Functional Programming
Practicals for 2. Definition and Proof by Induction
Shin-Cheng Mu
July 2018

1 Exercises

1. Prove the (very useful) map-fusion law: map f - map g = map (f - g).

2. Prove that length distributes into (H-):

length (zs + ys) = length zs + length ys .

Solution: Prove by induction on the structure of xs.

Case zs := []:

length ([]+ ys)

= { definition of (#) }
length ys

= { definition of (+) }
0 + length ys

= { definition of length }
length [] + length ys

Case zs := x : 1s:

length ((z : zs) Hys)

= { definition of (#) }
length (z : (zs H ys))

= { definition of length }
1 + length (xs 4+ ys)

= { by induction }
1+ length xs + length ys

= { definition of length }
length (x : xs) + length ys

Note that we in fact omitted one step using the associativity of (+).

. Prove: sum - concat = sum - map sum. Hint: you will need a lemma stating that sum
distributes over H. Write down that lemma and prove it too.

Solution: By extensional equality, sum - concat = sum - map sum if and only if
(sum - concat) xss = (sum - map sum) zss,

for all zss, which, by definition of (), is equivalent to
sum (concat zss) = sum (map sum zss),

which we will prove by induction on zss.

Case 1ss := [|:

sum (concat []))

= { definition of concat }
sum []

= { definition of map }

sum (map sum [])

Page 2

Case zss := x5 : 18s:

sum (concat (zs : xss))
= { definition of concat }
sum (xs H(concat ss))
= { lemma: sum distributes over + }
sum xs + sum (concat ss)
= { by induction }
sum xs + sum (map sum xss)
= { definition of sum }
sum (sum xs : map sum xss)
= { definition of map }

sum (map sum (zs : 18s)).

The lemma that sum distributes over H, that is,

sum (s H ys) = sum xs + sum ys,

needs a separate proof by induction. Here it goes:

Case zs := []:
sum ([] 4 ys)
= { definition of (#) }
sum ys
= { definition of (+) }
0+ sum ys

= { definition of sum }

sum [] + sum ys.

Page 3

Case zs := x : 1s:

sum ((z: zs) H ys)
= { definition of (#) }
sum (z : (zs H ys))
= { definition of sum }
x + sum (xs + ys)
= { induction }
x + (sum xs + sum ys)
= { since (+) is associative }
(x + sum zs) + sum ys
= { definition of sum }

sum (x : xs) + sum ys.

4. Prove: filter p-map f = map f - filter (p- f).
Hint: for calculation, it might be easier to use this definition of filter:

filter p [] =]
filter p (x : xs) = if p x then x : filter p s
else filter p s

and use the law that in the world of total functions we have:
f (if ¢ then e; else e5) = if g then f e else f ey

You may also carry out the proof using the definition of filter using guards:

filter p (x:xs) |[px=...
| otherwise = . ..

You will then have to distinguish between the two cases: p x and — (p x), which makes
the proof more fragmented. Both proofs are okay, however.

Solution:

filter p- map f = map f - filter (p- f)
= { extensional equality }
(Vas :: (filter p- map f) xs = (map f - filter (p- f)) xs)
{ definition of (-) }
(Vs :: filter p (map f xs) = map f (filter (p- f) xs)).

Page 4

We proceed by induction on zs.

Case zs := [|:

filter p (map f [])
= { definition of map }

filter p []
= { definition of filter }

]

= { definition of map }

map f []
= { definition of filter }

map f (filter (p- f) [])
Case zs .=z : xs:

filter p (map f (x: xs))
= { definition of map }

filter p (f « : map f xs)
= { definition of filter }

if p (f x) then f x: filter p (map f xs) else filter p (map f zs)
= { induction hypothesis }

if p (f x) then f x: map f (filter(p- f) xs) else map f (filter (p- f) xs)
= { defintion of map }

if p (f x) then map [(z: filter (p- f) xs) else map f (filter (p- f) xs)
= { since f (if ¢ then e, else e;) = if ¢ then f ¢; else f ey }

map f (if p (f =) then x : filter (p- f) zs else filter (p- f) zs)
= { definition of (-) }

map f (if (p- f) x then z : filter (p- f) zs else filter (p- f) xs)
= { definition of filter }

map f (filter (p- f) (x : vs))

5. Reflecting on the law we used in the previous exercise:
f (if g then e, else e3) = if ¢q then f ¢, else f ey

Can you think of a counterexample to the law above, when we allow the presence of 17
What additional constraint shall we impose on f to make the law true?

Page 5

Solution: Let f = const 1 (where const x y = x), and ¢ = L. We have:

const 1 (if L then e; else e;)

= { definition of const }
1

1

= { if is strict on the conditional expression }
if | then f e else f e

The rule is restored if f is strict, that is, f L = L.

6. Prove: take n zsH drop n xs = xs, for all n and zs.

Solution: By induction on n, then induction on zs.

Casen:=0

take 0 xs H drop 0 zs
= { definitions of take and drop }
[+ s
= { definition of (#) } s.

Case n:=1, n and zs := []

take (14 n) [+ drop (14 n) []

= { definitions of take and drop }
[]+]]

= { definition of (#) }

[]

Casen:=1, nand zs ==z : xs

take (14 n) (z : zs) H drop (14 n) (x : xs)
= { definitions of take and drop }

(x : take n xs) H drop n xs
= { definition of (#) }

x : take n xs H drop n xs
= { induction }

T . ZS.

Page 6

7. Define a function fan :: @ — List a — List (List a) such that fan x zs inserts x into the
Oth, 1st...nth positions of xs, where n is the length of zs. For example:

fan 5 [1,2,3,4] = [[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1,2,3,4,5]] .

Solution:
fan ::a — List a — List (List a)
fan x |] = [[]]

fanw (y:ys) = (x:y: ys): map (y:) (fan wys)

8. Prove: map (map f) - fan x = fan (f) - map f, for all f and z. Hint: you will need
the map-fusion law, and to spot that map f-(y:) = (f y:) - map f (why?).

Solution: This is equivalent to proving that, for all f, z, and xs:

map (map f) (fan x xs) = fan (f x) (map f zs) .

Induction on zs.
Case zs := [|:

map (map f) (fan x [])

= { definition of fan }
map (map f) [[x]]

= { definition of map }
[[f]

= { definition of fan }
fan(f x) []

= { definition of fan }
fan (f x) (map f[]) .

Case xs :=y : ys:

map (map f) (fan x (y : ys))
= { definition of fan }

map (map f) ((z:y:ys): map (y:) (fan z ys))
= { definition of map }

map f(x:y:ys): map (map f) (map (y:) (fan x ys)))
= { map-fusion }

map f(x:y:ys): map (map f-(y:)) (fan x ys)
= { definition of map }

map [(x:y:ys):map ((fy:)-map f) (fan z ys)
= { map-fusion }

map f (T TR yq) —map (fy) (map
= { induction }

map f (x:y:ys):map (fy:) (fan (f =) (map [ys))
= { definition of map } Fage7

(f @ fy:map fys):map (fy:) (fan (f x) (map [ys))
= { definition of fan }

fn.’n (70 ’7’\ ('F 21 * "M NN f 7/9\

A~

man_) (fan x ys))
r—J 7 \J g)7

9. Define perms :: List a — List (List a) that returns all permutations of the input list.
For example:

perms [1,2,3] = [[1,2,3],]2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2, 1]]

You will need several auxiliary functions defined in the lectures and in the exercises.

Solution:
perms :: List a — List (List a)
perms] = [[]]

perms (x : zs) = concat (map (fan x) (perms xs))

10. Prove: map (map f) - perm = perm - map f. You may need previously proved results as
lemmas.

11. The function splits :: List a — List (List a, List a) returns all the ways a list can be
split into two. For example,

splits [1,2,3,4] = [([], [1,2,3,4)), (1], 2,3, 4)), (11,2], 3, 4]),
(11,2, 3], [4]), (1, 2,3,4], [])] -
Define splits inductively on the input list. Hint: you may find it useful to define, in a

where-clause, an auxiliary function f (ys,zs) = ... that matches pairs. Or you may
simply use (A (ys,zs) = ...).

Solution:
splits o List a — List (List a, List a)
splits [] = ([, (D]
splits (x : zs) = ([|,z : xs) : map consl (splits xs) |,

where cons1 (ys,zs) = (x : ys, 28) .

If you know how to use A\ expressions, you may:

splits o List a — List (List a, List a)

splits [] = [([l,[D]

splits (x = xzs) = ([],x: xs): map (A (ys, zs) — (x : ys, zs)) (splits xs) .

Page 8

12.

13.

14.

An interleaving of two lists xs and ys is a permutation of the elements of both lists such
that the members of xs appear in their original order, and so does the members of ys.
Define interleave :: List a — List a — List (List a) such that interleave s ys is the list
of interleaving of zs and ys. For example, interleave [1,2,3] [4,5] yields:

1,2,3,4,5],[1,2,4,3,5],[1,2,4,5,3], [1,4,2,3,5],[1,4,2,5,3],
1,4,5,2,3],[4,1,2,3,5],[4,1,2,5,3], [4.1,5,2, 3], [4,5,1,2, 3]].
Solution:
interleave :: List a — List a — List (List a)
interleave [] ys = [ys]
interleave s || = [xs]

interleave (z : xs) (y : ys) = map (x:) (interleave xs (y : ys))
map (y :) (interleave (x : zs) ys) .

A list ys is a sublist of zs if we can obtain ys by removing zero or more elements from
zs. For example, [2,4] is a sublist of [1, 2, 3,4], while [3,2] is not. The list of all sublists
of [1,2,3] is:

[0, [31, 121, 12, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a — List (List a) that computes the list of all sublists
of the given list. Hint: to form a sublist of zs, each element of xs could either be kept
or dropped.

Solution:
sublist ;2 List a — List (List a)
sublist |] = [[]]

sublist (v : zs) = wzss+H map (x:) xss
where zss = sublist xs .

The righthand side could be sublist xs H map (x :) (sublist zs) (but it could be much
slower).

Consider the following datatype for internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a) .

Page 9

(a)

(b)

(d)

Given () :: Nat — Nat — Nat, which yields the smaller one of its arguments,
define minT :: Tree Nat — Nat, which computes the minimal element in a tree.

(Note: () is actually called min in the standard library. In the lecture we use the
symbol ({) to be brief.)

Solution:
minT ;2 Tree Nat — Nat
mainT Null = maxBound

minT (Node z t w) = xzlminT t | minT u .

Define mapT :: (a — b) — Tree a — Tree b, which applies the functional argument
to each element in a tree.

Solution:
map T 2 (a—b) = Tree a — Tree b
mapT f Null = Null

mapT f (Node z t u) = Node (f x) (mapT ft) (mapT f u) .

Can you define (J) inductively on Nat?

Solution:
() :: Nat — Nat — Nat
0ln =0
(1ym))0 =0
(Lym) L (Lyn) = 14 (min) .

Prove that for all n and ¢, minT (mapT (n+) t) = n+ minT t. That is, minT -
mapT (n+) = (n+) - minT.

Solution: Induction on t.
Case t := Null. Omitted.

Page 10

Case t := Node z ¢ u.

minT (mapT (n+) (Node x t u))
= { definition of mapT }

minT (Node (n + z) (mapT (n+) t) (mapT (n+) u))
= { definition of minT }

(n+)L minT (mapT (n+) t)) L minT (mapT (n+))
= { by induction }

(n+x) ! (n+minT t)] (n+ minT u)
— { lemma: (n42)L(nty) =n+(@ly) }

n+ (xl minT t] minT u)
= { definition of minT }

n+ minT (Node z t u) .

The lemma (n +z) | (n +y) = n+ (z | y) can be proved by induction on n,
using inductive definitions of (+) and ().

Page 11

