Propositional Logic

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

FLOLAC 2019

Bow-Yaw Wang (Academia Sinica)

Propositional Logic

FLOLAC 2019 1 / 92

< ∃ ►

Outline

Introduction

2 Natural Deduction

- 3 Propositional logic as a formal language
- 4 Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

Logic and Reasoning

• Consider the following arguments:

Example

若火車誤點且車站沒有計程車,則小明開會就遲到。小明開會並沒有遲 到,而火車誤點。那麼車站就有計程車。

Example

如果下雨而且小華沒帶雨傘,則小華會淋溼。小華並沒有淋溼,而外面 正在下雨。那麼小華一定帶了雨傘。

• Both examples have the same structure:

$$p$$
火車誤點ト肉 q 車站有計程車小華帶雨傘 r 小明開會遲到小華淋溼If p and not q , then r . Not r . p . Hence q (若 p 且非 q , 則 r 。非 r , p 。則 q)

< ロト < 同ト < ヨト < ヨト

- We will develop a language to reason such arguments.
- Our langauge is based on propositions (or declarative sentences).
- Examples:
 - The sum of 3 and 5 equals 8.
 - Every even natural number is the sum of two prime numbers (Goldbach's conjecture).
 - All hobbits like mushrooms in their soup.
- A proposition can either be "true" or "false."
- Non-examples:
 - When will we have lunch?
 - Run!

- Certain sentences are the basic blocks of our language.
 - They are called <u>atomic</u> (or indecomposable) sentences.
- We will use *p*, *q*, *r*,... (possibly with sub- or super-scripts) to denote sentences.
- Examples:
 - Let p denote "I won the lottery last week."
 - Let q denote "I bought a lottery ticket."
 - Let r denote "I won last week's grand prize."
- In fact, p, q, and r are all atomic sentences.

Sentences

• Let p, q, r, \ldots be sentences.

- p : "I won the lottery last week."
- q : "I bought a lottery ticket."
- r : "I won last week's grand prize."
- We construct new sentences by the following connectives:
 - The <u>negation</u> of p (denoted by $\neg p$).
 - ★ It is **not** true that "I won the lottery last week."
 - The disjunction of p and q (denoted by $p \lor q$).
 - ★ "I won the lottery last week" or "I won last week's grand prize."
 - The conjunction of p and q (denoted by $p \wedge q$).
 - ★ "I won the lottery last week" and "I bought a lottery ticket."
 - The implication of r and p (denoted by $r \implies p$).
 - ★ "I won last week's grand prize" implies "I won the lottery last week."

• • = • • =

• If p, q, r are sentences, $p \land q$ and $(\neg r) \lor q$ are sentences.

•
$$(p \land q) \implies ((\neg r) \lor q)$$
 is also a sentence.

To reduce the number of parentheses, we adopt the following conventions:

Convention.

• Hence $p \wedge q \implies \neg r \lor q$ is indeed $(p \wedge q) \implies ((\neg r) \lor q)$.

Examples, Examples, Examples

• Let us rewrite our examples:

Example

若火車誤點且車站沒有計程車,則小明開會就遲到。小明開會並沒有遲 到,而火車誤點。那麼車站就有計程車。

- We have the following atomic sentences:
 p:火車誤點 | *q*:車站有計程車 | *r*:小明開會遲到
- In our language, we write:

 - ▶¬r (小明開會並沒有遲到)
 - p (火車誤點)
 - ▶ Hence q (車站就有計程車)

.

Examples, Examples, Examples

• Let us rewrite our examples:

Example

如果下雨而且小華沒帶雨傘,則小華會淋溼。小華並沒有淋溼,而外面 正在下雨。那麼小華一定帶了雨傘。

- We have the following atomic sentences:
 p:下雨 | q: 小華帶雨傘 | r: 小華淋溼
- In our language, we write:
 - · $p \land \neg q \implies r$ (如果下雨而且小華沒帶雨傘,則小華會淋溼)
 - ▶¬r (小華並沒有淋溼)
 - p (外面正在下雨)
 - ▶ Hence q (小華一定帶了雨傘)

.

Outline

Introduction

Natural Deduction

3 Propositional logic as a formal language

4 Semantics of propositional logic

- The meaning of logical connectives
- Soundness of Propositional Logic
- Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

5 Exercises

Natural Deduction

- In our examples, we (informally) infer new sentences.
- In natural deduction, we have a collection of proof rules.
 - These proof rules allow us to infer new sentences logically followed from existing ones.
- Suppose we have a set of sentences: $\phi_1, \phi_2, \ldots, \phi_n$ (called <u>premises</u>), and another sentence ψ (called a <u>conclusion</u>).
- The notation

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

is called a sequent.

- A sequent is valid if a proof (built by the proof rules) can be found.
- We will try to build a proof for our examples. Namely,

$$p \wedge \neg q \implies r, \neg r, p \vdash q.$$

Proof Rules for Natural Deduction – Conjunction

- Suppose we want to prove a conclusion $\phi \land \psi$. What do we do?
 - Of course, we need to prove both ϕ and ψ so that we can conclude $\phi \wedge \psi.$
- Hence the proof rule for conjunction is

$$\frac{\phi \quad \psi}{\phi \land \psi} \land i$$

- Note that premises are shown above the line and the conclusion is below. Also, ∧i is the name of the proof rule.
- ► This proof rule is called "conjunction-introduction" since we introduce a conjunction (∧) in the conclusion.

Proof Rules for Natural Deduction – Conjunction

- For each connective, we have introduction proof rule(s) and also elimination proof rule(s).
- Suppose we want to prove a conclusion ϕ from the premise $\phi \wedge \psi$. What do we do?
 - We don't do any thing since we know ϕ already!
- Here are the elimination proof rules:

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

- The rule ∧e₁ says: if you have a proof for φ ∧ ψ, then you have a proof for φ by applying this proof rule.
- Why do we need two rules?
 - Because we want to manipulate syntax only.

Prove $p \land q, r \vdash q \land r$.

Proof.

We are looking for a proof of the form:

 $p \wedge q \quad r$ \vdots $q \wedge r$

			୬ବଙ
Bow-Yaw Wang (Academia Sinica)	Propositional Logic	FLOLAC 2019	14 / 92

Example

Prove $p \land q, r \vdash q \land r$.

Proof.

We are looking for a proof of the form:

$$\frac{p \wedge q}{q \wedge r} \wedge e_2 \quad r \\ \frac{q \wedge r}{q \wedge r} \wedge i$$

We will write proofs in lines:

1
$$p \land q$$
 premise
2 r premise
3 q $\land e_2$ 1
4 $q \land r$ $\land i$ 3, 2

- Suppose we want to prove ϕ from a proof for $\neg \neg \phi$. What do we do?
 - There is no difference between ϕ and $\neg\neg\phi$. The same proof suffices!
- Hence we have the following proof rules:

$$\frac{\phi}{\phi}$$
 $\neg \neg \phi$ $\neg \neg e$

Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$.

Proof.

We are looking for a proof like:

$$p \neg \neg (q \wedge r)$$

 \vdots
 $\neg \neg p \wedge r$

			2.40
Bow-Yaw Wang (Academia Sinica)	Propositional Logic	FLOLAC 2019	16 / 92

化白龙 化间接 化苯基苯化苯基

Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$.

Proof.

We are looking for a proof like:

$$\frac{p}{\frac{q \wedge r}{\neg \neg p} \neg \neg i} \frac{\frac{\neg \neg (q \wedge r)}{q \wedge r}}{\frac{q \wedge r}{r} \wedge e_2} \neg \neg e$$

3ow-Yaw Wang	(Academia Sinica)
--------------	-------------------

э

Image: A image: A

< 行

Example

Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$.

Proof.

We are looking for a proof like:

1 p premise
2
$$\neg \neg (q \land r)$$
 premise
3 $\neg \neg p$ $\neg \neg i$ 1
4 $q \land r$ $\neg \neg e$ 2
5 r $\land e_2$ 4
6 $\neg \neg p \land r$ $\land i$ 3, 5

Proof Rules for Natural Deduction – Implication

- Suppose we want to prove ψ from proofs for ϕ and $\phi \implies \psi$. What do we do?
 - We just put the two proofs for ϕ and $\phi \implies \psi$ together.
- Here is the proof rule:

$$rac{\phi \quad \phi \implies \psi}{\psi} \implies e$$

- This proof rule is also called modus ponens.
- Here is another proof rule related to implication:

$$\frac{\phi \implies \psi \quad \neg \psi}{\neg \phi} MT$$

• This proof rule is called *modus tollens*.

Prove
$$p \implies (q \implies r), p, \neg r \vdash \neg q$$
.

Proof.

$$1 \quad p \implies (q \implies r) \quad \text{premise}$$

$$2 \quad p \qquad \qquad \text{premise}$$

$$3 \quad \neg r \qquad \qquad \text{premise}$$

$$4 \quad q \implies r \qquad \qquad \implies e \ 2, \ 1$$

$$5 \quad \neg q \qquad \qquad MT \ 4, \ 3$$

Bow-Yaw Wang	(Academia Sinica)	
--------------	-------------------	--

・ロト ・ 日 ト ・ 目 ト ・

æ

Proof Rules for Natural Deduction – Implication

• Suppose we want to prove $\phi \implies \psi$. What do we do?

- We assume ϕ to prove ψ . If succeed, we conclude $\phi \implies \psi$ without any assumption.
- Note that ϕ is added as an assumption and then removed so that $\phi \implies \psi$ does not depend on ϕ .
- We use "box" to simulate this strategy.
- Here is the proof rule:

$$\begin{array}{c} \phi \\ \vdots \\ \psi \\ \phi \implies \psi \end{array} \implies i$$

• At any point in a box, you can only use a sentence ϕ before that point. Moreover, no box enclosing the occurrence of ϕ has been closed.

Bow-Yaw Wang (Academia Sinica)

Example

Prove $\neg q \implies \neg p \vdash p \implies \neg \neg q$.

Proof.

$$\boxed{ \begin{array}{c} \neg q \implies \neg p & \neg p \\ \hline \neg \neg q & MT \\ \hline \hline p \implies \neg \neg q & M \\ \hline \end{array} }$$

Bow-Yaw Wang (Academia Sinica)

Theorems

Example	
Prove $\vdash p \implies p$.	

Proof.

$$\begin{array}{c|c} 1 & p & \text{assumption} \\ 2 & p \implies p & \implies i \ 1 - 1 \end{array}$$

In the box, we have $\phi \equiv \psi \equiv p$.

Definition

A sentence ϕ such that $\vdash \phi$ is called a theorem.

Image: A Image: A

- (日)

Example

Prove
$$p \land q \implies r \vdash p \implies (q \implies r)$$
.

Proof.

1	$p \wedge q \implies r$	premise		-	
2	р	assumption			
3	q	assumption]		
4	$p \wedge q$	∧ <i>i</i> 2, 3			
5	r	\implies e 4, 1			
6	$q \implies r$	\implies i 3-5			
7	$p \Longrightarrow (q \Longrightarrow r)$	\implies i 2-6			

イロト イヨト イヨト イヨ

Proof Rules for Natural Deduction - Disjunction

- Suppose we want to prove $\phi \lor \psi$. What do we do?
 - We can either prove ϕ or ψ .
- Here are the proof rules:

$$\frac{\phi}{\phi \lor \psi} \lor i_1 \qquad \qquad \frac{\psi}{\phi \lor \psi} \lor i_2$$

• Note the symmetry with $\wedge e_1$ and $\wedge e_2$.

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

 Can we have a corresponding symmetric elimination rule for disjunction? Recall

$$\frac{\phi \ \psi}{\phi \land \psi} \land i$$

Proof Rules for Natural Deduction - Disjunction

• Suppose we want to prove χ from $\phi \lor \psi$. What do we do?

- We assume ϕ to prove χ and then assume ψ to prove χ .
- If both succeed, χ is proved from $\phi \lor \psi$ without assuming ϕ and ψ .
- Here is the proof rule:

$$\frac{\phi \lor \psi \quad \begin{array}{c} \phi \\ \vdots \\ \chi \end{array} \quad \begin{array}{c} \psi \\ \vdots \\ \chi \end{array}}{\chi} \lor e$$

• In addition to nested boxes, we may have parallel boxes in our proofs.

Recall that our syntax does not admit commutativity.

Example

Prove $p \lor q \vdash q \lor p$.

Proof.

$$\frac{p \lor q \quad \boxed{\frac{p}{q \lor p} \lor i_2}}{q \lor p} \quad \boxed{\frac{q}{q \lor p} \lor i_1}_{\forall e}$$

Example

Prove $q \implies r \vdash p \lor q \implies p \lor r$.

Proof.

1	$q \implies r$	premise	
2	$p \lor q$	assumption	
3	р	assumption]
4	$p \lor r$	$\vee i_1$ 3	
5	q	assumption	1
6	r	\implies e 5, 1	
7	$p \lor r$	∨ <i>i</i> 2 6	j
8	$p \lor r$	∨ <i>e</i> 2, 3-4, 5-7	
9	$p \lor q \implies p \lor r$	\implies i 2-8	

2

ヘロ・スピ・スピ・スピー

Example

Prove $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$.

Proof.

1 $p \wedge (q \vee r)$ premise 2 p $\wedge e_1 1$ 3 q∨r $\wedge e_2 1$ 4 q assumption 5 $p \wedge q$ ∧*i* 2, 4 6 $(p \wedge q) \vee (p \wedge r) \vee i_1 5$ 7 r assumption 8 $p \wedge r$ ∧i 2, 7 9 $(p \land q) \lor (p \land r) \lor i_2 8$ 10 $(p \land q) \lor (p \land r) \lor e 3, 4-6, 7-9$

Example

Prove $(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$.

Proof.

1	$(p \land q) \lor (p \land r)$	premise
2	$p \wedge q$	assumption
3	p	$\wedge e_1 2$
4	q	∧ <i>e</i> ₂ 2
5	$q \lor r$	$\vee i_1$ 4
6	$p \land (q \lor r)$	∧ <i>i</i> 3, 5
7	$p \wedge r$	assumption
8	р	$\wedge e_1$ 7
9	r	∧ <i>e</i> ₂ 7
10	$q \lor r$	∨ <i>i</i> ₂ 9
11	$p \land (q \lor r)$	∧ <i>i</i> 8, 10
12	$p \land (q \lor r)$	∨ <i>e</i> 1, 2-6, 7-11

Definition

Contradictions are sentences of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$.

• Examples:

• $p \land \neg p, \neg (p \lor q \implies r) \land (p \lor q \implies r).$

- Logically, any sentence can be proved from a contradiction.
 - If 0 = 1, then $100 \neq 100$.
- Particularly, if ϕ and ψ are contradictions, we have $\phi \dashv \vdash \psi$.
 - $\phi \dashv \vdash \psi$ means $\phi \vdash \psi$ and $\psi \vdash \phi$ (called provably equivalent).
- Since all contradictions are equivalent, we will use the symbol ⊥ (called "bottom") for them.
- We are now ready to discuss proof rules for negation.

A (1) > A (2) > A (2)

• Since any sentence can be proved from a contradiction, we have

$$\frac{\perp}{\phi} \perp e$$

• When both ϕ and $\neg \phi$ are proved, we have a contradiction.

$$\frac{\phi \quad \neg \phi}{\perp} \ \neg e$$

The proof rule could be called ⊥i. We use ¬e because it eliminates a negation.

Example

Prove $\neg p \lor q \vdash p \implies q$.

Proof.

1	$ eg p \lor q$	premise	
2	$\neg p$	assumption	
3	р	assumption	1
4	\perp	<i>¬e</i> 3, 2	
5	q	<i>⊥e</i> 4	
6	$p \implies q$	\implies i 3-5	
7	q	assumption	
8	р	assumption]
9	q	сору 7	
10	$p \implies q$	\implies i 8-9	
11	$p \implies q$	∨ <i>e</i> 1, 2-6, 7-10	

- Suppose we want to prove $\neg \phi$. What do we do?
 - We assume ϕ and try to prove a contradiction. If succeed, we prove $\neg \phi$.
- Here is the proof rule:

Example

Prove $p \implies q, p \implies \neg q \vdash \neg p$.

Proof.

1	$p \implies q$	premise	
2	$p \implies \neg q$	premise	
3	р	assumption	-
4	q	\implies e 3, 1	
5	$\neg q$	\implies e 3, 2	
6	\perp	<i>¬e</i> 4, 5	_
7	$\neg p$	<i>¬i</i> 3-6	

<ロ> <四> <四> <四> <四> <四</p>
Example

Example

Prove $p \land \neg q \implies r, \neg r, p \vdash q$.

Proof.

1	$p \wedge \neg q \implies r$	premise
2	$\neg r$	premise
3	р	premise
4	$\neg q$	assumption
5	$p \wedge \neg q$	∧ <i>i</i> 3, 4
6	r	\implies e 5, 1
7	\perp	<i>¬е</i> б, 2
8	$\neg \neg q$	<i>¬i</i> 4-7
9	q	¬¬ <i>e</i> 8

2

イロン イヨン イヨン イヨン

• Some rules can actually be derived from others.

Examples Prove $p \implies q, \neg q \vdash \neg p$ (modus tollens). Proof.

э

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Examples

Prove $p \vdash \neg \neg p (\neg \neg i)$

Proof.

1	р	premise	
2	$\neg p$	assumption	
3	\perp	<i>¬e</i> 1, 2	
4	$\neg \neg p$	<i>¬i</i> 2-3	

These rules can be replaced by their proofs and are not necessary.

They are just macros to help us write shorter proofs.

.

Example

```
Prove \neg p \implies \bot \vdash p (RAA).
```

Proof.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Tertium non datur, Law of the Excluded Middle (LEM)

Example

Prove $\vdash p \lor \neg p$.

Proof.

1	$\neg(p \lor \neg p)$	assumption	
2	p	assumption]
3	$p \lor \neg p$	$\vee i_1$ 2	
4	\perp	<i>¬e</i> 3, 1	
5	$\neg p$	<i>¬i</i> 2-4	
6	$p \lor \neg p$	∨ <i>i</i> 2 5	
7	\perp	<i>¬e</i> 6, 1	
8	$\neg \neg (p \lor \neg p)$	<i>¬i</i> 1-7	
9	$p \lor \neg p$	<i>¬¬e</i> 8	

Proof Rules for Natural Deduction (Summary)

FLOLAC 2019 39 / 92

|田 | |田 | |田 |

Proof Rules for Natural Deduction (Summary)

- **4 ∃ ≻ 4**

Useful Derived Proof Rules

æ

(I) < (II) <

- Recall $p \dashv \vdash q$ means $p \vdash q$ and $q \vdash p$.
- Here are some provably equivalent sentences:

$$\begin{array}{cccc} \neg (p \land q) & \dashv \vdash & \neg q \lor \neg p \\ \neg (p \lor q) & \dashv \vdash & \neg q \land \neg p \\ p \Longrightarrow q & \dashv \vdash & \neg q \Longrightarrow \neg p \\ p \Longrightarrow q & \dashv \vdash & \neg p \lor q \\ p \land q \Longrightarrow p & \dashv \vdash & r \lor \neg r \\ p \land q \Longrightarrow r & \dashv \vdash & p \Longrightarrow (q \Longrightarrow r) \end{array}$$

• Try to prove them.

Proof by Contradiction

• Although it is very useful, the proof rule RAA is a bit puzzling.

- Instead of proving ϕ directly, the proof rule allows indirect proofs.
 - If $\neg \phi$ leads to a contradiction, then ϕ must hold.
- Note that indirect proofs are not "constructive."
 - \blacktriangleright We do not show why ϕ holds; we only know $\neg\phi$ is impossible.
- In early 20th century, some logicians and mathematicians chose not to prove indirectly. They are <u>intuitionistic</u> logicians or mathematicians.
- For the same reason, intuitionists also reject

$$\frac{1}{\phi \vee \neg \phi} LEM \qquad \frac{\neg \neg \phi}{\phi} \neg \neg e$$

Proof by Contradiction

Theorem

There are $a, b \in \mathbb{R} \setminus \mathbb{Q}$ such that $a^b \in \mathbb{Q}$.

Proof.

Let $b = \sqrt{2}$. There are two cases:

- If $b^b \in \mathbb{Q}$, we are done since $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.
- If $b^b \notin \mathbb{Q}$, choose $a = b^b = \sqrt{2}^{\sqrt{2}}$. Then $a^b = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$. Since $\sqrt{2}^{\sqrt{2}}, \sqrt{2} \in \mathbb{R} \times \mathbb{Q}$, we are done.

- An intuitionist would criticize the proof since it does not tell us what a, b give $a^b \in \mathbb{Q}$.
 - We know (a, b) is either $(\sqrt{2}, \sqrt{2})$ or $(\sqrt{2}^{\sqrt{2}}, \sqrt{2})$.

Outline

Introduction

2 Natural Deduction

Operational logic as a formal language

Semantics of propositional logic

- The meaning of logical connectives
- Soundness of Propositional Logic
- Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

5 Exercises

Definition

A <u>well-formed</u> formula is constructed by applying the following rules finitely many times:

- atom: Every propositional atom p, q, r, ... is a well-formed formula;
- \neg : If ϕ is a well-formed formula, so is $(\neg \phi)$;
- \wedge : If ϕ and ψ are well-formed formulae, so is $(\phi \land \psi)$;
- \vee : If ϕ and ψ are well-formed formulae, so is $(\phi \lor \psi)$;
- \implies : If ϕ and ψ are well-formed formulae, so is $(\phi \implies \psi)$.
- More compactly, well-formed formulae are defined by the following grammar in Backus Naur form (BNF):

$$\phi \coloneqq p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \Longrightarrow \phi)$$

.

Inversion Principle

- How do we check if (((¬p) ∧ q) ⇒ (p ∧ (q ∨ (¬r)))) is well-formed?
- Although a well-formed formula needs five grammar rules to construct, the construction process can always be inverted.
 - This is called inversion principle.
- To show (((¬p) ∧ q) ⇒ (p ∧ (q ∨ (¬r)))) is well-formed, we need to show both ((¬p) ∧ q) and (p ∧ (q ∨ (¬r))) are well-formed.
- To show ((¬p) ∧ q) is well-formed, we need to show both (¬p) and q are well-formed.
 - q is well-formed since it is an atom.
- To show $(\neg p)$ is well-formed, we need to show p is well-formed.
 - p is well-formed since it is an atom.
- Similarly, we can show $(p \land (q \lor (\neg r)))$ is well-formed.

イロト イ理ト イヨト ト

• The easiest way to decide whether a formula is well-formed is perhaps by drawing its parse tree.

Subformulae

- Given a well-formed formula, its subformulae are the well-formed formulae corresponding to its parse tree.
- For instance, the subformulae of the well-formed formulae $(((\neg p) \land q) \implies (p \land (q \lor (\neg r))))$ are

$$p$$

$$q$$

$$r$$

$$(\neg p)$$

$$(\neg r)$$

$$((\neg p) \land q)$$

$$(q \lor (\neg r))$$

$$(p \land (q \lor (\neg r)))$$

$$(((\neg p) \land q) \implies (p \land (q \lor (\neg r))))$$

Outline

Introduction

2 Natural Deduction

- Propositional logic as a formal language
- 4 Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

- We have developed a calculus to determine whether $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid.
 - That is, from the premises $\phi_1, \phi_2, \ldots, \phi_n$, we can conclude ψ .
 - Our calculus is syntactic. It depends on the syntactic structures of $\phi_1, \phi_2, \dots, \phi_n$, and ψ .
- We will introduce another relation between premises φ₁, φ₂,..., φ_n and a conclusion ψ.

$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi.$$

 The new relation is defined by 'truth values' of atomic formulae and the semantics of logical connectives.

Definition

The set of $\underline{truth\ values}$ is $\{F,T\}$ where F represents 'false' and T represents 'true.'

Definition

A valuation or model of a formula ϕ is an assignment from each proposition atom in ϕ to a truth value.

Definition

Given a valuation of a formula ϕ , the truth value of ϕ is defined inductively by the following truth tables:

Example

- $\phi \land \psi$ is T when ϕ and ψ are T.
- $\phi \lor \psi$ is F when ϕ or ψ is T.
- \perp is always F; \top is always T.
- $\phi \implies \psi$ is T when ϕ "implies" ψ .

Example

Consider the valuation $\{q \mapsto \mathsf{T}, p \mapsto \mathsf{F}, r \mapsto \mathsf{F}\}$ of $(q \wedge p) \implies r$. What is the truth value of $(q \wedge p) \implies r$?

Proof.

Since the truth values of q and p are T and F respectively, the truth value of $q \wedge p$ is F. Moreover, the truth value of r is F. The truth value of $(q \wedge p) \implies r$ is T.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Truth Tables for Formulae

Given a formula φ with propositional atoms p₁, p₂,..., p_n, we can construct a truth table for φ by listing 2ⁿ valuations of φ.

Example

Find the truth table for
$$(p \implies \neg q) \implies (q \lor \neg p)$$
.

Proof.

Outline

Introduction

2 Natural Deduction

Propositional logic as a formal language

Semantics of propositional logic

 The meaning of logical connectives
 Soundness of Propositional Logic

• Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

Validity of Sequent Revisited

- Informally $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid if we can derive ψ with assumptions $\phi_1, \phi_2, \ldots, \phi_n$.
 - We have formalized "deriving ψ with assumptions $\phi_1, \phi_2, \ldots, \phi_n$ " by "constructing a proof in a formal calculus."
- We can give another interpretation by valuations and truth values.
- Consider a valuation ν over all propositional atoms in $\phi_1, \phi_2, \dots, \phi_n, \psi$.
 - By "assumptions $\phi_1, \phi_2, \ldots, \phi_n$," we mean " $\phi_1, \phi_2, \ldots, \phi_n$ are T under the valuation ν .
 - By "deriving ψ ,", we mean ψ is also T under the valuation ν .
- Hence, "we can derive ψ with assumptions φ₁, φ₂,..., φ_n" actually means "if φ₁, φ₂,..., φ_n are T under a valuation, then ψ must be T under the same valuation.

Semantic Entailment

Definition

We say

$$\phi_1,\phi_2,\ldots,\phi_n\vDash\psi$$

holds if for every valuations where $\phi_1, \phi_2, \ldots, \phi_n$ are T, ψ is also T. In this case, we also say $\phi_1, \phi_2, \ldots, \phi_n$ semantically entail ψ .

Examples

- ▶ $p \land q \vDash p$. For every valuation where $p \land q$ is T, p must be T. Hence $p \land q \vDash p$.
- ▶ $p \lor q \notin q$. Consider the valuation $\{p \mapsto T, q \mapsto F\}$. We have $p \lor q$ is T but q is F. Hence $p \lor q \notin q$.
- $\neg p, p \lor q \vDash q$. Consider any valuation where $\neg p$ and $p \lor q$ are T. Since $\neg p$ is T, p must be F under the valuation. Since p is F and $p \lor q$ is T, q must be T under the valuation. Hence $\neg p, p \lor q \vDash q$.
- The validity of $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is defined by syntactic calculus. $\phi_1, \phi_2, \dots, \phi_n \models \psi$ is defined by truth tables. Do these two relations coincide?

Theorem (Soundness)

Let $\phi_1, \phi_2, \ldots, \phi_n$ and ψ be propositional logic formulae. If $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds.

Proof.

Consider the assertion M(k):

"For all sequents $\phi_1, \phi_2, \dots, \phi_n \vdash \psi (n \ge 0)$ that have a proof of length k, then $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds."

k = 1. The only possible proof is of the form

 1ϕ premise

This is the proof of $\phi \vdash \phi$. For every valuation such that ϕ is T, ϕ must be T. That is, $\phi \models \phi$.

く 何 と く ヨ と く ヨ と

Soundness Theorem for Propositional Logic

Proof (cont'd).

Assume M(i) for i < k. Consider a proof of the form

1	ϕ_1	premise
2	ϕ_2	premise
	÷	
n	ϕ_{n}	premise
	÷	
k	ψ	justification

We have the following possible cases for justification:

i $\wedge i$. Then ψ is $\psi_1 \wedge \psi_2$. In order to apply $\wedge i$, ψ_1 and ψ_2 must appear in the proof. That is, we have $\phi_1, \phi_2, \dots, \phi_n \vdash \psi_1$ and $\phi_1, \phi_2, \dots, \phi_n \vdash \psi_2$. By inductive hypothesis, $\phi_1, \phi_2, \dots, \phi_n \vDash \psi_1$ and $\phi_1, \phi_2, \dots, \phi_n \vDash \psi_2$. Hence $\phi_1, \phi_2, \dots, \phi_n \vDash \psi_1 \land \psi_2$ (Why?).

Soundness Theorem for Propositional Logic

Proof (cont'd).

ii $\lor e$. Recall the proof rule for $\lor e$:

$$\frac{\eta_1 \vee \eta_2}{\psi} \begin{bmatrix} \eta_1 \\ \vdots \\ \vdots \\ \psi \end{bmatrix} \begin{bmatrix} \eta_2 \\ \vdots \\ \psi \\ \psi \end{bmatrix} \vee e$$

In order to apply $\forall e, \eta_1 \lor \eta_2$ must appear in the proof. We have $\phi_1, \phi_2, \ldots, \phi_n \vdash \eta_1 \lor \eta_2$. By turning "assumptions" η_1 and η_2 to "premises," we obtain proofs for $\phi_1, \phi_2, \ldots, \phi_n, \eta_1 \vdash \psi$ and $\phi_1, \phi_2, \ldots, \phi_n, \eta_2 \vdash \psi$. By inductive hypothesis, $\phi_1, \phi_2, \ldots, \phi_n \models \eta_1 \lor \eta_2, \phi_1, \phi_2, \ldots, \phi_n, \eta_1 \models \psi$, and $\phi_1, \phi_2, \ldots, \phi_n, \eta_2 \models \psi$. Consider any valuation such that $\phi_1, \phi_2, \ldots, \phi_n$ evaluates to T. $\eta_1 \lor \eta_2$ must be T. If η_1 is T under the valuation, ψ is also T (Why?). Similarly for η_2 is T. Thus $\phi_1, \phi_2, \ldots, \phi_n \models \psi$.

Soundness Theorem for Propositional Logic

Proof (cont'd).

iii Other cases are similar. Prove the case of $\implies e$ to see if you understand the proof.

- The soundness theorem shows that our calculus does not go wrong.
- If there is a proof of a sequent, then the conclusion must be true for all valuations where all premises are true.
- The theorem also allows us to show the non-existence of proofs.
- Given a sequent $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$, how do we prove there is no proof for the sequent?
 - Try to find a valuation where $\phi_1, \phi_2, \ldots, \phi_n$ are T but ψ is F.

Outline

Introduction

2 Natural Deduction

Propositional logic as a formal language

4 Semantics of propositional logic

- The meaning of logical connectives
- Soundness of Propositional Logic
- Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

- " $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid" and " $\phi_1, \phi_2, \ldots, \phi_n \models \psi$ holds" are very different.
 - " $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid" requires proof search (syntax);
 - " $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds" requires a truth table (semantics).
- If "φ₁, φ₂,..., φ_n ⊨ ψ holds" implies "φ₁, φ₂,..., φ_n ⊢ ψ is valid," then our natural deduction proof system is complete.
- The natural deduction proof system is both sound and complete. That is

 $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid iff $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- We will show the natural deduction proof system is complete.
- That is, if $\phi_1, \phi_2, \ldots, \phi_n \models \psi$ holds, then there is a natural deduction proof for the sequent $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$.
- Assume $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$. We proceed in three steps:

$$\begin{array}{l}
\bullet \models \phi_1 \implies (\phi_2 \implies (\dots(\phi_n \implies \psi))) \text{ holds;} \\
\bullet \phi_1 \implies (\phi_2 \implies (\dots(\phi_n \implies \psi))) \text{ is valid;} \\
\bullet \phi_1, \phi_2, \dots, \phi_n \vdash \psi \text{ is valid.}
\end{array}$$

Completeness Theorem for Propositional Logic (Step 1)

Lemma

If $\phi_1, \phi_2, \dots, \phi_n \models \psi$ holds, then $\models \phi_1 \implies (\phi_2 \implies (\dots (\phi_n \implies \psi)))$ holds.

Proof.

Suppose $\vDash \phi_1 \implies (\phi_2 \implies (\dots (\phi_n \implies \psi)))$ does not hold. Then there is valuation where $\phi_1, \phi_2, \dots, \phi_n$ is T but ψ is F. A contradiction to $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$.

Definition

Let ϕ be a propositional logic formula. We say ϕ is a <u>tautology</u> if $\models \phi$.

 A tautology is a propositional logic formula that evaluates to T for all of its valuations.

イロト イヨト イヨト ・

Completeness Theorem for Propositional Logic (Step 2)

• Our goal is to show the following theorem:

Theorem

If $\vDash \eta$ holds, then $\vdash \eta$ is valid.

• Similar to tautologies, we introduce the following definition:

Definition

Let ϕ be a propositional logic formula. We say ϕ is a <u>theorem</u> if $\vdash \phi$.

- Two types of theorems:
 - If $\vdash \phi$, ϕ is a theorem proved by the natural deduction proof system.
 - The soundness theorem for propositional logic is another type of theorem proved by mathematical reasoning (less formally).

Completeness Theorem for Propositional Logic (Step 2)

Proposition

Let ϕ be a formula with propositional atoms p_1, p_2, \ldots, p_n . Let I be a line in ϕ 's truth table. For all $1 \le i \le n$, let \hat{p}_i be p_i if p_i is T in I; otherwise \hat{p}_i is $\neg p_i$. Then

- $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi \text{ is valid if the entry for } \phi \text{ at } I \text{ is } T;$
- 2 $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \phi$ is valid if the entry for ϕ at I is F.

Proof.

We prove by induction on the height of the parse tree of ϕ .

- φ is a propositional atom p. Then p ⊢ p or ¬p ⊢ ¬p have one-line proof.
- ϕ is $\neg \phi_1$.
 - If ϕ is T at *I*. Then ϕ_1 is F. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \phi_1 (\equiv \phi)$.
 - If ϕ is F at *I*. Then ϕ_1 is T. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1$. Using $\neg \neg i$, we have $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \neg \phi_1 (\equiv \neg \phi)$.

Proof (cont'd).

• ϕ is $\phi_1 \implies \phi_2$.					
If ϕ is F at I, then ϕ_1 is T and ϕ_2 is F at I. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1$					
and $\hat{p}_1, \hat{p}_2, \ldots, \hat{p}_n \vdash \neg \phi_2$. Consider					
1	$\phi_1 \implies \phi_2$	assumption]		
	÷				
i	ϕ_1	IH			
i + 1	ϕ_2	\implies e i, 1			
	:				
j	$\neg \phi_2$	IH			
j + 1	1 .	¬ e i+1, j			
j + 2	$\neg(\phi_1 \implies \phi_2)$	¬ i 1-(j+1)			
Proof (cont'd).

• < = • < = •

Proof (cont'd).

φ is φ₁ ∧ φ₂.
If φ is T at *I*, then φ₁ and φ₂ are T at *I*. By IH, we have p̂₁, p̂₂,..., p̂_n ⊢ φ₁ and p̂₁, p̂₂,..., p̂_n ⊢ φ₂. Using ∧ i, we have p̂₁, p̂₂,..., p̂_n ⊢ φ₁ ∧ φ₂.
If φ is F at *I*, there are three subcases. Consider the subcase where φ₁ and φ₂ are F at *I*. Then

The other two subcases are simple exercises.

→ 3 → 4 3

Proof.

ϕ is $\phi_1 \lor \phi_2$.				
• If ϕ is F at I, the set f is F at f and f a	hen ϕ_1 and ϕ_2	are F at <i>I</i> . Then		
1	$\phi_1 \lor \phi_2$	assumption	1	
2	ϕ_1	assumption]	
	:			
i	$\neg \phi_1$	IH		
i + 1	\perp	¬ e 2, i		
i + 2	ϕ_2	assumption]	
	:			
j	$\neg \phi_2$	IH		
j + 1	\perp	¬ e i+2, j		
j + 2	1	∨ e 2-(i+1), (i+2)-(j+1)		
j + 3	$\neg(\phi_1 \lor \phi_2)$	¬i 1-(j+2)		
If ϕ is T at / there are three subcases. All of them are simple exercise				

Theorem

If ϕ is a tautology, then ϕ is a theorem.

Proof.

Let ϕ have propositional atoms p_1, p_2, \ldots, p_n . Since ϕ is a tautology, each line in ϕ 's truth table is T. By the above proposition, we have the following 2^n proofs for ϕ :

We apply the rule LEM and the \lor e rule to obtain a proof for $\vdash \phi$. (See the following example.)

Example

Observe that
$$\models p \implies (q \implies p)$$
. Prove $\vdash p \implies (q \implies p)$.

Proof.

1 2 3 4	$ \begin{array}{c} p \lor \neg p \\ p \\ q \lor \neg q \\ q \\ \cdot \end{array} $	LEM assumption LEM assumption	1
i i + 1	$ \stackrel{:}{\underset{\neg q}{\longrightarrow}} (q \Longrightarrow p) $	$p, q \vdash p \implies (q \implies p)$ assumption]
$j \\ j + 1 \\ j + 2 \\ j + 3 \\ j + 4$	$ \begin{array}{c} \vdots \\ p \implies (q \implies p) \\ p \implies (q \implies p) \\ \neg p \\ q \lor \neg q \\ q \\ \vdots \end{array} $	$\begin{array}{l} \rho, \neg q \vdash p \implies (q \implies p) \\ \forall e \ 3, \ 4.i, \ (i+1).j \\ assumption \\ LEM \\ assumption \end{array}$]
$\substack{k\\k+1}$	$ \begin{array}{c} \cdot \\ p \implies (q \implies p) \\ \neg q \\ \cdot \end{array} $	$\neg p, q \vdash p \implies (q \implies p)$ assumption	j
 +1 +2	: $p \implies (q \implies p)$ $p \implies (q \implies p)$ $p \implies (q \implies p)$	$ \begin{array}{l} \neg \rho, \neg q \vdash p \Longrightarrow (q \Longrightarrow p) \\ \lor e \ (j+3), \ (j+4)-k, \ (k+1)-l \\ \lor e \ 1, \ 2-(j+1), \ (j+2)-(l+1) \end{array} $	j

Lemma

If
$$\phi_1 \implies (\phi_2 \implies (\cdots(\phi_n \implies \psi)))$$
 is a theorem, then $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid.

Proof.

Consider

Theorem

Let Γ be a set of propositional logic formulae. If all finite subset of Γ is satisfiable, Γ is satisfiable.

Proof.

Assume Γ is not satisfiable. Then $\Gamma \models \bot$. By the completeness theorem, $\Gamma \vdash \bot$. Since deductions are finite, we have $\Delta \vdash \bot$ for some finite subset Δ of Γ . By the soundness theorem, $\Delta \models \bot$. Δ is not satisfiable, a contraction.

Outline

Introduction

2 Natural Deduction

Propositional logic as a formal language

4 Semantics of propositional logic

- The meaning of logical connectives
- Soundness of Propositional Logic
- Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

Semantically Equivalence and Validity

- Consider two formulae $\phi_1 \wedge \phi_2$ and $\phi_2 \wedge \phi_1$.
- Intuitively, $\phi_1 \wedge \phi_2$ and $\phi_2 \wedge \phi_1$ should have the same "meaning."
- More formally, two formulae ϕ and ψ have the same meaning if their truth tables coincide.

Definition

Let ϕ and ψ be propositional logic formulae. ϕ and ψ are <u>semantically</u> equivalent (written $\phi \equiv \psi$) if both $\phi \models \psi$ and $\psi \models \phi$ hold.

Examples

$$p \Longrightarrow q \equiv \neg q \Longrightarrow \neg p \qquad p \Longrightarrow q \equiv \neg p \lor q$$
$$p \land q \Longrightarrow p \equiv r \lor \neg r \qquad p \land q \Longrightarrow r \equiv p \Longrightarrow (q \Longrightarrow r)$$

• A formula ϕ is valid if it is a tautology.

Definition

Let ϕ be a propositional logic formula. ϕ is valid if $\vDash \phi$.

Lemma

Let $\phi_1, \phi_2, \dots, \phi_n, \psi$ be propositional logic formulae. $\phi_1, \phi_2, \dots, \phi_n \models \psi$ iff $\models \phi_1 \implies (\phi_2 \implies \dots \implies (\phi_n \implies \psi)).$

Proof.

Suppose $\models \phi_1 \implies (\phi_2 \implies \dots \implies (\phi_n \implies \psi))$ Consider any valuation. If $\phi_1, \phi_2, \dots, \phi_n$ evaluate to T under the valuation, ϕ must evaluate to T since $\models \phi_1 \implies (\phi_2 \implies \dots \implies (\phi_n \implies \psi))$. Hence $\phi_1, \phi_2, \dots, \phi_n \models \psi$. The other direction is proved in Step 1 of the completeness theorem.

イロト イヨト イヨト ・

Definition

A <u>literal</u> *L* is either an atom *p* or its negation $\neg p$. A <u>clause</u> *D* is a disjunction of literals. A formula *C* is in <u>conjunctive normal form (CNF)</u> if it is a conjunction of clauses.

• Examples: $(\neg q \lor p \lor r) \land (\neg p \lor r) \land q, (p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$

· · · · · · · ·

Lemma

A clause $L_1 \vee L_2 \vee \cdots \vee L_m$ is valid iff there is a propositional atom p such that L_i is p and L_j is $\neg p$ for some $1 \le i, j \le m$.

Proof.

Without loss of generality, assume $L_1 = p$ and $L_2 = \neg p$. Then $p \lor \neg p \lor L_3 \lor \cdots \lor L_m$ evaluates to T for any valuation. The clause is valid. Conversely, consider the valuation where all literals evaluate to F. This is possible since every literal L_i has no negation in the clause. The clause evaluates to F under the valuation.

- Examples:
 - $p \lor q \lor q \lor \neg p \lor r$ is valid;
 - ▶ $p \lor \neg q \lor r \lor \neg q$ is not valid (consider $\{p \mapsto F, q \mapsto T, r \mapsto F\}$).
- For any propositional logic formula φ in CNF, the validity of φ can be checked in linear time.

Bow-Yaw Wang (Academia Sinica)

Satisfiability of CNF Formulae

Definition

Let ϕ be a propositional logic formula. ϕ is <u>satisfiable</u> if it evaluates to T under some valuation.

Example: p∨q ⇒ p is satisfiable (consider {p ↦ T, q ↦ T}); it is not valid (consider {p ↦ F, q ↦ T}).

Proposition

Let ϕ be a propositional logic formula. ϕ is satisfiable iff $\neg \phi$ is not valid.

Proof.

Suppose ϕ evaluates to T under a valuation. Then $\neg \phi$ evaluates to F under the valuation. $\neg \phi$ is not valid. Conversely, suppose $\neg \phi$ is not valid. Hence $\neg \phi$ evaluates to F under a valuation. Thus ϕ evaluates to T under the valuation. ϕ is satisfiable.

From Truth Tables to Conjunctive Normal Form

- Suppose we have the truth table for a formula φ with propositional atoms p₁, p₂,..., p_n.
- For each line I where ϕ evaluates to F, construct a clause ψ_I as follows.
 - $\psi_I = L_{I,1} \vee L_{I,2} \vee \cdots \vee L_{I,n}$ where $L_{I,j} = \neg p_j$ if p_j is T at line *I*; otherwise $L_{I,j} = p_j$.
- Then φ ≡ ψ₁ ∧ ψ₂ ∧ …ψ_m where ψ_l's are contructed for every line evaluating φ to F.
- Observe that $\psi_1 \wedge \psi_2 \wedge \cdots \psi_m$ is F iff ψ_l is F for some $1 \leq l \leq m$. $\psi_l = L_{l,1} \vee L_{l,2} \vee \cdots \vee L_{l,n}$ is F iff $L_{l,j}$ is F for every $1 \leq j \leq n$. $L_{l,j}$ is F iff p_j has its truth value at line l.
- In other words, ψ₁ ∧ ψ₂ ∧ …ψ_m is F under a valuation iff the valuation evaluates φ to F in φ's truth table.

From Truth Tables to Conjunctive Normal Form

Example

Translate $p \lor q \implies q \land \neg r$ into CNF.

Proof. $p \lor q \implies q \land \neg r \equiv (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r).$ イロト イポト イヨト イヨト э

Outline

Introduction

2 Natural Deduction

Propositional logic as a formal language

4 Semantics of propositional logic

- The meaning of logical connectives
- Soundness of Propositional Logic
- Completeness of Propositional Logic

Normal Forms

- Semantic equivalence, satisfiability, and validity
- Conjunctive normals forms and validity

6 Exercises

- Given a propositional logic formula in conjunctive normal form, we can check the validity of the formula in linear time.
- Recall that a formula is valid iff it is a theorem.
- If we can translate any propositional logic formula into conjunctive normal form, we can check the validity of the formula!
- We know how to translate any logic formula to conjunctive normal form by its truth table.
 - This is not satisfactory. If we have to construct its truth table, we can check validity already.
- We will give an algorithm CNF(φ) to convert any propositional logic formula into conjunctive normal form without building its truth table.

• • = • • =

• Any propositional logic formula can be transformed to conjunctive normal form by the following equivalences:

$$\phi \implies \psi \equiv \neg \phi \lor \psi$$
$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi \qquad \neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$
$$\phi \land (\psi_1 \lor \psi_2) \equiv (\phi \land \psi_1) \lor (\phi \land \psi_2)$$
$$\phi \lor (\psi_1 \land \psi_2) \equiv (\phi \lor \psi_1) \land (\phi \lor \psi_2)$$

- The algorithm $CNF(\phi)$ hence consists of three steps:
 - Remove every implication (\implies) from ϕ (Algorithm IMPL_FREE(ϕ));
 - Push every negation (¬) to literals (Algorithm NNF(ϕ));
 - Apply law of distribution (Algorithm $CNF(\phi)$).

```
Input: \phi : a logic formula
Output: \phi' : all implications (\implies) in \phi' are removed and \phi' \equiv \phi
switch \underline{\phi} do
```

case ϕ is a literal: do return ϕ ; case ϕ is $\neg \phi_1$: do return $\neg IMPL_FREE(\phi_1)$; case ϕ is $\phi_1 \land \phi_2$: do return $IMPL_FREE(\phi_1) \land IMPL_FREE(\phi_2)$; case ϕ is $\phi_1 \lor \phi_2$: do return $IMPL_FREE(\phi_1) \lor IMPL_FREE(\phi_2)$; case ϕ is $\phi_1 \Longrightarrow \phi_2$: do return $IMPL_FREE(\phi_1) \lor IMPL_FREE(\phi_2)$; case ϕ is $\phi_1 \Longrightarrow \phi_2$: do return $IMPL_FREE(\neg \phi_1 \lor \phi_2)$; otherwise do assert(0);

Algorithm 1: IMPL_FREE(ϕ)

くぼう くほう くほう

Algorithm $NNF(\phi)$

Input: ϕ : a logic formula without implication (\implies) **Output:** ϕ' : only propositional atoms in ϕ' are negated and $\phi' \equiv \phi$ **switch** $\underline{\phi}$ **do**

 $\begin{array}{l} \text{case } \underline{\phi} \text{ is a literal: } \text{do return } \underline{\phi};\\ \text{case } \underline{\phi} \text{ is } \neg \neg \phi_1: \text{ do return } \underline{\text{NNF}}(\phi_1);\\ \text{case } \underline{\phi} \text{ is } \phi_1 \land \phi_2: \text{ do return } \underline{\text{NNF}}(\phi_1) \land \text{NNF}(\phi_2);\\ \text{case } \underline{\phi} \text{ is } \phi_1 \lor \phi_2: \text{ do return } \underline{\text{NNF}}(\phi_1) \lor \text{NNF}(\phi_2);\\ \text{case } \underline{\phi} \text{ is } \neg (\phi_1 \land \phi_2): \text{ do return } \underline{\text{NNF}}(\neg \phi_1 \lor \neg \phi_2);\\ \text{case } \underline{\phi} \text{ is } \neg (\phi_1 \lor \phi_2): \text{ do return } \underline{\text{NNF}}(\neg \phi_1 \land \neg \phi_2);\\ \text{case } \underline{\phi} \text{ is } \neg (\phi_1 \lor \phi_2): \text{ do return } \underline{\text{NNF}}(\neg \phi_1 \land \neg \phi_2);\\ \text{otherwise do } \text{assert}(0); \end{array}$

Algorithm 2: $NNF(\phi)$

Definition

Let ϕ be a propositional logic formula. If only propositional atoms in ϕ are negated, ϕ is in negation normal form.

(日) (四) (日) (日) (日)

Input: ϕ : an NNF formula without implication (\implies) Output: ϕ' : ϕ' is in CNF and $\phi' \equiv \phi$ switch $\underline{\phi}$ do case $\underline{\phi}$ is a literal: do return $\underline{\phi}$; case $\underline{\phi}$ is $\phi_1 \land \phi_2$: do return $\underline{CNF}(\phi_1) \land \underline{CNF}(\phi_2)$; case ϕ is $\phi_1 \lor \phi_2$: do return $\underline{DISTR}(\underline{CNF}(\phi_1),\underline{CNF}(\phi_2))$;

Algorithm 3: $CNF(\phi)$

Input: $\eta_1, \eta_2 : \eta_1, \eta_2$ are in CNF **Output:** $\phi' : \phi'$ is in CNF and $\phi' \equiv \eta_1 \lor \eta_2$ if η_1 is $\eta_{11} \land \eta_{12}$ then return $\underline{\text{DISTR}(\eta_{11}, \eta_2) \land \underline{\text{DISTR}(\eta_{12}, \eta_2)}$; else if η_2 is $\eta_{21} \land \eta_{22}$ then return $\underline{\text{DISTR}(\eta_1, \eta_{21}) \land \underline{\text{DISTR}(\eta_1, \eta_{22})}$; else return $\eta_1 \lor \eta_2$;

Algorithm 4: DISTR (η_1, η_2)

くぼう くほう くほう しほ

- Let ϕ be a propositional logic formula. Consider the following algorithm for checking its satisfiability.
 - **1** Compute a CNF formula ψ such that $\psi \equiv \neg \phi$.
 - 2 Check the validity of ψ .
 - Seturn "φ is satisfiable" if ψ is not valid; Return "φ is not satisfiable" if ψ is valid.
- Recall that satisfiability of propositional logic formulae is an NP-complete problem.
- Is the above algorithm in polynomial time? Why?

Find proofs of the following sequents:

$$(p \implies r) \land (q \implies r) \vdash (p \land q) \implies r (p \lor (q \implies p)) \land q \vdash p. p \implies q \land r \vdash (p \implies q) \land (p \implies r). \vdash \neg p \lor q \implies (q \implies q). (p \implies q) \lor (q \implies r).$$

2 Show $p \vdash q$ is not valid.

• Translate
$$(p \land q) \implies (r \land s)$$
 to CNF.

.