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Need of  SMT

• Some problems are more naturally expressed in other 
logics than propositional logic

• Software verification needs reasoning about equality, 
arithmetic, data structures, ...

• First-Order Logic

• Example
• Equality with Uninterpreted Functions (EUF)

𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑
• EUF + Linear arithmetic

𝑥𝑥 ≤ 𝑦𝑦 ∧ 2𝑦𝑦 ≤ 𝑥𝑥 ∧ 𝑓𝑓(ℎ(𝑥𝑥) − ℎ(𝑦𝑦)) > 𝑓𝑓(0)
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From SAT to SMT

• SAT
• Use propositional logic as the formalization language
• Pros: high degree of  efficiency
• Cons: expressive but involved encodings

• SMT
• Propositional logic + domain-specific reasoning
• Pros: improves the expressivity
• Cons: certain (but acceptable) loss of  efficiency
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SMT Problem

• Basic SMT Problem
• Given a formula 𝐹𝐹 in some logical theory 𝑇𝑇, determine whether 
𝐹𝐹 is satisfiable or not.

• In addition, if  𝐹𝐹 is satisfiable, provide a model of  𝐹𝐹
• DPLL(T)/CDCL(T) Approach

• Combine a CDCL-based SAT Solver with a theory solver for 𝑇𝑇
• The theory solver works on conjunctions of  literals of  𝑇𝑇

• Combining Decision Procedures for Modularity
• We don’t want to write a global decision procedure
• We have decision procedures for basic theories
• We want to combine them to get a decision procedure for the 

combined theory.
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Recall: SAT Decision procedure

• DPLL Algorithm, also called
• CDCL: Conflict-Driven-Clause-Learning

• Rules
• Unit propagate
• Decide
• Fail
• Backtrack / Backjump
• Learning
• Restart

6FLOLAC'19 SMT



DPLL – Example(1)

• 𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝑎𝑎𝑀𝑀(𝐹𝐹)
• ∅ ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1d ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
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DPLL – Example(2)

• 𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝑎𝑎𝑀𝑀(𝐹𝐹)
• ∅ ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 �6 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 �5 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
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Theories of  Interest - EUF

• Equality with Uninterpreted Functions, i.e. “=” is equality
• Consider formula

𝑎𝑎 ∗ 𝑓𝑓 𝑏𝑏 + 𝑓𝑓 𝑐𝑐 = 𝑑𝑑 ∧ 𝑏𝑏 ∗ 𝑓𝑓 𝑎𝑎 + 𝑓𝑓 𝑐𝑐 ) ≠ 𝑑𝑑 ∧ 𝑎𝑎 = 𝑏𝑏

• Formula is UNSAT, but no arithmetic reasoning is needed
• If  we abstract the formula into

ℎ(𝑎𝑎,𝑔𝑔 𝑓𝑓 𝑏𝑏 , 𝑓𝑓 𝑐𝑐 ) = 𝑑𝑑 ∧ ℎ(𝑏𝑏,𝑔𝑔 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑐𝑐 ) ≠ 𝑑𝑑 ∧ 𝑎𝑎 = 𝑏𝑏

• it is still UNSAT
• EUF is used to abstract non-supported constructions, e.g: 

Non-linear multiplication, ALUs in circuits
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Theories of  Interest - Arithmetic

• Bounds
• 𝑥𝑥 ⋈ 𝑘𝑘 with ⋈ ∈ {<, >,≤,≥, =}

• Difference logic
• 𝑥𝑥 − 𝑦𝑦 ⋈ 𝑘𝑘, with ⋈ ∈ {< , > ,≤,≥, =}

• UTVPI (Unit Two Variable Per Inequality)
• ±𝑥𝑥 ± 𝑦𝑦 ⋈ 𝑘𝑘, with⋈ ∈ {< , > ,≤,≥, =}

• Linear arithmetic
• e.g: 2𝑥𝑥 − 3𝑦𝑦 + 4𝑧𝑧 ≤ 5

• Non-linear arithmetic
• e.g: 2𝑥𝑥𝑦𝑦 + 4𝑥𝑥𝑧𝑧2 − 5𝑦𝑦 ≤ 10

• Variables are either reals or integers
• Machine-inspired arithmetic

• floating-point arithmetic
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Theories of  Interest - Arrays

• Two interpreted function symbols read and write
• Theory is axiomatized by:

• ∀𝑎𝑎∀𝑖𝑖∀𝑣𝑣 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 , 𝑖𝑖 = 𝑣𝑣
• ∀𝑎𝑎 ∀𝑖𝑖 ∀𝑗𝑗 ∀𝑣𝑣 (𝑖𝑖 ≠ 𝑗𝑗 ⇒ 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 , 𝑗𝑗 = 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝑎𝑎, 𝑗𝑗)

• Sometimes extensionality is added:
• ∀𝑎𝑎 ∀𝑏𝑏 ((∀𝑖𝑖 (read(a,i) = read(b,i))) => a = b

• Is the following set of  literals satisfiable?
𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝑎𝑎, 𝑖𝑖, 𝑥𝑥 ≠ 𝑏𝑏 ∧ 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑏𝑏, 𝑖𝑖 = 𝑦𝑦 ∧
𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝑏𝑏, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 = 𝑦𝑦 ∧ 𝑎𝑎 = 𝑏𝑏 ∧ 𝑖𝑖 = 𝑗𝑗

• Used for:
• Software verification
• Hardware verification (memories)
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Theories of  Interest – Bit-vectors

• Constants represent vectors of  bits
• Useful both for hardware and software verification
• Different type of  operations:

• String-like operations: concat, extract, ...
• Logical operations: bit-wise not, or, and, ...
• Arithmetic operations: add, substract, multiply, ...

• Assume bit-vectors have size 3. Is the formula SAT?
𝑎𝑎 0: 1 ≠ 𝑏𝑏 0: 1 ∧ 𝑎𝑎 𝑏𝑏 = 𝑐𝑐 ∧
𝑐𝑐 0 = 0 ∧ 𝑎𝑎 1 + 𝑏𝑏 1 = 0
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Combination of  Theories

• In practice, theories are not isolated

• Software verifications needs arithmetic, arrays, 
bitvectors, ...

• Formulas of  the following form usually arise:
• 𝑎𝑎 = 𝑏𝑏 + 2 ∧ A = write B, a + 1,4 ∧ (𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝐴𝐴, 𝑏𝑏 + 3 =

2 ∨ 𝑓𝑓 𝑎𝑎 − 1 ≠ 𝑓𝑓 𝑏𝑏 + 1 )

• The goal of  SMT is to combine decision procedures for 
each theory
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SMT in Practice

• GOOD NEWS: efficient decision procedures for sets 
of  ground literals exist for various theories of  interest

• PROBLEM: in practice, we need to deal with:
1. arbitrary boolean combinations of  literals (∧,∨, ¬)

(DNF conversion is not a solution in practice)
2. multiple theories
3. quantifiers

• We will only focus on (1) and (2), but techniques for 
(3) exist.
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Eager and Lazy approach 
of  SMT
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Eager Approach

• Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf  SAT 
solver

• Why “eager”?
• Search uses all theory information from the beginning

• Characteristics:
• Can use best available SAT solver
• Sophisticated encodings are needed for each theory
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Eager Approach – Example(1)

• First step
• remove function/predicate symbols.
• Assume we have terms 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑏𝑏) and 𝑓𝑓(𝑐𝑐).

• Ackermann reduction:
• Replace them by fresh constants 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶
• Add clauses:

• 𝑎𝑎 = 𝑏𝑏 → 𝐴𝐴 = 𝐵𝐵
• 𝑎𝑎 = 𝑐𝑐 → 𝐴𝐴 = 𝐶𝐶
• 𝑏𝑏 = 𝑐𝑐 → 𝐵𝐵 = 𝐶𝐶

• Bryant reduction:
• Replace 𝑓𝑓(𝑎𝑎) by 𝐴𝐴
• Replace 𝑓𝑓(𝑏𝑏) by 𝑖𝑖𝑤𝑤𝑀𝑀(𝑏𝑏 = 𝑎𝑎,𝐴𝐴,𝐵𝐵)
• Replace 𝑓𝑓(𝑐𝑐) by 𝑖𝑖𝑤𝑤𝑀𝑀(𝑐𝑐 = 𝑎𝑎,𝐴𝐴, 𝑖𝑖𝑤𝑤𝑀𝑀(𝑐𝑐 = 𝑏𝑏,𝐵𝐵,𝐶𝐶))

• Now, atoms are equalities between constants
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Eager Approach – Example(2)

• Second step
• encode formula into propositional logic
• Small-domain encoding:

• If  there are n different constants, there is a model with size at 
most 𝑛𝑛

• log𝑛𝑛 bits to encode the value of  each constant
• a=b translated using the bits for a and b

• Per-constraint encoding:
• Each atom a=b is replaced by var 𝑃𝑃𝑎𝑎,𝑏𝑏

• Transitivity constraints are added
• e.g. 𝑃𝑃𝑎𝑎,𝑏𝑏 ∧ 𝑃𝑃𝑏𝑏,𝑐𝑐 → 𝑃𝑃𝑎𝑎,𝑐𝑐
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Lazy Approach

• Why “lazy”?
• Theory information used lazily when checking 𝑇𝑇-

consistency of  propositional models

• Characteristics:
• Modular and flexible
• Theory information does not guide the search
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Lazy Approach - Example

• Consider EUF and the CNF
𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑

1 �2 3 �4

• SAT solver returns model [ 1, �2, �4 ]
• Theory solver says T-inconsistent
• Send { 1, �2 ∨ 3, �4, �1 ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model [ 1, 2, 3, �4 ]
• Theory solver says T-inconsistent
• SAT solver detects { 1, �2 ∨ 3, �4, �1 ∨ 2 ∨ 4, �1 ∨ �2 ∨ �3 ∨ 4 }
• UNSATISFIABLE
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Lazy Approach - Optimizations

• Several optimizations for enhancing efficiency
• Check 𝑇𝑇-consistency only of  full propositional models
Check 𝑇𝑇-consistency of  partial assignment while being 

built

• Given a 𝑇𝑇-inconsistent assignment 𝑀𝑀, add ¬𝑀𝑀 as a clause
Given a 𝑇𝑇-inconsistent assignment 𝑀𝑀, identify a 𝑇𝑇-

inconsistent subset 𝑀𝑀0 ⊆ 𝑀𝑀 and add ¬𝑀𝑀0 as a clause

• Upon a 𝑇𝑇-inconsistency, add clause and restart
Upon a 𝑇𝑇-inconsistency, backtrack to some point where 

the assignment was still 𝑇𝑇-consistent
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Lazy Approach - 𝑇𝑇-propagation

• As pointed out the lazy approach has one drawback:
• Theory information does not guide the search (too lazy)

• How can we improve that? For example:
• Assume that 𝑎𝑎 < 𝑏𝑏,  𝑏𝑏 < 𝑐𝑐 are in our partial assignment 𝑀𝑀.
• If  the formula contains 𝑎𝑎 < 𝑐𝑐 we would like to add it to 𝑀𝑀

• Search guided by 𝑇𝑇-Solver by finding 𝑇𝑇-consequences, instead 
of  only validating it as in basic lazy approach.

• Naive implementation:
• (1) add ¬𝑀𝑀 , (2) if  𝑇𝑇-inconsistent then infer 𝑀𝑀

• But for efficient Theory Propagation we need:
• T-Solvers specialized and fast in it.
• Fully exploited in conflict analysis
• This approach has been named DPLL(T)
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Lazy approach - Important points

• Important and benefitial aspects of  the lazy approach: 
(even with the optimizations)

• Everyone does what he/she is good at:
• SAT solver takes care of  Boolean information
• Theory solver takes care of  theory information

• Theory solver only receives conjunctions of  literals
• Modular approach:

• SAT solver and 𝑇𝑇-solver communicate via a simple API
• SMT for a new theory only requires new 𝑇𝑇-solver
• SAT solver can be embedded in a lazy SMT system with 

relatively little effort
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DPLL(T)
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DPLL(T)

• In a nutshell:
• DPLL(T) = DPLL(X) + T-Solver

• DPLL(X):
• Very similar to a SAT solver, enumerates Boolean models
• Not allowed: pure literal, blocked literal detection, ...
• Desirable: partial model detection

• T-Solver:
• Checks consistency of  conjunctions of  literals
• Computes theory propagations
• Produces explanations of  inconsistency/T-propagation
• Should be incremental and backtrackable
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DPLL(T) - Example

• Consider again EUF and the formula:
• 𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑
• 1 �2 3 �4

• ∅ ∥ 1, �2 ∨ 3, �4
• 1 ∥ 1, �2 ∨ 3, �4
• 1 �4 ∥ 1, �2 ∨ 3, �4
• 1 �4 2 ∥ 1, �2 ∨ 3, �4
• 1 �4 2 �3 ∥ 1, �2 ∨ 3, �4
• UNSAT

28

(UnitPropagate)

(UnitPropagate)

(T-Propagate)

(T-Propagate)

(Fail)
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DPLL(T) - Overall algorithm

• High-level view gives the same algorithm as a CDCL 
SAT solver:

while(true){
while (propagate_gives_conflict()){

if (decision_level==0) return UNSAT;
else analyze_conflict();

}
restart_if_applicable();
remove_lemmas_if_applicable();
if (!decide()) returns SAT; // All vars assigned

}
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DPLL(T) - Propagation

propagate_gives_conflict( ) returns Bool

do {

// unit propagate

if ( unit_prop_gives_conflict() ) then return true

// check T-consistency of the model

if ( solver.is_model_inconsistent() ) then return true

// theory propagate

solver.theory_propagate()

} while (someTheoryPropagation)

return false
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DPLL(T) - Propagation (2)

• Three operations:
• Unit propagation (SAT solver)
• Consistency checks (T-solver)
• Theory propagation (T-solver)

• Cheap operations are computed first
• If  theory is expensive, calls to T-solver are sometimes 

skipped
• For completeness, only necessary to call T-solver at the 

leaves (i.e. when we have a full propositional model)
• Theory propagation is not necessary for completeness
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Case Reasoning in Theory Solvers

• For certain theories, consistency checking requires 
case reasoning.

• Example: consider the theory of  arrays and the set of  
literals

• 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝐴𝐴, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 ≠ 𝑥𝑥
• 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝐴𝐴, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 ≠ 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝐴𝐴, 𝑗𝑗)
• Two cases:

• 𝑖𝑖 = 𝑗𝑗. LHS rewrites into 𝑥𝑥 ≠ 𝑥𝑥
• 𝑖𝑖 ≠ 𝑗𝑗. RHS rewrites into 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑 𝐴𝐴, 𝑗𝑗 ≠ 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝐴𝐴, 𝑗𝑗)

• CONCLUSION: 𝑇𝑇-inconsistent
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Case Reasoning in Theory Solvers 
(2)
• A complete 𝑇𝑇-solver might need to reason by cases via 

internal case splitting and backtracking mechanisms.
• An alternative is to lift case splitting and backtracking 

from the 𝑇𝑇-Solver to the SAT engine.
• Basic idea: encode case splits as sets of  clauses and send 

them as needed to the SAT engine for it to split on them.
• Possible benefits:

• All case-splitting is coordinated by the SAT engine
• Only have to implement case-splitting infrastructure in one place
• Can learn a wider class of  lemmas
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Case Reasoning in Theory Solvers 
(3)
• Example:

• Assume model contains literal 𝑠𝑠 = 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀(𝐴𝐴, 𝑖𝑖, 𝑤𝑤), 𝑗𝑗)
𝑠𝑠′

• DPLL(X) asks: “is it T-satisfiable”?
• T-solver says: “I do not know yet, but it will be helpful 

that you consider these theory lemmas:”
• 𝑠𝑠 = 𝑠𝑠′ ∧ 𝑖𝑖 = 𝑗𝑗 ⟶ 𝑠𝑠 = 𝑤𝑤
• 𝑠𝑠 = 𝑠𝑠′ ∧ 𝑖𝑖 ≠ 𝑗𝑗 ⟶ 𝑠𝑠 = 𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝐴𝐴, 𝑗𝑗)

• We need certain completeness conditions (e.g. once all lits
from a certain subset 𝐿𝐿 has been decided, the 𝑇𝑇-solver 
should answer YES/NO)
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DPLL(T) - Conflict Analysis

• Conflict analysis in SAT solvers:

C:= conflicting clause
while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while
// let C = C’ v l where l is UIP (unit implication point)
backjump(maxDL(C’))
add l to the model with reason C
learn(C)
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DPLL(T) - Conflict Analysis (2)

• Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:= ¬( solver.explain_inconsistency() )
while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while
// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

36FLOLAC'19 SMT



DPLL(T) - Conflict Analysis (3)

• What does explain_inconsistency return?
• A (small) conjunction of  literals 𝑀𝑀1 ∧ ⋯∧ 𝑀𝑀𝑛𝑛 such that:
• They were in the model when 𝑇𝑇-inconsistency was found
• It is 𝑇𝑇-inconsistent

• What is now 𝐹𝐹𝑀𝑀𝑎𝑎𝑠𝑠𝑀𝑀𝑛𝑛(𝑀𝑀) ?
• If  𝑀𝑀 was unit propagated, reason is the clause that propagated it
• If  𝑀𝑀 was T-propagated?

• T-solver has to provide an explanation for 𝑀𝑀, i.e. a (small) set of  
literals 𝑀𝑀1,⋯ , 𝑀𝑀𝑛𝑛 such that:

• They were in the model when 𝑀𝑀 was T-propagated
• 𝑀𝑀1 ∧ ⋯∧ 𝑀𝑀𝑛𝑛 ⊨𝑇𝑇 𝑀𝑀

• Then 𝐹𝐹𝑀𝑀𝑎𝑎𝑠𝑠𝑀𝑀𝑛𝑛(𝑀𝑀) is ¬𝑀𝑀1 ∨ ⋯∨ ¬𝑀𝑀𝑛𝑛 ∨ 𝑀𝑀
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DPLL(T) - Conflict Analysis (4)

• Let 𝑀𝑀 be of  the form ... , 𝑐𝑐 = 𝑏𝑏, ... and let 𝐹𝐹 contain
• ℎ 𝑎𝑎 = ℎ 𝑐𝑐 ∨ 𝑝𝑝
• 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑
• 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

• Take the following sequence:
1. Decide ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐)
2. UnitPropagate 𝑝𝑝 (due to clause ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑝𝑝)
3. T-Propagate 𝑎𝑎 ≠ 𝑏𝑏 (since ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 𝑏𝑏)
4. UnitPropagate 𝑎𝑎 = 𝑑𝑑 (due to clause 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑)
5. Conflicting clause 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏
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39

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝒑𝒑

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏 ∨ 𝒂𝒂 ≠ 𝒃𝒃

𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝒂𝒂 = 𝒅𝒅

𝒂𝒂 = 𝒃𝒃 ∨ ¬𝑝𝑝

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏 ∨ ¬𝒑𝒑

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏

𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

Explain:  (𝑎𝑎 ≠ 𝑏𝑏) is from {ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐), 𝑐𝑐 = 𝑏𝑏}

ℎ 𝑎𝑎 = ℎ 𝑐𝑐 ∨ 𝑝𝑝, 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑, 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

1. Decide ℎ 𝑎𝑎 ≠ ℎ(𝑐𝑐)
2. UnitPropagate 𝑝𝑝 (due to clause ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑝𝑝)
3. T-Propagate 𝑎𝑎 ≠ 𝑏𝑏 (since ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 𝑏𝑏)
4. UnitPropagate 𝑎𝑎 = 𝑑𝑑 (due to clause 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑)
5. Conflicting clause 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏
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T-Solver Example:
Difference Logic
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Difference logic
• Literals in Difference Logic are of  the form 𝑎𝑎 − 𝑏𝑏 ⋈ 𝑘𝑘, where

• ⋈ ∈ {≤,≥, <, >, =,≠}
• 𝑎𝑎 and 𝑏𝑏 are integer/real variables
• 𝑘𝑘 is an integer/real

• At the formula level, 
• 𝑎𝑎 = 𝑏𝑏 is replaced by 𝑝𝑝 and
• 𝑝𝑝 ↔ 𝑎𝑎 ≤ 𝑏𝑏 ∧ 𝑏𝑏 ≤ 𝑎𝑎 is added

• If  domain is ℤ then
• 𝑎𝑎 − 𝑏𝑏 < 𝑘𝑘 is replaced by 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘 − 1

• If  domain is ℝ then
• 𝑎𝑎 − 𝑏𝑏 < 𝑘𝑘 is replaced by 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘 − 𝛿𝛿
• 𝛿𝛿 is a sufficiently small real
• 𝛿𝛿 is not computed but used symbolically (i.e. numbers are pairs (𝑘𝑘, 𝛿𝛿))

• Hence we can assume all literals are 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘
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Difference Logic - Remarks

• Note that any solution to a set of  DL literals can be 
shifted

• (i.e. if  𝜎𝜎 is a solution then 𝜎𝜎′(𝑥𝑥) = 𝜎𝜎(𝑥𝑥) + 𝑘𝑘 also is a solution)
• This allows one to process bounds 𝑥𝑥 ≤ 𝑘𝑘

• Introduce fresh variable 𝑧𝑧𝑀𝑀𝐹𝐹𝑀𝑀
• Convert all bounds 𝑥𝑥 ≤ 𝑘𝑘 into 𝑥𝑥 − 𝑧𝑧𝑀𝑀𝐹𝐹𝑀𝑀 ≤ 𝑘𝑘
• Given a solution 𝜎𝜎, shift it so that 𝜎𝜎(𝑧𝑧𝑀𝑀𝐹𝐹𝑀𝑀) = 0

• If  we allow (dis)equalities as literals, then:
• If  domain is ℝ consistency check is polynomial
• If  domain is ℤ consistency check is NP-hard

• e.g. k-colorability
• 1 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑘𝑘 with 𝑖𝑖 = 1 … #𝑣𝑣𝑀𝑀𝐹𝐹𝑤𝑤𝑠𝑠 encodes k colors available
• 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 if  𝑖𝑖 and 𝑗𝑗 adjacent encode proper assignment
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Difference Logic as a Graph 
Problem
• Given M = {𝑎𝑎 − 𝑏𝑏 ≤ 2, 𝑏𝑏 − 𝑐𝑐 ≤ 3, 𝑐𝑐 − 𝑎𝑎 ≤ −7}, 

construct weighted graph 𝐺𝐺(𝑀𝑀)

• Theorem:
• 𝑀𝑀 is 𝑇𝑇-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle
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Difference Logic as a Graph 
Problem (2)
Theorem:

𝑀𝑀 is T-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle
⇐)
Any negative cycle

𝑎𝑎1 ⟶
𝑘𝑘1 𝑎𝑎2 ⟶

𝑘𝑘2 𝑎𝑎3 ⟶ … ⟶ 𝑎𝑎𝑛𝑛 ⟶
𝑘𝑘𝑛𝑛 𝑎𝑎1

corresponds to a set of  literals:
𝑎𝑎1 − 𝑎𝑎2 ≤ 𝑘𝑘1
𝑎𝑎2 − 𝑎𝑎3 ≤ 𝑘𝑘2

…
𝑎𝑎𝑛𝑛 − 𝑎𝑎1 ≤ 𝑘𝑘𝑛𝑛

If  we add them all, we get
0 ≤ 𝑘𝑘1 + 𝑘𝑘2 + … + 𝑘𝑘𝑛𝑛 ,

which is inconsistent since neg. cycle implies
𝑘𝑘1 + 𝑘𝑘2 + … + 𝑘𝑘𝑛𝑛 < 0
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Difference Logic as a Graph 
Problem (3)
Theorem:

𝑀𝑀 is T-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle
⇒)
Let us assume that there is no negative cycle.

1. Consider additional vertex 𝑀𝑀 with edges 𝑀𝑀 ⟶
0

𝑣𝑣 to all 
verts. 𝑣𝑣

2. For each variable 𝑥𝑥, let 𝜎𝜎(𝑥𝑥) = −𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀, 𝑥𝑥)
[exists because there is no negative cycle]

3. 𝜎𝜎 is a model of  𝑀𝑀
• If  𝜎𝜎 ⊭ 𝑥𝑥 − 𝑦𝑦 ≤ 𝑘𝑘 then −𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀, 𝑥𝑥) + 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀,𝑦𝑦) > 𝑘𝑘
• Hence, 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀,𝑦𝑦) > 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀, 𝑥𝑥) + 𝑘𝑘
• But 𝑘𝑘 = 𝑤𝑤𝑀𝑀𝑖𝑖𝑔𝑔ℎ𝑤𝑤(𝑥𝑥 ⟶ 𝑦𝑦)!!!
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if  𝑐𝑐 − 𝑎𝑎 ≤ −2

𝛿𝛿 𝑎𝑎 = 0
𝛿𝛿 𝑏𝑏 = 0
𝛿𝛿 𝑐𝑐 = −2

𝑎𝑎 − 𝑏𝑏 = 0 ≤ 2
𝑏𝑏 − 𝑐𝑐 = 2 ≤ 3

𝑐𝑐 − 𝑎𝑎 = −2 ≤ −2

Solution of  difference constraints

if  𝑐𝑐 − 𝑎𝑎 ≤ −7

𝛿𝛿 𝑎𝑎 = 0
𝛿𝛿 𝑏𝑏 = 0
𝛿𝛿 𝑐𝑐 = −7

𝑎𝑎 − 𝑏𝑏 = 0 ≤ 2
𝑏𝑏 − 𝑐𝑐 = 7 ≤ 3

𝑐𝑐 − 𝑎𝑎 = −7 ≤ −7

If  𝐺𝐺(𝑀𝑀) has no negative cycle,
then the solution of  𝑀𝑀 is 
𝜎𝜎(𝑥𝑥) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝑀𝑀, 𝑥𝑥)



Bellman-Ford: negative cycle 
detection
forall v ∈ V do d[v] := ∞ endfor

forall i = 1 to |V|−1 do

forall (u,v) ∈ E do

if d[v] > d[u] + weight(u,v) then

d[v]:= d[u] + weight(u,v)

p[v]:= u

endif

endfor

Endfor

forall (u,v) ∈ E do

if d[v] > d[u] + weight(u,v) then

Negative cycle detected

Cycle reconstructed following 𝑝𝑝
endif

endfor
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Consistency checks

• Consistency checks can be performed using Bellman-Ford 
in time (𝑂𝑂(|𝑉𝑉| · |𝐸𝐸|))

• Other more efficient variants exists

• Incrementality easy:
• Upon arrival of  new literal 𝑎𝑎 ⟶

𝑘𝑘
𝑏𝑏 process graph from 𝐹𝐹

• Solutions can be kept after backtracking

• Inconsistency explanations are negative cycles 
(irredundant but not minimal explanations)
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Theory propagation

• Addition of  𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 entails 𝑐𝑐 − 𝑑𝑑 ≤ 𝑘𝑘′ only if

𝑐𝑐 ⟶∗ 𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 ⟶∗ 𝑑𝑑

• Given a solution 𝜎𝜎, each edge 𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 (i.e. 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘) has its 
reduced cost 

• 𝑘𝑘 − 𝜎𝜎(𝑎𝑎) + 𝜎𝜎(𝑏𝑏) ≥ 0
• Shortest path computation more efficient using reduced costs, since 

they are non-negative [Dijkstra’s algorithm]
• Theory propagation ≈ shortest-path computations
• Explanations are the shortest paths
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Theory Combination
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Need for Theory Combination

• In software verification, formulas like the following one 
arise:

𝑎𝑎 = 𝑏𝑏 + 2 ∧ 𝐴𝐴 = 𝑤𝑤𝐹𝐹𝑖𝑖𝑤𝑤𝑀𝑀 𝐵𝐵,𝑎𝑎 + 1,4 ∧
(𝐹𝐹𝑀𝑀𝑎𝑎𝑑𝑑(𝐴𝐴, 𝑏𝑏 + 3) = 2 ∨ 𝑓𝑓 (𝑎𝑎 − 1) 6 = 𝑓𝑓 (𝑏𝑏 + 1))

• Here reasoning is needed over 
• The theory of  linear arithmetic ( 𝑇𝑇𝐿𝐿𝐿𝐿 )
• The theory of  arrays ( 𝑇𝑇𝐿𝐿 )
• The theory of  uninterpreted functions ( 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 )

• Remember that 𝑇𝑇-solvers only deal with conjunctions of  
literals.

• Given 𝑇𝑇-solvers for the three individual theories, can we 
combine them to obtain one for ( 𝑇𝑇𝐿𝐿𝐿𝐿 ∪ 𝑇𝑇𝐿𝐿 ∪ 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 ) ?
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Common Base Theories

• Important: These theories have no non-logical symbol 
in common (the only thing they share is equality)
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Purification

• If  𝐹𝐹 is a formula in theory 𝑇𝑇1 ∪ 𝑇𝑇2 , we can always 
transform 𝐹𝐹 into two parts

• 𝐹𝐹1 is in theory 𝑇𝑇1
• 𝐹𝐹2 is in theory 𝑇𝑇2

• 𝐹𝐹 is satisfiable in 𝑇𝑇1 ∪ 𝑇𝑇2 iff 𝐹𝐹1 ∧ 𝐹𝐹2 is satisfiable (also 
in 𝑇𝑇1 ∪ 𝑇𝑇2 )

• This is called purification.
• It’s done by introducing new variables to remove 

mixed terms.
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After Purification

• Purification of  𝐹𝐹 produces formulas 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2
in 𝑇𝑇2

• UNSAT Case:
• If  𝐹𝐹1 is unsat in 𝑇𝑇1 or 𝐹𝐹2 is unsat in 𝑇𝑇2 then 𝐹𝐹 is unsat in 
𝑇𝑇1 ∪ 𝑇𝑇2 .

• SAT Case:
• If  𝐹𝐹1 is sat in 𝑇𝑇1 and 𝐹𝐹2 is sat in 𝑇𝑇2 , is 𝐹𝐹 satisfiable in 
𝑇𝑇1 ∪ 𝑇𝑇2 ?

• 𝐹𝐹1 has a model 𝑀𝑀1 : 𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1
• 𝐹𝐹2 has a model 𝑀𝑀2 : 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2
• Can we construct a model M such that 𝑀𝑀 ⊨𝑇𝑇1 ∪ 𝑇𝑇2 𝐹𝐹 ?
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Purification Example

• Formula with mixed terms:
𝑥𝑥 ≤ 𝑦𝑦 ∧ 2𝑦𝑦 ≤ 𝑥𝑥 ∧ 𝑓𝑓(ℎ(𝑥𝑥) − ℎ(𝑦𝑦)) > 𝑓𝑓(0)

• Purification: 
• Separate the uninterpreted function part and the arithmetic 

part
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QF_UF
𝑎𝑎 = ℎ 𝑥𝑥
𝑏𝑏 = ℎ 𝑦𝑦
𝑑𝑑 = 𝑓𝑓 𝑐𝑐
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

QF_LRA
𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥

𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔



Purification Example(2)

• QF_UF part is SAT
• Possible model with 

domain = {𝛼𝛼,𝛽𝛽}

• QF_LRA part is SAT
• Possible model (with 

domain = ℝ )
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The two models are not consistent (𝐹𝐹 is UNSAT)
• One says 𝑥𝑥 ≠ 𝑦𝑦, the other says 𝑥𝑥 = 𝑦𝑦
• Their domains have different cardinalities

𝑎𝑎 = ℎ 𝑥𝑥
𝑏𝑏 = ℎ 𝑦𝑦
𝑑𝑑 = 𝑓𝑓 𝑐𝑐
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥

𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔



Nelson-Oppen Methond
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Central Problem in Theory 
Combination
• Search for consistent models

• Start with 𝐹𝐹 in 𝑇𝑇1 ∪ 𝑇𝑇2
• Purify to get 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2 in 𝑇𝑇2
• Search for two models 𝑀𝑀1 and 𝑀𝑀2 such that:

• 𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1 and 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2
• 𝑀𝑀1 and 𝑀𝑀2 have the same cardinality
• 𝑀𝑀1 and 𝑀𝑀2 agree on equalities between shared variables

• Nelson-Oppen Method
• A general framework for solving this problem
• Originally proposed by Nelson and Oppen, 1979
• Give sufficient conditions for consistent models to exist
• Many extensions and variations
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The Nelson-Oppen Method 
(Nelson & Oppen, 1979)
• The theory solvers propagate implied equalities 

between shared variables.
• If  both sides are satisfiable and no-more equalities 

can be propagated, then 𝐹𝐹 is satisfiable.
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𝐹𝐹1 𝐹𝐹2

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑗𝑗



Nelson-Oppen Example
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QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔

Input formula after purification



Nelson-Oppen Example

FLOLAC'19 SMT 61

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

𝑥𝑥 = 𝑦𝑦

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦



Nelson-Oppen Example
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QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏



Nelson-Oppen Example

FLOLAC'19 SMT 63

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏
QF LRA propagates 𝑀𝑀 = 𝑐𝑐

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑀𝑀 = 𝑐𝑐

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑀𝑀 = 𝑐𝑐



Nelson-Oppen Example
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QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏
QF LRA propagates 𝑀𝑀 = 𝑐𝑐
QF UF propagates 𝑑𝑑 = 𝑔𝑔
QF LRA concludes unsat

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑀𝑀)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑀𝑀 = 𝑐𝑐
𝑑𝑑 = 𝑔𝑔

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑀𝑀 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑀𝑀 = 𝑐𝑐
𝑑𝑑 = 𝑔𝑔



Nelson-Oppen – Restrictions

• Theories must meet the following restrictions to be 
decidable in combination:

• 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛 are quantifier-free first-order theories with 
equality.

• There is a decision procedure for each of  the theories 
𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛.

• The signatures are disjoint, i.e., for all 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛, 
Σ𝑖𝑖 ∩ Σ𝑗𝑗 = ∅.

• 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛 are theories that are interpreted over an infinite 
domain
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Nelson-Oppen –Convex Case

• Deterministic Nelson-Oppen
• Assumptions

• Given two signature-disjoint, stably-infinite and convex theories 𝑇𝑇1 and 
𝑇𝑇2

• Given a set of  literals 𝑆𝑆 over the signature of  𝑇𝑇1 ∪ 𝑇𝑇2

• A theory 𝑇𝑇 is stably-infinite iff every T-satisfiable quantifier-
free formula has an infinite model

• Examples: QF_UF and QF_LRA are stably infinite, QF_BV is not

• A theory 𝑇𝑇 is convex iff
𝑆𝑆 ⊨𝑇𝑇 𝑎𝑎1 = 𝑏𝑏1 ∨ … ∨ 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛

⟹ 𝑆𝑆 ⊨ 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 for some 𝑖𝑖
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Convex Theories

• Definition
𝑇𝑇 is convex if, for every set of  literals 𝛤𝛤, and every disjunction of  
variable equalities 𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯∨ 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 , such that

𝛤𝛤 ⊨ 𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯ ∨ 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 ,
we have

𝛤𝛤 ⊨ 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖
for some index 𝑖𝑖.

• Examples
• QF_UF and QF_LRA are convex
• QF_LIA, QF_BV, and QF_AX are not convex
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Convex Theories - Example

• Linear arithmetic over ℝ (QF_LRA) is convex
𝑥𝑥 ≤ 3 ∧ 𝑥𝑥 ≥ 3 ⇒ 𝑥𝑥 = 3

• Linear arithmetic over ℤ (QF_LIA) is not convex:
while

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥1 ∨ 𝑥𝑥3 = 𝑥𝑥2
is valid, neither

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥1
nor

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥2
is valid.
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Non-Convex Theories - Example

• QF_LIA: linear arithmetic over the integers
0 ≤ 𝑥𝑥 ∧ 𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑧𝑧 ∧ 𝑧𝑧 ≤ 1 ⊨ 𝑥𝑥 = 𝑦𝑦 ∨ 𝑦𝑦 = 𝑧𝑧

• QF_AX: array theory
𝑏𝑏 = 𝑠𝑠𝑤𝑤𝑀𝑀𝐹𝐹𝑀𝑀 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 ∧ 𝑥𝑥 = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑤𝑤 𝑏𝑏, 𝑗𝑗 ∧
𝑦𝑦 = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑤𝑤(𝑎𝑎, 𝑗𝑗) ⊨ 𝑥𝑥 = 𝑣𝑣 ∨ 𝑥𝑥 = 𝑦𝑦
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Nelson-Oppen – Convex Case

• Given 𝑛𝑛 signature-disjoint, stably-infinite and convex
theories 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛

1. Purification: Purify 𝐹𝐹 into 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛.
2. Apply the decision procedure for 𝑇𝑇𝑖𝑖 to 𝐹𝐹𝑖𝑖. If  there exists 

𝑖𝑖 such that 𝐹𝐹𝑖𝑖 is unsatisfiable in 𝑇𝑇𝑖𝑖, return “UNSAT”.
3. Equality propagation: If  there exist 𝑖𝑖, 𝑗𝑗 such that 𝐹𝐹𝑖𝑖 𝑇𝑇𝑖𝑖-

implies an equality between variables of  𝐹𝐹 that is not 𝑇𝑇𝑗𝑗-
implied by 𝐹𝐹𝑗𝑗 , add this equality to 𝐹𝐹𝑗𝑗 and go to step 2.

4. Return “SAT”
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Example - Convex case

• Consider the following set of  literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℝ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory
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𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎
𝑓𝑓 0 = 𝑎𝑎 + 2

𝑥𝑥 = 𝑦𝑦



Example - Convex case
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𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎
⇓

𝑓𝑓 𝑀𝑀1 = 𝑎𝑎
𝑀𝑀1 = 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦

⇓
𝑀𝑀1 = 𝑀𝑀2 − 𝑀𝑀3
𝑀𝑀2 = 𝑓𝑓 (𝑥𝑥)
𝑀𝑀3 = 𝑓𝑓 (𝑦𝑦)

𝑓𝑓 0 = 𝑎𝑎 + 2
⇓

𝑓𝑓 𝑀𝑀4 = 𝑎𝑎 + 2
𝑀𝑀4 = 0

⇓
𝑓𝑓 𝑀𝑀4 = 𝑀𝑀5
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2

𝐹𝐹: 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎,  𝑓𝑓 0 = 𝑎𝑎 + 2, 𝑥𝑥 = 𝑦𝑦



Example - Convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• The two solvers only share constants: 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5,𝑎𝑎
• To merge the two models into a single one, the solvers have to agree 

on equalities between shared constants (interface equalities)
• This can be done by exchanging entailed interface equalities

FLOLAC'19 SMT 73

EUF

𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑀𝑀2
𝑓𝑓 (𝑦𝑦) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀4 ) = 𝑀𝑀5

𝑥𝑥 = 𝑦𝑦

Arithmetic

𝑀𝑀2 − 𝑀𝑀3 = 𝑀𝑀1
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2



Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐹𝐹 ⊨ 𝑀𝑀2 = 𝑀𝑀3
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EUF

𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑀𝑀2
𝑓𝑓 (𝑦𝑦) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀4 ) = 𝑀𝑀5

𝑥𝑥 = 𝑦𝑦

Arithmetic

𝑀𝑀2 − 𝑀𝑀3 = 𝑀𝑀1
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2
𝑀𝑀2 = 𝑀𝑀3



Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐴𝐴𝐹𝐹𝑖𝑖 ⊨ 𝑀𝑀1 = 𝑀𝑀4
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EUF

𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑀𝑀2
𝑓𝑓 (𝑦𝑦) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀4 ) = 𝑀𝑀5

𝑥𝑥 = 𝑦𝑦
𝑀𝑀1 = 𝑀𝑀4

Arithmetic

𝑀𝑀2 − 𝑀𝑀3 = 𝑀𝑀1
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2
𝑀𝑀2 = 𝑀𝑀3



Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐹𝐹 ⊨ 𝑎𝑎 = 𝑀𝑀5
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EUF

𝑓𝑓(𝑀𝑀1) = 𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝑀𝑀2
𝑓𝑓 𝑦𝑦 = 𝑀𝑀3
𝑓𝑓(𝑀𝑀4 ) = 𝑀𝑀5
𝑥𝑥 = 𝑦𝑦
𝑀𝑀1 = 𝑀𝑀4

Arithmetic

𝑀𝑀2 − 𝑀𝑀3 = 𝑀𝑀1
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2
𝑀𝑀2 = 𝑀𝑀3
𝑎𝑎 = 𝑀𝑀5



Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says UNSAT
• Hence the original set of  lits was UNSAT
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EUF

𝑓𝑓 (𝑀𝑀1 ) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑀𝑀2
𝑓𝑓 (𝑦𝑦) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀4 ) = 𝑀𝑀5

𝑥𝑥 = 𝑦𝑦
𝑀𝑀1 = 𝑀𝑀4

Arithmetic

𝑀𝑀2 − 𝑀𝑀3 = 𝑀𝑀1
𝑀𝑀4 = 0

𝑀𝑀5 = 𝑎𝑎 + 2
𝑀𝑀2 = 𝑀𝑀3
𝑎𝑎 = 𝑀𝑀5



Example – Non-Convex case

• Consider the following set of  literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory
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x ≥ 1
𝑥𝑥 ≤ 2
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 1
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 2

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Both theories are SAT …
But 𝐹𝐹 is UNSAT



Properties of  Nelson-Oppen

• Soundness and Completeness
• propagating implied equalities is sufficient for some theories but 

not others
• the theories for which this is sufficient are called convex theories
• for these theories, the method is sound and complete

• Termination
• obvious if  the number of  shared variables is fixed
• this is usually the case
• some theory solvers (e.g., arrays) may dynamically add more 

variables but this can be bounded
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More on Nelson-Oppen

• Can be extended to non-convex theories
• the theory solvers propagate disjunctions of  equalities

• Finding Implied Equalities
• For QF_UF, decision procedures based on congruence closure 

give implied equalities for free.
• It’s harder and more expensive for other theories (e.g., linear 

arithmetic).
• It gets worse for non-convex theories.

• Delayed Theory Combination
• Attempt to construct an arrangement lazily in the CDCL(T) 

framework
• Create interface equalities and let the SAT solver do the search
• Different heuristics to decide when and what equalities to create
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Nelson-Oppen Method-
Non-convex case
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Nelson-Oppen – The non-convex 
case
• Given a formula 𝐹𝐹 that combines 𝑛𝑛 signature-disjoint, 

stably-infinite theories 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛
1. Purification: Purify 𝐹𝐹 into 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛. 
2. Apply the decision procedure for 𝑇𝑇𝑖𝑖 to 𝐹𝐹𝑖𝑖 . If  there exists 𝑖𝑖

such that 𝐹𝐹𝑖𝑖 is unsatisfiable in 𝑇𝑇𝑖𝑖 , return “UNSAT”.
3. Equality propagation: If  there exist 𝑖𝑖, 𝑗𝑗 such that 𝐹𝐹𝑖𝑖 𝑇𝑇𝑖𝑖-implies 

an equality between variables of  𝐹𝐹 that is not 𝑇𝑇𝑗𝑗-implied by 𝐹𝐹𝑗𝑗 , 
add this equality to 𝐹𝐹𝑗𝑗 and go to step 2.

4. Splitting: If  there exists 𝑖𝑖 such that
• 𝐹𝐹𝑖𝑖 ⇒ (𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯∨ 𝑥𝑥𝑘𝑘 = 𝑦𝑦𝑘𝑘) but ∀𝑗𝑗 ∈ 1, … , 𝑘𝑘. 𝐹𝐹𝑖𝑖 ⇏ 𝑥𝑥𝑗𝑗 = 𝑦𝑦𝑗𝑗 ,
• Then apply Nelson-Oppen recursively to: 𝐹𝐹 ∧ 𝑥𝑥1 = 𝑦𝑦1, … ,𝐹𝐹 ∧ 𝑥𝑥𝑘𝑘 =
𝑦𝑦𝑘𝑘

• If  any of  these subproblems is satisfiable, return “SAT”. Otherwise 
return “UNSAT”

5. Return “SAT”
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Example – Non-Convex case

• Consider the following set of  literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory
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x ≥ 1
𝑥𝑥 ≤ 2
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 1
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 2

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Both theories are SAT …
But 𝐹𝐹 is UNSAT



Example – Non-Convex case
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EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Case separation: 
(x = a) ∨ (𝑥𝑥 = 𝑏𝑏)

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

𝑥𝑥 = 𝑎𝑎

UNSAT

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2
𝑥𝑥 = 𝑎𝑎

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

𝑥𝑥 = 𝑏𝑏

UNSAT

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2
𝑥𝑥 = 𝑏𝑏



Example – Non-convex case

• Consider the following UNSATISFIABLE set of  
literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory
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1 ≤ 𝑥𝑥 ≤ 2
𝑓𝑓 (1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑎𝑎 = 𝑏𝑏 + 2

𝑓𝑓 (2) = 𝑓𝑓 (1) + 3



Example – Non-convex case
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𝑓𝑓 1 = 𝑎𝑎
⇓

𝑓𝑓 (𝑀𝑀1 ) = 𝑎𝑎
𝑀𝑀1 = 1

𝑓𝑓 2 = 𝑓𝑓 1 + 3
⇓

𝑀𝑀2 = 2
𝑓𝑓 𝑀𝑀2 = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4
𝑀𝑀3 = 𝑀𝑀4 + 3

• 𝐹𝐹:
1 ≤ 𝑥𝑥 ≤ 2
𝑓𝑓 (1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑎𝑎 = 𝑏𝑏 + 2

𝑓𝑓 (2) = 𝑓𝑓 (1) + 3



Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑀𝑀1,𝑎𝑎, 𝑏𝑏, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐹𝐹 ⊨ 𝑎𝑎 = 𝑀𝑀4

FLOLAC'19 SMT 87

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4



Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑀𝑀1,𝑎𝑎, 𝑏𝑏, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4
• Ari-Solver says SAT
• EUF-Solver says SAT
• No theory entails any other interface equality, but...
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Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4



Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑀𝑀1,𝑎𝑎, 𝑏𝑏, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐴𝐴𝐹𝐹𝑖𝑖 ⊨𝑇𝑇 𝑥𝑥 = 𝑀𝑀1 ∨ 𝑥𝑥 = 𝑀𝑀2. Let’s consider both cases.
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Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4



Example – Non-convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• The two solvers only share constants: 𝑥𝑥, 𝑀𝑀1,𝑎𝑎, 𝑏𝑏, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐹𝐹 ⊨𝑇𝑇 𝑎𝑎 = 𝑏𝑏, that when sent to Ari makes it UNSAT

FLOLAC'19 SMT 90

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀1

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀1



Example – Non-convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• Let’s try now with 𝑥𝑥 = 𝑀𝑀2
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐹𝐹 ⊨𝑇𝑇 𝑏𝑏 = 𝑀𝑀3 , that when sent to Ari makes it UNSAT
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Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀2

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀2



Example – Non-convex case(7)

• SECOND STEP: check satisfiability and exchange entailed 
equalities

• Since both 𝑥𝑥 = 𝑀𝑀1 and 𝑥𝑥 = 𝑀𝑀2 are UNSAT, the set of  literals 
is UNSAT
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Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑀𝑀1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑀𝑀2 = 2

𝑀𝑀3 = 𝑀𝑀4 + 3
𝑎𝑎 = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀2

EUF
𝑓𝑓 (𝑀𝑀1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑀𝑀2) = 𝑀𝑀3
𝑓𝑓 (𝑀𝑀1) = 𝑀𝑀4
𝑥𝑥 = 𝑀𝑀2



Non-Deterministic Nelson-Oppen 
(Tinelli & Harandi, 1996)
• Assumptions

• Two theories 𝑇𝑇1 and 𝑇𝑇2 that share no non-logical symbol 
and are stably infinite

• 𝐹𝐹 is a conjunction of  literals of  𝑇𝑇1 ∪ 𝑇𝑇2
• 𝐹𝐹 is purified to 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2 in 𝑇𝑇2

• Stably Infinite Theories
• A theory 𝑇𝑇 is stably infinite if  every formula that’s 

satisfiable in 𝑇𝑇 has an infinite model
• Examples: QF_UF and QF_LRA are stably infinite, 

QF_BV is not

FLOLAC'19 SMT 93



Variable Arrangements

• Definition
• Let 𝑉𝑉 be the set of  all variables that are shared by 𝐹𝐹1 and 
𝐹𝐹2

• An arrangement of  𝑉𝑉 is a conjunction of  variable 
equalities and disequalities that define a partition of  𝑉𝑉

• Example
• If  𝑉𝑉 = {𝑥𝑥0 , 𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3} and we partition V into three 

subsets {𝑥𝑥0 , 𝑥𝑥1}, {𝑥𝑥2}, and {𝑥𝑥3} then the corresponding 
arrangement is

𝑥𝑥0 = 𝑥𝑥1 ∧ 𝑥𝑥0 ≠ 𝑥𝑥2 ∧ 𝑥𝑥1 ≠ 𝑥𝑥2 ∧
𝑥𝑥0 ≠ 𝑥𝑥3 ∧ 𝑥𝑥1 ≠ 𝑥𝑥3 ∧ 𝑥𝑥2 ≠ 𝑥𝑥3
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Non-Deterministic Nelson-Oppen
(continued)
• Procedure

• Guess a partition of  the variables 𝑉𝑉 and let 𝒜𝒜 be the 
corresponding arrangement

• Check whether 𝐹𝐹1 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇1 and 𝐹𝐹2 ∧ 𝒜𝒜 is 
satisfiable in 𝑇𝑇2

• Theorem
• If  𝐹𝐹1 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇1 and 𝐹𝐹2 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇2 then 
𝐹𝐹 is satisfiable in 𝑇𝑇1 ∪ 𝑇𝑇2 .

• Why this works (informally)
• 𝑇𝑇1 and 𝑇𝑇2 are stably infinite. This implies that they have models 

of  the same infinite cardinality.
• The arrangement𝒜𝒜 forces the two models to agree on equalities 

between shared variables.
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Non-Deterministic Nelson-Oppen
(continued)
• Issues

• How do we find the right arrangement?
• The number of  possible partitions of  a set of  𝑛𝑛 variables is 

known as Bell’s number (𝐵𝐵𝑛𝑛)
• This grows very fast with 𝑛𝑛 (e.g., 𝐵𝐵11 is 27644437)
• We can’t possibly try them all

• How do we handle theories that are not stably infinite?
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Model-Based Theory 
Combination
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Model-Based Theory Combination

• Models are available
• The theory solvers for 𝑇𝑇1 and 𝑇𝑇2 produce models when 𝐹𝐹1

and 𝐹𝐹2 are SAT:
𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1 and 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2

• The Nelson-Oppen methods do not use these models
• Model-based theory combination: Make use of  the 

models 𝑀𝑀1 and 𝑀𝑀2 :
• if  𝑀𝑀1 and 𝑀𝑀2 are consistent, done
• optionally, attempt to modify 𝑀𝑀1 and 𝑀𝑀2 to make them 

consistent
• if  that fails, add constraints to cause CDCL(T) to backtrack 

and search for other models
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Combining a Theory with QF_UF

• Very Common Case
• One theory is QF_UF and the other is either an arithmetic theory or 

QF_BV

• QF_UF has good properties
• Deciding satisfiability is cheap (fast congruence closure algorithms)
• These algorithms give the implied equalities for free
• It’s stably infinite

• Model-Based Combination With QF_UF
• Works with an arbitrary theory 𝑇𝑇 (non-convex, non-stably infinite)
• Main components:

• congruence closure
• interface lemmas
• model mutation and reconciliation

FLOLAC'19 SMT 99



Congruence Closure

• Key problem in QF_UF
Given a finite set of  terms and some equalities between them

𝑤𝑤1 = 𝐹𝐹1 , … , 𝑤𝑤𝑚𝑚 = 𝐹𝐹𝑚𝑚
find all the implied equalities

• Congruence Closure Algorithms
Construct an equivalence relation ∼ between terms such that
if  𝑤𝑤𝑖𝑖 = 𝐹𝐹𝑖𝑖 is an original equality then 𝑤𝑤𝑖𝑖 ∼ 𝐹𝐹𝑖𝑖
∼ is closed under the congruence rule:

𝑣𝑣1 ∼ 𝑤𝑤1 , … , 𝑣𝑣𝑘𝑘 ∼ 𝑤𝑤𝑘𝑘 ⇒ 𝑓𝑓(𝑣𝑣1 , . . . , 𝑣𝑣𝑘𝑘) ∼ 𝑓𝑓(𝑤𝑤1 , . . . ,𝑤𝑤𝑘𝑘)
The ∼ relation contains all the implied equalities:

𝑤𝑤1 = 𝐹𝐹1 , … , 𝑤𝑤𝑛𝑛 = 𝐹𝐹𝑛𝑛 ⇒ 𝑤𝑤 = 𝐹𝐹 iff 𝑤𝑤 ∼ 𝐹𝐹
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Congruence Closure Example

• Terms: 𝑎𝑎, 𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑏𝑏)
• Initial Equalities: 𝑓𝑓(𝑓𝑓(𝑎𝑎)) = 𝑎𝑎, 𝑓𝑓(𝑎𝑎) = 𝑏𝑏
• Equivalence Relation

• Initially
• { 𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎))} {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} {𝑓𝑓(𝑏𝑏)} {𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)) }

• Congruence: 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎))
• {𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎))} {𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)))} {𝑓𝑓(𝑏𝑏)}

• Congruence: 𝑓𝑓(𝑏𝑏) = 𝑓𝑓(𝑓𝑓(𝑎𝑎))
• 𝑎𝑎, 𝑓𝑓 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑏𝑏 𝑏𝑏, 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑓𝑓 𝑓𝑓 𝑎𝑎

• Done
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Checking Satisifiability in QF_UF

• A QF_UF formula can be written as a conjunction of  
equalities and disequalities:

(𝑤𝑤1 = 𝐹𝐹1 ∧ ⋯∧ 𝑤𝑤𝑛𝑛 = 𝐹𝐹𝑛𝑛) ∧ (𝑣𝑣1 ≠ 𝑤𝑤1 ∧ ⋯∧ 𝑣𝑣𝑚𝑚 ≠ 𝑤𝑤𝑚𝑚)
• To check satisfiability

• compute the congruence closure ∼ of  the equalities
• if  𝑣𝑣𝑖𝑖 ∼ 𝑤𝑤𝑖𝑖 for some 𝑖𝑖 then return UNSAT else return SAT

• Example
• Formula: 𝑓𝑓 𝑓𝑓 𝑎𝑎 = 𝑎𝑎 ∧ 𝑓𝑓(𝑎𝑎) = 𝑏𝑏 ∧ 𝑏𝑏 ≠ 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎))
• Congruence closure: {𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)))}
• So the formula is UNSAT
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Building Models in QF_UF

• From a Congruence Closure
• Basic idea: one element in the domain per equivalence class 

in the congruence closure
• We can always ensure that every term t is interpreted as its 

class representative

• Example
• Formula: 𝑓𝑓(𝑏𝑏) = 𝑎𝑎 ∧ 𝑏𝑏 = 𝑓𝑓(𝑎𝑎) ∧ 𝑎𝑎 ≠ 𝑓𝑓(𝑐𝑐)
• Congruence closure: {𝑎𝑎,𝑓𝑓(𝑏𝑏)} {𝑏𝑏,𝑓𝑓(𝑎𝑎)} {𝑐𝑐} {𝑓𝑓(𝑐𝑐))}
• Model:

• domain = {𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿}
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Flexibility in QF UF Models

• Enlarging the domain
• Let 𝐹𝐹 be a satisfiable QF_UF formula and 𝑀𝑀 a model of  𝐹𝐹
• For any cardinal 𝑘𝑘 > |𝑀𝑀|, we can construct a new model 𝑀𝑀′ of  

cardinality 𝑘𝑘 that satisfies 𝐹𝐹
• This implies that QF_UF is stably infinite

• Shrinking the domain
• We can sometimes make the domain smaller by modifying the 

congruence closure
• Previous example:

• 𝐹𝐹 is 𝑓𝑓(𝑏𝑏) = 𝑎𝑎 ∧ 𝑏𝑏 = 𝑓𝑓(𝑎𝑎) ∧ 𝑎𝑎 ≠ 𝑓𝑓(𝑐𝑐)
• Congruence closure: {𝑎𝑎,𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} {𝑐𝑐} {𝑓𝑓(𝑐𝑐)}

• We could merge {𝑓𝑓(𝑐𝑐)} and {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} to get a new relation
∼’ : {𝑎𝑎, 𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑐𝑐)} {𝑐𝑐}

• A model built from ∼’ still satisfies 𝐹𝐹
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Basic Model-Based Combination 
With QF_UF
• Assumptions

• A formula 𝐹𝐹 in 𝑄𝑄𝐹𝐹_𝐸𝐸𝐹𝐹 ∪ 𝑇𝑇
• After purification: 𝐹𝐹1 in QF_UF and 𝐹𝐹2 in 𝑇𝑇
• 𝑉𝑉 denotes the set of  variables shared by 𝐹𝐹1 and 𝐹𝐹2
• ∼ is the equivalence relation computed by congruence closure from 𝐹𝐹1

• Procedure
• If  𝐹𝐹1 is not satisfiable, return UNSAT
• Get all equalities implied by 𝐹𝐹1
• Let 𝐻𝐻 be the set of  implied equalities that are between variables of  𝑉𝑉
• Check whether 𝐹𝐹2 ∧ 𝐻𝐻 is satisfiable in 𝑇𝑇; if  not return UNSAT
• Otherwise, get a model 𝑀𝑀 for 𝐹𝐹2 ∧ 𝐻𝐻.
• If  𝑀𝑀 does not conflict with relation ∼ return SAT
• Otherwise, add interface lemmas to force backtracking
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Basic Model-Based Combination 
With QF_UF - Conflicts
• Conflicts

• 𝑀𝑀 conflicts with 𝐸𝐸 if  there are two shared variables 𝑥𝑥 and 
𝑦𝑦 such that

𝑀𝑀 ⊨ 𝑥𝑥 = 𝑦𝑦 but  𝑥𝑥 ≁ 𝑦𝑦
• conflicts in the other direction are not possible (since 𝑀𝑀 ⊨
𝐻𝐻)

• If  there are no conflicts
• 𝑀𝑀 and ∼ agree on equalities between shared variables
• We can extend 𝑀𝑀 by adding an interpretation for all the 

uninterpreted functions in the QF_UF part
• We get a new model 𝑀𝑀′ that satisfies 𝐹𝐹2 and 𝐹𝐹1
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Interface Lemmas

• Interface lemma for 𝑥𝑥 and 𝑦𝑦
• A formula that encodes “𝑥𝑥 = 𝑦𝑦 in 𝑇𝑇” ⇒ “𝑥𝑥 = 𝑦𝑦 in QF_UF”
• The exact formulation depends on the implementation and 

theory involved

• Examples
• T is QF_LRA: we add the clause 𝑥𝑥 = 𝑦𝑦 ∨ 𝑥𝑥 > 𝑦𝑦 ∨ 𝑦𝑦 > 𝑥𝑥
• T is QF_BV: we add the clause ¬(𝑏𝑏𝑣𝑣𝑀𝑀𝑏𝑏 𝑥𝑥 𝑦𝑦) ∨ 𝑥𝑥 = 𝑦𝑦
• in these clauses, (𝑥𝑥 = 𝑦𝑦) must be an atom handled by the 

QF_UF solver

• If  𝑀𝑀 conflicts with ∼ on 𝑥𝑥 = 𝑦𝑦, this lemma forces the 
SMT solver to backtrack and search for different models
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Imrovements

• Model Mutation
• Exploit flexibility in the Simplex-based arithmetic solver.
• There may be many solutions to a set of  linear arithmetic 

constraints.
• Mutation: modify the Simplex model to give distinct values 

to distinct interface variables.
• This reduces the risk of  accidental conflicts
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Improvements (continued)

• Model Reconciliation
• Exploit flexibility in QF_UF to eliminate conflicts while 

keeping 𝑀𝑀 fixed
• If  𝑥𝑥 and 𝑦𝑦 are in conflict: 𝑀𝑀 ⊨ 𝑥𝑥 = 𝑦𝑦 and  𝑥𝑥 ≁ 𝑦𝑦
• To try to resolve this conflict:

• tentatively merge the equivalence classes of  𝑥𝑥 and 𝑦𝑦
• propagate the consequences by congruence closure
• accept the merge unless if  makes the QF_UF part UNSAT or it 

would propagate new equalities to theory 𝑇𝑇
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