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Logic Synthesis

D

x y


Given: Functional description of finite-state 

machine F(Q,X,Y,,) where:

Q:  Set of internal states

X:  Input alphabet

Y:  Output alphabet

:  X x Q  Q    (next state function)

:  X x Q  Y    (output function)

Target: Circuit C(G, W) where:

G:   set of circuit components g  {gates, FFs, etc.}

W:  set of wires connecting G
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Backgrounds

 Historic evolution of data structures and tools in 
logic synthesis and verification
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Boolean Function Representation

Logic synthesis translates Boolean 
functions into circuits

We need representations of Boolean 
functions for two reasons:

 to represent and manipulate the actual circuit 
that we are implementing

 to facilitate Boolean reasoning

2019/8/23
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Boolean Space

 B = {0,1}
 B

2
= {0,1}{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4
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Boolean Function

 A Boolean function f over input variables: x1, x2, …, xm, is a 
mapping f: Bm  Y, where B = {0,1} and Y = {0,1,d}
 E.g.

 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111}  (characteristic function f1 = x2 )

 off-set (f = 0) 
 E.g. {100, 101}  (characteristic function f0 = x1 x2 )

 don’t-care set (f = d) 
 E.g. {000, 001}  (characteristic function fd = x1 x2 )

 f is an incompletely specified function if the don’t-care set is 
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely 

specified

2019/8/23
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Boolean Function

 A Boolean function f: Bn  B over variables 
x1,…,xn maps each Boolean valuation (truth 
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, 
f(1,1) = 0

0

0

1
1

x2

x1

x1

x2
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Boolean Function

 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology

 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

 f1 and f0 are sets, not functions!

 Boolean functions f and g are equivalent if v Bn. f(v) =
g(v) where v is a truth assignment or Boolean valuation

 A literal is a Boolean variable x or its negation x (or x, x) 
in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1
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Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions 

 Each subset f1  Bn of vertices in Bn forms a 
distinct Boolean function f with onset f1

x1x2x3 f

0 0 0    1

0 0 1    0

0 1 0    1

0 1 1    0

1 0 0   1

1 0 1    0

1 1 0    1

1 1 1    0
x1

x2

x3
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Boolean Operations

Given two Boolean functions:

f :  Bn  B

g : Bn  B

 h = f  g from AND operation is defined as

h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as

h1 = f1  g1; h0 = Bn \ h1

 h = f  from COMPLEMENT operation is defined as

h1 = f0; h0 = f1

2019/8/23
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Cofactor and Quantification

Given a Boolean function:
f :  Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = $xi. f  is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi

h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

2019/8/23
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Boolean Function Representation

 Some common representations:
 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF) 
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even 

subcircuits

 Specialized Boolean network
 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and 

weaknesses (no single data structure is best for all 
applications)

2019/8/23
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Boolean Function Representation
Truth Table

 Truth table (function table for multi-valued 
functions):
The truth table of a function f : Bn  B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems

Example: f = abcd + abcd + abcd + 
abcd + abcd + abcd + 
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their 
canonical representations are isomorphic.

abcd f

0 0000 0

1 0001 1

2 0010 0

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 0

abcd f

8 1000 0

9 1001 1

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 1

15 1111 1

2019/8/23
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Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression 
with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’

|        Boolean constant (true or false)

|        <Boolean variable>

| formula “+” formula (OR operator)

| formula  “”  formula (AND operator)

|         formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is 

clear, e.g., f = x1 x2 + x3 + x4 x1
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Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form 
(DNF)

Example

j = ab + a’c + bc

2019/8/23



FLOLAC 2019 19

Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form 
(CNF)
 Dual of the SOP representation

Example 

 j= (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be 
converted to SOP using De Morgan’s law and the 
distributive law, and vice versa

2019/8/23
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Boolean Function Representation
Binary Decision Diagram

 BDD – a graph 
representation of Boolean 
functions

 A leaf node represents 
constant 0 or 1

 A non-leaf node
represents a decision node 
(multiplexer) controlled by 
some variable

 Can make a BDD 
representation canonical
by imposing the variable 
ordering and reduction 
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root 

node

c+d

d

2019/8/23
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Boolean Function Representation
Binary Decision Diagram

 Any Boolean function f can be written in term of 
Shannon expansion 

f = v fv + v fv

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by 

variable v represent two sub-functions fv and fv

v

0 1

f

fv fv

2019/8/23
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Boolean Function Representation
Binary Decision Diagram

 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

 Ordered:
cofactor variables are in the same order along all paths

xi1
< xi2

< xi3
< … < xin

 Reduced:
any node with two identical children is removed

two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a 
distinct logic function

a

c c

b

0 1

ordered

(a<c<b)

a

b c

c

0 1

not

ordered

b

a

b

0 1

f

b

0 1

f

reduce
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Boolean Function Representation
Binary Decision Diagram

 For a Boolean function, 
 ROBDD is unique with respect to a given variable ordering

 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
2019/8/23
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Boolean Function Representation
Boolean Network

 A Boolean network is a directed graph C(G,N) 
where G are the gates and N GG) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I G
Outputs: O G 
I O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 

2019/8/23
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Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g) N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:

FO(g) = {g’ | (g,g’) N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:

SUPPORT(g) = CONE(g) I

2019/8/23
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

1

5

3

4

7
8

9

2

2019/8/23
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Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates 

edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f

2019/8/23



FLOLAC 2019 28

Boolean Function Representation

 Truth table
 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node 

functions in a Boolean network

 POS
 Useful in SAT solving and Boolean reasoning 
 Rarely used in circuit synthesis (due to the asymmetric characteristics 

of NMOS and PMOS)

 ROBDD
 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

2019/8/23
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Circuit to CNF Conversion

 Naive conversion of circuit to CNF:
 Multiply out expressions of circuit until two level structure
 Example: y = x1x2 x2 ... xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed 

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of 

the circuit

2019/8/23
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Circuit to CNF Conversion

 Example
 Single gate:

 Circuit of connected gates:

b

a

c (a + b + c)(a + c)(b + c)
AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)

(2 + 3 + 5)(2 + 5)(3 + 5)

(2 + 3 + 6)(2 + 6)(3 + 6)

(4 + 5 + 7)(4 + 7)(5 + 7)

(5 + 6 + 8)(5 + 8)(6 + 8)

(7 + 8 + 9)(7 + 9)(8 + 9)

(9)

Justify to “1”

Is output always 0 ?

2019/8/23
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Circuit to CNF Conversion

Circuit to CNF conversion 

 can be done in linear size (with respect to the 
circuit size) if intermediate variables can be 
introduced

may grow exponentially in size if no 
intermediate variables are allowed

2019/8/23
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Propositional Satisfiability

2019/8/23
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Normal Forms

 A literal is a variable or its negation

 A clause (cube) is a disjunction (conjunction) of 
literals

 A conjunctive normal form (CNF) is a 
conjunction of clauses; a disjunctive normal 
form (DNF) is a disjunction of cubes

 E.g.,

CNF: (a+b+c)(a+c)(b+d)(a)

(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a

2019/8/23
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Satisfiability

 The satisfiability (SAT) problem asks whether a 
given CNF formula can be true under some 
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work 
‘mysteriously’ well on application CNFs with 
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and 

SMT (Satisfiability Modulo Theories) solver development

2019/8/23
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SAT Competition

http://www.satcompetition.org/PoS11/

2019/8/23
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SAT Solving 

 Ingredients of modern SAT solvers:
 DPLL-style search 

[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal 
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

2019/8/23
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Pre-Modern SAT Procedure

Algorithm DPLL(Φ)

{

while there is a unit clause {l} in Φ 

Φ = BCP(Φ, l); 

while there is a pure literal l in Φ 

Φ = assign(Φ, l); 

if all clauses of Φ satisfied   return true; 

if Φ has a conflicting clause   return false; 

l := choose_literal(Φ); 

return DPLL(assign(Φ,l))  DPLL(assign(Φ,l));

} 

2019/8/23
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DPLL Procedure

Chorological backtrack

E.g. 

a

b

c

0

0

0





1

1

T

~a ~b b ~c c d

{a,e}
{a,b,c}
{c,d}
{a,b,d}
{d,e}
{c,d,e}

~d

~e



~c

~c d



~a ~b
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Modern SAT Procedure 

Algorithm CDCL(Φ)
{

while(1)

while there is a unit clause {l} in Φ 

Φ = BCP(Φ, l); 

while there is a pure literal l in Φ 

Φ = assign(Φ, l); 

if Φ contains no conflicting clause

if all clauses of Φ are satisfied   return true; 

l := choose_literal(Φ); 

assign(Φ,l);

else

if conflict at top decision level   return false; 

analyze_conflict();

undo assignments;

Φ := add_conflict_clause(Φ); 

} 

2019/8/23
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Conflict Analysis & Clause Learning

 There can be many learnt 
clauses from a conflict

 Clause learning admits non-
chorological backtrack

 E.g.,

{x10587, x10588, 
x10592}

…

{x10374, x10582, 
x10578, x10373, x10629}

…

{x10646, x9444, x10373, 
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

2019/8/23
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Clause Learning as Resolution

 Resolution of two clauses C1x and C2x:

C1x C2x

C1C2

where x is the pivot variable and C1C2 is the resolvant, 
i.e., C1C2 = $x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of 
resolution steps
 Exercise: 

Find a resolution sequence leading to the learnt clause 

{x10374, x10582, x10578, x10373, x10629}

in the previous slides

2019/8/23
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Resolution

 Resolution is complete for SAT solving
 A CNF formula is unsatisfiable if and only if there exists 

a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()
2019/8/23
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SAT Certification

True CNF

Satisfying assignment (model)

Verifiable in linear time

False CNF

Resolution refutation

Potentially of exponential size 

2019/8/23
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Craig Interpolation

 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an 
interpolant I of A such that

1.   AI

2.   IB is UNSAT

3.   I refers only to the common 
variables of A and B

BA

I

I is an abstraction of A

2019/8/23
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Interpolant and Resolution Proof

 SAT solver may produce the resolution proof of an UNSAT 
CNF j

 For j= jAjB specified, the corresponding interpolant can 
be obtained in time linear in the resolution proof

jA jB

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]

2019/8/23
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Incremental SAT Solving

To solve, in a row, multiple CNF formulae, 
which are similar except for a few clauses, 
can we reuse the learnt clauses? 

What if adding a clause to j?

What if deleting a clause from j?

2019/8/23
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Incremental SAT Solving

MiniSat API

 void addClause(Vec<Lit> clause)

 bool solve(Vec<Lit> assumps)

 bool readModel(Var x) − for SAT results

 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit 
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then 
incrementally another SAT-solving executed.

Courtesy of Niklas Een

2019/8/23
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SAT & Logic Synthesis
Equivalence Checking

2019/8/23
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Combinational EC

 Given two combinational circuits C1 and C2, are 
their outputs equivalent under all possible input 
assignments?

x C1

C2x


?

y1

y2

2019/8/23
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Miter for Combinational EC

 Two combinational circuits C1 and C2 are 
equivalent if and only if the output of their “miter”

structure always produces constant 0

x 0?

C1

C2

2019/8/23
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Approaches to Combinational EC

Basic methods:

 random simulation

good at identifying inequivalent signals

 BDD-based methods

 structural SAT-based methods

x 0?

C1

C2

2019/8/23
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SAT & Logic Synthesis
Functional Dependency

2019/8/23
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Functional Dependency

f(x) functionally depends on g1(x), 
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)), 
denoted h(G(x))
Under what condition can function f be 

expressed as some function h over a set 
G={g1,…,gm} of functions ?

 h exists  $a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

2019/8/23
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Motivation

Applications of functional dependency
Resynthesis/rewiring

Redundant register removal 

BDD minimization

Verification reduction

…

f

g4
g3

g2

g1
target function
base functions

h

Boolean Network

2019/8/23
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BDD-Based Computation

BDD-based computation of h
hon = {y  Bm : y = G(x) and f(x) = 1, x  Bn} 

hoff = {y  Bm : y = G(x) and f(x) = 0, x  Bn}

Bn Bm

Gf(x) = 1

f(x) = 0

hon = $x.(yG)f

hoff = $x.(yG)f

2019/8/23
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BDD-Based Computation

Pros

 Exact computation of hon and hoff

Better support for don’t care minimization

Cons

 2 image computations for every choice of G

 Inefficient when |G| is large or when there are 
many choices of G

2019/8/23
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SAT-Based Computation

h exists 

$a,b such that f(a)f(b) and G(a)=G(b),

i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?

2019/8/23



FLOLAC 2019 58

SAT-Based Computation

 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit 

Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

Constraint 

Part

*y1

Assertion 

Constraints

Equality 

Constraints

2019/8/23
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Deriving h with Craig Interpolation

 Clause set A: CDFNon, y0

 Clause set B: CDFNoff, y0
*, (yiyi

*) for i =1,…,m
 I is an overapproximation of Img( fon ) and is disjoint from  

Img( foff )
 I only refers to y1,…, ym

 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

*y1

A B

Img(fon) Img(foff)
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Incremental SAT Solving

 Controlled equality constraints 

(yiyi
*)  (yi  yi

*  ai)(yi  yi
*  ai) 

with auxiliary variables ai

 Fast switch between target and base functions by unit 
assumptions over control variables

 Fast enumeration of different base functions

 Share learned clauses

ai = true  ith equality constraint is disabled 

2019/8/23
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SAT vs. BDD

 SAT

 Pros
 Detect multiple choices of 

G automatically
 Scalable to large |G|
 Fast enumeration of 

different target functions 
f

 Fast enumeration of 
different base functions G

 Cons
 Single feasible 

implementation of h

 BDD

 Cons
 Detect one choice of G at 

a time
 Limited to small |G|
 Slow enumeration of 

different target functions 
f

 Slow enumeration of 
different base functions G

 Pros
 All possible 

implementations of h

2019/8/23
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Practical Evaluation

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem

s5378 2794 179 52 25 398 283 173 1.2 18 1.6 20 0.6 18 7 51

s9234.1 5597 211 46 x 459 301 201 4.1 19 x x 1.7 19 194.6 149

s13207.1 8022 638 190 136 1930 802 x 15.6 22 31.4 78 15.3 22 x x

s15850.1 9785 534 18 9 907 402 x 23.3 22 82.6 94 7.9 22 x x

s35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --

s38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --

s38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164

b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 2.5 42

b14 9847 245 2 -- 245 2 -- 3.3 22 -- -- 5.2 22 -- --

b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --

b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --

b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --

b19 224624 6642 0 -- 7164 337 -- 8184.8 217 -- -- 11040.6 234 -- --

b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --

b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --

b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

SAT vs. BDD
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Practical Evaluation

0.001

0.01

0.1

1

10

100

1 50 99

Iteration

T
im

e
 (

lo
g

)

b19 (200k nodes) b18 (100k nodes)

b17 (30k nodes) b15 (10k nodes)

Incremental SAT
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Quantified Boolean 
Satisfiability
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Quantified Boolean Formula

 A quantified Boolean formula (QBF) is often 
written in prenex form (with quantifiers placed 
on the left) as

Q1 x1, …, Qn xn. j

for Qi  {, $} and j a quantifier-free formula 
 If j is further in CNF, the corresponding QBF is in the 

so-called prenex CNF (PCNF), the most popular QBF 
representation

 Any QBF can be converted to PCNF

prefix matrix
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Quantified Boolean Formula

Quantification order matters in a QBF

A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. j) 

is of level k if there are k quantifier 
alternations (i.e., changing from  to $ or 
from $ to ) from Q1 to Qi. 

 Example

a $b c d $e. j

level(a)=0, level(b)=1, level(c)=2, level(d)=2, 
level(e)=3
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Quantified Boolean Formula

Many decision problems can be 
compactly encoded in QBFs

 In theory, QBF solving (QSAT) 
is PSPACE complete
 The more the quantifier 

alternations, the higher the 
complexity in the Polynomial 
Hierarchy

 In practice, solvable QBFs are 
typically of size ~1,000 
variables

P

PSPACE

coNP NP

2 2
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QBF Solver

 QBF solver choices
 Data structures for formula representation

 Prenex vs. non-prenex

Normal form vs. non-normal form
 CNF, NNF, BDD, AIG, etc.

 Solving mechanisms
 Search, Q-resolution, Skolemization, quantifier elimination, etc.

 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube 
learning (from a satisfying assignment) are performed
 Example 

a $b $c d $e. (a+c)(a+c)(b+c+e)(b)(c+d+e)(c+e)(d+e)

from 00101, we learn cube abcd (can be further simplified to a)
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QBF Solving

 Example
))()()()()()(( ybabxbxaccybxcybxacyba 

 La,  Ra,

))()()()()(( ybbxcybxcybxcyb  ))()()(( bxbxccybx 

 Lx,  Rx,

))()()()(( ybcybcybcyb  ))()()(( ybbcycyb 

 Ub,  Ub,

))()(( cycycy 
 Pc,

 Ly,  Ry,
))(( cc )(c

}{true}{ false

 Py,

))()()(( bxbxccbx 

 Uc,

))()(( bxbxbx 

 Lx,  Rx,

)(b ))(( bb

}{true

}{true }{ false







$

cybxa $$$

)( ycbxa

)( cbxa

)( cbxa
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Q-Resolution

 Q-resolution on PCNF is similar to resolution on CNF, except that 
the pivots are restricted to existentially quantified variables and 
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally () 
quantified variables whose quantification levels are greater than 
any of the existentially ($) quantified variables in C1C2

 E.g., 
prefix: a $b c d $e 
-RED(a+b+c+d) = (a+b) 

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause
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Q-Resolution

 Example (cont’d)

 La,  Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc,  Rc,

}{ false

)( xba 

)( bx 

}{ false

 Lb,  Rb,

}{ false

)( cy  )(a

)( xac 

)(a

)(a

)(a

)( bx )( bxac )( cyxba )( cyba 

)(a

)(a

)(

cybxa $$$ ))()()()()()(( ybabxbxaccybxcybxacyba 
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Skolemization

 Skolemization and Skolem normal form
 Existentially quantified variables are 

replaced with function symbols

 QBF prefix contains only two 
quantification levels 
 $ function symbols,  variables

 Example

a $b c $d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions
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QBF Certification

 QBF certification
 Ensure correctness and, more importantly, provide useful 

information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications 

 False QBF: clause-resolution proof / Herbrand-function (HF) 
countermodel
 HF countermodel is more useful in practical applications 

 Solvers and certificates
 Skolemization-based solvers (e.g., sKizzo, squolem, Ebddres) 

can provide SFs 

 Search-based solvers (e.g., DepQBF) can be instrumented to 
provide resolution proofs
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QBF Certification

Solvers and certificates (prior to 2011) 

Solver Algorithm Certificate

True QBF False QBF

QuBE-cert search Cube resolution Clause resolution

yQuaffle search Cube resolution Clause resolution

Ebddres Skolemization Skolem function Clause resolution

sKizzo Skolemization Skolem function -

squolem Skolemization Skolem function Clause resolution
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QBF Certification

Incomplete picture of QBF certification 
(prior to 2011)

Missing piece found
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]

Syntactic to semantic certificate conversion 
Linear time [Balabanov, J, 2011 (ResQu)]

Syntactic Certificate Semantic Certificate

True QBF Cube-resolution proof Skolem-function model

False QBF Clause-resolution proof ?
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QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula 
negation
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ResQu

 A Skolem-function model (Herbrand-function 
countermodel) for a true (false) QBF can be 
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula

is recursively defined as follows.

j := clause | cube | clause  j | cube  j

 E.g., 

(a’+b)  ac  (b’+c’)  bc 

= ((a’+b)  (ac  ((b’+c’)  bc)))
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ResQu
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ResQu

 Example
 $ax$by$c

7654321 )()()()()()()( ybabxcbxacybxcybxacyba 

8)( ybxa 

 8)( bxa
 10)( bxa

9)(a

10)( ybxa 

9)( xa 
11)( xa 

11)(a

)(empty

 7)( ba

)2(

)3(

)1(

)4(

)5(
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QBF Certification

Applications of Skolem/Herbrand functions

 Program synthesis

Winning strategy synthesis in two player 
games

 Plan derivation in AI

 Logic synthesis

 ...
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QSAT & Logic Synthesis 
Boolean Matching
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Introduction

 Combinational 
equivalence checking 
(CEC)

 Known input 
correspondence

 coNP-complete

 Well solved in practical 
applications 

… …

x1 x2 xn

f g

y1 y2 yn
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Introduction

 Boolean matching 

 P-equivalence

 Unknown input 
permutation

O(n!) CEC iterations

 NP-equivalence

 Unknown input negation 
and permutation

 O(2nn!) CEC iterations

 NPN-equivalence

 Unknown input negation, 
input permutation, and 
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N



N
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Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=
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Introduction

 Motivations
 Theoretically

 Complexity in between 
coNP (for all …) and 
2 (there exists … for all …)
in the Polynomial Hierarchy (PH)

 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism 
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

2 2
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Introduction

 Prior methods

Complete 
?

Function 
type

Equivalence 
type

Solution 
type

Scalability

Spectral 
methods

yes CS mostly P one – –

Signature 
based methods

no mostly CS P/NP N/A – ~ ++

Canonical-form 
based methods

yes CS mostly P one +

SAT based 
methods

yes CS mostly P one/all +

BooM

(QBF/SAT-like)

yes CS / IS NPN one/all ++

CS: completely specified
IS:  incompletely specified
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BooM: A Fast Boolean Matcher

Features of BooM

General computation framework

 Effective search space reduction techniques

Dynamic learning and abstraction

 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)
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Formulation

 Reduce NPN-equiv to 2 NP-equiv checks

 Matching f and g; matching f and g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

$。,x ((fc(x)  gc(。(x)))  (f(x)  g(。(x))))
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Formulation

0-1 matrix representation of 。

 =1

bij  (xj  yi)aij  (xj  yi)

 =1
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Formulation

 Quantified Boolean formula (QBF) for NP-equivalence

 jC: cardinality constraint

 jA: /\i,j (aij  (yi  xj)) (bij  (yi  xj))

 Look for an assignment to a- and b-variables that satisfies 
jC and makes the miter constraint

 = jA  (f  g)  fc  gc

unsatisfiable

 Refine jC iteratively in a sequence 0, 1, …, k, for i+1

 i through conflict-based learning

$a,$b,x,y (jC  jA ((fc  gc)  (f  g))
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BooM Flow

f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping i

SAT?

Solve miter 

SAT?

No match

Match 
found

Add learned 
clause to i



i characterizes 
all matches

How to compute 
all matches?

Solve i  

i=0

yes

no

i=i+1

no

yes
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NP-Equivalence
Conflict-based Learning

Observation

0       1       1 

。

f g

1       0       1 

1 0

1        0       1 

From SAT 1

≠ How to avoid 
these 6 mappings 

at once?
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a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation

( a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33 )

NP-Equivalence
Conflict-based Learning

f g

1 0

。

1 0 1 0 1 1

1 0 1
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NP-Equivalence
Conflict-based Learning

 Proposition:

If f(u)  g(v) with v = 。(u) for some 。 satisfying i, 
then the learned clause \/ij lij for literals

lij = (vi  uj) ? aij : bij

excludes from i the mappings {。 | 。(u) = 。(u)}

 Proposition:

The learned clause prunes n! infeasible mappings

 Proposition:

The refinement process 0, 1, …, k is bounded by 22n

iterations
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NP-Equivalence
Abstraction

 Abstract Boolean matching
 Abstract 

f(x1,…,xk,xk+1,…,xn) to 
f(x1,…,xk,z,…,z) = 
f*(x1,…,xk,z) 

 Match g(y1,…,yn) against 
f*(x1,…,xk,z)

 Infeasible matching 
solutions of f* and g are 
also infeasible for f and g

y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N
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NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of 

negation/permutation

Similar cardinality constraints, except for allowing 
multiple y-variables mapped to z

 =1

 =1
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NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is 
valid for concrete model

Simplified matching in reduced Boolean 
space
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P-Equivalence
Conflict-based Learning

 Proposition: 

If f(u)  g(v) with v = (u) for some  satisfying 
i, then the learned clause \/ij lij for literals

lij = (vi=0 and uj=1) ? aij : 

excludes from i the mappings { | (u) = (u)}
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P-Equivalence
Abstraction

Abstraction enforces search in biased truth 
assignments and makes learning strong

 For f* having k support variables, a learned 
clause converted back to the concrete model 
consists of at most (k–1)(n–k+1) literals
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Practical Evaluation

BooM implemented in ABC using MiniSAT

A function is matched against its 
synthesized, and input-permuted/negated 
version
Match individual output functions of MCNC, 

ISCAS, ITC benchmark circuits
717 functions with 10~39 support variables and 

15~2160 AIG nodes

 Time-limit 600 seconds

Baseline preprocessing exploits symmetry, 
unateness, and simulation for initial matching
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Practical Evaluation

(P-equivalence; find all matches)

Learning Abstraction
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Practical Evaluation

P-equivalence NP-equivalence
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Practical Evaluation

(runtime after same preprocessing;
P-equivalence; find one match)

BooM vs. DepQBF
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QSAT & Logic Synthesis 
Relation Determinization
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Relation vs. Function

 Relation R(X, Y)
 Allow one-to-many 

mappings

Can describe non-
deterministic 
behavior

 More generic than 
functions

 Function F(X)
 Disallow one-to-many 

mappings 

Can only describe 
deterministic 
behavior

 A special case of 
relation

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

11

10

01

00

x1x2 y1y2

f1 =x1 x2

f2 = x1 x2
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Relation

 Total relation

 Every input element is 
mapped to at least one 
output element

 Partial relation

 Some input element is 
not mapped to any 
output element

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y
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Relation

A partial relation can be totalized

Assume that the input element not mapped to 
any output element is a don’t care

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y)  y.  R(X, y)
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Motivation

 Applications of Boolean relation

 In high-level design, Boolean relations can be used to 
describe (nondeterministic) specifications

 In gate-level design, Boolean relations can be used to 
characterize the flexibility of sub-circuits

Boolean relations are more powerful than traditional don’t-

care representations

11

10

01

00

11

10

01

00

x1x2 y1y2

System 
Spec.

x1

x2

y1

y2
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Motivation

Relation determinization

 For hardware implement of a system, we need 
functions rather than relations

Physical realization are deterministic by nature

One input stimulus results in one output response

 To simplify implementation, we can explore 
the flexibilities described by a relation for 
optimization
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Motivation

Example

f1 =x1 x2

f2 = x1 x2

f1 =x2

f2 = x1

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2
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Relation Determinization

Given a nondeterministic Boolean relation 
R(X, Y), how to determinize and extract 

functions from it?

For a deterministic total relation, we can 
uniquely extract the corresponding 
functions
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Relation Determinization

Approaches to relation determinization

 Iterative method (determinize one output at a 
time)

BDD- or SOP-based representation

 Not scalable

 Better optimization 

AIG representation

 Focus on scalability with reasonable optimization 
quality

Non-iterative method (determinize all ouputs 
at once)

QBF solving
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Iterative Relation Determinization

 Single-output relation
 For a single-output total relation R(X, y), we derive a 

function f for variable y using interpolation

11

10

01

00

1

0

x1x2 y
I

φB
φA

φA : R(X,0)

Minimal care onset of f

φB : R(X,1)

Minimal care offset of f

00

11

 R(X,0) R(X,1) UNSAT

10
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Iterative Relation Determinization

 Multi-output relation

 Two-phase computation:

1. Backward reduction

 Reduce to single-output case 

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)

2. Forward substitution

 Extract functions
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Iterative Relation Determinization

Example

Phase1: (expansion reduction)
$y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)

$y2.R
(3)(X, y1, y2)   → R(2)(X, y1) 

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)

R(3)(X, y1, y2)    → R(3)(X, f1(X), y2)        → y2 = f2 (X)

R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)
f1

X

f2

X
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Non-Iterative Relation Determinization

Solve QBF 

x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to 

the functions we want
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Stochastic Boolean 
Satisfiability
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Decision under Uncertainty 
(Example 1)

 Probabilistic planning: Robot charge [Huang 06]

 States: {S0, …, S15}

Initial state: S0; goal state: S15

 Actions: {, , , }
 Succeed with prob. 0,8

 Proceed to its right w.r.t. the intended direction with prob. 0,2
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S1 S2 S3

S5 S6 S7

S12 S13 S14

S4

S9 S10 S11S8



Decision under Uncertainty 
(Example 2)

 Probabilistic planning: Sand-Castle-67 [Majercik, Littman 
98]

 States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}

 Initial state: (0,0); goal states: (0,1), (1,1)

 Actions: {dig-moat, erect-castle}
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dig-moat

erect-castle

moat castle

1.0 0.5 1.0 0.0

FT FT

moat castle

0.0 1.0

FT FT

castle

0.75

FT
castle

’

1.0 0.5

FT

moat

0.67 0.25

FT



Decision under Uncertainty 
(Example 3)

 Evaluation of probabilistic circuits [Lee, J 14]

 Each gate produces correct value under a certain 
probability

 Query about the average output error rate, the 
maximum error rate under some input assignment, etc.
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Decision under Uncertainty
(Example 4)

 Belief network inference [Dechter 96, Peot 98]

 BN queries, e.g., belief assessment, most probable 
explanation, maximum a posteriori hypothesis, 
maximum expected utility
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Introduction
The Satisfiability Family

Boolean satisfiability (SAT)

Sharp-SAT (#SAT)

Quantified Boolean satisfiability (QSAT)

Stochastic Boolean satisfiability (SSAT)
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Introduction
The Satisfiability Family – SAT 

 The Boolean satisfiability (SAT) 
problem asks whether a given 
Conjunctive Normal Form (CNF) 
formula can be satisfied under 
some assignment to the variables

 E.g., 

 (a+b+c)(a+c)(b+d)(a) is 
satisfiable under (a,b,c,d)=(0,0,0,1)

 (a+b+c)(a+c)(b)(a) is 
unsatisfiable

 The first known NP-complete 
problem [Cook 71]
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Introduction
The Satisfiability Family – #SAT 

The #SAT problem asks the number of 
satisfying solutions to a given CNF formula
 E.g., (a+b+c)(a+c)(b+d)(a+b) has five 

solutions, which are (a,b,c,d) = (0,0,0,1), 
(1,1,-,-)

A #P-complete problem

A.k.a. model counting
Exact vs. approximate model counting

Weighted model counting: variables are weighted 
under a function 𝑤:𝑣𝑎𝑟(𝜙)→[0,1]

 Compute the sum of weights of satisfying assignments 
of 𝜙
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Introduction
The Satisfiability Family – QBF 

 A quantified Boolean formula (QBF) 
is often written in prenex form as
Q1 x1, …, Qn xn. j

for Qi  {, $} and j a 
quantifier-free CNF formula 

 E.g., a $b c $d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

 QBF satisfiability is PSPACE-complete
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prefix matrix

P

PSPACE

coNP NP
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Introduction
The Satisfiability Family – QBF 

 A game interpretation of QBF 
 Two-player game played by $-

player (to satisfy the formula) and 
-player (to falsity the formula)
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a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

a $b c $d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)



Introduction
The Satisfiability Family – SSAT 

 Syntax of SSAT formula 
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Prefix: 𝑄1𝑣1…𝑄𝑛𝑣𝑛 with 𝑄𝑖∈ {∃,ℛ𝑝𝑖}

Randomized quantification ℛ𝑝𝑖𝑣𝑖: 𝑣𝑖 valuates to TRUE with 

probability 𝑝𝑖

 Matrix:𝜙 𝑣1, … , 𝑣𝑛 being a quantifier-free 
propositional formula often in CNF
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Introduction
The Satisfiability Family – SSAT 

Semantics of SSAT formula 
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Optimization version: Find the maximum SP

 Decision version: Determine whether SP  𝜃

 Satisfying probability (SP): Expectation of 𝜙
satisfaction w.r.t. the prefix
Pr ⊤ = 1; Pr ⊥ = 0

Pr Φ = max Pr Φ|¬𝑣 , Pr Φ|𝑣 , for outermost quantification 
∃𝑣

Pr Φ = 1 − 𝑝 Pr Φ|¬𝑣 + 𝑝Pr Φ|𝑣 , for outermost 
quantification ℛ𝑝𝑣
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Introduction
Stochastic Boolean Satisfiability

 A game interpretation of SSAT

 Two-player game played by $-
player (to maximize the 
expectation of satisfaction) and 
ℛ -player (to make random 
moves)
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a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

ℛ0.6a $b ℛ0.5c $d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) ℛ0.6a ℛ0.5c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

0.4 0.6

0.5 0.5 0.5 0.5 0.5

10 1 1 1 1 0 0

0110.5

1 1

1



Introduction
The Satisfiability Family – SSAT 

Ex: Φ = ∃𝑥ℛ0.9𝑦. (𝑥 ∨ 𝑦)(¬𝑥 ∨ ¬𝑦)
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𝑥¬𝑥

𝑦𝑦 ¬𝑦¬𝑦

0.9

0.9 0.1

⊥ ⊥⊤ ⊤
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Satisfying probability of Φ

Φ

Φ ቚ
¬𝑥
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Introduction
The Satisfiability Family – SSAT

 SSAT is a formalism of games against 
nature for decision problems under 
uncertainty [Papadimidriou 85] 

 SSAT is PSPACE-complete

 Applications

 Probabilistic planning

 Verification of probabilistic circuits

 Belief network inference 

 Trust management
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P

PSPACE

coNP NP
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Introduction
Prior SSAT Methods

Prior computation methods

General SSAT

Exact SSAT

 DC-SSAT: divide and conquer, DPLL-style search

 ZANDER: threshold pruning heuristics

Approximate SSAT

 APPSSAT: derive upper/lower bounds of satisfying 

probability

 E-MAJSAT 
MAXPLAN: pure literal, unit propagation, subproblem

memorization

ComPlan: compilation into d-DNNF

MaxCount: restricted to ℛ0.5
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Introduction
Specialized SSAT of Our Focus

Random-exist quantified SSAT (RE-SSAT) 
formula Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∀𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Exist-random quantified SSAT (ER-SAT, 
a.k.a. E-MAJSAT) formula Φ = ∃𝑋ℛ𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∃𝑋∀𝑌. 𝜙(𝑋, 𝑌)

2019/8/23 FLOLAC 2019 133



FLOLAC 2019 134

Stochastic Boolean 
Satisfiability

Random-Exist SSAT
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RE-SSAT
Main Results

 Exploit weighted model counting to handle 
randomized quantification

 Use a SAT solver as a plug-in engine for SSAT 
solving

 Stand-alone usage of SAT solver and model counter 
without solver modification

 Directly benefit from the advancements of SAT solvers 
and model counters 

 Applicable to both exact and approximate RE-
SSAT solving
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RE-SSAT
Terms and Notations

Consider 𝜙 𝑥1, 𝑥2, 𝑦1, 𝑦2 = 𝑥1 ∧ ¬𝑥2 ∨ 𝑦1 ∨ 𝑦2
with weights 𝑤 𝑥1 = 0.3 and 𝑤 𝑥2 = 0.7

 𝜏1 = 𝑥1𝑥2 is a SAT minterm, since 𝜙|𝜏1 can be 

satisfied by μ = 𝑦1𝑦2 𝑤 𝜏1 = 0.21

 𝜏1
+ = 𝑥1 is a SAT cube  𝑤 𝜏1

+ = 0.3

 𝜏2 = ¬𝑥1𝑥2 is an UNSAT minterm since 𝜙|𝜏2 is 

unsatisfiable  𝑤 𝜏2 = 0.49

 𝜏2
+ = ¬𝑥1 is an UNSAT cube  𝑤 𝜏2

+ = 0.7

 The process of expanding 𝜏 to 𝜏+ is called 
minterm generalization
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RE-SSAT
Basic Ideas

 Given Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌), Pr[Φ] equals

 sum of weights of all SAT minterms, or

 1 – sum of weights of all UNSAT minterms

 Collect all SAT and/or UNSAT minterms with 
minterm generation into cubes

 SAT: minimal hitting set

 UNSAT: minimal UNSAT core

 Compute sum of weights of collected cubes

 Complement the collected cubes into a CNF formula

 Apply weighted model counting once (needed to cope 
with the potential non-disjointness between cubes)
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RE-SSAT
Procedure for Solving RE-2SSAT
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Matrix solver

Selection solver

𝜏 is a SAT minterm

SAT generalization

𝜏 is a UNSAT minterm

UNSAT generalization

If 𝜓 is satisfiable

Block 𝜏+ from 𝜓

Compute weight



RE-SSAT
Example

Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙

𝜙 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑥 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ ¬𝑥 (¬𝑎 ∨ ¬𝑏 ∨
¬𝑑 ∨ 𝑦)(¬𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∨ ¬𝑦)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨
𝑧)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨ ¬𝑧)
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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v 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 142

0 1 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 v 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 1 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 v 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 0 0

0 0 1 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 0 0

0 0 v 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10

FLOLAC 2019



RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 0 0

0 0 0 0

v 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑 ∨ ¬𝑎𝑐
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00     01      11     10 00     01      11     10

00

01

11

10

00

01

11

10
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RE-SSAT
Example (cont’d)

Complement the collected SAT cubes 
¬𝑎𝑏, 𝑎¬𝑑, ¬𝑎𝑐 into a CNF formula 𝜓 =
(𝑎 ∨ ¬𝑏)(¬𝑎 ∨ 𝑑)(𝑎 ∨ ¬𝑐)

Apply weighted model counting on 𝜓 with 
weights 𝑤 𝑎 = 𝑤 𝑏 = 𝑤 𝑐 = 𝑤 𝑑 = 0.5
(recall Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙)

Obtain satisfying probability of Φ= 0.375
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RE-SSAT
Experimental Settings

 SAT solver MiniSAT and weight model counter 
Cachet were used 

 Computation platform: Xeon 2.1 GHz CPU and 
126 GB RAM

 Timeout limit: 1000 seconds

 Prior methods under comparison
 reSSAT: the proposed algorithm

 reSSAT-b: the proposed alg. w/o minterm-
generalization techniques

 DC-SSAT: state-of-the-art SSAT solver [3]
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[3] S. Majercik and B. Boots. DCSSAT: A divide-and-conquer approach to solving 
stochastic satisfiability problems efficiently, 2005



RE-SSAT
Planning Benchmark Experiments

 Converted from 2QBF planning instances of 
strategic company problem [CEG97]

 Universal quantifiers in original 2QBFs were changed to 
randomized ones with probability 0.5

 The converted RE-2SSAT formulas characterize the 
winning probabilities of the exist-player of the original 
QBF games

 60 formulas from QBFLIB were evaluated
 reSSAT-b solved 12 formulas

 DC-SSAT solved 30 formulas

 reSSAT solve all 60 formulas
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[CEG97] M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language, 1997.



RE-SSAT 
Planning Benchmark Experiments
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RE-SSAT
Probabilistic Circuit Experiments

Obtained in VLSI domain for equivalence 
checking of probabilistic circuits [LJ14]

 The formula evaluates the expected difference 
between a deterministic specification against 
its probabilistic implementation

 Encoded as RE-2SSAT formulas
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[LJ14] N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic design, 
2014



RE-SSAT 
Probabilistic Circuit Experiments
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reSSAT
(TO=60s)

reSSAT
(TO=1000s)

DC-SSAT
(TO=1000s)

circuit Answer UB LB UB LB runtime Prob.

c432 1.03E-02 1.07E-02 4.30E-05 1.05E-02 8.50E-05 TO TO

c499 1.56E-13 1.56E-13 1.56E-13 1.56E-13 1.56E-13 0.00 1.56E-13

c880 4.18E-02 9.78E-02 3.00E-06 8.18E-02 3.00E-06 TO TO

c1355 6.41E-02 3.20E-01 0 3.08E-01 0 TO TO

c1908 7.38E-04 8.83E-04 4.00E-05 7.38E-04 7.90E-05 210.86 7.38E-04

c3540 1.71E-03 1.17E-02 5.03E-04 1.17E-02 1.61E-03 217.42 1.71E-03

c5315 4.64E-01 6.28E-01 0 6.28E-01 0 TO TO

c7552 2.34E-01 2.35E-01 7.23E-03 2.35E-01 7.23E-03 TO TO
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RE-SSAT
Random 𝑘-CNF Experiments

Used 𝑘-CNF with 𝑛 variables and 𝑚 clauses

 𝑘 equals 3, 4, 5, 6, 7, 8, and 9

 𝑛 equals 10, 20, 30, 40, and 50

 equals 𝑘 − 1, 𝑘, 𝑘 + 1, and 𝑘 + 2

Selected 300 formulas whose satisfying 
probabilities evenly distributed in [0, 1] 
for fair evaluation
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𝑚

𝑛
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RE-SSAT
Random 𝑘-CNF Experiments
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RE-SSAT 
Summary

Proposed a new algorithm to solve 
random-exist SSAT

 Plug-in SAT solver and model counter without 
modification

Outperform prior methods in runtime and 
memory efficiency

Extended to approximate SSAT with 
upper/lower bound derivation
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Stochastic Boolean 
Satisfiability

Exist-Random SSAT
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ER-SSAT
Main Results

Adopt QBF clause selection technique to 
ER-SSAT solving for effective search space 
pruning

Propose three enhancement techniques

Applicable to both exact as well as 
approximate ER-SSAT
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ER-SSAT 
Naïve Solution

Given Φ = ∃𝑋ℛ𝑌. 𝜙 𝑋, 𝑌

Search among assignments 𝜏 to 𝑋

Compute ℛ𝑌.𝜙(𝜏, 𝑌) by weighted model 

counting

 Find 𝜏∗ maximizing ℛ𝑌.𝜙(𝜏∗, 𝑌)

How to effectively prune search space?
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ER-SSAT 
Clause Selection for QBF Solving

𝑋 = {𝑒1, 𝑒2, 𝑒3}, 𝑌 = {𝑎1, 𝑎2, 𝑎3}, 𝜙 𝑋, 𝑌 = 𝑖=1ٿ
3 𝐶𝑖

 𝐶1 = (𝑒1 ∨ 𝑎1 ∨ 𝑎2)

 𝐶2 = (𝑒1 ∨ 𝑒2 ∨ 𝑎1 ∨ ¬𝑎3)

 𝐶3 = (¬𝑒2 ∨ ¬𝑒3 ∨ 𝑎2 ∨ ¬𝑎3)

 𝑆 = {𝑠1, 𝑠2, 𝑠3}
 𝜓 𝑋, 𝑆 = 𝑠1 ≡ ¬𝑒1 ∧ 𝑠2 ≡ ¬𝑒1 ∧ ¬𝑒2 ∧ 𝑠3 ≡ 𝑒2 ∧ 𝑒3

𝑠𝑖 = ⊤ iff 𝐶𝑖 is selected, i.e., not satisfied by the 
assignment on X variables [JM15]

E.g., (𝑒1=⊥, 𝑒2 =⊥, 𝑒3 =⊥) → (𝑠1= ⊤, 𝑠2 = ⊤)

 Prune search space by preventing selection of a 
superset of the current clause set
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[JM15] M. Janota and J. Marques-Silva. Solving QBF by clause selection, 2015.



ER-SSAT 
Clause Containment Learning (1/2)

Φ = ∃𝑋ℛ𝑌.𝜙(𝑋, 𝑌)

 𝜙(𝜏2, 𝑌) ⊨ 𝜙(𝜏1, 𝑌) → (Pr Φ|𝜏2 ≤ Pr Φ|𝜏1 )

Prune assignments that select a superset 
of selected clauses

Learning with selection variables

𝜓 𝑋, 𝑆 ← 𝜓 𝑋, 𝑆 ∧ 𝐶𝐿
 𝐶𝐿 = 𝑠𝐶¬ڀ
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ER-SSAT 
Basic Algorithm
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ER-SSAT
Example
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1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤
Current assignment:
Current max value:
Blocking clause:

00     01      11     10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)



ER-SSAT
Example (cont’d)

2019/8/23 167

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏¬𝑐¬𝑑
Current max value: 0.62
Blocking clause: (𝑐 ∨ 𝑎 ∨ 𝑑)

00     01      11     10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝒂 ∧ ¬𝒅 → (𝒚 ∨ 𝒛)

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤



ER-SSAT
Example (cont’d)

2019/8/23 168

0 0 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: 𝑎𝑏¬𝑐¬𝑑
Current max value: 0.65
Blocking clause: (𝑐)

00     01      11     10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)



ER-SSAT
Example (cont’d)

2019/8/23 169

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏𝑐𝑑
Current max value: 0.95
Blocking clause: (𝑏 ∨ ¬𝑐)
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∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝒃 ∧ 𝒄) → 𝒙 ∨ 𝒛

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)(𝑐)
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0 0 0 0

0 0 0 0

0 1 1 0

0 1 1 0

Current assignment: ¬𝑎𝑏𝑐𝑑
Current max value: 1
Blocking clause: ()
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∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Current assignment: 
Current max value: 1
Blocking clause: ()

00     01      11     10

00

01

11

10
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∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)()



ER-SSAT 
Enhancement Techniques

Minimal clause selection

Select a minimal set of clauses by iterative 
SAT refinement

Clause subsumption

 Precompute subsumption relation and remove 
selected clauses that are subsumed by other 
selected clauses

Partial assignment pruning

Discard literals from a learnt clause to obtain 
an upper bound of satisfying probability
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ER-SSAT 
Refined Algorithm
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ER-SSAT 
Approximate ER-SSAT 

Can terminate at any time and return the 
current best solution

A lower bound of the satisfying probability

Keep deriving tighter lower bounds and 
converge to the exact solution
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ER-SSAT 
Experimental Setup

SAT solver MiniSAT

Weight model counter
 Cachet

 CUDD

Xeon 2.1 GHz CPU and 126 GB RAM

Competing solvers
 erSSAT: the proposed algorithm

 DC-SSAT: state-of-the-art SSAT solver

 ComPlan: E-MAJSAT solver (based on c2d)

 MAXCOUNT: maximum model counter
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ER-SSAT 
Application Formulas

QBF-converted formulas

Conformant probabilistic planning

Sand-castle [ML98]

MaxSat [FRS17]

Quantitative information flow [FRS17]

Program synthesis [FRS17]

Maximum probabilistic eq. checking [LJ14]
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ER-SSAT 
Experimental Results (1/2)
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ER-SSAT 
Experimental Results (2/2)

Compared to DCSSAT

 Exactly solve or derive the tightest lower 
bounds when DCSSAT solves a formula

Derive lower bounds when DCSSAT fails

Compared to MaxCount

Scale better on QBF-converted and planning

Derive tighter lower bounds on circuits

 Perform worse on QIF and PS

Derive more tightest lower bounds than 
DCSSAT and MaxCount for all formulas
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ER-SSAT 
Summary

Propose an algorithm to solve ER-SSAT

Clause containment learning

Approximate ER-SSAT

 Exactly solve or derive the tightest bounds 
when state-of-the-art solvers solve a formula

Derive lower bounds when other solvers fail
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Summary

We learned

 Representations of Boolean functions

 Boolean satisfiability 

 Quantified Boolean satisfiability

 Stochastic Boolean satisfiability

 To explore logic synthesis and verification, 
Berkeley ABC tool

 https://people.eecs.berkeley.edu/~alanmi/abc/ 
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