
Satisfiability Modulo
Theories

Hsin-Hung Lin
August 26, 2019

FLOLAC’19

Based on slides from SAT/SMT/AR 2019
Credits: Albert Oliveras and Bruno Dutertre

1FLOLAC'19 SMT

Introduction

2FLOLAC'19 SMT

Need of SMT

• Some problems are more naturally expressed in other
logics than propositional logic

• Software verification needs reasoning about equality,
arithmetic, data structures, ...

• First-Order Logic

• Example
• Equality with Uninterpreted Functions (EUF)

𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑
• EUF + Linear arithmetic

𝑥𝑥 ≤ 𝑦𝑦 ∧ 2𝑦𝑦 ≤ 𝑥𝑥 ∧ 𝑓𝑓(ℎ(𝑥𝑥) − ℎ(𝑦𝑦)) > 𝑓𝑓(0)

3FLOLAC'19 SMT

From SAT to SMT

• SAT
• Use propositional logic as the formalization language
• Pros: high degree of efficiency
• Cons: expressive but involved encodings

• SMT
• Propositional logic + domain-specific reasoning
• Pros: improves the expressivity
• Cons: certain (but acceptable) loss of efficiency

4FLOLAC'19 SMT

SMT Problem

• Basic SMT Problem
• Given a formula 𝐹𝐹 in some logical theory 𝑇𝑇, determine whether
𝐹𝐹 is satisfiable or not.

• In addition, if 𝐹𝐹 is satisfiable, provide a model of 𝐹𝐹
• DPLL(T)/CDCL(T) Approach

• Combine a CDCL-based SAT Solver with a theory solver for 𝑇𝑇
• The theory solver works on conjunctions of literals of 𝑇𝑇

• Combining Decision Procedures for Modularity
• We don’t want to write a global decision procedure
• We have decision procedures for basic theories
• We want to combine them to get a decision procedure for the

combined theory.

FLOLAC'19 SMT 5

Recall: SAT Decision procedure

• DPLL Algorithm, also called
• CDCL: Conflict-Driven-Clause-Learning

• Rules
• Unit propagate
• Decide
• Fail
• Backtrack / Backjump
• Learning
• Restart

6FLOLAC'19 SMT

DPLL – Example(1)

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹)
• ∅ ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1d ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4

7

(Decide)

(UnitPropagate)

(Decide)

(UnitPropagate)

(UnitPropagate)

(Backtrack)

(UnitPropagate)

(UnitPropagate)

SAT

FLOLAC'19 SMT

DPLL – Example(1)

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹)
• ∅ ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1d ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• 1𝑑𝑑�2 3 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4
• �1 4 3𝑑𝑑 2 ∥ �1 ∨ �2, 2 ∨ 3, �1 ∨ �3 ∨ 4, 2 ∨ �3 ∨ �4, 1 ∨ 4

8

(Decide)

(UnitPropagate)

(Decide)

(UnitPropagate)

(UnitPropagate)

(Backtrack)

(UnitPropagate)

(UnitPropagate)

SAT

FLOLAC'19 SMT

DPLL – Example(2)

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹)
• ∅ ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 �6 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 �5 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2

9

(UnitPropagate)

(Decide)

(UnitPropagate)

(Decide)

(UnitPropagate)

(Decide)

(Backjump)

FLOLAC'19 SMT

DPLL – Example(2)

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 ∥ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹)
• ∅ ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 3𝑑𝑑 4 5𝑑𝑑 �6 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2
• 1𝑑𝑑 2 �5 ∥ �1 ∨ 2, �3 ∨ 4, �5 ∨ �6, 6 ∨ �5 ∨ �2

10

(UnitPropagate)

(Decide)

(UnitPropagate)

(Decide)

(UnitPropagate)

(Decide)

(Backjump)

FLOLAC'19 SMT

Learned Clause
5 ∧ 2 = �5 ∨ �2

Theories of Interest - EUF

• Equality with Uninterpreted Functions, i.e. “=” is equality
• Consider formula

𝑎𝑎 ∗ 𝑓𝑓 𝑏𝑏 + 𝑓𝑓 𝑐𝑐 = 𝑑𝑑 ∧ 𝑏𝑏 ∗ 𝑓𝑓 𝑎𝑎 + 𝑓𝑓 𝑐𝑐) ≠ 𝑑𝑑 ∧ 𝑎𝑎 = 𝑏𝑏

• Formula is UNSAT, but no arithmetic reasoning is needed
• If we abstract the formula into

ℎ(𝑎𝑎,𝑔𝑔 𝑓𝑓 𝑏𝑏 , 𝑓𝑓 𝑐𝑐) = 𝑑𝑑 ∧ ℎ(𝑏𝑏,𝑔𝑔 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑐𝑐) ≠ 𝑑𝑑 ∧ 𝑎𝑎 = 𝑏𝑏

• it is still UNSAT
• EUF is used to abstract non-supported constructions, e.g:

Non-linear multiplication, ALUs in circuits

11FLOLAC'19 SMT

Theories of Interest - Arithmetic

• Bounds
• 𝑥𝑥 ⋈ 𝑘𝑘 with ⋈ ∈ {<, >,≤,≥, =}

• Difference logic
• 𝑥𝑥 − 𝑦𝑦 ⋈ 𝑘𝑘, with ⋈ ∈ {< , > ,≤,≥, =}

• UTVPI (Unit Two Variable Per Inequality)
• ±𝑥𝑥 ± 𝑦𝑦 ⋈ 𝑘𝑘, with⋈ ∈ {< , > ,≤,≥, =}

• Linear arithmetic
• e.g: 2𝑥𝑥 − 3𝑦𝑦 + 4𝑧𝑧 ≤ 5

• Non-linear arithmetic
• e.g: 2𝑥𝑥𝑥𝑥 + 4𝑥𝑥𝑥𝑥2 − 5𝑦𝑦 ≤ 10

• Variables are either reals or integers
• Machine-inspired arithmetic

• floating-point arithmetic

12FLOLAC'19 SMT

Theories of Interest - Arrays

• Two interpreted function symbols read and write
• Theory is axiomatized by:

• ∀𝑎𝑎∀𝑖𝑖∀𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 , 𝑖𝑖 = 𝑣𝑣
• ∀𝑎𝑎 ∀𝑖𝑖 ∀𝑗𝑗 ∀𝑣𝑣 (𝑖𝑖 ≠ 𝑗𝑗 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 , 𝑗𝑗 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎, 𝑗𝑗)

• Sometimes extensionality is added:
• ∀𝑎𝑎 ∀𝑏𝑏 ((∀𝑖𝑖 (read(a,i) = read(b,i))) => a = b

• Is the following set of literals satisfiable?
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎, 𝑖𝑖, 𝑥𝑥 ≠ 𝑏𝑏 ∧ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏, 𝑖𝑖 = 𝑦𝑦 ∧
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑏𝑏, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 = 𝑦𝑦 ∧ 𝑎𝑎 = 𝑏𝑏 ∧ 𝑖𝑖 = 𝑗𝑗

• Used for:
• Software verification
• Hardware verification (memories)

13FLOLAC'19 SMT

Theories of Interest – Bit-vectors

• Constants represent vectors of bits
• Useful both for hardware and software verification
• Different type of operations:

• String-like operations: concat, extract, ...
• Logical operations: bit-wise not, or, and, ...
• Arithmetic operations: add, substract, multiply, ...

• Assume bit-vectors have size 3. Is the formula SAT?
𝑎𝑎 0: 1 ≠ 𝑏𝑏 0: 1 ∧ 𝑎𝑎 𝑏𝑏 = 𝑐𝑐 ∧
𝑐𝑐 0 = 0 ∧ 𝑎𝑎 1 + 𝑏𝑏 1 = 0

14FLOLAC'19 SMT

Combination of Theories

• In practice, theories are not isolated

• Software verifications needs arithmetic, arrays,
bitvectors, ...

• Formulas of the following form usually arise:
• 𝑎𝑎 = 𝑏𝑏 + 2 ∧ A = write B, a + 1,4 ∧ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴, 𝑏𝑏 + 3 =

2 ∨ 𝑓𝑓 𝑎𝑎 − 1 ≠ 𝑓𝑓 𝑏𝑏 + 1)

• The goal of SMT is to combine decision procedures for
each theory

15FLOLAC'19 SMT

SMT in Practice

• GOOD NEWS: efficient decision procedures for sets
of ground literals exist for various theories of interest

• PROBLEM: in practice, we need to deal with:
1. arbitrary boolean combinations of literals (∧,∨, ¬)

(DNF conversion is not a solution in practice)
2. multiple theories
3. quantifiers

• We will only focus on (1) and (2), but techniques for
(3) exist.

16FLOLAC'19 SMT

Eager and Lazy approach
of SMT

17FLOLAC'19 SMT

Eager Approach

• Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT
solver

• Why “eager”?
• Search uses all theory information from the beginning

• Characteristics:
• Can use best available SAT solver
• Sophisticated encodings are needed for each theory

18FLOLAC'19 SMT

Eager Approach – Example(1)

• First step
• remove function/predicate symbols.
• Assume we have terms 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑏𝑏) and 𝑓𝑓(𝑐𝑐).

• Ackermann reduction:
• Replace them by fresh constants 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶
• Add clauses:

• 𝑎𝑎 = 𝑏𝑏 → 𝐴𝐴 = 𝐵𝐵
• 𝑎𝑎 = 𝑐𝑐 → 𝐴𝐴 = 𝐶𝐶
• 𝑏𝑏 = 𝑐𝑐 → 𝐵𝐵 = 𝐶𝐶

• Bryant reduction:
• Replace 𝑓𝑓(𝑎𝑎) by 𝐴𝐴
• Replace 𝑓𝑓(𝑏𝑏) by 𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏 = 𝑎𝑎,𝐴𝐴,𝐵𝐵)
• Replace 𝑓𝑓(𝑐𝑐) by 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐 = 𝑎𝑎,𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐 = 𝑏𝑏,𝐵𝐵,𝐶𝐶))

• Now, atoms are equalities between constants

19FLOLAC'19 SMT

Eager Approach – Example(2)

• Second step
• encode formula into propositional logic
• Small-domain encoding:

• If there are n different constants, there is a model with size at
most 𝑛𝑛

• log𝑛𝑛 bits to encode the value of each constant
• a=b translated using the bits for a and b

• Per-constraint encoding:
• Each atom a=b is replaced by var 𝑃𝑃𝑎𝑎,𝑏𝑏

• Transitivity constraints are added
• e.g. 𝑃𝑃𝑎𝑎,𝑏𝑏 ∧ 𝑃𝑃𝑏𝑏,𝑐𝑐 → 𝑃𝑃𝑎𝑎,𝑐𝑐

20FLOLAC'19 SMT

Lazy Approach

• Why “lazy”?
• Theory information used lazily when checking 𝑇𝑇-

consistency of propositional models

• Characteristics:
• Modular and flexible
• Theory information does not guide the search

21FLOLAC'19 SMT

Lazy Approach - Example

• Consider EUF and the CNF
𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑

1 �2 3 �4

• SAT solver returns model [1, �2, �4]
• Theory solver says T-inconsistent
• Send { 1, �2 ∨ 3, �4, �1 ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model [1, 2, 3, �4]
• Theory solver says T-inconsistent
• SAT solver detects { 1, �2 ∨ 3, �4, �1 ∨ 2 ∨ 4, �1 ∨ �2 ∨ �3 ∨ 4 }
• UNSATISFIABLE

22FLOLAC'19 SMT

Lazy Approach - Optimizations

• Several optimizations for enhancing efficiency
• Check 𝑇𝑇-consistency only of full propositional models
Check 𝑇𝑇-consistency of partial assignment while being

built

• Given a 𝑇𝑇-inconsistent assignment 𝑀𝑀, add ¬𝑀𝑀 as a clause
Given a 𝑇𝑇-inconsistent assignment 𝑀𝑀, identify a 𝑇𝑇-

inconsistent subset 𝑀𝑀0 ⊆ 𝑀𝑀 and add ¬𝑀𝑀0 as a clause

• Upon a 𝑇𝑇-inconsistency, add clause and restart
Upon a 𝑇𝑇-inconsistency, backtrack to some point where

the assignment was still 𝑇𝑇-consistent

23FLOLAC'19 SMT

Lazy Approach - 𝑇𝑇-propagation

• As pointed out the lazy approach has one drawback:
• Theory information does not guide the search (too lazy)

• How can we improve that? For example:
• Assume that 𝑎𝑎 < 𝑏𝑏, 𝑏𝑏 < 𝑐𝑐 are in our partial assignment 𝑀𝑀.
• If the formula contains 𝑎𝑎 < 𝑐𝑐 we would like to add it to 𝑀𝑀

• Search guided by 𝑇𝑇-Solver by finding 𝑇𝑇-consequences, instead
of only validating it as in basic lazy approach.

• Naive implementation:
• (1) add ¬𝑙𝑙 , (2) if 𝑇𝑇-inconsistent then infer 𝑙𝑙

• But for efficient Theory Propagation we need:
• T-Solvers specialized and fast in it.
• Fully exploited in conflict analysis
• This approach has been named DPLL(T)

24FLOLAC'19 SMT

Lazy approach - Important points

• Important and benefitial aspects of the lazy approach:
(even with the optimizations)

• Everyone does what he/she is good at:
• SAT solver takes care of Boolean information
• Theory solver takes care of theory information

• Theory solver only receives conjunctions of literals
• Modular approach:

• SAT solver and 𝑇𝑇-solver communicate via a simple API
• SMT for a new theory only requires new 𝑇𝑇-solver
• SAT solver can be embedded in a lazy SMT system with

relatively little effort

25FLOLAC'19 SMT

DPLL(T)

26FLOLAC'19 SMT

DPLL(T)

• In a nutshell:
• DPLL(T) = DPLL(X) + T-Solver

• DPLL(X):
• Very similar to a SAT solver, enumerates Boolean models
• Not allowed: pure literal, blocked literal detection, ...
• Desirable: partial model detection

• T-Solver:
• Checks consistency of conjunctions of literals
• Computes theory propagations
• Produces explanations of inconsistency/T-propagation
• Should be incremental and backtrackable

27FLOLAC'19 SMT

DPLL(T) - Example

• Consider again EUF and the formula:
• 𝑔𝑔 𝑎𝑎 = 𝑐𝑐 ∧ 𝑓𝑓 𝑔𝑔 𝑎𝑎 ≠ 𝑓𝑓 𝑐𝑐 ∨ 𝑔𝑔 𝑎𝑎 = 𝑑𝑑 ∧ 𝑐𝑐 ≠ 𝑑𝑑
• 1 �2 3 �4

• ∅ ∥ 1, �2 ∨ 3, �4
• 1 ∥ 1, �2 ∨ 3, �4
• 1 �4 ∥ 1, �2 ∨ 3, �4
• 1 �4 2 ∥ 1, �2 ∨ 3, �4
• 1 �4 2 �3 ∥ 1, �2 ∨ 3, �4
• UNSAT

28

(UnitPropagate)

(UnitPropagate)

(T-Propagate)

(T-Propagate)

(Fail)

FLOLAC'19 SMT

DPLL(T) - Overall algorithm

• High-level view gives the same algorithm as a CDCL
SAT solver:

while(true){
while (propagate_gives_conflict()){

if (decision_level==0) return UNSAT;
else analyze_conflict();

}
restart_if_applicable();
remove_lemmas_if_applicable();
if (!decide()) returns SAT; // All vars assigned

}

29FLOLAC'19 SMT

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

do {

// unit propagate

if (unit_prop_gives_conflict()) then return true

// check T-consistency of the model

if (solver.is_model_inconsistent()) then return true

// theory propagate

solver.theory_propagate()

} while (someTheoryPropagation)

return false

30FLOLAC'19 SMT

DPLL(T) - Propagation (2)

• Three operations:
• Unit propagation (SAT solver)
• Consistency checks (T-solver)
• Theory propagation (T-solver)

• Cheap operations are computed first
• If theory is expensive, calls to T-solver are sometimes

skipped
• For completeness, only necessary to call T-solver at the

leaves (i.e. when we have a full propositional model)
• Theory propagation is not necessary for completeness

31FLOLAC'19 SMT

Case Reasoning in Theory Solvers

• For certain theories, consistency checking requires
case reasoning.

• Example: consider the theory of arrays and the set of
literals

• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 ≠ 𝑥𝑥
• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴, 𝑖𝑖, 𝑥𝑥 , 𝑗𝑗 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴, 𝑗𝑗)
• Two cases:

• 𝑖𝑖 = 𝑗𝑗. LHS rewrites into 𝑥𝑥 ≠ 𝑥𝑥
• 𝑖𝑖 ≠ 𝑗𝑗. RHS rewrites into 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴, 𝑗𝑗 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴, 𝑗𝑗)

• CONCLUSION: 𝑇𝑇-inconsistent

32FLOLAC'19 SMT

Case Reasoning in Theory Solvers
(2)
• A complete 𝑇𝑇-solver might need to reason by cases via

internal case splitting and backtracking mechanisms.
• An alternative is to lift case splitting and backtracking

from the 𝑇𝑇-Solver to the SAT engine.
• Basic idea: encode case splits as sets of clauses and send

them as needed to the SAT engine for it to split on them.
• Possible benefits:

• All case-splitting is coordinated by the SAT engine
• Only have to implement case-splitting infrastructure in one place
• Can learn a wider class of lemmas

33FLOLAC'19 SMT

Case Reasoning in Theory Solvers
(3)
• Example:

• Assume model contains literal 𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝐴𝐴, 𝑖𝑖, 𝑡𝑡), 𝑗𝑗)
𝑠𝑠′

• DPLL(X) asks: “is it T-satisfiable”?
• T-solver says: “I do not know yet, but it will be helpful

that you consider these theory lemmas:”
• 𝑠𝑠 = 𝑠𝑠′ ∧ 𝑖𝑖 = 𝑗𝑗 ⟶ 𝑠𝑠 = 𝑡𝑡
• 𝑠𝑠 = 𝑠𝑠𝑠 ∧ 𝑖𝑖 ≠ 𝑗𝑗 ⟶ 𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴, 𝑗𝑗)

• We need certain completeness conditions (e.g. once all lits
from a certain subset 𝐿𝐿 has been decided, the 𝑇𝑇-solver
should answer YES/NO)

34FLOLAC'19 SMT

DPLL(T) - Conflict Analysis

• Conflict analysis in SAT solvers:

C:= conflicting clause
while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while
// let C = C’ v l where l is UIP (unit implication point)
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

35FLOLAC'19 SMT

DPLL(T) - Conflict Analysis (2)

• Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:= ¬(solver.explain_inconsistency())
while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while
// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

36FLOLAC'19 SMT

DPLL(T) - Conflict Analysis (3)

• What does explain_inconsistency return?
• A (small) conjunction of literals 𝑙𝑙1 ∧ ⋯∧ 𝑙𝑙𝑛𝑛 such that:
• They were in the model when 𝑇𝑇-inconsistency was found
• It is 𝑇𝑇-inconsistent

• What is now 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑙𝑙) ?
• If 𝑙𝑙 was unit propagated, reason is the clause that propagated it
• If 𝑙𝑙 was T-propagated?

• T-solver has to provide an explanation for 𝑙𝑙, i.e. a (small) set of
literals 𝑙𝑙1,⋯ , 𝑙𝑙𝑛𝑛 such that:

• They were in the model when 𝑙𝑙 was T-propagated
• 𝑙𝑙1 ∧ ⋯∧ 𝑙𝑙𝑛𝑛 ⊨𝑇𝑇 𝑙𝑙

• Then 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑙𝑙) is ¬𝑙𝑙1 ∨ ⋯∨ ¬𝑙𝑙𝑛𝑛 ∨ 𝑙𝑙

37FLOLAC'19 SMT

DPLL(T) - Conflict Analysis (4)

• Let 𝑀𝑀 be of the form ... , 𝑐𝑐 = 𝑏𝑏, ... and let 𝐹𝐹 contain
• ℎ 𝑎𝑎 = ℎ 𝑐𝑐 ∨ 𝑝𝑝
• 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑
• 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

• Take the following sequence:
1. Decide ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐)
2. UnitPropagate 𝑝𝑝 (due to clause ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑝𝑝)
3. T-Propagate 𝑎𝑎 ≠ 𝑏𝑏 (since ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 = 𝑏𝑏)
4. UnitPropagate 𝑎𝑎 = 𝑑𝑑 (due to clause 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑)
5. Conflicting clause 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

38FLOLAC'19 SMT

39

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝒑𝒑

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏 ∨ 𝒂𝒂 ≠ 𝒃𝒃

𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝒂𝒂 = 𝒅𝒅

𝒂𝒂 = 𝒃𝒃 ∨ ¬𝑝𝑝

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏 ∨ ¬𝒑𝒑

ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑐𝑐 ≠ 𝑏𝑏

𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

Explain: (𝑎𝑎 ≠ 𝑏𝑏) is from {ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐), 𝑐𝑐 = 𝑏𝑏}

ℎ 𝑎𝑎 = ℎ 𝑐𝑐 ∨ 𝑝𝑝, 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑, 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

1. Decide ℎ 𝑎𝑎 ≠ ℎ(𝑐𝑐)
2. UnitPropagate 𝑝𝑝 (due to clause ℎ(𝑎𝑎) = ℎ(𝑐𝑐) ∨ 𝑝𝑝)
3. T-Propagate 𝑎𝑎 ≠ 𝑏𝑏 (since ℎ(𝑎𝑎) ≠ ℎ(𝑐𝑐) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 = 𝑏𝑏)
4. UnitPropagate 𝑎𝑎 = 𝑑𝑑 (due to clause 𝑎𝑎 = 𝑏𝑏 ∨ ¬𝑝𝑝 ∨ 𝑎𝑎 = 𝑑𝑑)
5. Conflicting clause 𝑎𝑎 ≠ 𝑑𝑑 ∨ 𝑎𝑎 = 𝑏𝑏

FLOLAC'19 SMT

T-Solver Example:
Difference Logic

40FLOLAC'19 SMT

Difference logic
• Literals in Difference Logic are of the form 𝑎𝑎 − 𝑏𝑏 ⋈ 𝑘𝑘, where

• ⋈ ∈ {≤,≥, <, >, =,≠}
• 𝑎𝑎 and 𝑏𝑏 are integer/real variables
• 𝑘𝑘 is an integer/real

• At the formula level,
• 𝑎𝑎 = 𝑏𝑏 is replaced by 𝑝𝑝 and
• 𝑝𝑝 ↔ 𝑎𝑎 ≤ 𝑏𝑏 ∧ 𝑏𝑏 ≤ 𝑎𝑎 is added

• If domain is ℤ then
• 𝑎𝑎 − 𝑏𝑏 < 𝑘𝑘 is replaced by 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘 − 1

• If domain is ℝ then
• 𝑎𝑎 − 𝑏𝑏 < 𝑘𝑘 is replaced by 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘 − 𝛿𝛿
• 𝛿𝛿 is a sufficiently small real
• 𝛿𝛿 is not computed but used symbolically (i.e. numbers are pairs (𝑘𝑘, 𝛿𝛿))

• Hence we can assume all literals are 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘

41FLOLAC'19 SMT

Difference Logic - Remarks

• Note that any solution to a set of DL literals can be
shifted

• (i.e. if 𝜎𝜎 is a solution then 𝜎𝜎𝜎(𝑥𝑥) = 𝜎𝜎(𝑥𝑥) + 𝑘𝑘 also is a solution)
• This allows one to process bounds 𝑥𝑥 ≤ 𝑘𝑘

• Introduce fresh variable 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
• Convert all bounds 𝑥𝑥 ≤ 𝑘𝑘 into 𝑥𝑥 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ≤ 𝑘𝑘
• Given a solution 𝜎𝜎, shift it so that 𝜎𝜎(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧) = 0

• If we allow (dis)equalities as literals, then:
• If domain is ℝ consistency check is polynomial
• If domain is ℤ consistency check is NP-hard

• e.g. k-colorability
• 1 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑘𝑘 with 𝑖𝑖 = 1 … #𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 encodes k colors available
• 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 if 𝑖𝑖 and 𝑗𝑗 adjacent encode proper assignment

42FLOLAC'19 SMT

Difference Logic as a Graph
Problem
• Given M = {𝑎𝑎 − 𝑏𝑏 ≤ 2, 𝑏𝑏 − 𝑐𝑐 ≤ 3, 𝑐𝑐 − 𝑎𝑎 ≤ −7},

construct weighted graph 𝐺𝐺(𝑀𝑀)

• Theorem:
• 𝑀𝑀 is 𝑇𝑇-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle

43

a b

c

2

-7 3

FLOLAC'19 SMT

Difference Logic as a Graph
Problem (2)
Theorem:

𝑀𝑀 is T-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle
⇐)
Any negative cycle

𝑎𝑎1 ⟶
𝑘𝑘1 𝑎𝑎2 ⟶

𝑘𝑘2 𝑎𝑎3 ⟶ … ⟶ 𝑎𝑎𝑛𝑛 ⟶
𝑘𝑘𝑛𝑛 𝑎𝑎1

corresponds to a set of literals:
𝑎𝑎1 − 𝑎𝑎2 ≤ 𝑘𝑘1
𝑎𝑎2 − 𝑎𝑎3 ≤ 𝑘𝑘2

…
𝑎𝑎𝑛𝑛 − 𝑎𝑎1 ≤ 𝑘𝑘𝑛𝑛

If we add them all, we get
0 ≤ 𝑘𝑘1 + 𝑘𝑘2 + … + 𝑘𝑘𝑛𝑛 ,

which is inconsistent since neg. cycle implies
𝑘𝑘1 + 𝑘𝑘2 + … + 𝑘𝑘𝑛𝑛 < 0

44FLOLAC'19 SMT

Difference Logic as a Graph
Problem (3)
Theorem:

𝑀𝑀 is T-inconsistent iff 𝐺𝐺(𝑀𝑀) has a negative cycle
⇒)
Let us assume that there is no negative cycle.

1. Consider additional vertex 𝑜𝑜 with edges 𝑜𝑜 ⟶
0

𝑣𝑣 to all
verts. 𝑣𝑣

2. For each variable 𝑥𝑥, let 𝜎𝜎(𝑥𝑥) = −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑥𝑥)
[exists because there is no negative cycle]

3. 𝜎𝜎 is a model of 𝑀𝑀
• If 𝜎𝜎 ⊭ 𝑥𝑥 − 𝑦𝑦 ≤ 𝑘𝑘 then −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜,𝑦𝑦) > 𝑘𝑘
• Hence, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜,𝑦𝑦) > 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑥𝑥) + 𝑘𝑘
• But 𝑘𝑘 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥 ⟶ 𝑦𝑦)!!!

45FLOLAC'19 SMT

FLOLAC'19 SMT 46

a b

c

2

-7 3

o

0

0

0

if 𝑐𝑐 − 𝑎𝑎 ≤ −2

𝛿𝛿 𝑎𝑎 = 0
𝛿𝛿 𝑏𝑏 = 0
𝛿𝛿 𝑐𝑐 = −2

𝑎𝑎 − 𝑏𝑏 = 0 ≤ 2
𝑏𝑏 − 𝑐𝑐 = 2 ≤ 3

𝑐𝑐 − 𝑎𝑎 = −2 ≤ −2

Solution of difference constraints

if 𝑐𝑐 − 𝑎𝑎 ≤ −7

𝛿𝛿 𝑎𝑎 = 0
𝛿𝛿 𝑏𝑏 = 0
𝛿𝛿 𝑐𝑐 = −7

𝑎𝑎 − 𝑏𝑏 = 0 ≤ 2
𝑏𝑏 − 𝑐𝑐 = 7 ≤ 3

𝑐𝑐 − 𝑎𝑎 = −7 ≤ −7

If 𝐺𝐺(𝑀𝑀) has no negative cycle,
then the solution of 𝑀𝑀 is
𝜎𝜎(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑥𝑥)

Bellman-Ford: negative cycle
detection
forall v ∈ V do d[v] := ∞ endfor

forall i = 1 to |V|−1 do

forall (u,v) ∈ E do

if d[v] > d[u] + weight(u,v) then

d[v]:= d[u] + weight(u,v)

p[v]:= u

endif

endfor

Endfor

forall (u,v) ∈ E do

if d[v] > d[u] + weight(u,v) then

Negative cycle detected

Cycle reconstructed following 𝑝𝑝
endif

endfor

47FLOLAC'19 SMT

Consistency checks

• Consistency checks can be performed using Bellman-Ford
in time (𝑂𝑂(|𝑉𝑉| · |𝐸𝐸|))

• Other more efficient variants exists

• Incrementality easy:
• Upon arrival of new literal 𝑎𝑎 ⟶

𝑘𝑘
𝑏𝑏 process graph from 𝑢𝑢

• Solutions can be kept after backtracking

• Inconsistency explanations are negative cycles
(irredundant but not minimal explanations)

48FLOLAC'19 SMT

Theory propagation

• Addition of 𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 entails 𝑐𝑐 − 𝑑𝑑 ≤ 𝑘𝑘𝑘 only if

𝑐𝑐 ⟶∗ 𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 ⟶∗ 𝑑𝑑

• Given a solution 𝜎𝜎, each edge 𝑎𝑎 ⟶
𝑘𝑘

𝑏𝑏 (i.e. 𝑎𝑎 − 𝑏𝑏 ≤ 𝑘𝑘) has its
reduced cost

• 𝑘𝑘 − 𝜎𝜎(𝑎𝑎) + 𝜎𝜎(𝑏𝑏) ≥ 0
• Shortest path computation more efficient using reduced costs, since

they are non-negative [Dijkstra’s algorithm]
• Theory propagation ≈ shortest-path computations
• Explanations are the shortest paths

49FLOLAC'19 SMT

shortest

shortest

Theory Combination

FLOLAC'19 SMT 50

Need for Theory Combination

• In software verification, formulas like the following one
arise:

𝑎𝑎 = 𝑏𝑏 + 2 ∧ 𝐴𝐴 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐵𝐵,𝑎𝑎 + 1,4 ∧
(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴, 𝑏𝑏 + 3) = 2 ∨ 𝑓𝑓 (𝑎𝑎 − 1) 6 = 𝑓𝑓 (𝑏𝑏 + 1))

• Here reasoning is needed over
• The theory of linear arithmetic (𝑇𝑇𝐿𝐿𝐿𝐿)
• The theory of arrays (𝑇𝑇𝐴𝐴)
• The theory of uninterpreted functions (𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸)

• Remember that 𝑇𝑇-solvers only deal with conjunctions of
literals.

• Given 𝑇𝑇-solvers for the three individual theories, can we
combine them to obtain one for (𝑇𝑇𝐿𝐿𝐿𝐿 ∪ 𝑇𝑇𝐴𝐴 ∪ 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸) ?

51FLOLAC'19 SMT

Common Base Theories

• Important: These theories have no non-logical symbol
in common (the only thing they share is equality)

FLOLAC'19 SMT 52

Purification

• If 𝐹𝐹 is a formula in theory 𝑇𝑇1 ∪ 𝑇𝑇2 , we can always
transform 𝐹𝐹 into two parts

• 𝐹𝐹1 is in theory 𝑇𝑇1
• 𝐹𝐹2 is in theory 𝑇𝑇2

• 𝐹𝐹 is satisfiable in 𝑇𝑇1 ∪ 𝑇𝑇2 iff 𝐹𝐹1 ∧ 𝐹𝐹2 is satisfiable (also
in 𝑇𝑇1 ∪ 𝑇𝑇2)

• This is called purification.
• It’s done by introducing new variables to remove

mixed terms.

53FLOLAC'19 SMT

After Purification

• Purification of 𝐹𝐹 produces formulas 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2
in 𝑇𝑇2

• UNSAT Case:
• If 𝐹𝐹1 is unsat in 𝑇𝑇1 or 𝐹𝐹2 is unsat in 𝑇𝑇2 then 𝐹𝐹 is unsat in
𝑇𝑇1 ∪ 𝑇𝑇2 .

• SAT Case:
• If 𝐹𝐹1 is sat in 𝑇𝑇1 and 𝐹𝐹2 is sat in 𝑇𝑇2 , is 𝐹𝐹 satisfiable in
𝑇𝑇1 ∪ 𝑇𝑇2 ?

• 𝐹𝐹1 has a model 𝑀𝑀1 : 𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1
• 𝐹𝐹2 has a model 𝑀𝑀2 : 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2
• Can we construct a model M such that 𝑀𝑀 ⊨𝑇𝑇1 ∪ 𝑇𝑇2 𝐹𝐹 ?

FLOLAC'19 SMT 54

Purification Example

• Formula with mixed terms:
𝑥𝑥 ≤ 𝑦𝑦 ∧ 2𝑦𝑦 ≤ 𝑥𝑥 ∧ 𝑓𝑓(ℎ(𝑥𝑥) − ℎ(𝑦𝑦)) > 𝑓𝑓(0)

• Purification:
• Separate the uninterpreted function part and the arithmetic

part

55FLOLAC'19 SMT

QF_UF
𝑎𝑎 = ℎ 𝑥𝑥
𝑏𝑏 = ℎ 𝑦𝑦
𝑑𝑑 = 𝑓𝑓 𝑐𝑐
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

QF_LRA
𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥

𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

Purification Example(2)

• QF_UF part is SAT
• Possible model with

domain = {𝛼𝛼,𝛽𝛽}

• QF_LRA part is SAT
• Possible model (with

domain = ℝ)

FLOLAC'19 SMT 56

The two models are not consistent (𝐹𝐹 is UNSAT)
• One says 𝑥𝑥 ≠ 𝑦𝑦, the other says 𝑥𝑥 = 𝑦𝑦
• Their domains have different cardinalities

𝑎𝑎 = ℎ 𝑥𝑥
𝑏𝑏 = ℎ 𝑦𝑦
𝑑𝑑 = 𝑓𝑓 𝑐𝑐
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥

𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

Nelson-Oppen Methond

FLOLAC'19 SMT 57

Central Problem in Theory
Combination
• Search for consistent models

• Start with 𝐹𝐹 in 𝑇𝑇1 ∪ 𝑇𝑇2
• Purify to get 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2 in 𝑇𝑇2
• Search for two models 𝑀𝑀1 and 𝑀𝑀2 such that:

• 𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1 and 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2
• 𝑀𝑀1 and 𝑀𝑀2 have the same cardinality
• 𝑀𝑀1 and 𝑀𝑀2 agree on equalities between shared variables

• Nelson-Oppen Method
• A general framework for solving this problem
• Originally proposed by Nelson and Oppen, 1979
• Give sufficient conditions for consistent models to exist
• Many extensions and variations

58FLOLAC'19 SMT

The Nelson-Oppen Method
(Nelson & Oppen, 1979)
• The theory solvers propagate implied equalities

between shared variables.
• If both sides are satisfiable and no-more equalities

can be propagated, then 𝐹𝐹 is satisfiable.

FLOLAC'19 SMT 59

𝐹𝐹1 𝐹𝐹2

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑗𝑗

Nelson-Oppen Example

FLOLAC'19 SMT 60

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

Input formula after purification

Nelson-Oppen Example

FLOLAC'19 SMT 61

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

𝑥𝑥 = 𝑦𝑦

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦

Nelson-Oppen Example

FLOLAC'19 SMT 62

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏

Nelson-Oppen Example

FLOLAC'19 SMT 63

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏
QF LRA propagates 𝑒𝑒 = 𝑐𝑐

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑒𝑒 = 𝑐𝑐

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑒𝑒 = 𝑐𝑐

Nelson-Oppen Example

FLOLAC'19 SMT 64

QF LRA deduces and propagates 𝑥𝑥 = 𝑦𝑦
QF UF propagates 𝑎𝑎 = 𝑏𝑏
QF LRA propagates 𝑒𝑒 = 𝑐𝑐
QF UF propagates 𝑑𝑑 = 𝑔𝑔
QF LRA concludes unsat

QF_UF

𝑎𝑎 = ℎ(𝑥𝑥)
𝑏𝑏 = ℎ(𝑦𝑦)
𝑑𝑑 = 𝑓𝑓(𝑐𝑐)
𝑔𝑔 = 𝑓𝑓(𝑒𝑒)

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑒𝑒 = 𝑐𝑐
𝑑𝑑 = 𝑔𝑔

QF_LRA

𝑥𝑥 ≤ 𝑦𝑦
2𝑦𝑦 ≤ 𝑥𝑥
𝑐𝑐 = 𝑎𝑎 − 𝑏𝑏
𝑒𝑒 = 0
𝑑𝑑 > 𝑔𝑔

𝑥𝑥 = 𝑦𝑦
𝑎𝑎 = 𝑏𝑏
𝑒𝑒 = 𝑐𝑐
𝑑𝑑 = 𝑔𝑔

Nelson-Oppen – Restrictions

• Theories must meet the following restrictions to be
decidable in combination:

• 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛 are quantifier-free first-order theories with
equality.

• There is a decision procedure for each of the theories
𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛.

• The signatures are disjoint, i.e., for all 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛,
Σ𝑖𝑖 ∩ Σ𝑗𝑗 = ∅.

• 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛 are theories that are interpreted over an infinite
domain

FLOLAC'19 SMT 65

Nelson-Oppen –Convex Case

• Deterministic Nelson-Oppen
• Assumptions

• Given two signature-disjoint, stably-infinite and convex theories 𝑇𝑇1 and
𝑇𝑇2

• Given a set of literals 𝑆𝑆 over the signature of 𝑇𝑇1 ∪ 𝑇𝑇2

• A theory 𝑇𝑇 is stably-infinite iff every T-satisfiable quantifier-
free formula has an infinite model

• Examples: QF_UF and QF_LRA are stably infinite, QF_BV is not

• A theory 𝑇𝑇 is convex iff
𝑆𝑆 ⊨𝑇𝑇 𝑎𝑎1 = 𝑏𝑏1 ∨ … ∨ 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛

⟹ 𝑆𝑆 ⊨ 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 for some 𝑖𝑖

FLOLAC'19 SMT 66

Convex Theories

• Definition
𝑇𝑇 is convex if, for every set of literals 𝛤𝛤, and every disjunction of
variable equalities 𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯∨ 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 , such that

𝛤𝛤 ⊨ 𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯ ∨ 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 ,
we have

𝛤𝛤 ⊨ 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖
for some index 𝑖𝑖.

• Examples
• QF_UF and QF_LRA are convex
• QF_LIA, QF_BV, and QF_AX are not convex

FLOLAC'19 SMT 67

Convex Theories - Example

• Linear arithmetic over ℝ (QF_LRA) is convex
𝑥𝑥 ≤ 3 ∧ 𝑥𝑥 ≥ 3 ⇒ 𝑥𝑥 = 3

• Linear arithmetic over ℤ (QF_LIA) is not convex:
while

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥1 ∨ 𝑥𝑥3 = 𝑥𝑥2
is valid, neither

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥1
nor

𝑥𝑥1 = 1 ∧ 𝑥𝑥2 = 2 ∧ 1 ≤ 𝑥𝑥3 ∧ 𝑥𝑥3 ≤ 2 ⇒ 𝑥𝑥3 = 𝑥𝑥2
is valid.

FLOLAC'19 SMT 68

Non-Convex Theories - Example

• QF_LIA: linear arithmetic over the integers
0 ≤ 𝑥𝑥 ∧ 𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑧𝑧 ∧ 𝑧𝑧 ≤ 1 ⊨ 𝑥𝑥 = 𝑦𝑦 ∨ 𝑦𝑦 = 𝑧𝑧

• QF_AX: array theory
𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎, 𝑖𝑖, 𝑣𝑣 ∧ 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏, 𝑗𝑗 ∧
𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎, 𝑗𝑗) ⊨ 𝑥𝑥 = 𝑣𝑣 ∨ 𝑥𝑥 = 𝑦𝑦

FLOLAC'19 SMT 69

Nelson-Oppen – Convex Case

• Given 𝑛𝑛 signature-disjoint, stably-infinite and convex
theories 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛

1. Purification: Purify 𝐹𝐹 into 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛.
2. Apply the decision procedure for 𝑇𝑇𝑖𝑖 to 𝐹𝐹𝑖𝑖. If there exists

𝑖𝑖 such that 𝐹𝐹𝑖𝑖 is unsatisfiable in 𝑇𝑇𝑖𝑖, return “UNSAT”.
3. Equality propagation: If there exist 𝑖𝑖, 𝑗𝑗 such that 𝐹𝐹𝑖𝑖 𝑇𝑇𝑖𝑖-

implies an equality between variables of 𝐹𝐹 that is not 𝑇𝑇𝑗𝑗-
implied by 𝐹𝐹𝑗𝑗 , add this equality to 𝐹𝐹𝑗𝑗 and go to step 2.

4. Return “SAT”

FLOLAC'19 SMT 70

Example - Convex case

• Consider the following set of literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℝ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory

FLOLAC'19 SMT 71

𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎
𝑓𝑓 0 = 𝑎𝑎 + 2

𝑥𝑥 = 𝑦𝑦

Example - Convex case

FLOLAC'19 SMT 72

𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎
⇓

𝑓𝑓 𝑒𝑒1 = 𝑎𝑎
𝑒𝑒1 = 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦

⇓
𝑒𝑒1 = 𝑒𝑒2 − 𝑒𝑒3
𝑒𝑒2 = 𝑓𝑓 (𝑥𝑥)
𝑒𝑒3 = 𝑓𝑓 (𝑦𝑦)

𝑓𝑓 0 = 𝑎𝑎 + 2
⇓

𝑓𝑓 𝑒𝑒4 = 𝑎𝑎 + 2
𝑒𝑒4 = 0

⇓
𝑓𝑓 𝑒𝑒4 = 𝑒𝑒5
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2

𝐹𝐹: 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 = 𝑎𝑎, 𝑓𝑓 0 = 𝑎𝑎 + 2, 𝑥𝑥 = 𝑦𝑦

Example - Convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• The two solvers only share constants: 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5,𝑎𝑎
• To merge the two models into a single one, the solvers have to agree

on equalities between shared constants (interface equalities)
• This can be done by exchanging entailed interface equalities

FLOLAC'19 SMT 73

EUF

𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑒𝑒2
𝑓𝑓 (𝑦𝑦) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒4) = 𝑒𝑒5

𝑥𝑥 = 𝑦𝑦

Arithmetic

𝑒𝑒2 − 𝑒𝑒3 = 𝑒𝑒1
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2

Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊨ 𝑒𝑒2 = 𝑒𝑒3

FLOLAC'19 SMT 74

EUF

𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑒𝑒2
𝑓𝑓 (𝑦𝑦) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒4) = 𝑒𝑒5

𝑥𝑥 = 𝑦𝑦

Arithmetic

𝑒𝑒2 − 𝑒𝑒3 = 𝑒𝑒1
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2
𝑒𝑒2 = 𝑒𝑒3

Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐴𝐴𝐴𝐴𝐴𝐴 ⊨ 𝑒𝑒1 = 𝑒𝑒4

FLOLAC'19 SMT 75

EUF

𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑒𝑒2
𝑓𝑓 (𝑦𝑦) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒4) = 𝑒𝑒5

𝑥𝑥 = 𝑦𝑦
𝑒𝑒1 = 𝑒𝑒4

Arithmetic

𝑒𝑒2 − 𝑒𝑒3 = 𝑒𝑒1
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2
𝑒𝑒2 = 𝑒𝑒3

Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊨ 𝑎𝑎 = 𝑒𝑒5

FLOLAC'19 SMT 76

EUF

𝑓𝑓(𝑒𝑒1) = 𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝑒𝑒2
𝑓𝑓 𝑦𝑦 = 𝑒𝑒3
𝑓𝑓(𝑒𝑒4) = 𝑒𝑒5
𝑥𝑥 = 𝑦𝑦
𝑒𝑒1 = 𝑒𝑒4

Arithmetic

𝑒𝑒2 − 𝑒𝑒3 = 𝑒𝑒1
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2
𝑒𝑒2 = 𝑒𝑒3
𝑎𝑎 = 𝑒𝑒5

Example - Convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5,𝑎𝑎
• EUF-Solver says SAT
• Ari-Solver says UNSAT
• Hence the original set of lits was UNSAT

FLOLAC'19 SMT 77

EUF

𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑒𝑒2
𝑓𝑓 (𝑦𝑦) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒4) = 𝑒𝑒5

𝑥𝑥 = 𝑦𝑦
𝑒𝑒1 = 𝑒𝑒4

Arithmetic

𝑒𝑒2 − 𝑒𝑒3 = 𝑒𝑒1
𝑒𝑒4 = 0

𝑒𝑒5 = 𝑎𝑎 + 2
𝑒𝑒2 = 𝑒𝑒3
𝑎𝑎 = 𝑒𝑒5

Example – Non-Convex case

• Consider the following set of literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory

FLOLAC'19 SMT 78

x ≥ 1
𝑥𝑥 ≤ 2
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 1
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 2

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Both theories are SAT …
But 𝐹𝐹 is UNSAT

Properties of Nelson-Oppen

• Soundness and Completeness
• propagating implied equalities is sufficient for some theories but

not others
• the theories for which this is sufficient are called convex theories
• for these theories, the method is sound and complete

• Termination
• obvious if the number of shared variables is fixed
• this is usually the case
• some theory solvers (e.g., arrays) may dynamically add more

variables but this can be bounded

FLOLAC'19 SMT 79

More on Nelson-Oppen

• Can be extended to non-convex theories
• the theory solvers propagate disjunctions of equalities

• Finding Implied Equalities
• For QF_UF, decision procedures based on congruence closure

give implied equalities for free.
• It’s harder and more expensive for other theories (e.g., linear

arithmetic).
• It gets worse for non-convex theories.

• Delayed Theory Combination
• Attempt to construct an arrangement lazily in the CDCL(T)

framework
• Create interface equalities and let the SAT solver do the search
• Different heuristics to decide when and what equalities to create

FLOLAC'19 SMT 80

Nelson-Oppen Method-
Non-convex case

FLOLAC'19 SMT 81

Nelson-Oppen – The non-convex
case
• Given a formula 𝐹𝐹 that combines 𝑛𝑛 signature-disjoint,

stably-infinite theories 𝑇𝑇1 , … ,𝑇𝑇𝑛𝑛
1. Purification: Purify 𝐹𝐹 into 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛.
2. Apply the decision procedure for 𝑇𝑇𝑖𝑖 to 𝐹𝐹𝑖𝑖 . If there exists 𝑖𝑖

such that 𝐹𝐹𝑖𝑖 is unsatisfiable in 𝑇𝑇𝑖𝑖 , return “UNSAT”.
3. Equality propagation: If there exist 𝑖𝑖, 𝑗𝑗 such that 𝐹𝐹𝑖𝑖 𝑇𝑇𝑖𝑖-implies

an equality between variables of 𝐹𝐹 that is not 𝑇𝑇𝑗𝑗-implied by 𝐹𝐹𝑗𝑗 ,
add this equality to 𝐹𝐹𝑗𝑗 and go to step 2.

4. Splitting: If there exists 𝑖𝑖 such that
• 𝐹𝐹𝑖𝑖 ⇒ (𝑥𝑥1 = 𝑦𝑦1 ∨ ⋯∨ 𝑥𝑥𝑘𝑘 = 𝑦𝑦𝑘𝑘) but ∀𝑗𝑗 ∈ 1, … , 𝑘𝑘. 𝐹𝐹𝑖𝑖 ⇏ 𝑥𝑥𝑗𝑗 = 𝑦𝑦𝑗𝑗 ,
• Then apply Nelson-Oppen recursively to: 𝐹𝐹 ∧ 𝑥𝑥1 = 𝑦𝑦1, … ,𝐹𝐹 ∧ 𝑥𝑥𝑘𝑘 =
𝑦𝑦𝑘𝑘

• If any of these subproblems is satisfiable, return “SAT”. Otherwise
return “UNSAT”

5. Return “SAT”

FLOLAC'19 SMT 82

Example – Non-Convex case

• Consider the following set of literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory

FLOLAC'19 SMT 83

x ≥ 1
𝑥𝑥 ≤ 2
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 1
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 2

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Both theories are SAT …
But 𝐹𝐹 is UNSAT

Example – Non-Convex case

FLOLAC'19 SMT 84

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2

Case separation:
(x = a) ∨ (𝑥𝑥 = 𝑏𝑏)

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

𝑥𝑥 = 𝑎𝑎

UNSAT

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2
𝑥𝑥 = 𝑎𝑎

EUF
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑎𝑎
𝑓𝑓 𝑥𝑥 ≠ 𝑓𝑓 𝑏𝑏

𝑥𝑥 = 𝑏𝑏

UNSAT

Arithmetic
x ≥ 1
x ≤ 2
a = 1
b = 2
𝑥𝑥 = 𝑏𝑏

Example – Non-convex case

• Consider the following UNSATISFIABLE set of
literals:

• There are two theories involved: 𝑇𝑇𝐿𝐿𝐿𝐿 ℤ and 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
• FIRST STEP:

• purify each literal so that it belongs to a single theory

FLOLAC'19 SMT 85

1 ≤ 𝑥𝑥 ≤ 2
𝑓𝑓 (1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑎𝑎 = 𝑏𝑏 + 2

𝑓𝑓 (2) = 𝑓𝑓 (1) + 3

Example – Non-convex case

FLOLAC'19 SMT 86

𝑓𝑓 1 = 𝑎𝑎
⇓

𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑒𝑒1 = 1

𝑓𝑓 2 = 𝑓𝑓 1 + 3
⇓

𝑒𝑒2 = 2
𝑓𝑓 𝑒𝑒2 = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4
𝑒𝑒3 = 𝑒𝑒4 + 3

• 𝐹𝐹:
1 ≤ 𝑥𝑥 ≤ 2
𝑓𝑓 (1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑎𝑎 = 𝑏𝑏 + 2

𝑓𝑓 (2) = 𝑓𝑓 (1) + 3

Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑒𝑒1,𝑎𝑎, 𝑏𝑏, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊨ 𝑎𝑎 = 𝑒𝑒𝑒

FLOLAC'19 SMT 87

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4

Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑒𝑒1,𝑎𝑎, 𝑏𝑏, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4
• Ari-Solver says SAT
• EUF-Solver says SAT
• No theory entails any other interface equality, but...

FLOLAC'19 SMT 88

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4

Example – Non-convex case

• SECOND STEP: check satisfiability and exchange entailed
equalities

• The two solvers only share constants: 𝑥𝑥, 𝑒𝑒1,𝑎𝑎, 𝑏𝑏, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐴𝐴𝐴𝐴𝐴𝐴 ⊨𝑇𝑇 𝑥𝑥 = 𝑒𝑒1 ∨ 𝑥𝑥 = 𝑒𝑒2. Let’s consider both cases.

FLOLAC'19 SMT 89

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4

Example – Non-convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• The two solvers only share constants: 𝑥𝑥, 𝑒𝑒1,𝑎𝑎, 𝑏𝑏, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊨𝑇𝑇 𝑎𝑎 = 𝑏𝑏, that when sent to Ari makes it UNSAT

FLOLAC'19 SMT 90

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒1

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒1

Example – Non-convex case
• SECOND STEP: check satisfiability and exchange entailed equalities

• Let’s try now with 𝑥𝑥 = 𝑒𝑒2
• Ari-Solver says SAT
• EUF-Solver says SAT
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊨𝑇𝑇 𝑏𝑏 = 𝑒𝑒3 , that when sent to Ari makes it UNSAT

FLOLAC'19 SMT 91

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒2

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒2

Example – Non-convex case(7)

• SECOND STEP: check satisfiability and exchange entailed
equalities

• Since both 𝑥𝑥 = 𝑒𝑒1 and 𝑥𝑥 = 𝑒𝑒2 are UNSAT, the set of literals
is UNSAT

FLOLAC'19 SMT 92

Arithmetic
1 ≤ 𝑥𝑥
𝑥𝑥 ≤ 2
𝑒𝑒1 = 1

𝑎𝑎 = 𝑏𝑏 + 2
𝑒𝑒2 = 2

𝑒𝑒3 = 𝑒𝑒4 + 3
𝑎𝑎 = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒2

EUF
𝑓𝑓 (𝑒𝑒1) = 𝑎𝑎
𝑓𝑓 (𝑥𝑥) = 𝑏𝑏
𝑓𝑓 (𝑒𝑒2) = 𝑒𝑒3
𝑓𝑓 (𝑒𝑒1) = 𝑒𝑒4
𝑥𝑥 = 𝑒𝑒2

Non-Deterministic Nelson-Oppen
(Tinelli & Harandi, 1996)
• Assumptions

• Two theories 𝑇𝑇1 and 𝑇𝑇2 that share no non-logical symbol
and are stably infinite

• 𝐹𝐹 is a conjunction of literals of 𝑇𝑇1 ∪ 𝑇𝑇2
• 𝐹𝐹 is purified to 𝐹𝐹1 in 𝑇𝑇1 and 𝐹𝐹2 in 𝑇𝑇2

• Stably Infinite Theories
• A theory 𝑇𝑇 is stably infinite if every formula that’s

satisfiable in 𝑇𝑇 has an infinite model
• Examples: QF_UF and QF_LRA are stably infinite,

QF_BV is not

FLOLAC'19 SMT 93

Variable Arrangements

• Definition
• Let 𝑉𝑉 be the set of all variables that are shared by 𝐹𝐹1 and
𝐹𝐹2

• An arrangement of 𝑉𝑉 is a conjunction of variable
equalities and disequalities that define a partition of 𝑉𝑉

• Example
• If 𝑉𝑉 = {𝑥𝑥0 , 𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3} and we partition V into three

subsets {𝑥𝑥0 , 𝑥𝑥1}, {𝑥𝑥2}, and {𝑥𝑥3} then the corresponding
arrangement is

𝑥𝑥0 = 𝑥𝑥1 ∧ 𝑥𝑥0 ≠ 𝑥𝑥2 ∧ 𝑥𝑥1 ≠ 𝑥𝑥2 ∧
𝑥𝑥0 ≠ 𝑥𝑥3 ∧ 𝑥𝑥1 ≠ 𝑥𝑥3 ∧ 𝑥𝑥2 ≠ 𝑥𝑥3

FLOLAC'19 SMT 94

Non-Deterministic Nelson-Oppen
(continued)
• Procedure

• Guess a partition of the variables 𝑉𝑉 and let 𝒜𝒜 be the
corresponding arrangement

• Check whether 𝐹𝐹1 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇1 and 𝐹𝐹2 ∧ 𝒜𝒜 is
satisfiable in 𝑇𝑇2

• Theorem
• If 𝐹𝐹1 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇1 and 𝐹𝐹2 ∧ 𝒜𝒜 is satisfiable in 𝑇𝑇2 then
𝐹𝐹 is satisfiable in 𝑇𝑇1 ∪ 𝑇𝑇2 .

• Why this works (informally)
• 𝑇𝑇1 and 𝑇𝑇2 are stably infinite. This implies that they have models

of the same infinite cardinality.
• The arrangement𝒜𝒜 forces the two models to agree on equalities

between shared variables.

FLOLAC'19 SMT 95

Non-Deterministic Nelson-Oppen
(continued)
• Issues

• How do we find the right arrangement?
• The number of possible partitions of a set of 𝑛𝑛 variables is

known as Bell’s number (𝐵𝐵𝑛𝑛)
• This grows very fast with 𝑛𝑛 (e.g., 𝐵𝐵11 is 27644437)
• We can’t possibly try them all

• How do we handle theories that are not stably infinite?

FLOLAC'19 SMT 96

Model-Based Theory
Combination

FLOLAC'19 SMT 97

Model-Based Theory Combination

• Models are available
• The theory solvers for 𝑇𝑇1 and 𝑇𝑇2 produce models when 𝐹𝐹1

and 𝐹𝐹2 are SAT:
𝑀𝑀1 ⊨𝑇𝑇1 𝐹𝐹1 and 𝑀𝑀2 ⊨𝑇𝑇2 𝐹𝐹2

• The Nelson-Oppen methods do not use these models
• Model-based theory combination: Make use of the

models 𝑀𝑀1 and 𝑀𝑀2 :
• if 𝑀𝑀1 and 𝑀𝑀2 are consistent, done
• optionally, attempt to modify 𝑀𝑀1 and 𝑀𝑀2 to make them

consistent
• if that fails, add constraints to cause CDCL(T) to backtrack

and search for other models

FLOLAC'19 SMT 98

Combining a Theory with QF_UF

• Very Common Case
• One theory is QF_UF and the other is either an arithmetic theory or

QF_BV

• QF_UF has good properties
• Deciding satisfiability is cheap (fast congruence closure algorithms)
• These algorithms give the implied equalities for free
• It’s stably infinite

• Model-Based Combination With QF_UF
• Works with an arbitrary theory 𝑇𝑇 (non-convex, non-stably infinite)
• Main components:

• congruence closure
• interface lemmas
• model mutation and reconciliation

FLOLAC'19 SMT 99

Congruence Closure

• Key problem in QF_UF
Given a finite set of terms and some equalities between them

𝑡𝑡1 = 𝑢𝑢1 , … , 𝑡𝑡𝑚𝑚 = 𝑢𝑢𝑚𝑚
find all the implied equalities

• Congruence Closure Algorithms
Construct an equivalence relation ∼ between terms such that
if 𝑡𝑡𝑖𝑖 = 𝑢𝑢𝑖𝑖 is an original equality then 𝑡𝑡𝑖𝑖 ∼ 𝑢𝑢𝑖𝑖
∼ is closed under the congruence rule:

𝑣𝑣1 ∼ 𝑤𝑤1 , … , 𝑣𝑣𝑘𝑘 ∼ 𝑤𝑤𝑘𝑘 ⇒ 𝑓𝑓(𝑣𝑣1 , . . . , 𝑣𝑣𝑘𝑘) ∼ 𝑓𝑓(𝑤𝑤1 , . . . ,𝑤𝑤𝑘𝑘)
The ∼ relation contains all the implied equalities:

𝑡𝑡1 = 𝑢𝑢1 , … , 𝑡𝑡𝑛𝑛 = 𝑢𝑢𝑛𝑛 ⇒ 𝑡𝑡 = 𝑢𝑢 iff 𝑡𝑡 ∼ 𝑢𝑢

FLOLAC'19 SMT 100

Congruence Closure Example

• Terms: 𝑎𝑎, 𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑏𝑏)
• Initial Equalities: 𝑓𝑓(𝑓𝑓(𝑎𝑎)) = 𝑎𝑎, 𝑓𝑓(𝑎𝑎) = 𝑏𝑏
• Equivalence Relation

• Initially
• { 𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎))} {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} {𝑓𝑓(𝑏𝑏)} {𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)) }

• Congruence: 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎))
• {𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎))} {𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)))} {𝑓𝑓(𝑏𝑏)}

• Congruence: 𝑓𝑓(𝑏𝑏) = 𝑓𝑓(𝑓𝑓(𝑎𝑎))
• 𝑎𝑎, 𝑓𝑓 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑏𝑏 𝑏𝑏, 𝑓𝑓 𝑎𝑎 , 𝑓𝑓 𝑓𝑓 𝑓𝑓 𝑎𝑎

• Done

FLOLAC'19 SMT 101

Checking Satisifiability in QF_UF

• A QF_UF formula can be written as a conjunction of
equalities and disequalities:

(𝑡𝑡1 = 𝑢𝑢1 ∧ ⋯∧ 𝑡𝑡𝑛𝑛 = 𝑢𝑢𝑛𝑛) ∧ (𝑣𝑣1 ≠ 𝑤𝑤1 ∧ ⋯∧ 𝑣𝑣𝑚𝑚 ≠ 𝑤𝑤𝑚𝑚)
• To check satisfiability

• compute the congruence closure ∼ of the equalities
• if 𝑣𝑣𝑖𝑖 ∼ 𝑤𝑤𝑖𝑖 for some 𝑖𝑖 then return UNSAT else return SAT

• Example
• Formula: 𝑓𝑓 𝑓𝑓 𝑎𝑎 = 𝑎𝑎 ∧ 𝑓𝑓(𝑎𝑎) = 𝑏𝑏 ∧ 𝑏𝑏 ≠ 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎))
• Congruence closure: {𝑎𝑎, 𝑓𝑓(𝑓𝑓(𝑎𝑎)), 𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑎𝑎)))}
• So the formula is UNSAT

FLOLAC'19 SMT 102

Building Models in QF_UF

• From a Congruence Closure
• Basic idea: one element in the domain per equivalence class

in the congruence closure
• We can always ensure that every term t is interpreted as its

class representative

• Example
• Formula: 𝑓𝑓(𝑏𝑏) = 𝑎𝑎 ∧ 𝑏𝑏 = 𝑓𝑓(𝑎𝑎) ∧ 𝑎𝑎 ≠ 𝑓𝑓(𝑐𝑐)
• Congruence closure: {𝑎𝑎,𝑓𝑓(𝑏𝑏)} {𝑏𝑏,𝑓𝑓(𝑎𝑎)} {𝑐𝑐} {𝑓𝑓(𝑐𝑐))}
• Model:

• domain = {𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿}

FLOLAC'19 SMT 103

Flexibility in QF UF Models

• Enlarging the domain
• Let 𝐹𝐹 be a satisfiable QF_UF formula and 𝑀𝑀 a model of 𝐹𝐹
• For any cardinal 𝑘𝑘 > |𝑀𝑀|, we can construct a new model 𝑀𝑀′ of

cardinality 𝑘𝑘 that satisfies 𝐹𝐹
• This implies that QF_UF is stably infinite

• Shrinking the domain
• We can sometimes make the domain smaller by modifying the

congruence closure
• Previous example:

• 𝐹𝐹 is 𝑓𝑓(𝑏𝑏) = 𝑎𝑎 ∧ 𝑏𝑏 = 𝑓𝑓(𝑎𝑎) ∧ 𝑎𝑎 ≠ 𝑓𝑓(𝑐𝑐)
• Congruence closure: {𝑎𝑎,𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} {𝑐𝑐} {𝑓𝑓(𝑐𝑐)}

• We could merge {𝑓𝑓(𝑐𝑐)} and {𝑏𝑏, 𝑓𝑓(𝑎𝑎)} to get a new relation
∼’ : {𝑎𝑎, 𝑓𝑓(𝑏𝑏)} {𝑏𝑏, 𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑐𝑐)} {𝑐𝑐}

• A model built from ∼’ still satisfies 𝐹𝐹

FLOLAC'19 SMT 104

Basic Model-Based Combination
With QF_UF
• Assumptions

• A formula 𝐹𝐹 in 𝑄𝑄𝑄𝑄_𝑈𝑈𝑈𝑈 ∪ 𝑇𝑇
• After purification: 𝐹𝐹1 in QF_UF and 𝐹𝐹2 in 𝑇𝑇
• 𝑉𝑉 denotes the set of variables shared by 𝐹𝐹1 and 𝐹𝐹2
• ∼ is the equivalence relation computed by congruence closure from 𝐹𝐹1

• Procedure
• If 𝐹𝐹1 is not satisfiable, return UNSAT
• Get all equalities implied by 𝐹𝐹1
• Let 𝐻𝐻 be the set of implied equalities that are between variables of 𝑉𝑉
• Check whether 𝐹𝐹2 ∧ 𝐻𝐻 is satisfiable in 𝑇𝑇; if not return UNSAT
• Otherwise, get a model 𝑀𝑀 for 𝐹𝐹2 ∧ 𝐻𝐻.
• If 𝑀𝑀 does not conflict with relation ∼ return SAT
• Otherwise, add interface lemmas to force backtracking

FLOLAC'19 SMT 105

Basic Model-Based Combination
With QF_UF - Conflicts
• Conflicts

• 𝑀𝑀 conflicts with 𝐸𝐸 if there are two shared variables 𝑥𝑥 and
𝑦𝑦 such that

𝑀𝑀 ⊨ 𝑥𝑥 = 𝑦𝑦 but 𝑥𝑥 ≁ 𝑦𝑦
• conflicts in the other direction are not possible (since 𝑀𝑀 ⊨
𝐻𝐻)

• If there are no conflicts
• 𝑀𝑀 and ∼ agree on equalities between shared variables
• We can extend 𝑀𝑀 by adding an interpretation for all the

uninterpreted functions in the QF_UF part
• We get a new model 𝑀𝑀′ that satisfies 𝐹𝐹2 and 𝐹𝐹1

FLOLAC'19 SMT 106

Interface Lemmas

• Interface lemma for 𝑥𝑥 and 𝑦𝑦
• A formula that encodes “𝑥𝑥 = 𝑦𝑦 in 𝑇𝑇” ⇒ “𝑥𝑥 = 𝑦𝑦 in QF_UF”
• The exact formulation depends on the implementation and

theory involved

• Examples
• T is QF_LRA: we add the clause 𝑥𝑥 = 𝑦𝑦 ∨ 𝑥𝑥 > 𝑦𝑦 ∨ 𝑦𝑦 > 𝑥𝑥
• T is QF_BV: we add the clause ¬(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑦𝑦) ∨ 𝑥𝑥 = 𝑦𝑦
• in these clauses, (𝑥𝑥 = 𝑦𝑦) must be an atom handled by the

QF_UF solver

• If 𝑀𝑀 conflicts with ∼ on 𝑥𝑥 = 𝑦𝑦, this lemma forces the
SMT solver to backtrack and search for different models

FLOLAC'19 SMT 107

Imrovements

• Model Mutation
• Exploit flexibility in the Simplex-based arithmetic solver.
• There may be many solutions to a set of linear arithmetic

constraints.
• Mutation: modify the Simplex model to give distinct values

to distinct interface variables.
• This reduces the risk of accidental conflicts

FLOLAC'19 SMT 108

Improvements (continued)

• Model Reconciliation
• Exploit flexibility in QF_UF to eliminate conflicts while

keeping 𝑀𝑀 fixed
• If 𝑥𝑥 and 𝑦𝑦 are in conflict: 𝑀𝑀 ⊨ 𝑥𝑥 = 𝑦𝑦 and 𝑥𝑥 ≁ 𝑦𝑦
• To try to resolve this conflict:

• tentatively merge the equivalence classes of 𝑥𝑥 and 𝑦𝑦
• propagate the consequences by congruence closure
• accept the merge unless if makes the QF_UF part UNSAT or it

would propagate new equalities to theory 𝑇𝑇

FLOLAC'19 SMT 109

	Satisfiability Modulo Theories
	Introduction
	Need of SMT
	From SAT to SMT
	SMT Problem
	Recall: SAT Decision procedure
	DPLL – Example(1)
	DPLL – Example(1)
	DPLL – Example(2)
	DPLL – Example(2)
	Theories of Interest - EUF
	Theories of Interest - Arithmetic
	Theories of Interest - Arrays
	Theories of Interest – Bit-vectors
	Combination of Theories
	SMT in Practice
	Eager and Lazy approach of SMT
	Eager Approach
	Eager Approach – Example(1)
	Eager Approach – Example(2)
	Lazy Approach
	Lazy Approach - Example
	Lazy Approach - Optimizations
	Lazy Approach - 𝑇-propagation
	Lazy approach - Important points
	DPLL(T)
	DPLL(T)
	DPLL(T) - Example
	DPLL(T) - Overall algorithm
	DPLL(T) - Propagation
	DPLL(T) - Propagation (2)
	Case Reasoning in Theory Solvers
	Case Reasoning in Theory Solvers (2)
	Case Reasoning in Theory Solvers (3)
	DPLL(T) - Conﬂict Analysis
	DPLL(T) - Conﬂict Analysis (2)
	DPLL(T) - Conﬂict Analysis (3)
	DPLL(T) - Conﬂict Analysis (4)
	投影片編號 39
	T-Solver Example:�Difference Logic
	Difference logic
	Difference Logic - Remarks
	Difference Logic as a Graph Problem
	Difference Logic as a Graph Problem (2)
	Difference Logic as a Graph Problem (3)
	投影片編號 46
	Bellman-Ford: negative cycle detection
	Consistency checks
	Theory propagation
	Theory Combination
	Need for Theory Combination
	Common Base Theories
	Puriﬁcation
	After Puriﬁcation
	Puriﬁcation Example
	Puriﬁcation Example(2)
	Nelson-Oppen Methond
	Central Problem in Theory Combination
	The Nelson-Oppen Method (Nelson & Oppen, 1979)
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen Example
	Nelson-Oppen – Restrictions
	Nelson-Oppen –Convex Case
	Convex Theories
	Convex Theories - Example
	Non-Convex Theories - Example
	Nelson-Oppen – Convex Case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example - Convex case
	Example – Non-Convex case
	Properties of Nelson-Oppen
	More on Nelson-Oppen
	Nelson-Oppen Method- Non-convex case
	Nelson-Oppen – The non-convex case
	Example – Non-Convex case
	Example – Non-Convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case
	Example – Non-convex case(7)
	Non-Deterministic Nelson-Oppen (Tinelli & Harandi, 1996)
	Variable Arrangements
	Non-Deterministic Nelson-Oppen (continued)
	Non-Deterministic Nelson-Oppen (continued)
	Model-Based Theory Combination
	Model-Based Theory Combination
	Combining a Theory with QF_UF
	Congruence Closure
	Congruence Closure Example
	Checking Satisiﬁability in QF_UF
	Building Models in QF_UF
	Flexibility in QF UF Models
	Basic Model-Based Combination With QF_UF
	Basic Model-Based Combination With QF_UF - Conflicts
	Interface Lemmas
	Imrovements
	Improvements (continued)

