
Functional Programming
Practicals 3. Program Calculation

Shin-Cheng Mu

July 2018

1. Longest positive segment. The function lpp computes the length of the longest prefix that is
all positive:

lpp ::List Int→ Nat
lpp [] = 0
lpp (x : xs) = if x>0 then 1+ (lpp xs) else 0 .

The function lps, using lpp, computes the length of the longest positive segment:

lps ::List Int→ Nat
lps [] = 0
lps (x : xs) = lpp (x : xs)↑ lps xs .

(a) What are the time complexities of lpp and lps, with respect to the lengths of their inputs?

(b) Calculate a faster version of lps, by tupling lps and lpp.

Solution: The function lps, defined this way, is a O(n2) program.

To calculate an linear-time version, we define:

lpsp xs = (lps xs, lpp xs) .

If we can construct a linear-time implementation of lpsp, we may define lps = fst · lpsp. To
calculate lpsp:
Case xs :=[]. Apparantly lpsp [] = (0,0).

Case xs := x : xs.

lpsp (x : xs)
= (lps (x : xs), lpp (x : xs))
= { definitions of lps and lpp }
((if x>0 then 1+ (lpp xs) else 0)↑ lps xs,

1

if x>0 then 1+ (lpp xs) else 0)
= { lifting common sub-expressions }

let (m,n) = (lps xs, lpp xs)
k = if x>0 then 1+ n else 0

in (k ↑m,k)
= { definition of lpsp }

let (m,n) = lpsp xs
k = if x>0 then 1+ n else 0

in (k ↑m,k) .

Thus we have derived:

lpsp [] = (0,0)
lpsp (x : xs) = let (m,n) = lpsp xs

k = if x>0 then 1+ n else 0
in (k ↑m,k) .

2. Let descend be defined by:

descend ::Nat→ List Nat
descend 0 = []
descend (1+ n) = 1+ n : descend n .

(a) Let sumseries = sum ·descend, synthesise an inductive definition of f .

Solution: It is immediate that sum (descend 0) = 0. For the inductive case we calcu-
late:

sum (descend (1+ n))
= { definition of descend }

sum ((1+ n) : descend n)
= { definition of sum }

1+ n+ sum (descend n))
= { definition of sum }

1+ n + sumseries n .

Thus we have

sumseries 0 = 0
sumseries (1+ n) = 1+ n + sumseries n .

Page 2

(b) The function repeatN :: (Nat,a)→ List a is defined by

repeatN (n,x) = map (const x) (descend n) .

Thus repeatN (n,x) produces n copies of x in a list. E.g. repeatN (3,’a’) = "aaa".
Calculate an inductive definition of repeatN.

Solution: It is immediate that repeatN (0,x) = []. For the inductive case we calculate

repeatN (1+ n,x)
= { definition of repeatN }

map (const x) (descend (1+ n))
= { definition of descend }

map (const x) (1+ n : descend n)
= { definition of map and const }

x : map (const x) (descend n)
= { definition of repeatN }

x : repeatN (n,x) .

Thus we have

repeatN (0, x) = []
repeatN (1+ n,x) = x : repeatN (n,x) .

(c) The function rld ::List (Nat,a)→ List a performs run-length decoding:

rld = concat ·map repeatN .

For example, rld [(2,’a’),(3,’b’),(1,’c’)] = "aabbbc". Come up with an inductive
defintion of rld.

Solution: For the base case:

rld []
= { definition of rld }

concat (map repeatN [])
= { definitions of map and concat }
[]

For the inductive case:

rld ((n,x) : xs)
= { definition of rld }

concat (map repeatN ((n,x) : xs))

Page 3

= { definitions of map }
concat (repeatN (n,x) : map repeatN xs)

= { definitions of concat }
repeatN (n,x)++ concat (map repeatN xs)

= { definition of rld }
repeatN (n,x)++ rld xs .

We have thus derived:

rld [] = []
rld ((n,x) : xs) = repeatN (n,x)++ rld xs .

3. There is another way to define pos such that pos x xs yields the index of the first occurrence of
x in xs:

pos :: Eq a⇒ a→ List a→ Int
pos x = length · takeWhile (x 6=)

(This pos behaves differently from the one in the lecture when x does not occur in xs.) Con-
struct an inductive definition of pos.

Solution: It is immediate that pos x [] = 0. For the inductive case we calculate:

pos x (y : xs)
= length (takeWhile (x 6=) (y : xs))
= { definition of takeWhile }

length (if x 6= y then y : takeWhile (x 6=) xs else [])

= { function application distributes into if (for total functions) }
if x 6= y then length (y : takeWhile (x 6=) xs) else length []

= { definition of length }
if x 6= y then 1+ length (takeWhile (x 6=) xs) else 0

= { definition of pos }
if x 6= y then 1+ pos x xs else 0 .

Thus we have constructed:

pos x [] = 0
pos x (y : xs) = if x 6= y then 1+ pos x xs else 0 .

4. Zipping and mapping.

Page 4

(a) Let second f (x,y) = (x, f y). Prove that zip xs (map f ys) = map (second f) (zip xs ys).

Solution: Recall one of the possible definitions of zip:

zip [] ys = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x,y) : zip xs ys.

Following the structure, we prove the proposition by induction on xs and ys. A tip
for equational reasoning: it is usually easier to go from the more complex side to the
simpler side, from the side with more structure to the side with less structure. Thus
we start from the left-hand side.
Case xs := [].

map (second f) (zip [] ys)
= { definition of zip }

map (second f) []
= { definition of map }

[]

= { definition of zip }
zip [] (map f ys).

Case xs := x : xs, ys := [].

map (second f) (zip (x : xs) [])
= { definition of zip }

map (second f) []
= { definition of map }

[]

= { definition of zip }
zip (x : xs) []

= { definition of map }
zip (x : xs) (map f []).

Case xs := x : xs, ys := y : ys.

map (second f) (zip (x : xs) (y : ys))
= { definition of zip }

map (second f) ((x,y) : zip xs ys)
= { definition of map }

second f (x,y) : map (second f) (zip xs ys)

Page 5

= { definition of second }
(x, f y) : map (second f) (zip xs ys)

= { induction }
(x, f y) : zip xs (map f ys)

= { definition of zip }
zip (x : xs) (f y : map f ys)

= { definition of map }
zip (x : xs) (map f (y : ys)).

(b) Consider the following definition

delete :: List a→ List (List a)
delete [] = []
delete (x : xs) = xs : map (x:) (delete xs) ,

such that

delete [1,2,3,4] = [[2,3,4], [1,3,4], [1,2,4], [1,2,3]] .

That is, each element in the input list is deleted in turns. Let select ::List a→ List (a,List a)
be defined by select xs= zip xs (delete xs). Come up with an inductive definition of select.
Hint: you may find second useful.

Solution: The base case [] is immediate. For the inductive case:

select (x : xs)
= { definition of select }

zip (x : xs) (delete (x : xs))
= { definition of delete }

zip (x : xs) (xs : map (x:) (delete xs))
= { definition of zip }
(x,xs) : zip xs (map (x:) (delete xs))

= { property proved above }
(x,xs) : map (second (x:)) (zip xs (delete xs))

= { definition of select }
(x,xs) : map (second (x:)) (select xs) .

We thus have

select [] = []
select (x : xs) = (x,xs) : map (second (x:)) (select xs) .

Page 6

(c) An alternative specification of delete is

delete xs = map (del xs) [0 . . length xs−1]
where del xs i = take i xs++drop (1+ i) xs ,

(here we take advantage of the fact that [0 . .n] returns [] when n is negative). From this
specification, derive the inductive definition of delete given above. Hint: you may need
the following property:

[0 . .n] = 0 : map (1+) [0 . .n−1], if n > 0, (1)

and the map-fusion law.

Solution:

delete (x : xs)
= { definition of delete }

map (del (x : xs)) [0 . . length (x : xs)−1]
= { defintion of length, arithmetics }

map (del (x : xs)) [0 . . length xs]
= { length xs > 0, by (1) }

map (del (x : xs)) (0 : map (1+) [0 . . length xs−1])
= { definition of map }

del (x : xs) 0 : map (del (x : xs)) (map (1+) [0 . . length xs−1])
= { map fusion (??) }

del (x : xs) 0 : map (del (x : xs) · (1+)) [0 . . length xs−1]

Now we pause for a while to inspect del (x : xs). Apparently, del (x : xs) 0 = xs. For
del (x : xs) · (1+) we calculate:

(del (x : xs) · (1+)) i
= { definition of (·) }

del (x : xs) (1+ i)
= { definition of del }

take (1+ i) (x : xs)++drop (1+ (1+ i)) (x : xs)
= { definitions of take and drop }

x : take i xs++drop (1+ i) xs
= { definition of del }

x : del xs i
= { definition of (·) }
((x:) ·del xs) i .

We resume the calculation:

del (x : xs) 0 : map (del (x : xs) · (1+)) [0 . . length xs−1]
= { calculation above }

Page 7

xs : map ((x:) ·del xs) [0 . . length xs−1]
= { map fusion (??) }

xs : map (x:) (map (del xs) [0 . . length xs−1])
= { definition of delete }

xs : map (x:) (delete xs) .

We have thus derived the first, inductive definition of delete.

5. Assume that multiplication (×) is a constant-time operation. One possible definition for
exp m n = mn could be:

exp :: Nat→ Nat→ Nat
exp m 0 = 1
exp m (1+n) = m× exp m n

Therefore, to compute exp m n, multiplication is called n times: m×m× . . .×m×1. Can we
do better?

Yet another way to represent a natural number is to use the binary representation.

(a) The function binary :: Nat→ [Bool] returns the reversed binary representation of a natural
number. For example:

binary 0 = [],
binary 1 = [T],
binary 2 = [F,T],
binary 3 = [T,T],
binary 4 = [F,F,T].

Given the following functions:

even :: Nat→ Bool, returning true iff the input is even,
odd :: Nat→ Bool, returning true iff the input is odd, and
div :: Nat→ Nat→ Nat, for integral division,

define binary. You may just present the code.
Hint One possible implementation discriminates between 3 cases – the input is 0, the
input is odd, and the input is even.

Solution:

binary :: Nat→ List Bool
binary 0 = []
binary n | even n = False : binary (n ‘div‘ 2)

| odd n = True : binary ((n−1) ‘div‘ 2)

Page 8

(b) Briefly explain in words whether your implementation of binary terminates for all input
in Nat, and why.

Solution: All non-zero natural numbers strictly decreases when being divided by 2,
and thus we eventually reaches the base case for 0.

(c) Define a function decimal :: List Bool→ Nat that takes the reversed binary representation
and returns the corresponding natural number. E.g. decimal [T,T,F,T] = 11. You may
just present the code.

Solution:

decimal :: List Bool→ Nat
decimal [] = 0
decimal (False : xs) = 2×decimal xs
decimal (True : xs) = 1+(2×decimal xs)

(d) Let roll m= exp m ·decimal. Assuming we have proved that exp m n satisfies all arithmetic
laws for mn. Construct (with algebraic calculation) a definition of roll that does not make
calls to exp or decimal.

Solution: Let’s calculate roll m xs = exp m (decimal xs) by distinguishing between
the three cases of n: Case xs := []:

roll m []

= exp m (decimal [])
= { definition of decimal }

exp m 0
= { definition of exp }

1

Case xs = False : xs:

roll m (False : xs)
= { definition of roll }

exp m (decimal (False : xs))
= { definition of decimal }

exp m (2×decimal xs)

= { arithmetic: m2n = (m2)n }
exp (m×m) (decimal xs)

= { definition of roll }

Page 9

roll (m×m) xs

Case xs = True : xs:

roll m (True : xs)
= { definition of roll }

exp m (decimal (True : xs))
= { definition of decimal }

exp m (1+2×decimal xs)
= { definition of exp }

m× exp m (2×decimal xs)

= { arithmetic: m2n = (m2)n }
m× exp (m×m) (decimal xs)

= { definition of roll }
m× roll (m×m) xs

We have thus constructed:

roll m [] = 1
roll m (False : xs) = roll (m×m) xs
roll m (True : xs) = m× roll (m×m) xs

Remark If the fusion succeeds, we have derived a program computing mn:

fastexp m = roll m ·binary.

The algorithm runs in time proportional to the length of the list generated by binary, which is
O(log2 n).

6. Alternatively, define repeatN by:

repeatN (n,x) = map (const x) [0 . .n−1] .

(a) Try to construct an inductive definition of repeatN by induction on n, and see how this
might not work.

(b) Define repeatFrom i (n,x) = map (const x) [i . .n−1].

7. The function from generates an infinite list of numbers:

from :: Int→ List Int
from n = n : from (1+n)

Page 10

In fact, from n = [n..]. Consider the following definition:

positions :: (a→ Bool)→ List a→ List Int
positions p = map fst ·filter (p · snd) · zip (from 0)

One problem with the definition is that it builds many intermediate lists in the middle. Try
deriving, with algebraic calculation, a alternative definition of positions that do not build those
intermediate lists.

Hint: Start with trying to construct a definition of positions p xs that is inductively defined
on xs. You might then find out that this does not work, and you need to define a generalised
function, for which positions p xs is a special case.

Solution: One may start with trying to inductively define positions p on the input list. We
omit the base case and look at the inductive case:

positions p (x : xs)
= map fst (filter (p · snd) (zip (from 0) (x : xs))
= { definition of zip }

map fst (filter (p · snd) ((0,x) : zip (from 1) xs)

We may proceed with it but soon we will encounter difficulty not being able to fold back
map fst (filter (p · snd) (zip (from 1) xs).

Instead, we define

posFrom :: (a→ Bool)→ Int→ List a→ List Int
posFrom p n xs = map fst (filter (p · snd) (zip (from n) xs))

If we can construct a quick definition of posFrom, we may simply let

positions p xs = posFrom p 0 xs

Now we try to construct posFrom. The base case posFrom p n xs is easy. We look at the
inductive case with input x : xs:

posFrom p n (x : xs)
= map fst (filter (p · snd) (zip (from n) (x : xs)))
= { definition of zip }

map fst (filter (p · snd) ((n,x) : zip (from (1+n)) xs))
= { definition of filter }

map fst (if (p (snd (n,x))) then (n,x) : filter (p · snd) (zip (from (1+n)) xs)
else filter (p · snd) (zip (from (1+n)) xs)

= { function composition, snd }

Page 11

map fst (if p x then (n,x) : filter (p · snd) (zip (from (1+n)) xs)
else filter (p · snd) (zip (from (1+n)) xs)

= { f (if q then e1 else e2) = if q then f e1 else f e2 }
if p x then map fst ((n,x) : filter (p · snd) (zip (from (1+n)) xs))

else map fst (filter (p · snd) (zip (from (1+n)) xs))
= { definition of map }

if p x then n : map fst filter (p · snd) (zip (from (1+n)) xs))
else map fst (filter (p · snd) (zip (from (1+n)) xs))

= { definition of posFrom }
if p x then n : posFrom p (1+n) xs

else posFrom p (1+n) xs

Thus we have

posFrom p n [] = []
posFrom p n (x : xs) = if p x then n : posFrom p (1+n) xs

else posFrom p (1+n) xs

8. Prove that reverse · reverse = id (for finite lists). It will turn out that you need to prove a
stronger lemma, which may need the alternative definition of reverse in terms of revcat.

Solution:
The goal is to prove that

reverse (reverse xs) = xs (2)

which, if we take reverse xs = revcat xs [] as known, is equivalent to

reverse (revcat xs []) = xs (3)

The base case for [] is trivial, for the inductive case (x : xs), our first attempt could be

reverse (reverse (x : xs))
= { reverse xs = revcat xs [] }

reverse (revcat (x : xs) [])
= { definition of revcat }

reverse (revcat xs [x])

Page 12

Then we are stuck — we cannot use (??) as the inductive hypothesis, since we have [x],
not [], as the argument of revcat.

Thus we generalise (??) to

reverse (revcat xs ys) =?

what should the right-hand side be? A moment’s thought leads to

reverse (revcat xs ys) = revcat ys xs (4)

Or something equivalent (e.g. reverse (revcat xs ys) = reverse ys++xs. If you use this one
you may need some more additional steps in the proof later, but it still works anyway).

Note that once we prove (??), (??) follows as a corollary by letting ys = []. Thus we do
not need another inductive proof for (??).

We prove (??) by induction on xs. The base case [] is omitted. For the inductive case:

reverse (revcat (x : xs) ys)
= { definition of revcat }

reverse (revcat xs (x : ys))
= { induction hypothesis }

revcat (x : ys) xs
= { definition of revcat }

revcat ys (x : xs)

In fact, you could rephrase (??) as

reverse (reverse xs++ys) = reverse ys++xs

and use only the original definition of reverse (that is, reverse (x : xs) = reverse xs++[x]),
and the fact that (++) is associative. Thinking in terms of revcat was how I discovered
(??), though.

9. Recall the standard definition of factorial:

fact :: Int→ Int
fact 0 = 1,
fact (1+ n) = (1+ n)× fact n.

This program implicitly uses space linear to n in the call stack.

1. Introduce factit n m = . . . where m is an accumulating parameter.

2. Express fact in terms of factit.

Page 13

3. Construct a space efficient implementation of factit.

Solution: To exploit associativity of (×), we define:

factit n m = m× fact n.

We recover fact by letting

fact n = factit n 1.

To construct factit we derive:
Case n := 0:

factit 0 m
= { definition of factit }

m× fact 0
= { definition of fact }

m.

Case n := 1+ n:

factit (1+ n) m
= { definition of factit }

m× fact (1+ n)
= { definition of fact }

m× ((1+ n)× fact n)
= { (×) associative }

(m× (1+ n))× fact n
= { definition of factit }

factit n (m× (1+ n)).

Thus,

factit 0 m = m
factit (1+ n) m = factit n (m× (1+ n)).

10. Recall the standard definition of Fibonacci:

fib 0 = 0
fib 1 = 1
fib (1+ (1+n)) = fib (1+ n)+fib n.

Page 14

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

1. Given the definition ffib n x y = fib n× x+fib (1+ n) × y. Express fib using ffib.
2. Derive a linear-time version of ffib.

Solution: fib n = ffib n 1 0.

To construct ffib, we calculate:
Case n := 0:

ffib 0 x y
= { definition of ffib }

fib 0× x+fib 1× y
= { definition of fib }

0× x+1× y
= { arithmetics }

y

Case n := 1+ n:

ffib (1+ n) x y
= { definition of ffib }

fib (1+ n)× x+fib (1+(1+n))× y
= { definition of fib }

fib (1+ n)× x+(fib (1+ n)+fib n)× y
= { arithmetics }

fib (1+ n)× (x+ y)+fib n× y
= { definition of ffib }

ffib n y (x+ y)

Therefore,

ffib 0 x y = y
ffib (1+ n) x y = ffib n y (x+ y)

11. The following problem concerns calculating the sum ∑
n
i=0(xi× yi). Let geo be defined by:

geo y = 1 : map (y×) (geo y),
horner y xs = sum (map mul (zip xs (geo y))),

where mul (a,b) = a×b. Let xs = [x0,x1, . . . ,xn], horner y xs computes the sum x0 + x1× y+
x2× y2 + · · ·+ xn× yn.

Page 15

(a) Show that mul · second (y×) = (y×) ·mul.
(Remark: for those who familiar with currying, mul = uncurry (×).)

Solution:

mul (second (y×) (x,z))
= { definition of second }

mul (x,y× z)
= { definition of mul }

x× (y× z)
= { arithmetics }

y× (x× z)
= { definition of mul }

y×mul (x,z).

(b) Let n = length xs. Asymptotically (that is, in terms of the big-O notation), how many
multiplications (×) one must perform to compute horner y xs?

(c) Construct an inductive definition of horner that uses only O(n) multiplications to compute
horner y xs. Hint: you will need properties proved in the previous problems in this
exercise, and a property in the midterm exam concerning sum and map (y×), and perhaps
some more properties. Unlike in the previous problem, however, you do not need to
generalise horner.

Solution: We construct an inductive definition of horner by case analysis.
Case xs := []. It is immediate that horner y [] = 0. Details omitted.
Case xs := x : xs.

horner y (x : xs)
= { definition of horner }

sum (map mul (zip (x : xs) (geo y)))
= { definition of geo }

sum (map mul (zip (x : xs) (1 : map (y×) (geo y))))
= { definition of zip }

sum (map mul ((x,1) : zip xs (map (y×) (geo y))))
= { definition of map and mul }

sum (x : map mul (zip xs (map (y×) (geo y))))
= { definition of sum }

x+ sum (map mul (zip xs (map (y×) (geo y))))

Page 16

= { since zip xs (map f ys) = map (second f) (zip xs ys) }
x+ sum (map mul (map (second (y×)) (zip xs (geo y))))

= { since map f ·map g = map (f ·g) }
x+ sum (map (mul · second (y×)) (zip xs (geo y)))

= { since mul · second (y×) = (y×) ·mul }
x+ sum (map ((y×) ·mul) (zip xs (geo y)))

= { since map f ·map g = map (f ·g) }
x+ sum (map (y×) (map mul (zip xs (geo y))))

= { since sum ·map (y×) = (y×) · sum }
x+ y× sum (map mul (zip xs (geo y)))

= { definition of horner }
x+ y×horner y xs.

Thus we conclude that

horner y [] = 0
horner y (x : xs) = x+ y×horner y xs.

Page 17

