, 2019
FLLOLAC19

Based on slides from SAT/SMT/AR 2019
Credits: Albert Oliveras and Bruno Dutertre

Introduction

Need of SMT

* Some problems are more naturally expressed in other
logics than propositional logic
* Software verification needs reasoning about equality,
arithmetic, data structures, ...

* First-Order Logic

* Example
* Equality with Uninterpreted Functions (EUF)
g@=c A(flg@)=flvgl@=d)Ac #d
* EUF + Linear arithmetic
x =y A2y =xAf(h(x) = h(y) > f(0)

From SAT to SMT

* SAT

e Use as the formalization language
* Pros: high degree of etficiency

* Cons: expressive but involved encodings

* SMT

* Propositional logic + reasoning
* Pros: improves the expressivity
* Cons: certain (but acceptable) loss of etficiency

FLOLAC'19 SMT

SMT Problem

* Basic SMT Problem

* Given a formula F in some logical theory T, determine whether
F is satisfiable or not.

* In addition, if F is satisfiable, provide a model of F

* DPLL(T)/CDCI(T) Approach
* Combine a CDCL-based SAT Solver with a theory solver for T
* The theory solver works on of T

* Combining Decision Procedures for Modularity
* We don’t want to write a global decision procedure
* We have decision procedures for basic theories

* We want to combine them to get a decision procedure for the
combined theory.

Recall: SAT Decision procedure

* DPLL Algorithm, also called
* CDCL: Conftlict-Driven-Clause-Learning

* Rules
* Unit propagate
* Decide
* Fail
* Backtrack / Backjump
* Learning
* Restart

DPLL — Example(1)

Model (M) || Formulae(F)

@l 1v2, 2v3 1v3v4 2v3v4 1v4

1901 1v2, 2v3, 1v3v4 2v3v4 1v4
. 1921 1v2,2v3, 1v3Vv4 2v3Vv4 1Vv4
e 19231 1v2, 2v3,1v3v4 2v3v4 1v4
e 19234 1v2 2v3 1v3Vv4 2v3v4d 1v4
. 111 1v2 2v3 1v3Vv4 2v3v4d 1v4
. 14 1v2 2v3 1v3v4 2v3v4 1v4
« 143%|1v2 2v3, 1v3v4 2v3v4 1v4
« 14392 | 1v2 2v3 1v3Vv4 2v3Vv4 1v4

(Decide)
(UnitPropagate)
(UnitPropagate)
(UnitPropagate)
(Backtrack)
(UnitPropagate)
(Decide)
(UnitPropagate)
SAT

DPLL — Example(1)

Model (M) || Formulae(F)

@ ||@v2 2v3, 1v3v4, 2v3VvE 1v4 (Decido
1v3v4, 2v3v4 1v4 (UnitPropagate)
1v3v4 2v3v4 1v4 (UnitPropagate)

19231 1v2, 2v3, 1v3Vv(3)2v3Vv4 1V4 (UnitPropagato
19234 1v2, 2Vv3 1v3Vv4 2Vv3Vv4, 1V4 (Backtrack)
. T11TvZ 2v3 1v3v4, 2v3VvE 1V(4) (UniPropagat)
. 14 11 Tv2, 2v3, 1v3v4, 2VvBV4E 1V4 (Deddo
.+ 1439 1v2,(@NV3, Tv3v4 2v3VvE 1v4 (UnitPropagae)
e 14392 |1 1v2 2Vv3 1v3Vv4, 2v3Vv4 1v4 SAT

e o
p—
QU
N o
=Y
<
N DN
<
93

DPLL — Example(2)

 Model (M) || Formulae(F)

@l 1v2 3v4 5v6 6V5V2

141 1v2, 3v4 5v6, 6V5Vv2

19211 1v2, 3v4 5v6, 6V5V2

142341 1v2, 3v4 5V6 6V5V2

142 394 || 1v2 3Vv4 5v6 6V5V2
192 394549 | 1v2 3v4 5v6 6V5V2
192394596 || 1v2, 3Vv4 5v6 6V5Vv2
1425 1v2, 3v4 5v6, 6V5V2

(Decide)
(UnitPropagate)
(Decide)
(UnitPropagate)
(Decide)
(UnitPropagate)

(Backjump)

DPLL — Example(2)

 Model (M) || Formulae(F)

. o 1(Dv2, 3v4 5v6 6V5EV2 Oeid
. 191 1v@Q@) 3v4, 5v6, 6v5Vv2 (UniPropagat)
. 1921 1v2,(3v4, 5v6 6VEVZ Deide)
. 192 3% Tv2, 3v(4) 5v6, 6v5v2 (UniPropagat
. 192394 | 1v2 3v4,(GV6 6V5V2Z Deide)
+ 14234451 | 1v2 3V4, 5v(6) 6V5V2 (UniPropaga)

¢« 192394596 || 1v2 3V4 5V6, 6V5V2 Backump)

. 1925 1v2 3V4 5v6, 6Vv5y 2 LermedClause
5NAN2=5Vv2

Theories of Interest - EUF

* Equality with Uninterpreted Functions, 1.e. “=""1s equality

e Consider formula
ax(f(B)+f())=dAbx(f@+f()) #dra=b

* Formula 1s UNSAT, but no arithmetic reasoning is needed

* [f we abstract the formula into
h(a,g(f(b),f())) =d Ah(b,g(f(a),f(c))) #dAa=b
e it is still UNSAT

* BEUF i1s used to abstract non-supported constructions, e.g:
Non-linear multiplication, ALUs 1in circuits

Theories of Interest - Arithmetic

* Bounds
e x Xk with @ € {<,>,<,>,=}

* Ditference logic
° X —y X k,WithM € {<;>JS’2’:}

* UTVPI (Unit Two Variable Per Inequality)
« +x +y x k,withx € {<,>,<, >, =}

e Linear arithmetic
ccg2x —3y + 4z <5

* Non-linear arithmetic
¢ eg 2xy + 4xz? — 5y < 10

* Variables are either reals or integers

* Machine-inspired arithmetic
* floating-point arithmetic

Theories of Interest - Arrays

* Two interpreted function symbols read and write

* Theory is axiomatized by:

* VaVivVv read(write(a,i,v),i) = v

* YaViVjVv (i #j = read(write(a,i,v),j) = read(a,j)
* Sometimes extensionality is added:

* Ya Vb ((Vi (read(a,i) = read(b,)))) =>a=Db

e [s the following set of literals satisfiable?

write(a,i,x) # b /\read(b i) —%
read(write(b,i,x),j)) =y Aa=b Ai=j

e Used for:

* Software verification
* Hardware verification (memories)

Theories of Interest — Bit-vectors

* Constants represent vectors of bits
e Useful both for hardware and software verification

* Ditferent type ot operations:
* String-like operations: concat, extract, ...
* Logical operations: bit-wise not, or, and, ...

* Arithmetic operations: add, substract, multiply, ...

* Assume bit-vectors have size 3. Is the formula SAT?
al0:1] # b[0:1] A (alb) =c A
c[0] =0 Aall]+b[1] =0

Combination of Theories

* In practice, theories are not isolated

* Software verifications needs ; S

) o0

* Formulas of the following form usually arise:

ca=b+2 A A=write(B,a+ 1,4) A (read(4,b + 3) =
2Vfa—1)+f(b+1))

* The goal of SMT is to combine decision procedures for
each theory

SM'T in Practice

: efficient decision procedures for sets
of ground literals exist for various theories of interest

* PROBLEM: in practice, we need to deal with:

1. arbitrary boolean combinations of literals (A,V, =)
(DNF conversion 1s not a solution in practice)

2. multiple theories
3. quantifiers

* We will only focus on (1) and (2), but techniques for
(3) exist.

FLOLAC'19 SMT 16

Fager and LLazy approach
ot SM'T

Fager Approach

* Methodology: translate problem into
and use off-the-shelf SAT

solver

* Why “eager”?
* Search uses all theory information from the beginning

e Characteristics:
e Can use best available SAT solver

* Sophisticated encodings are needed for each theory

Fager Approach — Example(1)

* First step
* remove function/predicate symbols.

* Assume we have terms f(a), f(b) and f(c).

* Ackermann reduction:
* Replace them by fresh constants A, B and C
* Add clauses:
ca=b->A=8B
ca=c->A=C
*b=c—->B=¢C
* Bryant reduction:
* Replace f(a) by A
* Replace f(b) by ite(b = a, A, B)
* Replace f(c) by ite(c = a, A, ite(c = b,B,())

* Now, atoms are between

Fager Approach — Example(2)

* Second step
* encode formula into propositional logic

* Small-domain encoding:

* If there are n different constants, there is a model with size at
most n

* logn bits to encode the value of each constant

* a=b translated using the bits for a and b
* Per-constraint encoding:
* Each atom a=b is replaced by var P, j,

* Transitivity constraints are added
¢ €.g. Pa,b N Pb,C — Pa,c

FLLOLAC'19 SMT

20

Lazy Approach

o Why “lazy”?
* Theory information used lazily when checking T-
consistency of propositional models

* Characteristics:
e Modular and flexible

* Theory information does not guide the search

Lazy Approach - Example

 Consider EUF and the CNF

g@=c A(flg@)#fOvgl@=d)Ac #d
1 2 3 4

* SAT solver returns model [1, 2, 4]

* Theory solver says T-inconsistent

* Send { 1, 2Vv3, 4 1Vv2V 4} to SA'T solver

* SAT solver returns model [1, 2, 3, 4]

* Theory solver says T-inconsistent

* SAT solver detects {1, 2V 3, 4, 1v2Vv4, 1v2v3Vv4)
* UNSATISFIABLE

FLLOLAC'19 SMT 22

Lazy Approach - Optimizations

* Several optimizations for enhancing etficiency
* Check T-consistency only of full propositional models

» Check T-consistency of partial assignment while being
built

* Given a T-inconsistent assignment M, add =M as a clause

» Given a T-inconsistent assignment M, identify a T-
inconsistent subset My € M and add =M,y as a clause

* Upon a T-inconsistency, add clause and restart

»Upon a T-inconsistency, backtrack to some point where
the assignment was still T-consistent

Lazy Approach - T-propagation

* As pointed out the lazy approach has one drawback:
* Theory information does not guide the search (too lazy)

* How can we improve that? For example:
* Assume that a < b, b < ¢ are in our partial assignment M.
* If the formula contains a < ¢ we would like to add it to M

* Search guided by by finding T'-consequences, instead
of only validating 1t as in basic lazy approach.

* Naive implementation:
* (1) add =l , (2) if T-inconsistent then infer [

* But for efficient Theory Propagation we need:
* 'T-Solvers specialized and fast in it.
* Fully exploited in
* 'This approach has been named DPLL(T)

Lazy approach - Important points

* Important and benefitial aspects of the lazy approach:
(even with the optimizations)

* Everyone does what he/she is good at:
* SAT solver takes care of Boolean information
* Theory solver takes care of theory information

* Theory solver only recetves conjunctions of literals

* Modular approach:
* SAT solver and T-solver communicate via a simple API
* SMT for a new theory only requires new T'-solver

* SAT solver can be embedded in a lazy SM'T system with
relatively little effort

DPLL(T)

DPLL(T)

* In a nutshell:
* DPLL(T) = DPLL(X) + T-Solver

* DPLL(X):
* Very similar to a SAT solver, enumerates Boolean models
* Not allowed: pure literal, blocked literal detection, ...
* Desirable: partial model detection

e T-Solver:

* Checks consistency of conjunctions of literals

* Computes theory propagations

* Produces explanations of inconsistency/T-propagation
* Should be incremental and backtrackable

DPLL(T) - Example

* Consider again EUF and the formula:
rg@=c A(flg@) #fle)vgl@=d) nc #d

1 2 3 4
* D11) 2 V 3, 4 (UnitPropagate)
. 111, 2V 3, 4 (UnitPropagate)
¢ 1 Zl- 1 , 2 V3 , Zl' (I-Propagate)

° 1 4 |1, 2V 3 4 (I-Propagate)
*« 142311 2V3, 4 Fai

DPLL(T) - Overall algorithm

* High-level view gives the same algorithm as a CDCL
SAT solver:

while(true){
while (()){
if (decision _level==0) return UNSAT;
else ();
}

restart_if applicable();
remove_lemmas_if applicable();
if (!decide()) returns SAT; // All vars assigned

DPLL(T) - Propagation

propagate gives conflict() returns Bool
do {

// unit propagate
if () then return true

// check T-consistency of the model

if () then return true
// theory propagate

} while (someTheoryPropagation)
return false

DPLL(T) - Propagation (2)

* Three operations:
* Unit propagation (SAT solver)
* Consistency checks (T-solver)
* Theory propagation (I-solver)

* Cheap operations are computed first

* If theory is expensive, calls to T-solver are sometimes

skipped

* For completeness, only necessary to call T-solver at the
leaves (i.e. when we have a full propositional model)

* Theory propagation 1s not necessary for completeness

Case Reasoning in Theory Solvers

* For certain theories, consistency checking requires
case reasoning.

* Example: consider the theory of arrays and the set of
literals
* read(write(4,i,x),j) + x
* read(write(4,i,x),j) + read(4,j)
* Two cases:
* I = j. LHS rewrites into X # X
e [# j. RHS rewrites into read(4,j) # read(4,j)
e CONCLUSION: T-inconsistent

Case Reasoning in Theory Solvers

(2)

* A complete T-solver might need to reason by cases via
internal case splitting and backtracking mechanisms.

* An alternative is to lift case splitting and backtracking
from the T-Solver to the SAT engine.

: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on them.

* Possible benefits:
* All case-splitting is coordinated by the SAT engine
* Only have to implement case-splitting infrastructure in one place

* Can learn a wider class of lemmas

Case Reasoning in Theory Solvers

€)

* Example:
* Assume model contains literal s = read(write(4,i,t),))
Sl
* DPLL(X) asks: “is 1t T-satisfiable”?

* T-solver says: “I do not know yet, but it will be helpful
that you consider these theory lemmas:”

es=s'ANi=j — s=t
es=s" ANi #j — s=read(4,))
* We need certain completeness conditions (e.g. once all lits
from a certain subset L has been decided, the T-solver

should answer YES/NO)

DPLL(T) - Conflict Analysis

* Conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one 1lit of last DL
l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C =C” v 1 where 1 is UIP (unit implication point)

backjump(maxDL(C”’))

add 1 to the model with reason C

learn(C)

DPLL(T) - Conflict Analysis (2)

* Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause

else C:= =)

while C contains more than one 1lit of last DL
l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C = C’ v 1 where 1 is UIP

backjump(maxDL(C”’))

add 1 to the model with reason C

learn(C)

DPLL(T) - Conflict Analysis (3)

* What does explain_inconsistency return?
* A (small) conjunction of literals {{ A -+ A [, such that:
* They were in the model when T-inconsistency was found

e Jtis T-inconsistent

* What is now reason(l) ?
* If [was unit propagated, reason is the clause that propagated it

* If [was T-propagated?

* T-solver has to provide an explanation for [, i.e. a (small) set of
literals Iy, -+, [, such that:
* They were in the model when [was T-propagated
« LA AL Ep
* Then reason(l)is =ly V-V =l, VvVl

DPLL(T) - Conflict Analysis (4)

e Let M be of the form ..., c = b, ... and let F contain
* h(a)=h(c)Vv p
*a=bV apVa=d
ca#+xdVa=>b

* Take the following sequence:
1. Decide h(a) # h(c)
2. UnitPropagate p (due to clause h(a) = h(c) V p)
a # b (since h(a) # h(c) and ¢ = b)
4. UnitPropagate a = d (due to clausea =b V —p V a =d)
5. Conflicting clausea #d V a=b>,

FLLOLAC'19 SMT

Explain: (a # b) is from {h(a) # h(c),c = b}

h(a) = h(c) V p, a=bV ap V a=d, a+xdVa=5»b

1. Decide h(a) # h(c)

2. UnitPropagate p (due to clause h(a) = h(c) V p)

—() T-Propagate a # b (since h(a) # h(c) and ¢ = b)

4. UnitPropagate a = d (due to clausea = b V =p V a = d)
5. Conflicting clausea #d V a=>b

a=bV —pva=d a+dVa=bhb

h(a)=h(c) Vc+bVvV a+bh a=b Vv —p

\ 4

h(a)=h(c) V p h(a)=h(c) Vc#bV —p

h(a) = h(c) Vc # b

FLLOLAC'19 SMT 39

T-Solver Example:
Ditterence Logic

Ditterence logic

Literals in Difference Logic are of the form a — b X k, where
e XME{S, 2, >, = #}
* a and b are integer/real variables
* k is an integer/real

At the formula level,

* a = b is replaced by p and
*p o a<bAb < aisadded

If domain 1s Z then
*a—b < kisreplacedbya—b < k —1
If domain 1s R then
*a—b < kisreplacedbya—b < k —§
* § is a sufficiently small real
* 0 is not computed but used symbolically (i.e. numbers ate pairs (k, 5))

Hence we can assume all literalsarea — b < k

Ditterence Logic - Remarks

* Note that any solution to a set of DL literals can be
shifted

* (ie.if 0 is a solution then 6'(x) = og(x) + k also is a solution)

* This allows one to process bounds x < k
* Introduce fresh variable zero
e Convertallbounds x < kintox —zero < k

* Given a solution @, shift it so that c(zero) = 0

* If we allow (dis)equalities as literals, then:
* If domain is R consistency check is polynomial
* If domain is Z consistency check 1s NP-hard
* e.g. k-colorability
* 1 < ¢ < kwithi = 1 ... #verts encodes k colors available
* ¢; # ¢jif i and j adjacent encode proper assignment

Ditterence Logic as a Graph
Problem

cGivenM={a—b<2,b—c<3,c—a< -7},
construct weighted graph G (M)

* Theorem:
* M is T-inconsistent iff G (M) has a negative cycle

Ditterence Logic as a Graph
Problem (2)

Theorem:
M is T-inconsistent iff G (M) has a negative cycle
<)
Any negative cycle
y neg y ky k, ko,
aq a; — dz — — Ap — g

corresponds to a set of literals:
a, —ap < k1
a, —as < kz
a, — a1 < k,
If we add them all, we get
0 < ki + ky + ... +k,y,
which is inconsistent since neg; cycle implies
ki + ky + ...+ k, <0

Ditterence Logic as a Graph
Problem (3)

Theorem:

M is T-inconsistent iff G (M) has a negative cycle
=)

Let us assume that there 1s

1. Consider additional vertex 0 with edges o0 R U to all
verts. U

2. For each variable x, let (x) = —dist(o, x)
[exists because there is no negative cycle]

3. 0 is a model of M
e If 0 ¥ x —y < kthen —dist(o,x) + dist(o,y) > k
* Hence, dist(o,y) > dist(o,x) + k
* Butk = weight(x — y)!ll

Solution of difference constraints

0
If G(M) has no negative cycle,
SR 2 [then the solution of M is
© 0 A ' o(x) = dist(o, x)
27\ 3
C
0
fc—a<s -2 fc—a<s -7
6(a) =0 6(a) =0
6(b) =0 5(b) =0
6(c) = -2 6(c) = -7
a—b=0<2 a—b=0<2
b—c=2<3 b—c=7<3

c—a=-2<-2 c—a=-7<-7

FLLOLAC'19 SMT 46

Bellman-Ford: negative cycle
detection

forall v € V do d[v] := o endfor
forall i = 1 to |V|-1 do
forall (u,v) € E do
if d[v] > d[u] + weight(u,v) then
dlv]:
p[v]:

d[u] + weight(u,v)

u
endif
endfor
Endfor

forall (u,v) € E do
if d[v] > d[u] + weight(u,v) then
Negative cycle detected
Cycle reconstructed following p
endif

endfor

Consistency checks

* Consistency checks can be performed using Bellman-Ford
in time (O(|V| - |E])

e Other more efficient variants exists

* Incrementality easy:
* Upon arrival of new literal a — b process graph from u

* Solutions can be kept after backtracking

* Inconsistency explanations are negative cycles
(irredundant but not minimal explanations)

Theory propagation

k
Addition of @ — b entails c —d < k' only if

shortest

k
c —>xa — b —oxd

shortest

k
Given a solution 0, each edgea — b (ie.a — b < k) has its
reduced cost

*k —0g(a) + o(b) =20

Shortest path computation more efficient using reduced costs, since
they are non-negattve [Dijkstra’s algorithm)|

Theory propagation = shortest-path computations

Explanations are the shortest paths

Theory Combination

Need for Theory Combination

* In software verification, formulas like the following one
arise:
a=b + 2 AN A=write(B,a + 1,4) A
(read(A,b + 3) =2V f(a—1)6= f (b + 1))

* Here reasoning is needed over

* The theory of linear arithmetic (Ty 4)

* The theory of arrays (T,)

* The theory of uninterpreted functions (Tgyr)

* Remember that T-solvers only deal with conjunctions of
literals.

* Given T-solvers for the three individual theories, can we
combine them to obtain one for (T, U Ty U Tgyp) ?

Common Base Theories

Arithmetic
i functions QF_UF
Uninterpreted functions QF_U QF LRA. QF_LIA. ...
f(f(x)) = ”F 24y = 3
g(a) # f(b) ey
Bitvectors Arrays
QF_BV QF_AX
bvnot(x) +1 = = b = store(a,i,v)
bvuge(.x, 06000..0) r = select(b,)

* Important: These theories have no non-logical symbol
in common (the only thing they share 1s equality)

FLLOLAC'19 SMT 52

Purification

* If Fisaformulain theory T; U T, , we can always
transform F into two parts

* Fi 1s in theory Ty
* F, 1s in theory T,
* F 1s satisfiable in T; U T, iff F; A F, 1s satisfiable (also
inT; UT,)
* This 1s called purification.

* It’s done by introducing new variables to remove
mixed terms.

After Purification

* Purification of F produces formulas F; in T; and F,
n Tz

e UNSAT Case:

e If F; is unsat in Ty or F5 1s unsat in T, then F is unsat in
L UT,.

e SAT Case:

* If Fjissatin T7 and F; is satin Ty | is F satisfiable in
T; UT,?

¢ Fl has a model Ml . Ml I=T1 Fl
¢ F2 has a model M2 . MZ I=T2 FZ
* Can we construct a model M such that M Er 7, F?

Purification Example

 Formula with mixed terms:
x<yAN2y<x A f(h(x) — h(y)) > f(0)
e Purification:

* Separate the uninterpreted function part and the arithmetic

part
QF_UF QF_LRA
a = h(x) x<y
b = h(y) 2y < x
d = f(c) c=a-—0>
g = f(e) e =0

d > g

Purification Example(2)

* QF_UF part is SAT * QF_LRA partis SAT
* Possible model with * Possible model (with
domain = {a, §} domain = R)
a = h(x) e XSy x| 0
b = h(y) y ";_.j o | 3 c Z_y f _x b y |0
d = f(c) :,’ f__; AN — 7 0 alo
g = f(e) gk hlald €= b0
¢ | o d > g
d| 5

The two models are not consistent (F is UNSAT)
* One says x # Y, the other says x =y
* Their domains have different cardinalities

FLOLAC'19 SMT

Nelson-Oppen Methond

Central Problem in Theory
Combination

* Search for consistent models
e Start with F in Ty U T,
* Purify to get F; in T7 and F; in T
* Search for two models My and M, such that:
* My B, Fiand M; Er, F;
* M, and M, have the same cardinality
* M, and M, agree on equalities between shared variables

* Nelson-Oppen Method

* A general framework for solving this problem

* Originally proposed by Nelson and Oppen, 1979

* Give sufficient conditions for consistent models to exist
* Many extensions and variations

FLOLAC'19 SMT

The Nelson-Oppen Method
(Nelson & Oppen, 1979)

* The theory solvers propagate implied equalities
between shared variables.

* If both sides are satisfiable and no-more equalities
can be propagated, then F 1s satisfiable.

Xl'=x]'

FLLOLAC'19 SMT

Nelson-Oppen Example

QF_UF QF_LRA Input formula after purification
a = h(x) x <y

b = h(y) 2y < x

d = f(c) c=a-—>,

g = f(e) e=0

d>g

Nelson-Oppen Example

QF_UF QF_LRA QI LRA deduces and propagates x = y
a = h(x) x<vy
b = h(y) 2y < x
d = f(c) c=a-—>b
g = f(e) e=0
d>g
X =Y

X =Y

Nelson-Oppen Example

QF_UF QF_LRA QI LRA deduces and propagates x = y
QF UF propagatesa = b
a = h(x) x<vy
b = h(y) 2y < x
d = f(c) c=a-—>b
g = f(e) e=10
d>g
X =Y
a=>» X =y
a=>b

FLLOLAC'19 SMT 62

Nelson-Oppen Example

QF_UF QF_LRA QI LRA deduces and propagates x = y
QF UF propagatesa = b
a = h(x) XSy QF LRA propagates e = ¢
b = h(y) 2y < x
d = f(c) c=a-—>b
g = f(e) e=0
d>g

X =Y

a=>» X =y

e =¢ a=>,

e C

FLLOLAC'19 SMT 63

Nelson-Oppen Example

QF_UF QF_LRA QI LRA deduces and propagates x = y
QF UF propagatesa = b
a = h(x) Xsy QF LRA propagates e = ¢
b = h(y) 2y = x QF UF propagatesd = g
;l z ;Eg ¢ :i 6 b QF LRA concludes unsat
d>g
x =y
a=>» X =Yy
e = ¢ a=>»>
d =g e = ¢
d =g

FLLOLAC'19 SMT 64

Nelson-Oppen — Restrictions

* Theories must meet the following restrictions to be
1n combination:

* Ty, ..., T}, are quantifier-free first-order theories with

equality.

* Thereisa for each of the theories
Ty, ..., T,.

* The signatures are , e, foralll i <j < n,
Zi N Z] — @

* Ty, ..., T}, are theories that are interpreted over an infinite
domain

FLOLAC'19 SMT

Nelson-Oppen —Convex Case

* Deterministic Nelson-Oppen

* Assumptions
* Given two signature-disjoint, stably-infinite and convex theories Ty and

P
* Given a set of literals S over the signature of Ty U T5

* A theory T is stably-infinite iff every T-satisfiable quantifier-
free formula has an

* Examples: QF_UTF and QF_LRA are stably infinite, QF_BV 1s not

* A theory T is convex iff
Sl:T a1=b1V...Van=bn
= S E aizbi for some 1

Convex Theories

e Definition

T is convex if, for every set of literals I', and every disjunction of
variable equalities x; = y; V-V X, = Y, , such that

I'e x; =y1 V= VXu =Y,

we have
I'ex; =y

for some index i.

* Examples
* QF_UF and QF_LRA are convex
* QF_LIA, QF_BY, and QF_AX are not convex

Convex Theories - Example

* Linear arithmetic over R (QF_LRA) is convex

x<3Ax=>23=>x=373

* Linear arithmetic over Z (QF_LIA) is not convex:
while
X1 =1Ax=2A1<x3 Ax3<2 = x3 =x1V X3=2Xy
1s valid, neither
X1 =1 ANx =2 A1<x3 ANx3<2 > x3=2x1
nor
X1=1ANx;=2AN1<x3 ANx3<2 = x3=2x,
1s valid.

Non-Convex Theories - Example

* QF_LIA: linear arithmetic over the integers
O0<xAx<yANy<zAzZ=1EXxX=yVy=12z

* QF_AX: array theory
b = store(a,i,v) A x = select(b,j) A
y = select(a,j) E x=vV x=Yy

Nelson-Oppen — Convex Case

* Given n signature-disjoint, stably-infinite and convex
theories Ty , ..., T},
: Purify F into I3, ..., Fy,.

2. Apply the decision procedure for T; to F;. If there exists
I such that F; 1s unsatisfiable in T;, return “UNSAT”.

. If there exist i,] such that F; Tj-
implies an equality between variables of F that is not T}-
implied by Fj, add this equality to Fj and go to step 2.
4. Return “SAT”

FLOLAC'19 SMT 70

Example - Convex case

* Consider the following set of literals:

fF(fO-f®)=a
fO)=a+ 2
X =y

* There are two theories involved: T} A(R) and Tryp
e FIRST STEP:

* purify each literal so that it belongs to a single theory

Example - Convex case

Fif(f-fO)=af0=a+2 x=y

fF(fFO—-fO)=a .ﬂmjf+2
[}
fle)) =a fleg)=a + 2
e; = f(X)— f() ey =0
U U
e, = e, —ey f(ed) = es
ez = f (%) €p = 0

es = f) s =2

Example - Convex case

* SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f(e)) = a €2 —€3 = €
fx) = e e, = 0
fO) =e;3 es = a + 2
f(es) = es

X =Yy

* The two solvers only share constants: eq, €5, €3, €4, €5, a

* To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

* This can be done by exchanging entailed interface equalities

Example - Convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

EUF Arithmetic
f(e)) = a € —€3 = €
fx) = e e, = 0
fO) =e;3 es = a + 2
f(es) = es €2 = €3

X =Y

* The two solvers only share constants: €4, €5, €3, €4, €5, a
* BEUF-Solver says SAT
* Ari-Solver says SAT

¢ EUF = ez=63

Example - Convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

EUF Arithmetic
f(e)) = a € —€3 = €
fx) = e e, = 0
fQ) = e3 es = a + 2
f(es) = es €2 = €3

X =Y
€1 = €4

* The two solvers only share constants: €4, €5, €3, €4, €5, a
* BEUF-Solver says SAT
* Ari-Solver says SAT

e Ari E eq = ¢4

Example - Convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

BEUF

Arithmetic
fle1) = a €2 —€3 = €1
f(x) = e e, = 0
fy) = e3 es = a + 2
fles) = es € = €3

X =y a = eg
€1 = €4

* The two solvers only share constants: €4, €5, €3, €4, €5, a
* BEUF-Solver says SAT

* Ari-Solver says SAT
* EUF Fa=es

Example - Convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

EUF Arithmetic
f(eg) =a €2 —€3 = €1
fx) = e e, = 0
fO) =e;3 es = a + 2
f(es) = es € = €3

X =y a = ec
€1 = €4

* The two solvers only share constants: €4, €5, €3, €4, €5, a
* BEUF-Solver says SAT
* Ari-Solver says UNSAT
* Hence the original set of lits was UNSAT

Example — Non-Convex case

* Consider the following set of literals:

x> 1
x <2

fQx) # (1)
fx) # f(2)
* There are two theories involved: T} A(Z) and Tryp

e FIRST STEP:

* purify each literal so that it belongs to a single theory

EUF Arithmetic
f x) # f(a) x=>1 Both theories are SAT ...
f (x) # f(b) X < 2 But F is UNSAT

a=1

b =2

Properties of Nelson-Oppen

* Soundness and Completeness

* propagating implied equalities 1s sutficient for some theories but
not others

e the theories for which this is sufficient are called

* for these theories, the method is sound and complete

* Termination
e obvious if the number of shared variables is fixed
* this is usually the case

* some theory solvers (e.g;, arrays) may dynamically add more
variables but this can be bounded

More on Nelson-Oppen

 Can be extended to non-convex theories
* the theory solvers propagate disjunctions of equalities
* Finding Implied Equalities

* For QF_UE decision procedures based on congruence closure
give implied equalities for free.

* It’s harder and more expensive for other theories (e.g., linear
arithmetic).

* It gets worse for non-convex theories.

* Delayed Theory Combination

* Attempt to construct an arrangement lazily in the CDCL(T)
framework

* Create interface equalities and let the SAT solver do the search
* Different heuristics to decide when and what equalities to create

Nelson-Oppen Method-

Non-convex case

Nelson-Oppen — The non-convex

CascC

* Given a formula F that combines n signature-disjoint,
stably-infinite theortes Ty , ..., T,

2.

: Purity F into Fq, ..., Fy,.
Apply the decision procedure for Tj to Fj- If there exists i
such that Fj is unsatisfiable in T;, return “UNSAT”.

: If there exist i, j such that F; Tj-implies
an equality between variables of F that is not Tj-implied by F;,
add this equality to Fj and go to step 2.
: If there exists [such that
*Fi =2 (=1 VVxy=y)butVjel, .. k F#x =y,
* Then apply Nelson-Oppen recursively to: F Axqy = yq, .., F Axp, =
Yk

* If any of these subproblems is satisfiable, return “SAT”. Otherwise
return “UNSAT”

Return “SAT”

Example — Non-Convex case

* Consider the following set of literals:

x> 1
x <2

fQx) # (1)
fx) # f(2)
* There are two theories involved: T} A(Z) and Tryp

e FIRST STEP:

* purify each literal so that it belongs to a single theory

EUF Arithmetic
f x) # f(a) x=>1 Both theories are SAT ...
f (x) # f(b) X < 2 But F is UNSAT

a=1

b =2

Example — Non-Convex case

EUF Arithmetic EUF Arithmetic
f) # f(a) x=1 f) #f(a) x=1
f () # f(b) X <2 f () = f(b) X <2

a=1 xX=a a=1

b =2 b =2
X=a

Case separation:
(x=a)V(x =Db)

EUF Arithmetic

f &) # f(a) x=1

f (x) # f(b) X< 2

xX=0Db a=1

b =2

FLLOLAC'19

SMT

XxX=>b

84

Example — Non-convex case

* Consider the following UNSATISFIABLE set of
literals:

[\

a

b
2

)

S ="
e IA
-~ o T TR
24 A
|

w

f @)

* There are two theories involved: T} A(Z) and Tryp
e FIRST STEP:

* purify each literal so that it belongs to a single theory

Example — Non-convex case

e F:

p—
W}

S~
R IA
\hwvvx
CRIEL

N}

|
W

=
N\

N
\—/

)

f@2)=f@)+3
U

e, = 2
f(e2) = e3
f(e) = ey

83=e4+3

Example — Non-convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

Arithmetic EUF

1 =x fle) =a
x < 2 f(x)=0»b

e; =1 f(e2) = e3
a=>b+2 fe1) = ey
e, = 2

e = €4 + 3
a = ey

* The two solvers only share constants: X, e1,a, b, e,, €3, €4
* Ari-Solver says SAT
* BEUF-Solver says SAT

e FUF E a=¢e4

Example — Non-convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

Arithmetic EUF
1 < x f(e1) =a
x < 2 f(x)=0»b
e; =1 f(e2) = e3
a=>b+ 2 f(e1) = e,
e, = 2
e = €4 + 3
a = e,

* The two solvers only share constants: X, e1,a, b, e,, €3, €4
* Ari-Solver says SAT
* BEUF-Solver says SAT

* No theory entails any other interface equality, but...

Example — Non-convex case

* SECOND STEP: check satisfiability and exchange entailed
equalities

Arithmetic EUF
1 < x f(e1) =a
x < 2 f(x)=0»b
e; =1 f(e2) = e3
a=>b+ 2 f(e1) = e,
e, = 2
e = €4 + 3
a = e,

* The two solvers only share constants: X, e1,a, b, e,, €3, €4
* Ari-Solver says SAT
* BEUF-Solver says SAT
* Ari B x = e; V X = e,. Let’s consider both cases.

Example — Non-convex case

* SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 <«x f(e1) = a
x < 2 f(x)=0»
eg =1 f(e) = e3
a=>b+ 2 f(e1) = ey
e, = 2 X = eq
e; = e;, + 3
a = e,
X = e

* The two solvers only share constants: X, e1,a, b, €5, €3, €4
* Ari-Solver says SAT
* EBEUF-Solver says SAT
« EUF =1 a = b, that when sent to Ari makes it UNSAT

Example — Non-convex case

* SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 < x f(e1) = a
x < 2 f(x)=0»
eg =1 f(e) = e3
a=>b+ 2 f(e1) = ey
e, = 2 X = e
ez = e4 + 3
a = e,
X = e

* Let’s try now with X = e,
* Ari-Solver says SAT
* EBEUF-Solver says SAT
* EUF Bt b = ez, that when sent to Ari makes it UNSAT

Example — Non-

convex case(/)

* SECOND STEP: check satisfiability and exchange entailed

equalities
Arithmetic

Q
(ISR
N s IANIA
-19_|_l\.)+b—\N><
w N

(q)
w

)
N

=8 |8
Il

™
N

* Since both x = e; and x =
is UNSAT

EUF
fle) = a
fx)=0Db
f(e) = e;3
f(e1) = ey
X = e

e, are UNSAT, the set of literals

Non-Deterministic Nelson-Oppen
(Tinelli & Harandi, 19906)

* Assumptions

* Two theories T7 and T, that share no non-logical symbol
and are stably infinite

* F is a conjunction of literals of T; U T
e Fis puriﬁed to F1 n T1 and F2 n TZ

* Stably Infinite Theories

* A theory T is stably infinite if every formula that’s
satisfiable in T has an infinite model

* Examples: QF_UF and QF_LRA are stably infinite,
QF_BV is not

Variable Arrangements

e Definition

* Let V be the set of all variables that are shared by F; and
F

* An arrangement of I/ 1s a conjunction of variable
equalities and disequalities that define a partition of V

* Example

* If V = {xg,x1,%2,x3}and we partition V into three
subsets {Xg , X1}, {X2}, and {x3} then the corresponding
arrangement 1s

Xo=X1 A Xg X3 A X1 F X3 A
Xg % X3 AN X £ X3 A Xy F X3

Non-Deterministic Nelson-Oppen
(continued)

e Procedure

* Guess a partition of the variables V' and let A be the
corresponding arrangement

* Check whether F; A A is satisfiable in Tq and F, A A is
satisfiable in T5

* Theorem

* If F; A A is satisfiable in T and F, A A s satisfiable in T, then
F is satisfiable in T; U T, .

* Why this works (informally)

* T; and T are stably infinite. This implies that they have models
of the same infinite cardinality.

* The arrangementcA forces the two models to agree on equalities
between shared variables.

Non-Deterministic Nelson-Oppen
(continued)

* [ssues

* How do we find the right arrangement?

* The number of possible partitions of a set of n variables is
known as Bell’s number (B},)

* This grows very fast with n (e.g., Byq is 27644437)
* We can’t possibly try them all

* How do we handle theories that are not stably infinite?

Model-Based Theory
Combination

Model-Based Theory Combination

e Models are available

* The theory solvers for T; and T, produce models when F;
and F, are SAT:

M1 I=T1 F1 and Mz I=T2 F2
* The Nelson-Oppen methods do not use these models

* Model-based theory combination: Make use of the
models M; and M, :
* if M{ and M, are consistent, done

* optionally, attempt to modify M, and M, to make them
consistent

* if that fails, add constraints to cause CDCL(T) to backtrack
and search for other models

Combining a Theory with QF_UF

* Very Common Case
* One theory 1s QF_UF and the other 1s either an arithmetic theory or
QF_BV
* QF_UF has good properties
* Deciding satisfiability is cheap (fast congruence closure algorithms)
* These algorithms give the implied equalities for free
* It’s stably infinite

* Model-Based Combination With QF_UF

* Works with an arbitrary theory T (non-convex, non-stably infinite)
* Main components:

* congruence closure
* interface lemmas
* model mutation and reconciliation

Congruence Closure

* Key problem in QF_UF
Given a finite set of terms and some equalities between them
ty = Uyp, e, by = Uy
find all the implied equalities

* Congruence Closure Algorithms
Construct an equivalence relation ~ between terms such that
it £; = u; 1s an original equality then t; ~ u;
~ 1s closed under the congruence rule:
Vi ~Wi, e, U ~Wir = f(V1,...,0) ~f(Wg,...,Wg)
The ~ relation contains all the implied equalities:
t{ =Uy, e, tp=u, >t=u iff t ~u

Congruence Closure Example

* Terms: a, b, f(a), f(f(a)), f(f(f(a)), f(b)
* Initial Equalities: f(f(a)) = a, f(a) = b

* Equivalence Relation
* Initially
*{af(f@)} {bf@} {fB)} YF(f(a))}

* Congruence: f(a) = f(f(f(a))
* af(f(@)} b f(a), f(f(f(@))} Uf(b)}

» Congtuence: f(b) = f(f(a))
e f(F@), F®)} {b f(@. f (f(f@))}

e Done

Checking Satisihiability in QF_UF

* A QF_UF formula can be written as a conjunction of
equalities and disequalities:
(tl — ul/\/\tn — un)/\(vl + W1/\---/\vm + Wm)

* To check satisfiability

* compute the congruence closure ~ of the equalities
* if v; ~ w; for some I then return UNSAT else return SAT

* Example

* Formula: f(f(a)) =a A f(a)=b A b= f(f(f(a))

* Congruence closure: {a, f (f(a)), f(b)}{D, f(a), f(f (f (2)))}
* So the formula i1s UNSAT

Building Models in QF_UF

* From a Congruence Closure

: one element in the domain per equivalence class
in the congruence closure

* We can always ensure that every term t is interpreted as its
class representative
* Example
* Formula: f(b) =a A b= f(a) AN a* f(c)

* Congruence closure: {a, f (D)} {b, f(a)}{c}{f(c))}
* Model:

+ domain = {@,8,7,8} |}/ 4

a | 3 ¥ :‘3‘

Flexibility in QF UF Models

* Enlarging the domain
* Let F be a satisfiable QF_UF formula and M a model of F

* For any cardinal k > |M|, we can construct a new model M' of

cardinality k that satisfies F
* This implies that QF_UF is stably infinite

* Shrinking the domain

* We can sometimes make the domain smaller by modifying the
congruence closure

* Previous example:
c Fisf(b)=a A b= f(a) A a# f(c)
* Congruence closure: {a, f(b)} {b, f(a)} {c} {f(c)}

* We could merge {f (¢)} and {b, f (@)} to get a new relation
~ :{a, f(b)}{b, f(a) f(c)}{c}

* A model built from ~ still satisfies F

Basic Model-Based Combination
With QF_UF

* Assumptions
* Aformula Fin QF_UF U T
* After purification: Fq in QF_UF and F, in T
* V denotes the set of variables shared by F; and F),
* ~ 1s the equivalence relation computed by congruence closure from Fy

* Procedure
* If F; is not satisfiable, return UNSAT
* Get all equalities implied by F;
* Let H be the set of implied equalities that are between variables of VV
* Check whether F, A H is satisfiable in T if not return UNSAT
* Otherwise, get a model M for F;, A H.
 If M does not conflict with relation ~ return SAT
* Otherwise, add interface lemmas to force backtracking

Basic Model-Based Combination
With QF_UF - Conftlicts

e Conflicts

e M conflicts with E if there are two shared variables x and
y such that

M kEx=vy but x »y
* conflicts in the other direction are not possible (since M F
H)
* If there are no conflicts

* M and ~ agree on equalities between shared variables

* We can extend M by adding an interpretation for all the
uninterpreted functions in the QF_UF part

* We get a new model M’ that satisfies F, and Fj

Interface LLemmas

* Interface lemma for x and y
* A formula that encodes “x = yinT” = “x =y in QF_UF”

e The exact formulation depends on the implementation and
theory involved

* Examples
* Tis QF_LRA: weadd theclausex =y Vx >y Vy>x
* Tis QF_BV: we add the clause =(bveq xy) V x =y

* in these clauses, (X = y) must be an atom handled by the
QF_UF solver

* If M conflicts with ~ on X = 7y, this lemma forces the
SMT solver to backtrack and search for different models

Imrovements

e Model Mutation

* Exploit flexibility in the Simplex-based arithmetic solver.

* There may be many solutions to a set of linear arithmetic
constraints.

* Mutation: modity the Simplex model to give distinct values
to distinct interface variables.

e This reduces the risk of accidental conflicts

Improvements (continued)

* Model Reconciliation
* Exploit flexibility in QF_UF to eliminate conflicts while
keeping M fixed
* If xand yareinconflict M E x =y and x + y
* To try to resolve this conflict:

* tentatively merge the equivalence classes of x and y

* propagate the consequences by congruence closure

* accept the merge unless if makes the QF_UF part UNSAT or it
would propagate new equalities to theory T

	Satisfiability Modulo Theories
	Introduction
	Need of SMT
	From SAT to SMT
	SMT Problem
	Recall: SAT Decision procedure
	DPLL – Example(1)
	DPLL – Example(1)
	DPLL – Example(2)
	DPLL – Example(2)
	Theories of Interest - EUF
	Theories of Interest - Arithmetic
	Theories of Interest - Arrays
	Theories of Interest – Bit-vectors
	Combination of Theories
	SMT in Practice
	Eager and Lazy approach of SMT
	Eager Approach
	Eager Approach – Example(1)
	Eager Approach – Example(2)
	Lazy Approach
	Lazy Approach - Example
	Lazy Approach - Optimizations
	Lazy Approach - 𝑇-propagation
	Lazy approach - Important points
	DPLL(T)
	DPLL(T)
	DPLL(T) - Example
	DPLL(T) - Overall algorithm
	DPLL(T) - Propagation
	DPLL(T) - Propagation (2)
	Case Reasoning in Theory Solvers
	Case Reasoning in Theory Solvers (2)
	Case Reasoning in Theory Solvers (3)
	DPLL(T) - Conﬂict Analysis
	DPLL(T) - Conﬂict Analysis (2)
	DPLL(T) - Conﬂict Analysis (3)
	DPLL(T) - Conﬂict Analysis (4)
	投影片編號 39
	T-Solver Example:�Difference Logic
	Difference logic
	Difference Logic - Remarks
	Difference Logic as a Graph Problem
	Difference Logic as a Graph Problem (2)
	Difference Logic as a Graph Problem (3)
	投影片編號 46
	Bellman-Ford: negative cycle detection
	Consistency checks
	Theory propagation
	Theory Combination
	Need for Theory Combination
	Common Base Theories
	Puriﬁcation
	After Puriﬁcation
	Puriﬁcation Example
	Puriﬁcation Example(2)
	Nelson-Oppen Methond
	Central Problem in Theory Combination
	The Nelson-Oppen Method (Nelson & Oppen, 1979)
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen – Restrictions
	Nelson-Oppen –Convex Case
	Convex Theories
	Convex Theories - Example
	Non-Convex Theories - Example
	Nelson-Oppen – Convex Case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example – Non-Convex case
	Properties of Nelson-Oppen
	More on Nelson-Oppen
	Nelson-Oppen Method- Non-convex case
	Nelson-Oppen – The non-convex case
	Example – Non-Convex case
	Example – Non-Convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case(7)
	Non-Deterministic Nelson-Oppen (Tinelli & Harandi, 1996)
	Variable Arrangements
	Non-Deterministic Nelson-Oppen (continued)
	Non-Deterministic Nelson-Oppen (continued)
	Model-Based Theory Combination
	Model-Based Theory Combination
	Combining a Theory with QF_UF
	Congruence Closure
	Congruence Closure Example
	Checking Satisiﬁability in QF_UF
	Building Models in QF_UF
	Flexibility in QF UF Models
	Basic Model-Based Combination With QF_UF
	Basic Model-Based Combination With QF_UF - Conflicts
	Interface Lemmas
	Imrovements
	Improvements (continued)

