
FLOLAC 2019 1

Boolean Satisfiability and Its
Applications to

Synthesis & Verification

Jie-Hong Roland Jiang (江介宏)

ALCom Lab
Department of Electrical Engineering,

Graduate Institute of Electronics
Engineering

National Taiwan University

2019/8/23

FLOLAC 2019 2

Outline

Logic synthesis & verification

Boolean function representation

Propositional satisfiability & applications

Quantified Boolean satisfiability &
applications

Stochastic Boolean satisfiability &
applications

2019/8/23

FLOLAC 2019 3

IC Design Flow

HDL spec.

logic
synthesislogic netlist

circuit

netlist

layout /

mask

chip

RTL
synthesis

physical
design

fab.

2019/8/23

FLOLAC 2019 4

Logic Synthesis

Logic
Synthesis

Boolean Function
Expression

Optimized
Logic Netlist

Boolean/Temporal
Constraints

Solution Circuit

2019/8/23

FLOLAC 2019 5

Logic Synthesis

D

x y

Given: Functional description of finite-state

machine F(Q,X,Y,,) where:

Q: Set of internal states

X: Input alphabet

Y: Output alphabet

: X x Q Q (next state function)

: X x Q Y (output function)

Target: Circuit C(G, W) where:

G: set of circuit components g {gates, FFs, etc.}

W: set of wires connecting G

2019/8/23

FLOLAC 2019 6

Backgrounds

 Historic evolution of data structures and tools in
logic synthesis and verification

Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD

AIG
16

50

100

100000

Espresso,

MIS, SIS

SIS, VIS,

MVSIS

ABC

Courtesy of Alan Mishchenko

2019/8/23

FLOLAC 2019 7

Boolean Function Representation

Logic synthesis translates Boolean
functions into circuits

We need representations of Boolean
functions for two reasons:

 to represent and manipulate the actual circuit
that we are implementing

 to facilitate Boolean reasoning

2019/8/23

FLOLAC 2019 8

Boolean Space

 B = {0,1}
 B

2
= {0,1}{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

2019/8/23

FLOLAC 2019 99

Boolean Function

 A Boolean function f over input variables: x1, x2, …, xm, is a
mapping f: Bm Y, where B = {0,1} and Y = {0,1,d}
 E.g.

 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111} (characteristic function f1 = x2)

 off-set (f = 0)
 E.g. {100, 101} (characteristic function f0 = x1 x2)

 don’t-care set (f = d)
 E.g. {000, 001} (characteristic function fd = x1 x2)

 f is an incompletely specified function if the don’t-care set is
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely

specified

2019/8/23

FLOLAC 2019 10

Boolean Function

 A Boolean function f: Bn B over variables
x1,…,xn maps each Boolean valuation (truth
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) = 0

0

0

1
1

x2

x1

x1

x2

2019/8/23

FLOLAC 2019 11

Boolean Function

 Onset of f, denoted as f1, is f1= {v Bn | f(v)=1}

 If f1 = Bn, f is a tautology

 Offset of f, denoted as f0, is f0= {v Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

 f1 and f0 are sets, not functions!

 Boolean functions f and g are equivalent if v Bn. f(v) =
g(v) where v is a truth assignment or Boolean valuation

 A literal is a Boolean variable x or its negation x (or x, x)
in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

2019/8/23

FLOLAC 2019 12

Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions

 Each subset f1 Bn of vertices in Bn forms a
distinct Boolean function f with onset f1

x1x2x3 f

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
x1

x2

x3

2019/8/23

FLOLAC 2019 13

Boolean Operations

Given two Boolean functions:

f : Bn B

g : Bn B

 h = f g from AND operation is defined as

h1 = f1 g1; h0 = Bn \ h1

 h = f g from OR operation is defined as

h1 = f1 g1; h0 = Bn \ h1

 h = f from COMPLEMENT operation is defined as

h1 = f0; h0 = f1

2019/8/23

FLOLAC 2019 14

Cofactor and Quantification

Given a Boolean function:
f : Bn B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = $xi. f is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi

h = f/xi is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

2019/8/23

FLOLAC 2019 15

Boolean Function Representation

 Some common representations:
 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF)
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits

 Specialized Boolean network
 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and

weaknesses (no single data structure is best for all
applications)

2019/8/23

FLOLAC 2019 16

Boolean Function Representation
Truth Table

 Truth table (function table for multi-valued
functions):
The truth table of a function f : Bn B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems

Example: f = abcd + abcd + abcd +
abcd + abcd + abcd +
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f

0 0000 0

1 0001 1

2 0010 0

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 0

abcd f

8 1000 0

9 1001 1

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 1

15 1111 1

2019/8/23

FLOLAC 2019 17

Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’

| Boolean constant (true or false)

| <Boolean variable>

| formula “+” formula (OR operator)

| formula “” formula (AND operator)

| formula (complement)

Example

f = (x1 x2) + (x3) + ((x4 (x1)))

typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is

clear, e.g., f = x1 x2 + x3 + x4 x1

2019/8/23

FLOLAC 2019 18

Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form
(DNF)

Example

j = ab + a’c + bc

2019/8/23

FLOLAC 2019 19

Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form
(CNF)
 Dual of the SOP representation

Example

 j= (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

2019/8/23

FLOLAC 2019 20

Boolean Function Representation
Binary Decision Diagram

 BDD – a graph
representation of Boolean
functions

 A leaf node represents
constant 0 or 1

 A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

 Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root

node

c+d

d

2019/8/23

FLOLAC 2019 21

Boolean Function Representation
Binary Decision Diagram

 Any Boolean function f can be written in term of
Shannon expansion

f = v fv + v fv

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by

variable v represent two sub-functions fv and fv

v

0 1

f

fv fv

2019/8/23

FLOLAC 2019 22

Boolean Function Representation
Binary Decision Diagram

 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

 Ordered:
cofactor variables are in the same order along all paths

xi1
< xi2

< xi3
< … < xin

 Reduced:
any node with two identical children is removed

two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

a

c c

b

0 1

ordered

(a<c<b)

a

b c

c

0 1

not

ordered

b

a

b

0 1

f

b

0 1

f

reduce

2019/8/23

FLOLAC 2019 23

Boolean Function Representation
Binary Decision Diagram

 For a Boolean function,
 ROBDD is unique with respect to a given variable ordering

 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
2019/8/23

FLOLAC 2019 24

Boolean Function Representation
Boolean Network

 A Boolean network is a directed graph C(G,N)
where G are the gates and N GG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I G
Outputs: O G
I O =

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

2019/8/23

FLOLAC 2019 25

Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g) N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:

FO(g) = {g’ | (g,g’) N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) I

2019/8/23

FLOLAC 2019 26

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

1

5

3

4

7
8

9

2

2019/8/23

FLOLAC 2019 27

Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates

edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

2019/8/23

FLOLAC 2019 28

Boolean Function Representation

 Truth table
 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node

functions in a Boolean network

 POS
 Useful in SAT solving and Boolean reasoning
 Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)

 ROBDD
 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

2019/8/23

FLOLAC 2019 29

Circuit to CNF Conversion

 Naive conversion of circuit to CNF:
 Multiply out expressions of circuit until two level structure
 Example: y = x1x2 x2 ... xn (Parity function)

 circuit size is linear in the number of variables

 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit

2019/8/23

FLOLAC 2019 30

Circuit to CNF Conversion

 Example
 Single gate:

 Circuit of connected gates:

b

a

c (a + b + c)(a + c)(b + c)
AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)

(2 + 3 + 5)(2 + 5)(3 + 5)

(2 + 3 + 6)(2 + 6)(3 + 6)

(4 + 5 + 7)(4 + 7)(5 + 7)

(5 + 6 + 8)(5 + 8)(6 + 8)

(7 + 8 + 9)(7 + 9)(8 + 9)

(9)

Justify to “1”

Is output always 0 ?

2019/8/23

FLOLAC 2019 31

Circuit to CNF Conversion

Circuit to CNF conversion

 can be done in linear size (with respect to the
circuit size) if intermediate variables can be
introduced

may grow exponentially in size if no
intermediate variables are allowed

2019/8/23

FLOLAC 2019 32

Propositional Satisfiability

2019/8/23

FLOLAC 2019 33

Normal Forms

 A literal is a variable or its negation

 A clause (cube) is a disjunction (conjunction) of
literals

 A conjunctive normal form (CNF) is a
conjunction of clauses; a disjunctive normal
form (DNF) is a disjunction of cubes

 E.g.,

CNF: (a+b+c)(a+c)(b+d)(a)

(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a

2019/8/23

FLOLAC 2019 34

Satisfiability

 The satisfiability (SAT) problem asks whether a
given CNF formula can be true under some
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and

SMT (Satisfiability Modulo Theories) solver development

2019/8/23

FLOLAC 2019 35

SAT Competition

http://www.satcompetition.org/PoS11/

2019/8/23

FLOLAC 2019 36

SAT Solving

 Ingredients of modern SAT solvers:
 DPLL-style search

[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

2019/8/23

FLOLAC 2019 37

Pre-Modern SAT Procedure

Algorithm DPLL(Φ)

{

while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);

while there is a pure literal l in Φ

Φ = assign(Φ, l);

if all clauses of Φ satisfied return true;

if Φ has a conflicting clause return false;

l := choose_literal(Φ);

return DPLL(assign(Φ,l)) DPLL(assign(Φ,l));

}

2019/8/23

FLOLAC 2019 38

DPLL Procedure

Chorological backtrack

E.g.

a

b

c

0

0

0

1

1

T

~a ~b b ~c c d

{a,e}
{a,b,c}
{c,d}
{a,b,d}
{d,e}
{c,d,e}

~d

~e

~c

~c d

~a ~b

2019/8/23

FLOLAC 2019 39

Modern SAT Procedure

Algorithm CDCL(Φ)
{

while(1)

while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);

while there is a pure literal l in Φ

Φ = assign(Φ, l);

if Φ contains no conflicting clause

if all clauses of Φ are satisfied return true;

l := choose_literal(Φ);

assign(Φ,l);

else

if conflict at top decision level return false;

analyze_conflict();

undo assignments;

Φ := add_conflict_clause(Φ);

}

2019/8/23

FLOLAC 2019 40

Conflict Analysis & Clause Learning

 There can be many learnt
clauses from a conflict

 Clause learning admits non-
chorological backtrack

 E.g.,

{x10587, x10588,
x10592}

…

{x10374, x10582,
x10578, x10373, x10629}

…

{x10646, x9444, x10373,
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

2019/8/23

FLOLAC 2019 41

Clause Learning as Resolution

 Resolution of two clauses C1x and C2x:

C1x C2x

C1C2

where x is the pivot variable and C1C2 is the resolvant,
i.e., C1C2 = $x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of
resolution steps
 Exercise:

Find a resolution sequence leading to the learnt clause

{x10374, x10582, x10578, x10373, x10629}

in the previous slides

2019/8/23

FLOLAC 2019 42

Resolution

 Resolution is complete for SAT solving
 A CNF formula is unsatisfiable if and only if there exists

a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()
2019/8/23

FLOLAC 2019 43

SAT Certification

True CNF

Satisfying assignment (model)

Verifiable in linear time

False CNF

Resolution refutation

Potentially of exponential size

2019/8/23

FLOLAC 2019 44

Craig Interpolation

 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an
interpolant I of A such that

1. AI

2. IB is UNSAT

3. I refers only to the common
variables of A and B

BA

I

I is an abstraction of A

2019/8/23

FLOLAC 2019 45

Interpolant and Resolution Proof

 SAT solver may produce the resolution proof of an UNSAT
CNF j

 For j= jAjB specified, the corresponding interpolant can
be obtained in time linear in the resolution proof

jA jB

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]

2019/8/23

FLOLAC 2019 46

Incremental SAT Solving

To solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?

What if adding a clause to j?

What if deleting a clause from j?

2019/8/23

FLOLAC 2019 47

Incremental SAT Solving

MiniSat API

 void addClause(Vec<Lit> clause)

 bool solve(Vec<Lit> assumps)

 bool readModel(Var x) − for SAT results

 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Courtesy of Niklas Een

2019/8/23

FLOLAC 2019 48

SAT & Logic Synthesis
Equivalence Checking

2019/8/23

FLOLAC 2019 4949

Combinational EC

 Given two combinational circuits C1 and C2, are
their outputs equivalent under all possible input
assignments?

x C1

C2x

?

y1

y2

2019/8/23

FLOLAC 2019 5050

Miter for Combinational EC

 Two combinational circuits C1 and C2 are
equivalent if and only if the output of their “miter”

structure always produces constant 0

x 0?

C1

C2

2019/8/23

FLOLAC 2019 5151

Approaches to Combinational EC

Basic methods:

 random simulation

good at identifying inequivalent signals

 BDD-based methods

 structural SAT-based methods

x 0?

C1

C2

2019/8/23

FLOLAC 2019 52

SAT & Logic Synthesis
Functional Dependency

2019/8/23

FLOLAC 2019 53

Functional Dependency

f(x) functionally depends on g1(x),
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)),
denoted h(G(x))
Under what condition can function f be

expressed as some function h over a set
G={g1,…,gm} of functions ?

 h exists $a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

2019/8/23

FLOLAC 2019 54

Motivation

Applications of functional dependency
Resynthesis/rewiring

Redundant register removal

BDD minimization

Verification reduction

…

f

g4
g3

g2

g1
target function
base functions

h

Boolean Network

2019/8/23

FLOLAC 2019 55

BDD-Based Computation

BDD-based computation of h
hon = {y Bm : y = G(x) and f(x) = 1, x Bn}

hoff = {y Bm : y = G(x) and f(x) = 0, x Bn}

Bn Bm

Gf(x) = 1

f(x) = 0

hon = $x.(yG)f

hoff = $x.(yG)f

2019/8/23

FLOLAC 2019 56

BDD-Based Computation

Pros

 Exact computation of hon and hoff

Better support for don’t care minimization

Cons

 2 image computations for every choice of G

 Inefficient when |G| is large or when there are
many choices of G

2019/8/23

FLOLAC 2019 57

SAT-Based Computation

h exists

$a,b such that f(a)f(b) and G(a)=G(b),

i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?

2019/8/23

FLOLAC 2019 58

SAT-Based Computation

 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit

Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

Constraint

Part

*y1

Assertion

Constraints

Equality

Constraints

2019/8/23

FLOLAC 2019 59

Deriving h with Craig Interpolation

 Clause set A: CDFNon, y0

 Clause set B: CDFNoff, y0
*, (yiyi

*) for i =1,…,m
 I is an overapproximation of Img(fon) and is disjoint from

Img(foff)
 I only refers to y1,…, ym

 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

*y1

A B

Img(fon) Img(foff)

2019/8/23

FLOLAC 2019 60

Incremental SAT Solving

 Controlled equality constraints

(yiyi
*) (yi yi

* ai)(yi yi
* ai)

with auxiliary variables ai

 Fast switch between target and base functions by unit
assumptions over control variables

 Fast enumeration of different base functions

 Share learned clauses

ai = true ith equality constraint is disabled

2019/8/23

FLOLAC 2019 61

SAT vs. BDD

 SAT

 Pros
 Detect multiple choices of

G automatically
 Scalable to large |G|
 Fast enumeration of

different target functions
f

 Fast enumeration of
different base functions G

 Cons
 Single feasible

implementation of h

 BDD

 Cons
 Detect one choice of G at

a time
 Limited to small |G|
 Slow enumeration of

different target functions
f

 Slow enumeration of
different base functions G

 Pros
 All possible

implementations of h

2019/8/23

FLOLAC 2019 62

Practical Evaluation

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem

s5378 2794 179 52 25 398 283 173 1.2 18 1.6 20 0.6 18 7 51

s9234.1 5597 211 46 x 459 301 201 4.1 19 x x 1.7 19 194.6 149

s13207.1 8022 638 190 136 1930 802 x 15.6 22 31.4 78 15.3 22 x x

s15850.1 9785 534 18 9 907 402 x 23.3 22 82.6 94 7.9 22 x x

s35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --

s38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --

s38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164

b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 2.5 42

b14 9847 245 2 -- 245 2 -- 3.3 22 -- -- 5.2 22 -- --

b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --

b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --

b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --

b19 224624 6642 0 -- 7164 337 -- 8184.8 217 -- -- 11040.6 234 -- --

b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --

b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --

b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

SAT vs. BDD

2019/8/23

FLOLAC 2019 63

Practical Evaluation

0.001

0.01

0.1

1

10

100

1 50 99

Iteration

T
im

e
 (

lo
g

)

b19 (200k nodes) b18 (100k nodes)

b17 (30k nodes) b15 (10k nodes)

Incremental SAT

2019/8/23

FLOLAC 2019 64

Quantified Boolean
Satisfiability

2019/8/23

FLOLAC 2019 65

Quantified Boolean Formula

 A quantified Boolean formula (QBF) is often
written in prenex form (with quantifiers placed
on the left) as

Q1 x1, …, Qn xn. j

for Qi {, $} and j a quantifier-free formula
 If j is further in CNF, the corresponding QBF is in the

so-called prenex CNF (PCNF), the most popular QBF
representation

 Any QBF can be converted to PCNF

prefix matrix

2019/8/23

FLOLAC 2019 66

Quantified Boolean Formula

Quantification order matters in a QBF

A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. j)

is of level k if there are k quantifier
alternations (i.e., changing from to $ or
from $ to) from Q1 to Qi.

 Example

a $b c d $e. j

level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

2019/8/23

FLOLAC 2019 67

Quantified Boolean Formula

Many decision problems can be
compactly encoded in QBFs

 In theory, QBF solving (QSAT)
is PSPACE complete
 The more the quantifier

alternations, the higher the
complexity in the Polynomial
Hierarchy

 In practice, solvable QBFs are
typically of size ~1,000
variables

P

PSPACE

coNP NP

2 2

2019/8/23

FLOLAC 2019 68

QBF Solver

 QBF solver choices
 Data structures for formula representation

 Prenex vs. non-prenex

Normal form vs. non-normal form
 CNF, NNF, BDD, AIG, etc.

 Solving mechanisms
 Search, Q-resolution, Skolemization, quantifier elimination, etc.

 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
 Example

a $b $c d $e. (a+c)(a+c)(b+c+e)(b)(c+d+e)(c+e)(d+e)

from 00101, we learn cube abcd (can be further simplified to a)

2019/8/23

FLOLAC 2019 69

QBF Solving

 Example
))()()()()()((ybabxbxaccybxcybxacyba

 La, Ra,

))()()()()((ybbxcybxcybxcyb))()()((bxbxccybx

 Lx, Rx,

))()()()((ybcybcybcyb))()()((ybbcycyb

 Ub, Ub,

))()((cycycy
 Pc,

 Ly, Ry,
))((cc)(c

}{true}{ false

 Py,

))()()((bxbxccbx

 Uc,

))()((bxbxbx

 Lx, Rx,

)(b))((bb

}{true

}{true }{ false

$

cybxa $$$

)(ycbxa

)(cbxa

)(cbxa

2019/8/23

FLOLAC 2019 70

Q-Resolution

 Q-resolution on PCNF is similar to resolution on CNF, except that
the pivots are restricted to existentially quantified variables and
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally ()
quantified variables whose quantification levels are greater than
any of the existentially ($) quantified variables in C1C2

 E.g.,
prefix: a $b c d $e
-RED(a+b+c+d) = (a+b)

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause

2019/8/23

FLOLAC 2019 71

Q-Resolution

 Example (cont’d)

 La, Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc, Rc,

}{ false

)(xba

)(bx

}{ false

 Lb, Rb,

}{ false

)(cy)(a

)(xac

)(a

)(a

)(a

)(bx)(bxac)(cyxba)(cyba

)(a

)(a

)(

cybxa $$$))()()()()()((ybabxbxaccybxcybxacyba

2019/8/23

FLOLAC 2019 72

Skolemization

 Skolemization and Skolem normal form
 Existentially quantified variables are

replaced with function symbols

 QBF prefix contains only two
quantification levels
 $ function symbols, variables

 Example

a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

2019/8/23

FLOLAC 2019 73

QBF Certification

 QBF certification
 Ensure correctness and, more importantly, provide useful

information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications

 False QBF: clause-resolution proof / Herbrand-function (HF)
countermodel
 HF countermodel is more useful in practical applications

 Solvers and certificates
 Skolemization-based solvers (e.g., sKizzo, squolem, Ebddres)

can provide SFs

 Search-based solvers (e.g., DepQBF) can be instrumented to
provide resolution proofs

2019/8/23

FLOLAC 2019 74

QBF Certification

Solvers and certificates (prior to 2011)

Solver Algorithm Certificate

True QBF False QBF

QuBE-cert search Cube resolution Clause resolution

yQuaffle search Cube resolution Clause resolution

Ebddres Skolemization Skolem function Clause resolution

sKizzo Skolemization Skolem function -

squolem Skolemization Skolem function Clause resolution

2019/8/23

FLOLAC 2019 75

QBF Certification

Incomplete picture of QBF certification
(prior to 2011)

Missing piece found
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]

Syntactic to semantic certificate conversion
Linear time [Balabanov, J, 2011 (ResQu)]

Syntactic Certificate Semantic Certificate

True QBF Cube-resolution proof Skolem-function model

False QBF Clause-resolution proof ?

2019/8/23

FLOLAC 2019 76

QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula
negation

2019/8/23

FLOLAC 2019 77

ResQu

 A Skolem-function model (Herbrand-function
countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula

is recursively defined as follows.

j := clause | cube | clause j | cube j

 E.g.,

(a’+b) ac (b’+c’) bc

= ((a’+b) (ac ((b’+c’) bc)))

2019/8/23

FLOLAC 2019 78

ResQu

2019/8/23

FLOLAC 2019 79

ResQu

 Example
 axby$c

7654321)()()()()()()(ybabxcbxacybxcybxacyba

8)(ybxa

 8)(bxa
 10)(bxa

9)(a

10)(ybxa

9)(xa
11)(xa

11)(a

)(empty

 7)(ba

)2(

)3(

)1(

)4(

)5(

2019/8/23

FLOLAC 2019 80

QBF Certification

Applications of Skolem/Herbrand functions

 Program synthesis

Winning strategy synthesis in two player
games

 Plan derivation in AI

 Logic synthesis

 ...

2019/8/23

FLOLAC 2019 81

QSAT & Logic Synthesis
Boolean Matching

2019/8/23

FLOLAC 2019 82

Introduction

 Combinational
equivalence checking
(CEC)

 Known input
correspondence

 coNP-complete

 Well solved in practical
applications

… …

x1 x2 xn

f g

y1 y2 yn

2019/8/23

FLOLAC 2019 83

Introduction

 Boolean matching

 P-equivalence

 Unknown input
permutation

O(n!) CEC iterations

 NP-equivalence

 Unknown input negation
and permutation

 O(2nn!) CEC iterations

 NPN-equivalence

 Unknown input negation,
input permutation, and
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N

N

2019/8/23

FLOLAC 2019 84

Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=

2019/8/23

FLOLAC 2019 85

Introduction

 Motivations
 Theoretically

 Complexity in between
coNP (for all …) and
2 (there exists … for all …)
in the Polynomial Hierarchy (PH)

 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

2 2

2019/8/23

FLOLAC 2019 86

Introduction

 Prior methods

Complete
?

Function
type

Equivalence
type

Solution
type

Scalability

Spectral
methods

yes CS mostly P one – –

Signature
based methods

no mostly CS P/NP N/A – ~ ++

Canonical-form
based methods

yes CS mostly P one +

SAT based
methods

yes CS mostly P one/all +

BooM

(QBF/SAT-like)

yes CS / IS NPN one/all ++

CS: completely specified
IS: incompletely specified

2019/8/23

FLOLAC 2019 87

BooM: A Fast Boolean Matcher

Features of BooM

General computation framework

 Effective search space reduction techniques

Dynamic learning and abstraction

 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)

2019/8/23

FLOLAC 2019 88

Formulation

 Reduce NPN-equiv to 2 NP-equiv checks

 Matching f and g; matching f and g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

$。,x ((fc(x) gc(。(x))) (f(x) g(。(x))))

2019/8/23

FLOLAC 2019 89

Formulation

0-1 matrix representation of 。

 =1

bij (xj yi)aij (xj yi)

 =1

2019/8/23

FLOLAC 2019 90

Formulation

 Quantified Boolean formula (QBF) for NP-equivalence

 jC: cardinality constraint

 jA: /\i,j (aij (yi xj)) (bij (yi xj))

 Look for an assignment to a- and b-variables that satisfies
jC and makes the miter constraint

 = jA (f g) fc gc

unsatisfiable

 Refine jC iteratively in a sequence 0, 1, …, k, for i+1

 i through conflict-based learning

$a,$b,x,y (jC jA ((fc gc) (f g))

2019/8/23

FLOLAC 2019 91

BooM Flow

f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping i

SAT?

Solve miter

SAT?

No match

Match
found

Add learned
clause to i

i characterizes
all matches

How to compute
all matches?

Solve i

i=0

yes

no

i=i+1

no

yes

2019/8/23

FLOLAC 2019 92

NP-Equivalence
Conflict-based Learning

Observation

0 1 1

。

f g

1 0 1

1 0

1 0 1

From SAT 1

≠ How to avoid
these 6 mappings

at once?

2019/8/23

FLOLAC 2019 93

a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation

(a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33)

NP-Equivalence
Conflict-based Learning

f g

1 0

。

1 0 1 0 1 1

1 0 1

2019/8/23

FLOLAC 2019 94

NP-Equivalence
Conflict-based Learning

 Proposition:

If f(u) g(v) with v = 。(u) for some 。 satisfying i,
then the learned clause \/ij lij for literals

lij = (vi uj) ? aij : bij

excludes from i the mappings {。 | 。(u) = 。(u)}

 Proposition:

The learned clause prunes n! infeasible mappings

 Proposition:

The refinement process 0, 1, …, k is bounded by 22n

iterations

2019/8/23

FLOLAC 2019 95

NP-Equivalence
Abstraction

 Abstract Boolean matching
 Abstract

f(x1,…,xk,xk+1,…,xn) to
f(x1,…,xk,z,…,z) =
f*(x1,…,xk,z)

 Match g(y1,…,yn) against
f*(x1,…,xk,z)

 Infeasible matching
solutions of f* and g are
also infeasible for f and g

y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N

2019/8/23

FLOLAC 2019 96

NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of

negation/permutation

Similar cardinality constraints, except for allowing
multiple y-variables mapped to z

 =1

 =1

2019/8/23

FLOLAC 2019 97

NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is
valid for concrete model

Simplified matching in reduced Boolean
space

2019/8/23

FLOLAC 2019 98

P-Equivalence
Conflict-based Learning

 Proposition:

If f(u) g(v) with v = (u) for some satisfying
i, then the learned clause \/ij lij for literals

lij = (vi=0 and uj=1) ? aij :

excludes from i the mappings { | (u) = (u)}

2019/8/23

FLOLAC 2019 99

P-Equivalence
Abstraction

Abstraction enforces search in biased truth
assignments and makes learning strong

 For f* having k support variables, a learned
clause converted back to the concrete model
consists of at most (k–1)(n–k+1) literals

2019/8/23

FLOLAC 2019 100

Practical Evaluation

BooM implemented in ABC using MiniSAT

A function is matched against its
synthesized, and input-permuted/negated
version
Match individual output functions of MCNC,

ISCAS, ITC benchmark circuits
717 functions with 10~39 support variables and

15~2160 AIG nodes

 Time-limit 600 seconds

Baseline preprocessing exploits symmetry,
unateness, and simulation for initial matching

2019/8/23

FLOLAC 2019 101

Practical Evaluation

(P-equivalence; find all matches)

Learning Abstraction

2019/8/23

FLOLAC 2019 102

Practical Evaluation

P-equivalence NP-equivalence

2019/8/23

FLOLAC 2019 103

Practical Evaluation

(runtime after same preprocessing;
P-equivalence; find one match)

BooM vs. DepQBF

2019/8/23

FLOLAC 2019 104

QSAT & Logic Synthesis
Relation Determinization

2019/8/23

FLOLAC 2019 105

Relation vs. Function

 Relation R(X, Y)
 Allow one-to-many

mappings

Can describe non-
deterministic
behavior

 More generic than
functions

 Function F(X)
 Disallow one-to-many

mappings

Can only describe
deterministic
behavior

 A special case of
relation

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

11

10

01

00

x1x2 y1y2

f1 =x1 x2

f2 = x1 x2

2019/8/23

FLOLAC 2019 106

Relation

 Total relation

 Every input element is
mapped to at least one
output element

 Partial relation

 Some input element is
not mapped to any
output element

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y

2019/8/23

FLOLAC 2019 107

Relation

A partial relation can be totalized

Assume that the input element not mapped to
any output element is a don’t care

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y) y. R(X, y)

2019/8/23

FLOLAC 2019 108

Motivation

 Applications of Boolean relation

 In high-level design, Boolean relations can be used to
describe (nondeterministic) specifications

 In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits

Boolean relations are more powerful than traditional don’t-

care representations

11

10

01

00

11

10

01

00

x1x2 y1y2

System
Spec.

x1

x2

y1

y2

2019/8/23

FLOLAC 2019 109

Motivation

Relation determinization

 For hardware implement of a system, we need
functions rather than relations

Physical realization are deterministic by nature

One input stimulus results in one output response

 To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

2019/8/23

FLOLAC 2019 110

Motivation

Example

f1 =x1 x2

f2 = x1 x2

f1 =x2

f2 = x1

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2

2019/8/23

FLOLAC 2019 111

Relation Determinization

Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract

functions from it?

For a deterministic total relation, we can
uniquely extract the corresponding
functions

2019/8/23

FLOLAC 2019 112

Relation Determinization

Approaches to relation determinization

 Iterative method (determinize one output at a
time)

BDD- or SOP-based representation

 Not scalable

 Better optimization

AIG representation

 Focus on scalability with reasonable optimization
quality

Non-iterative method (determinize all ouputs
at once)

QBF solving

2019/8/23

FLOLAC 2019 113

Iterative Relation Determinization

 Single-output relation
 For a single-output total relation R(X, y), we derive a

function f for variable y using interpolation

11

10

01

00

1

0

x1x2 y
I

φB
φA

φA : R(X,0)

Minimal care onset of f

φB : R(X,1)

Minimal care offset of f

00

11

 R(X,0) R(X,1) UNSAT

10

2019/8/23

FLOLAC 2019 114

Iterative Relation Determinization

 Multi-output relation

 Two-phase computation:

1. Backward reduction

 Reduce to single-output case

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)

2. Forward substitution

 Extract functions

2019/8/23

FLOLAC 2019 115

Iterative Relation Determinization

Example

Phase1: (expansion reduction)
$y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)

$y2.R
(3)(X, y1, y2) → R(2)(X, y1)

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)

R(3)(X, y1, y2) → R(3)(X, f1(X), y2) → y2 = f2 (X)

R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)
f1

X

f2

X

2019/8/23

FLOLAC 2019 116

Non-Iterative Relation Determinization

Solve QBF

x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to

the functions we want

2019/8/23

FLOLAC 2019 117

Stochastic Boolean
Satisfiability

2019/8/23

Decision under Uncertainty
(Example 1)

 Probabilistic planning: Robot charge [Huang 06]

 States: {S0, …, S15}

Initial state: S0; goal state: S15

 Actions: {, , , }
 Succeed with prob. 0,8

 Proceed to its right w.r.t. the intended direction with prob. 0,2

2019/8/23 FLOLAC 2019 118

S1 S2 S3

S5 S6 S7

S12 S13 S14

S4

S9 S10 S11S8

Decision under Uncertainty
(Example 2)

 Probabilistic planning: Sand-Castle-67 [Majercik, Littman
98]

 States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}

 Initial state: (0,0); goal states: (0,1), (1,1)

 Actions: {dig-moat, erect-castle}

2019/8/23 FLOLAC 2019 119

dig-moat

erect-castle

moat castle

1.0 0.5 1.0 0.0

FT FT

moat castle

0.0 1.0

FT FT

castle

0.75

FT
castle

’

1.0 0.5

FT

moat

0.67 0.25

FT

Decision under Uncertainty
(Example 3)

 Evaluation of probabilistic circuits [Lee, J 14]

 Each gate produces correct value under a certain
probability

 Query about the average output error rate, the
maximum error rate under some input assignment, etc.

2019/8/23 FLOLAC 2019 120

Decision under Uncertainty
(Example 4)

 Belief network inference [Dechter 96, Peot 98]

 BN queries, e.g., belief assessment, most probable
explanation, maximum a posteriori hypothesis,
maximum expected utility

2019/8/23 FLOLAC 2019 121

Introduction
The Satisfiability Family

Boolean satisfiability (SAT)

Sharp-SAT (#SAT)

Quantified Boolean satisfiability (QSAT)

Stochastic Boolean satisfiability (SSAT)

2019/8/23 FLOLAC 2019 122

Introduction
The Satisfiability Family – SAT

 The Boolean satisfiability (SAT)
problem asks whether a given
Conjunctive Normal Form (CNF)
formula can be satisfied under
some assignment to the variables

 E.g.,

 (a+b+c)(a+c)(b+d)(a) is
satisfiable under (a,b,c,d)=(0,0,0,1)

 (a+b+c)(a+c)(b)(a) is
unsatisfiable

 The first known NP-complete
problem [Cook 71]

2019/8/23 FLOLAC 2019 123

P

PSPACE

coNP NP

2 2

Introduction
The Satisfiability Family – #SAT

The #SAT problem asks the number of
satisfying solutions to a given CNF formula
 E.g., (a+b+c)(a+c)(b+d)(a+b) has five

solutions, which are (a,b,c,d) = (0,0,0,1),
(1,1,-,-)

A #P-complete problem

A.k.a. model counting
Exact vs. approximate model counting

Weighted model counting: variables are weighted
under a function 𝑤:𝑣𝑎𝑟(𝜙)→[0,1]

 Compute the sum of weights of satisfying assignments
of 𝜙

2019/8/23 FLOLAC 2019 124

Introduction
The Satisfiability Family – QBF

 A quantified Boolean formula (QBF)
is often written in prenex form as
Q1 x1, …, Qn xn. j

for Qi {, $} and j a
quantifier-free CNF formula

 E.g., a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

 QBF satisfiability is PSPACE-complete

2019/8/23 FLOLAC 2019 125

prefix matrix

P

PSPACE

coNP NP

2 2

Introduction
The Satisfiability Family – QBF

 A game interpretation of QBF
 Two-player game played by $-

player (to satisfy the formula) and
-player (to falsity the formula)

2019/8/23 FLOLAC 2019 126

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

Introduction
The Satisfiability Family – SSAT

 Syntax of SSAT formula
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Prefix: 𝑄1𝑣1…𝑄𝑛𝑣𝑛 with 𝑄𝑖∈ {∃,ℛ𝑝𝑖}

Randomized quantification ℛ𝑝𝑖𝑣𝑖: 𝑣𝑖 valuates to TRUE with

probability 𝑝𝑖

 Matrix:𝜙 𝑣1, … , 𝑣𝑛 being a quantifier-free
propositional formula often in CNF

2019/8/23 FLOLAC 2019 127

Introduction
The Satisfiability Family – SSAT

Semantics of SSAT formula
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Optimization version: Find the maximum SP

 Decision version: Determine whether SP 𝜃

 Satisfying probability (SP): Expectation of 𝜙
satisfaction w.r.t. the prefix
Pr ⊤ = 1; Pr ⊥ = 0

Pr Φ = max Pr Φ|¬𝑣 , Pr Φ|𝑣 , for outermost quantification
∃𝑣

Pr Φ = 1 − 𝑝 Pr Φ|¬𝑣 + 𝑝Pr Φ|𝑣 , for outermost
quantification ℛ𝑝𝑣

2019/8/23 FLOLAC 2019 128

Introduction
Stochastic Boolean Satisfiability

 A game interpretation of SSAT

 Two-player game played by $-
player (to maximize the
expectation of satisfaction) and
ℛ -player (to make random
moves)

2019/8/23 FLOLAC 2019 129

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

ℛ0.6a $b ℛ0.5c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) ℛ0.6a ℛ0.5c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

0.4 0.6

0.5 0.5 0.5 0.5 0.5

10 1 1 1 1 0 0

0110.5

1 1

1

Introduction
The Satisfiability Family – SSAT

Ex: Φ = ∃𝑥ℛ0.9𝑦. (𝑥 ∨ 𝑦)(¬𝑥 ∨ ¬𝑦)

2019/8/23 130

𝑥¬𝑥

𝑦𝑦 ¬𝑦¬𝑦

0.9

0.9 0.1

⊥ ⊥⊤ ⊤

FLOLAC 2019

Satisfying probability of Φ

Φ

Φ ቚ
¬𝑥

Φቚ
𝑥

Introduction
The Satisfiability Family – SSAT

 SSAT is a formalism of games against
nature for decision problems under
uncertainty [Papadimidriou 85]

 SSAT is PSPACE-complete

 Applications

 Probabilistic planning

 Verification of probabilistic circuits

 Belief network inference

 Trust management

2019/8/23 131FLOLAC 2019

P

PSPACE

coNP NP

2 2

Introduction
Prior SSAT Methods

Prior computation methods

General SSAT

Exact SSAT

 DC-SSAT: divide and conquer, DPLL-style search

 ZANDER: threshold pruning heuristics

Approximate SSAT

 APPSSAT: derive upper/lower bounds of satisfying

probability

 E-MAJSAT
MAXPLAN: pure literal, unit propagation, subproblem

memorization

ComPlan: compilation into d-DNNF

MaxCount: restricted to ℛ0.5

2019/8/23 132FLOLAC 2019

Introduction
Specialized SSAT of Our Focus

Random-exist quantified SSAT (RE-SSAT)
formula Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∀𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Exist-random quantified SSAT (ER-SAT,
a.k.a. E-MAJSAT) formula Φ = ∃𝑋ℛ𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∃𝑋∀𝑌. 𝜙(𝑋, 𝑌)

2019/8/23 FLOLAC 2019 133

FLOLAC 2019 134

Stochastic Boolean
Satisfiability

Random-Exist SSAT

2019/8/23

RE-SSAT
Main Results

 Exploit weighted model counting to handle
randomized quantification

 Use a SAT solver as a plug-in engine for SSAT
solving

 Stand-alone usage of SAT solver and model counter
without solver modification

 Directly benefit from the advancements of SAT solvers
and model counters

 Applicable to both exact and approximate RE-
SSAT solving

2019/8/23 FLOLAC 2019 135

RE-SSAT
Terms and Notations

Consider 𝜙 𝑥1, 𝑥2, 𝑦1, 𝑦2 = 𝑥1 ∧ ¬𝑥2 ∨ 𝑦1 ∨ 𝑦2
with weights 𝑤 𝑥1 = 0.3 and 𝑤 𝑥2 = 0.7

 𝜏1 = 𝑥1𝑥2 is a SAT minterm, since 𝜙|𝜏1 can be

satisfied by μ = 𝑦1𝑦2 𝑤 𝜏1 = 0.21

 𝜏1
+ = 𝑥1 is a SAT cube 𝑤 𝜏1

+ = 0.3

 𝜏2 = ¬𝑥1𝑥2 is an UNSAT minterm since 𝜙|𝜏2 is

unsatisfiable 𝑤 𝜏2 = 0.49

 𝜏2
+ = ¬𝑥1 is an UNSAT cube 𝑤 𝜏2

+ = 0.7

 The process of expanding 𝜏 to 𝜏+ is called
minterm generalization

2019/8/23 FLOLAC 2019 136

RE-SSAT
Basic Ideas

 Given Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌), Pr[Φ] equals

 sum of weights of all SAT minterms, or

 1 – sum of weights of all UNSAT minterms

 Collect all SAT and/or UNSAT minterms with
minterm generation into cubes

 SAT: minimal hitting set

 UNSAT: minimal UNSAT core

 Compute sum of weights of collected cubes

 Complement the collected cubes into a CNF formula

 Apply weighted model counting once (needed to cope
with the potential non-disjointness between cubes)

2019/8/23 FLOLAC 2019 137

RE-SSAT
Procedure for Solving RE-2SSAT

2019/8/23 FLOLAC 2019 138

Matrix solver

Selection solver

𝜏 is a SAT minterm

SAT generalization

𝜏 is a UNSAT minterm

UNSAT generalization

If 𝜓 is satisfiable

Block 𝜏+ from 𝜓

Compute weight

RE-SSAT
Example

Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙

𝜙 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑥 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ ¬𝑥 (¬𝑎 ∨ ¬𝑏 ∨
¬𝑑 ∨ 𝑦)(¬𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∨ ¬𝑦)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨
𝑧)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨ ¬𝑧)

2019/8/23 139FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 140

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 141

v 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 142

0 1 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 143

0 v 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 144

0 0 1 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 145

0 0 v 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 146

0 0 0 0

0 0 1 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 147

0 0 0 0

0 0 v 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 148

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 149

0 0 0 0

0 0 0 0

v 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 150

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑 ∨ ¬𝑎𝑐
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

Complement the collected SAT cubes
¬𝑎𝑏, 𝑎¬𝑑, ¬𝑎𝑐 into a CNF formula 𝜓 =
(𝑎 ∨ ¬𝑏)(¬𝑎 ∨ 𝑑)(𝑎 ∨ ¬𝑐)

Apply weighted model counting on 𝜓 with
weights 𝑤 𝑎 = 𝑤 𝑏 = 𝑤 𝑐 = 𝑤 𝑑 = 0.5
(recall Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙)

Obtain satisfying probability of Φ= 0.375

2019/8/23 151FLOLAC 2019

RE-SSAT
Experimental Settings

 SAT solver MiniSAT and weight model counter
Cachet were used

 Computation platform: Xeon 2.1 GHz CPU and
126 GB RAM

 Timeout limit: 1000 seconds

 Prior methods under comparison
 reSSAT: the proposed algorithm

 reSSAT-b: the proposed alg. w/o minterm-
generalization techniques

 DC-SSAT: state-of-the-art SSAT solver [3]

2019/8/23 152FLOLAC 2019

[3] S. Majercik and B. Boots. DCSSAT: A divide-and-conquer approach to solving
stochastic satisfiability problems efficiently, 2005

RE-SSAT
Planning Benchmark Experiments

 Converted from 2QBF planning instances of
strategic company problem [CEG97]

 Universal quantifiers in original 2QBFs were changed to
randomized ones with probability 0.5

 The converted RE-2SSAT formulas characterize the
winning probabilities of the exist-player of the original
QBF games

 60 formulas from QBFLIB were evaluated
 reSSAT-b solved 12 formulas

 DC-SSAT solved 30 formulas

 reSSAT solve all 60 formulas

2019/8/23 153FLOLAC 2019

[CEG97] M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language, 1997.

RE-SSAT
Planning Benchmark Experiments

2019/8/23 154FLOLAC 2019

RE-SSAT
Probabilistic Circuit Experiments

Obtained in VLSI domain for equivalence
checking of probabilistic circuits [LJ14]

 The formula evaluates the expected difference
between a deterministic specification against
its probabilistic implementation

 Encoded as RE-2SSAT formulas

2019/8/23 FLOLAC 2019 155

[LJ14] N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic design,
2014

RE-SSAT
Probabilistic Circuit Experiments

2019/8/23 156

reSSAT
(TO=60s)

reSSAT
(TO=1000s)

DC-SSAT
(TO=1000s)

circuit Answer UB LB UB LB runtime Prob.

c432 1.03E-02 1.07E-02 4.30E-05 1.05E-02 8.50E-05 TO TO

c499 1.56E-13 1.56E-13 1.56E-13 1.56E-13 1.56E-13 0.00 1.56E-13

c880 4.18E-02 9.78E-02 3.00E-06 8.18E-02 3.00E-06 TO TO

c1355 6.41E-02 3.20E-01 0 3.08E-01 0 TO TO

c1908 7.38E-04 8.83E-04 4.00E-05 7.38E-04 7.90E-05 210.86 7.38E-04

c3540 1.71E-03 1.17E-02 5.03E-04 1.17E-02 1.61E-03 217.42 1.71E-03

c5315 4.64E-01 6.28E-01 0 6.28E-01 0 TO TO

c7552 2.34E-01 2.35E-01 7.23E-03 2.35E-01 7.23E-03 TO TO

FLOLAC 2019

RE-SSAT
Random 𝑘-CNF Experiments

Used 𝑘-CNF with 𝑛 variables and 𝑚 clauses

 𝑘 equals 3, 4, 5, 6, 7, 8, and 9

 𝑛 equals 10, 20, 30, 40, and 50

 equals 𝑘 − 1, 𝑘, 𝑘 + 1, and 𝑘 + 2

Selected 300 formulas whose satisfying
probabilities evenly distributed in [0, 1]
for fair evaluation

2019/8/23 157

𝑚

𝑛

FLOLAC 2019

RE-SSAT
Random 𝑘-CNF Experiments

2019/8/23 158FLOLAC 2019

RE-SSAT
Summary

Proposed a new algorithm to solve
random-exist SSAT

 Plug-in SAT solver and model counter without
modification

Outperform prior methods in runtime and
memory efficiency

Extended to approximate SSAT with
upper/lower bound derivation

2019/8/23 159FLOLAC 2019

FLOLAC 2019 160

Stochastic Boolean
Satisfiability

Exist-Random SSAT

2019/8/23

ER-SSAT
Main Results

Adopt QBF clause selection technique to
ER-SSAT solving for effective search space
pruning

Propose three enhancement techniques

Applicable to both exact as well as
approximate ER-SSAT

2019/8/23 FLOLAC 2019 161

ER-SSAT
Naïve Solution

Given Φ = ∃𝑋ℛ𝑌. 𝜙 𝑋, 𝑌

Search among assignments 𝜏 to 𝑋

Compute ℛ𝑌.𝜙(𝜏, 𝑌) by weighted model

counting

 Find 𝜏∗ maximizing ℛ𝑌.𝜙(𝜏∗, 𝑌)

How to effectively prune search space?

2019/8/23 FLOLAC 2019 162

ER-SSAT
Clause Selection for QBF Solving

𝑋 = {𝑒1, 𝑒2, 𝑒3}, 𝑌 = {𝑎1, 𝑎2, 𝑎3}, 𝜙 𝑋, 𝑌 = 𝑖=1ٿ
3 𝐶𝑖

 𝐶1 = (𝑒1 ∨ 𝑎1 ∨ 𝑎2)

 𝐶2 = (𝑒1 ∨ 𝑒2 ∨ 𝑎1 ∨ ¬𝑎3)

 𝐶3 = (¬𝑒2 ∨ ¬𝑒3 ∨ 𝑎2 ∨ ¬𝑎3)

 𝑆 = {𝑠1, 𝑠2, 𝑠3}
 𝜓 𝑋, 𝑆 = 𝑠1 ≡ ¬𝑒1 ∧ 𝑠2 ≡ ¬𝑒1 ∧ ¬𝑒2 ∧ 𝑠3 ≡ 𝑒2 ∧ 𝑒3

𝑠𝑖 = ⊤ iff 𝐶𝑖 is selected, i.e., not satisfied by the
assignment on X variables [JM15]

E.g., (𝑒1=⊥, 𝑒2 =⊥, 𝑒3 =⊥) → (𝑠1= ⊤, 𝑠2 = ⊤)

 Prune search space by preventing selection of a
superset of the current clause set

2019/8/23 FLOLAC 2019 163

[JM15] M. Janota and J. Marques-Silva. Solving QBF by clause selection, 2015.

ER-SSAT
Clause Containment Learning (1/2)

Φ = ∃𝑋ℛ𝑌.𝜙(𝑋, 𝑌)

 𝜙(𝜏2, 𝑌) ⊨ 𝜙(𝜏1, 𝑌) → (Pr Φ|𝜏2 ≤ Pr Φ|𝜏1)

Prune assignments that select a superset
of selected clauses

Learning with selection variables

𝜓 𝑋, 𝑆 ← 𝜓 𝑋, 𝑆 ∧ 𝐶𝐿
 𝐶𝐿 = 𝑠𝐶¬ڀ

2019/8/23 FLOLAC 2019 164

ER-SSAT
Basic Algorithm

2019/8/23 FLOLAC 2019 165

ER-SSAT
Example

2019/8/23 166

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤
Current assignment:
Current max value:
Blocking clause:

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

ER-SSAT
Example (cont’d)

2019/8/23 167

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏¬𝑐¬𝑑
Current max value: 0.62
Blocking clause: (𝑐 ∨ 𝑎 ∨ 𝑑)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝒂 ∧ ¬𝒅 → (𝒚 ∨ 𝒛)

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤

ER-SSAT
Example (cont’d)

2019/8/23 168

0 0 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: 𝑎𝑏¬𝑐¬𝑑
Current max value: 0.65
Blocking clause: (𝑐)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)

ER-SSAT
Example (cont’d)

2019/8/23 169

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏𝑐𝑑
Current max value: 0.95
Blocking clause: (𝑏 ∨ ¬𝑐)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝒃 ∧ 𝒄) → 𝒙 ∨ 𝒛

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)(𝑐)

ER-SSAT
Example (cont’d)

2019/8/23 170

0 0 0 0

0 0 0 0

0 1 1 0

0 1 1 0

Current assignment: ¬𝑎𝑏𝑐𝑑
Current max value: 1
Blocking clause: ()

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)

ER-SSAT
Example (cont’d)

2019/8/23 171

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Current assignment:
Current max value: 1
Blocking clause: ()

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)()

ER-SSAT
Enhancement Techniques

Minimal clause selection

Select a minimal set of clauses by iterative
SAT refinement

Clause subsumption

 Precompute subsumption relation and remove
selected clauses that are subsumed by other
selected clauses

Partial assignment pruning

Discard literals from a learnt clause to obtain
an upper bound of satisfying probability

2019/8/23 FLOLAC 2019 172

ER-SSAT
Refined Algorithm

2019/8/23 FLOLAC 2019 173

ER-SSAT
Approximate ER-SSAT

Can terminate at any time and return the
current best solution

A lower bound of the satisfying probability

Keep deriving tighter lower bounds and
converge to the exact solution

2019/8/23 FLOLAC 2019 174

ER-SSAT
Experimental Setup

SAT solver MiniSAT

Weight model counter
 Cachet

 CUDD

Xeon 2.1 GHz CPU and 126 GB RAM

Competing solvers
 erSSAT: the proposed algorithm

 DC-SSAT: state-of-the-art SSAT solver

 ComPlan: E-MAJSAT solver (based on c2d)

 MAXCOUNT: maximum model counter

2019/8/23 175FLOLAC 2019

ER-SSAT
Application Formulas

QBF-converted formulas

Conformant probabilistic planning

Sand-castle [ML98]

MaxSat [FRS17]

Quantitative information flow [FRS17]

Program synthesis [FRS17]

Maximum probabilistic eq. checking [LJ14]

2019/8/23 FLOLAC 2019 176

S. Majercik and M. Littman. MAXPLAN: A new approach to probabilistic planning, 1998.

D. Fremont, M. Rabe, and S. Seshia. Maximum model counting, 2017.

N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic
design, 2014.

ER-SSAT
Experimental Results (1/2)

2019/8/23 FLOLAC 2019 177

ER-SSAT
Experimental Results (2/2)

Compared to DCSSAT

 Exactly solve or derive the tightest lower
bounds when DCSSAT solves a formula

Derive lower bounds when DCSSAT fails

Compared to MaxCount

Scale better on QBF-converted and planning

Derive tighter lower bounds on circuits

 Perform worse on QIF and PS

Derive more tightest lower bounds than
DCSSAT and MaxCount for all formulas

2019/8/23 FLOLAC 2019 178

ER-SSAT
Summary

Propose an algorithm to solve ER-SSAT

Clause containment learning

Approximate ER-SSAT

 Exactly solve or derive the tightest bounds
when state-of-the-art solvers solve a formula

Derive lower bounds when other solvers fail

2019/8/23 179FLOLAC 2019

FLOLAC 2019 180

Summary

We learned

 Representations of Boolean functions

 Boolean satisfiability

 Quantified Boolean satisfiability

 Stochastic Boolean satisfiability

 To explore logic synthesis and verification,
Berkeley ABC tool

 https://people.eecs.berkeley.edu/~alanmi/abc/

2019/8/23

