
Functional Programming
Practicals 4. Monads

Shin-Cheng Mu

July 2018

1. Show that scutprod xs = return (product xs) for all xs. You can use these rules regarding if:

if p then e else e = e ,
(p⇒ e1 = e2)⇒ if p then e1 else e3 = if p then e2 else e3 .

Solution: We reason:

scutprod xs
= { definition }

catch (if elem 0 xs then fail else return (product xs))
(return 0)

= { f (if p then e1 else e2) = if p then f e1 else f e2 }
if elem 0 xs then catch fail (return 0)

else catch (return (product xs)) (return 0)
= { laws concerning catch }

if elem 0 xs then return 0
else return (product xs)

= { since product xs = 0 if elem 0 xs }
if elem 0 xs then return (product xs)

else return (product xs)
= { laws regarding if }

return (product xs) .

2. Prove: insert x ys>>=(return ·map f) = insert (f x) (map f ys).

1

Solution: Induction on ys. Case: ys :=[]:

insert x []>>=(return ·map f)
= { definition of insert }

return [x]>>=(return ·map f)
= { monad law: left-identity }

return (map f [x])
= { definition of xs }

return [f x]
= { definition of insert }

insert (f x) (map f []) .

Case: ys := y : ys:

insert x (y : ys)>>=(return ·map f)
= { definition of insert }
(return (x : y : ys) [] insert x ys>>=(return · (y:)))>>=(return ·map f)

= { left-distributivity }
(return (x : y : ys)>>=(return ·map f)) []
((insert x ys>>=(return · (y:))>>=(return ·map f))

= { monad law: left-identity }
return (map f (x : y : ys)) []
((insert x ys>>=(return · (y:))>>=(return ·map f))

In the left branch of ([]), map f (x : y : ys) naturally expands to f x : f y : map f ys. Focus on
the right branch of ([]):

(insert x ys>>=(return · (y:))>>=(return ·map f)
= { monad law: associativity }

insert x ys>>=(λ zs→ return (y : zs)>>=(return ·map f))
= { monad law: left-identity }

insert x ys>>=(λ zs→ return (map f (y : zs)))
= { definition of map }

insert x ys>>=(λ zs→ return (f y : map f zs))
= { monad law: left-identity }

insert x ys>>=(λ zs→ return (map f)>>=(return · (f y:)))
= { monad law: associativity }
(insert x ys>>=(return ·map f))>>=(return · (f y:))

= { induction }
insert (f x) (map f ys)>>=(return · (f y:)) .

Back to the calculation:

return (map f (x : y : ys)) []
((insert x ys>>=(return · (y:))>>=(return ·map f))

Page 2

= { calculations above }
return (f x : f y : map f ys) []
insert (f x) (map f ys)>>=(return · (f y:))

= { definition of insert }
insert (f x) (f y : map f ys)

= { definition of map }
insert (f x) (map f (y : ys)) .

3. Sorting. Shown below is a very slow sorting algorithm, which non-deterministically generates
an arbitrary permutation of its input, and succeeds only if the permutation happens to be sorted:

slowsort xs = perm xs>>= sorted ,

with auxiliary functions defined below:

perm [] = return []
perm (x : xs) = perm xs>>= insert x ,

guard b = if b then return () else fail ,

all p [] = True
all p (x : xs) = p x ∧ all p xs ,

sorted [] = return []
sorted (x : xs) = guard (all (x 6) xs)>>=λ ()→

sorted xs>>=(return · (x:)) .

For this exercise we assume that the input list has type List Int.

(a) Write down the types of each of the functions above, and explain what they do.

(b) Consider the following function:

sinsert x [] = return [x]
sinsert x (y : xs) = if x 6 y then return (x : y : xs)

else sinsert x xs>>=(return · (y:)) .

Do you believe that the following property (1) is true? Can you explain what it means in
words?

insert x xs>>= sorted = sorted xs>>= sinsert x . (1)

(c) Assuming that (1) is true. Derive a faster (well, O(n2)) sorting algorithm.

Page 3

Solution: Consider slowsort xs and do induction on the input xs. For the base case:

slowsort []
= { definition of slowsort }

perm []>>= sorted
= { definition of perm }

return []>>= sorted
= { monad law }

sorted []
= { definition of sorted }

return [] .

For the inductive case:

slowsort (x : xs)
= { definition of slowsort }

perm (x : xs)>>= sorted
= { definition of perm }
(perm xs>>= insert x)>>= sorted

= { monad law: associativity of (>>=) }
perm xs>>=(λys→ insert x ys>>= sorted)

= { by (1) }
perm xs>>=(λys→ sorted ys>>= sinsert x)

= { monad law: associativity of (>>=) }
(perm xs>>= sorted)>>= sinsert x

= { definition of slowsort }
slowsort xs>>= sinsert x .

We have thus constructed:

slowsort [] = return []
slowsort (x : xs) = slowsort xs>>= sinsert x ,

which is actually, as you might have guessed, insertion sort.

4. Assuming the following implementation of MonadNondet:

instance MonadNondet Maybe where
Nothing []m = m
Just x []m = Just x

Think of a counterexample for which the left distributivity law does not hold.

Page 4

Solution: Recall the law:

(m1 []m2)>>= f = (m1>>= f) [] (m2>>= f) .

Let m1 = Just 1, m2 = Just 2, and f x = if even x then Just () else Nothing. The LHS
reduces to

(Just 1 [] Just 2)>>= f
= Just 1>>= f
= Nothing ,

while the RHS reduces to

(Just 1>>= f) [] (Just 2>>= f)
= Nothing [] return ()
= return () .

5. Consider the standard prelude function foldl:

foldl :: (b→ a→ b)→ b→ List a→ b
foldl (⊕) s [] = s
foldl (⊕) s (x : xs) = foldl (⊕) (s⊕ x) xs ,

and define:

loop ::MonadState b m⇒ (b→ a→ b)→ List a→ m b
loop (⊕) [] = get
loop (⊕) (x : xs) = get>>=λ s→

put (s⊕ x)>> loop xs .

Prove that put s>> loop (⊕) xs = put (foldl (⊕) s xs)>>get.

Solution: Induction on xs.
Case xs :=[]:

put s>> loop (⊕) []
= { definition of loop }

put s>>get
= { definition of foldl }

put (foldl (⊕) s [])>>get .

Case xs := x : xs:

Page 5

put s>> loop (⊕) (x : xs)
= { definition of loop }

put s>>get>>=λ s→ put (s⊕ x)>> loop xs
= { put-get }

put s>> return s>>=λ s→ put (s⊕ x)>> loop xs
= { monad law: left identity }

put s>>put (s⊕ x)>> loop xs
= { put-put }

put (s⊕ x)>> loop xs
= { induction }

put (foldl (⊕) (s⊕ x) xs)>>get
= { definition of foldl }

put (foldl (⊕) s (x : xs))>>get .

Page 6

