SESSION TYPES

Processes, types and properties

SESSION TYPES

- Motivation
- Session Calculus

.

- ▶ Syntax
- Semantics
- Session Types
 - ▶ Syntax
 - Typing rules
- Properties

SESSION TYPE: MOTIVATION

Can we have types that describe the communication, not the computation?

How to formally describe/specify and practically describe/implement communications?

SESSION TYPES: OVERVIEW

- Since their appearance, session types have developed into a significant theme in programming languages.
- Computing has moved from the era of data processing to the era of communication.
- Data types codify the structure of data and make it available to programming tools.
- Session types codify the structure of communication and make it available to programming tools.

PROCESSES

or how to formally implement protocols

WHAT CAN GO WRONG?

A protocol in session calculus

An ATM agent offers two services: funds balance or deposit.

- If balance is chosen, then it shows a balance of the account, and recurs to the menu with the same amount.
- If deposit is chosen, then it receives a deposited amount z, and returns to the menu with the new state as their sum y + z.

The following is an implementation of the ATM (first try):

$$\mathbf{ATM}(a, y) \stackrel{\text{df}}{=} a \triangleright \begin{bmatrix} \text{balance} : \overline{a} \langle y \rangle. \mathbf{ATM} \langle a, y \rangle \\ \text{deposit} : a(z). \overline{a} \langle y + z \rangle. \mathbf{ATM} \langle a, y + z \rangle \end{bmatrix}$$

The following is an implementation of the customer:

 $\operatorname{Customer}(a,y) \stackrel{\mathsf{df}}{=} a \triangleleft \operatorname{\mathsf{deposit}}.\overline{a}\langle y \rangle.a(x).P$

The interaction between these three parties is incorrect:

 $\operatorname{ATM}\langle a,0\rangle \,|\, \operatorname{Customer}\langle a,100\rangle \,|\, \operatorname{Customer}\langle a,100\rangle$

SESSION CHANNELS

Let's try again:

An example of the customer is:

$$\mathbf{Customer}(a, y) \stackrel{\text{df}}{=} (\nu \, \mathbf{s}) \overline{a} \langle \mathbf{s} \rangle . \mathbf{s} \triangleleft \mathsf{deposit}. \overline{\mathbf{s}} \langle y \rangle . \mathbf{s}(x) . P$$

You can check the interaction between the three parties is safe:

 $\operatorname{ATM}\langle a, 0 \rangle | \operatorname{Customer}\langle a, 100 \rangle | \operatorname{Customer}\langle a, 100 \rangle$

Here *a* is called *shared* name and it allows interference of interactions. *s* is called *session* name and is used for structured interactions.

P ::=	processes
$\overline{u}(s).P$	session request
u(s).P	session accept
$\overline{s}\langle \widetilde{e} \rangle.P$	message send
$s(\widetilde{x}).P$	message received
$\overline{s}(s').P$	channel send
s(s').P	channel received
$s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\}$	branching
$s \lhd l.P$	selection
0	nil process
$P \mid Q$	parallel composition of P and Q
$(\nu s)P, (\nu a)P$	fresh name generation
$\texttt{def}\ D \texttt{ in } P$	recursion definition
$X\langle \widetilde{es} \rangle$	recursion call
if e then P else Q	conditional
u ::= a, b, x	shared name and variable
e ::= v, e or e, e and e, not e	expressions
v ::= true, false, a	values
$D ::= X_1(\widetilde{x_1}\widetilde{s_1}) = P_1, \ldots, X_n(\widetilde{x_n}\widetilde{s_n}) = P_n$	declaration for recursion

. . .

P ::=	processes
$\overline{u}(s).P$	session request
u(s).P	session accept
$\overline{s}\langle \widetilde{e} \rangle.P$	message send
$s(\widetilde{x}).P$	message received
$\overline{s}(s').P$	channel send
s(s').P	channel received
$\boldsymbol{s} \rhd \{l_1 : P_1 \mid \cdots \mid l_n : P_n\}$	branching
$s \lhd l.P$	selection
0	nil process
$P \mid Q$	parallel composition of P and Q
$(\nu s)P, (\nu a)P$	fresh name generation
def D in P	recursion definition
$X \langle \widetilde{es} \rangle$	recursion call
if e then P else Q	conditional
u ::= a, b, x	shared name and variable
e ::= v, e or e, e and e, not e	expressions
v ::= true, false, a	values
$D ::= X_1(\widetilde{x_1}\widetilde{s_1}) = P_1, \ldots, X_n(\widetilde{x_n}\widetilde{s_n}) = P_n$	declaration for recursion

Distinguish session and shared channels!

P ::=	processes	
$\overline{u}(s).P$	session request	session initiation
u(s).P	session accept	
$\overline{s}\langle \widetilde{e} \rangle.P$	message send	
$s(\widetilde{x}).P$	message received	
$\overline{s}(s').P$	channel send	interact in a cossion
s(s').P	channel received	interact in a session
$s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\}$	branching	
$s \lhd l.P$	selection	
0	nil process	
$P \mid Q$	parallel composition of	P and Q
$(\nu s)P, (\nu a)P$	fresh name generation	
def D in P	recursion definition	.1
$X\langle \widetilde{es} \rangle$	recursion call	other constructs
if e then P else Q	conditional	
u ::= a, b, x	shared name and variab	le
e ::= v, e or e, e and e, not e	expressions	
v ::= true, false, a	values	
$D ::= X_1(\widetilde{x_1}\widetilde{s_1}) = P_1, \ldots, X_n(\widetilde{x_n}\widetilde{s_n}) = P_n$	declaration for recursion	1

P		
$\overline{u}(s).P$	s shared channels a, a',	
u(s).P	se used to initiate a sessions	
$\overline{s}\langle \widetilde{e} \rangle.P$		
$s(\widetilde{x}).P$	message received	
$\overline{s}(s').P$	c	
s(s').P	c session channels: s, s',	
$s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\}$	b	
$s \lhd l.P$	s Used for session communication	
0	nil process	
$P \mid Q$	parallel composition of P and Q	
$(\nu s)P, (\nu a)P$	fresh name generation	
def D in P	recursion definition	
$X\langle \widetilde{es} \rangle$	recursion call Other constructs	
if e then P else Q	conditional	
u ::= a, b, x	shared name and variable	
e ::= v, e or e, e and e, not e	expressions	
v ::= true, false, a	values	
$D := V(\widetilde{\widetilde{x}}, \widetilde{\widetilde{z}}) - D = V(\widetilde{\widetilde{x}}, \widetilde{\widetilde{z}}) - D$	declaration for recursion	

P ::=	processes		
$\overline{u}(s).P$	session request		
u(s).P	session accept		
$\overline{s}\langle \widetilde{e} \rangle.P$	message send		
$s(\widetilde{x}).P$	message received		
$\overline{s}(s').P$	channel send		
s(s').P	channel received		
$\boldsymbol{s} \rhd \{ l_1 : P_1 \mid \cdots \mid l_n : P_n \}$	branching		
$s \lhd l.P$	selection		
0	nil process		
$P \mid Q$	parallel composition of P and Q		
$(\nu s)P, (\nu a)P$	fresh name generation		
$\texttt{def} \ D \ \texttt{in} \ P$	recursion definition		
$X(\tilde{e}\tilde{s})$ if a before the system is a parallel composition of processes			
u := a b x	shared name and variable		
a := u, o, x e := v e or e e and e not e	expressions		
v := true false a	values		
$D = V(\widetilde{a}\widetilde{c}) = D$ $V(\widetilde{a}\widetilde{c}) = D$	declaration for require		
$D ::= X_1(x_1s_1) = P_1, \ldots, X_n(x_ns_n) = P_n$	declaration for recursion		

SESSION CALCULUS: SEMANTICS

EXAMPLE: A VARIABLE AGENT

A variable agent stores a value and offers the following operations:

1) read returns the stored value and recurs to the same variable;

2) write receives a different value and returns to the variable with the new state;

A Variable Agent:

$$\operatorname{Var}(a, x) \stackrel{\mathrm{df}}{=} ?$$

Reader Process:

 $\operatorname{Reader}(a) \stackrel{\mathrm{df}}{=} ?$

EXAMPLE: A VARIABLE AGENT

A variable agent stores a value and offers the following operations:

- 1) read returns the stored value and recurs to the same variable;
- 2) write receives a different value and returns to the variable with the new state;

A Variable Agent:

$$\operatorname{Var}(a,x) \stackrel{\mathsf{df}}{=} a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a,x \rangle [] \text{ write } : s(y). \operatorname{Var}\langle a,y \rangle]$$

Reader Process:

$$\operatorname{Reader}(a) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \operatorname{\mathsf{read}} \cdot s(y) \cdot 0$$

Write Process:

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot 0$$

Updating a value:

$$\operatorname{Var}\langle a, 0 \rangle | \operatorname{Writer}\langle a, 5 \rangle \longrightarrow \operatorname{Var}\langle a, 5 \rangle$$

SEMANTICS BY EXAMPLE: PROCESS DEFINITION RULE

 $(\mathsf{Def}) \quad \mathsf{def} \ D \ \mathsf{in} \ (X \langle \widetilde{es} \rangle \,|\, Q) \longrightarrow \ \mathsf{def} \ D \ \mathsf{in} \ (P\{\widetilde{v}/\widetilde{x}\} \,|\, Q) \ (e_i \downarrow v_i, X(\widetilde{xs}) = P \in D)$

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle. Var\langle a, x \rangle || \text{ write} : s(y). Var\langle a, y \rangle ||$$
$$Writer(a, x) \stackrel{\text{df}}{=} \overline{a}(s).s \triangleleft \text{ write}.\overline{s}\langle x \rangle. 0$$
in

 $\operatorname{Var}\langle a, 0 \rangle | \operatorname{Writer}\langle a, 5 \rangle$

 \longrightarrow

SEMANTICS BY EXAMPLE: PROCESS DEFINITION RULE

 $(\mathsf{Def}) \quad \mathsf{def} \ D \ \mathsf{in} \ (X\langle \widetilde{es} \rangle \,|\, Q) \longrightarrow \ \mathsf{def} \ D \ \mathsf{in} \ (P\{\widetilde{v}/\widetilde{x}\} \,|\, Q) \ (e_i \downarrow v_i, X(\widetilde{xs}) = P \in D)$

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle. Var\langle a, x \rangle [] \text{ write} : s(y). Var\langle a, y \rangle]$$
$$Writer(a, x) \stackrel{\text{df}}{=} \overline{a}(s).s \triangleleft \text{ write}.\overline{s}\langle x \rangle. 0$$
in

$$\begin{aligned} \operatorname{Var}\langle a, 0 \rangle &| \operatorname{Writer}\langle a, 5 \rangle \\ &\longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle [] \text{ write} : s(y). \operatorname{Var}\langle a, y \rangle] \{0/_x\} \\ &| \overline{a}(s).s \lhd \operatorname{write}.\overline{s}\langle x \rangle. 0\{5/_x\} \end{aligned}$$

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ &\longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle \, [] \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ &\quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathsf{0}$

 $\longrightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathsf{Var}\langle a, y \rangle] \\ | s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$

$$\rightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$$

$(\mathsf{Def}) \quad \mathsf{def} \ D \ \mathsf{in} \ (X\langle \widetilde{es} \rangle \,|\, Q) \longrightarrow \ \mathsf{def} \ D \ \mathsf{in} \ (P\{\widetilde{v}/\widetilde{x}\} \,|\, Q) \ (e_i \downarrow v_i, X(\widetilde{xs}) = P \in D)$

$$\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle [] \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$$

$$= a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : s(y). \mathsf{Var}\langle a, y \rangle] | \overline{a}(s).s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. 0$$

$$\rightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ \mid s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$$

$$\rightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$$

$$\longrightarrow (\nu s) (\operatorname{Var}\langle a, y \rangle \{ 5/y \} | \mathbf{0})$$

$$\equiv \operatorname{Var}\langle 5 \rangle$$

SEMANTICS BY EXAMPLE

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle \, [] \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_X \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_X \} \end{aligned}$

 $= a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : s(y). \mathsf{Var}\langle a, y \rangle]$ $| \overline{a}(s).s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. 0$

 $\rightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$

$$\rightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$$

$(\mathsf{Link}) \quad \overline{a}(s).P_1 \mid a(s).P_2 \longrightarrow (\nu s)(P_1 \mid P_2)$

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. 0$

 $\rightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ \mid s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0})$

$$\rightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$$

$(\mathsf{Link}) \quad \overline{a}(s).P_1 \mid a(s).P_2 \longrightarrow (\nu s)(P_1 \mid P_2)$

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$

 $\equiv \underline{a(s)}.s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : \underline{s(y)}. \mathsf{Var}\langle a, y \rangle] \\ |\overline{a(s)}.s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. 0$

 $\rightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ \mid s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$

$$\longrightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$$

$(\mathsf{Link}) \quad \overline{a}(s).P_1 \mid a(s).P_2 \longrightarrow (\nu s)(P_1 \mid P_2)$

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$

 $\equiv \underline{a(s)}.s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \text{ write } : \underline{s(y)}. \mathsf{Var}\langle a, y \rangle] \\ |\overline{a(s)}.s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. \mathbf{0}$

$$\longrightarrow (\nu s)(s(y).\operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle.0)$$
$$\longrightarrow (\nu s)(\operatorname{Var}\langle a, y \rangle \{ 5/y \} | 0)$$
$$\equiv \operatorname{Var}\langle 5 \rangle$$

SEMANTICS BY EXAMPLE

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_X \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_X \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

$$\longrightarrow (\nu s)(s(y).\operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle.0)$$
$$\longrightarrow (\nu s)(\operatorname{Var}\langle a, y \rangle \{ 5/y \} | 0)$$
$$\equiv \operatorname{Var}\langle 5 \rangle$$

(Label) $s \triangleleft l.P \mid s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\} \longrightarrow P \mid P_i \quad (1 \le i \le n)$

$$\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ {}^{0}/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ {}^{5}/_{x} \} \end{aligned}$$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

$$\longrightarrow (\nu s)(s(y).\operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle.0)$$

$$\longrightarrow (\nu s)(\operatorname{Var}\langle a, y \rangle \{ 5/y \} | 0)$$

$$\equiv \operatorname{Var}\langle 5 \rangle$$

(Label) $s \triangleleft l.P \mid s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\} \longrightarrow P \mid P_i \quad (1 \le i \le n)$

$$\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ {}^{0}/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ {}^{5}/_{x} \} \end{aligned}$$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

 $\longrightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathrm{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathrm{Var}\langle a, y \rangle] \\ | s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. 0)$

$$\rightarrow (\nu s)(s(y). \operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle. 0)$$

SEMANTICS BY EXAMPLE

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_X \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_X \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

 $\longrightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathrm{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathrm{Var}\langle a, y \rangle] \\ | \ s \lhd \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$

$$\longrightarrow (\nu s)(s(y). \operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle. 0)$$

$(\mathsf{Com}) \quad \overline{s} \langle \widetilde{e} \rangle . P_1 \,|\, \underline{s}(\widetilde{x}) . P_2 \longrightarrow P_1 \,|\, P_2 \{ \widetilde{v} / \widetilde{x} \} \quad (e_i \downarrow v_i)$

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ {}^{\mathsf{0}}/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write} . \overline{s}\langle x \rangle. 0 \{ {}^{\mathsf{5}}/_{x} \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

 $\longrightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathrm{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathrm{Var}\langle a, y \rangle] \\ | s \triangleleft \mathsf{write}. \overline{s}\langle 5 \rangle. 0)$

$$\longrightarrow (\nu s)(s(y). \operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle. 0)$$

(Com) $\overline{s}\langle \widetilde{e} \rangle . P_1 | \underline{s}(\widetilde{x}) . P_2 \longrightarrow P_1 | P_2\{\widetilde{\widetilde{v}}/\widetilde{x}\} (e_i \downarrow v_i)$

$$\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ {}^{0}/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ {}^{5}/_{x} \} \end{aligned}$$

$$\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$$

$$\longrightarrow (\nu s)(s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathrm{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathrm{Var}\langle a, y \rangle] \\ \mid s \lhd \mathsf{write}. \overline{s}\langle 5 \rangle. \mathbf{0})$$

$$\rightarrow (\nu s)(\underline{s(y)}.\operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle.0)$$
$$\rightarrow (\nu s)(\operatorname{Var}\langle a, y \rangle \{5/y\} | 0)$$
$$\equiv \operatorname{Var}\langle 5 \rangle$$

SEMANTICS BY EXAMPLE

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle] | \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_X \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_X \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \mathsf{ write} : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{ write}. \overline{s}\langle 5 \rangle. \mathbf{0}$

 $\longrightarrow (\nu \, s)(s \triangleright [\mathsf{read} : \overline{s} \langle 0 \rangle. \mathsf{Var} \langle a, 0 \rangle [] \text{ write } : s(y). \mathsf{Var} \langle a, y \rangle] \\ | \ s \lhd \mathsf{write}. \overline{s} \langle 5 \rangle. \mathbf{0})$

 $\rightarrow (\nu s)(s(y).\operatorname{Var}\langle a,y\rangle | \overline{s}\langle 5\rangle.0)$

SEMANTICS BY EXAMPLE

 $\begin{aligned} &\operatorname{Var}\langle a, 0 \rangle \, | \, \operatorname{Writer}\langle a, 5 \rangle \\ & \longrightarrow a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle \, [] \, \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \{ 0/_{x} \} \\ & \quad | \, \overline{a}(s).s \triangleleft \operatorname{write}.\overline{s}\langle x \rangle. 0\{ 5/_{x} \} \end{aligned}$

 $\equiv a(s).s \triangleright [\mathsf{read} : \overline{s}\langle 0 \rangle. \mathsf{Var}\langle a, 0 \rangle [] \text{ write } : s(y). \mathsf{Var}\langle a, y \rangle] \\ | \overline{a}(s).s \triangleleft \mathsf{write}.\overline{s}\langle 5 \rangle. 0$

$$\longrightarrow (\nu s)(s(y).\operatorname{Var}\langle a, y \rangle | \overline{s}\langle 5 \rangle.0)$$
$$\longrightarrow (\nu s)(\operatorname{Var}\langle a, y \rangle \{5/y\} | 0)$$
$$\equiv \operatorname{Var}\langle 5 \rangle$$

EXERCISE

. .

 $\operatorname{Var}\langle a, 5 \rangle | \operatorname{Reader}\langle a \rangle \longrightarrow ?$

• •

.

EXERCISE

 $\operatorname{Var}(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle \| \text{ write } : s(y). \operatorname{Var}\langle a, y \rangle]$ Reader(a) $\stackrel{\text{df}}{=} \overline{a}(s).s \triangleleft \operatorname{read}.s(y).0$ in $\operatorname{Var}(a, \overline{b}) \mid \mathbf{D} \text{ and } \operatorname{Par}(a) = i \mathbf{2}$

 $\operatorname{Var}\langle a, 5 \rangle | \operatorname{Reader}\langle a \rangle \longrightarrow ?$

EXAMPLE: TRAVEL AGENCY

Web Service Protocol (Usecase from WS-CDL)

Two parties are involved: a client (Customer) and a travel agency (Agency).

- 1. Customer begins an *order session* s with Agency, then requests and receives the price for the desired journey.
- Customer either accepts (label accept) an offer from Agency or decides that none of the received quotes are satisfactory.
- 3. if the offer is accepted, the Customer sends a delivery address and the Agency Service replies with the dispatch date for the purchased tickets. The transaction is now complete.
- Customer retries (label retry) transactions with new journeys some number of times if Agency gave are reasonable quote.
- 5. Customer rejects (label reject) the transaction if no quotes were suitable after some retries and the session terminates.

EXAMPLE: TRAVEL AGENCY

$$\begin{aligned} \mathbf{Agency}(a,b) &\stackrel{\mathsf{df}}{=} a(s).\mathbf{Agency}_1\langle a,b,s \rangle \\ \mathbf{Agency}_1(a,b,s) &\stackrel{\mathsf{df}}{=} s(x).\overline{s}\langle \operatorname{price}(x) \rangle \\ s &\triangleright \left[\begin{array}{c} \operatorname{accept} : s(x).\overline{s}\langle \operatorname{date} \rangle.\operatorname{Agency}\langle a,b \rangle \\ \operatorname{retry} : \operatorname{Agency}_1\langle a,b,s \rangle \end{array} \right] \\ & \operatorname{reject} : \operatorname{Agency}\langle a,b \rangle \end{aligned}$$

Customer(a, place, i, n) $\stackrel{\text{df}}{=} \overline{a}(s)$.Customer₁(s, place, i, n)Customer₁(s, place, i, n) $\stackrel{\text{df}}{=} \overline{s}\langle place(i) \rangle$.s(price).if is_acceptable(price) then $s \triangleleft \text{accept.} \overline{s}\langle \text{address} \rangle$.s(date)elseif $i \leq n$ then $s \triangleleft \text{retry.Customer}_1\langle s, place, i + 1, n \rangle$ $s \triangleleft \text{reject}$

DELEGATION

- Customer begins an order session s with Agency, then requests and receives the price for the desired journey.
- Customer either accepts an offer from Agency or decides that none of the received quotes are satisfactory.
- 3. new: If an offer is accepted, Agency opens the session s' with Service and *delegates* to Service, through s', the interactions with Customer remaining for s.
- new: Customer then sends a delivery address (unaware that he/she is now talking to Service), and Service replies with the dispatch date for the purchased tickets. The transaction is now complete.
- Customer retries transactions with new journeys some number of times if Agency gave are reasonable quote.
- Customer rejects the transaction if no quotes were suitable after some retries and the session terminates.
DELEGATION

- The original idea of delegation in object-based concurrent programming allows an object to delegate the processing of a request to another object. Its basic purpose is distributing of processing, while maintaining the transparency of name space for clients of that service.
- Can we delegate the processing of a request in the current session calculus ?
- Refresh on the syntax:

 $\bar{s}(s').P$ channel sends(s').Pchannel received

Therefore, we can pass session channels: $\overline{s}(s')$

- Delegation: the ability to pass session channels
- Let's see how we can improve the Web Service Agency example using delegation.

DELEGATION

 $\begin{aligned} \mathbf{Agency}(a,b) &\stackrel{\text{df}}{=} a(y).\mathbf{Agency}_1\langle a,b,s\rangle \\ \mathbf{Agency}_1(a,b,s) &\stackrel{\text{df}}{=} \\ s(x).\overline{s}\langle \texttt{price}(\mathbf{x})\rangle.s \triangleright [& \texttt{accept} : & \overline{b}(s').\overline{s'}(s).\mathbf{Agency}\langle a,b\rangle | \\ & \texttt{retry} : & \mathbf{Agency}_1\langle a,b,s\rangle | \\ & \texttt{reject} : & \mathbf{Agency}_{\langle a,b\rangle} \end{aligned}$

The message $\overline{s'}\langle s \rangle$ delegates the interaction with Customer to Service.

Service is defined as:

Service(b) $\stackrel{\text{df}}{=} b(s').s'(s).s(address)\overline{s}(\text{Date}).0$

where s'(s) receives the session with Customer and continue the interaction with Customer as if it were Agency, e.g receives the delivery address and sends the delivery date.

Customer(a, place, n) $\stackrel{\text{df}}{=} \overline{a}(s)$. Customer₁(s, place, 1, n)Customer₁(s, place, i, n) $\stackrel{\text{df}}{=} \overline{s}\langle place(i) \rangle . s(price)$.if is_acceptable(price) then $s \lhd accept.\overline{s} \langle Address \rangle . s(date) . 0$ elseif $i \le n$ then $s \lhd retry. Customer_1 \langle s, place, i + 1, n \rangle$ else $s \lhd reject. 0$

ERRORS

We wish to avoid the following runtime errors in various protocols.

- Base Type Error $\overline{s}\langle Apple \rangle . P_1 | \underline{s}(x) . \overline{\underline{s'}} \langle 1 + x \rangle$
- Arity Mismatch $\overline{s}\langle 1\rangle P_1 | s(x,y) \cdot \overline{s'} \langle x+y \rangle$
- Label Undefined $s \triangleright \{\text{repeat} : P_1 \mid \text{reject} : P_2\} \mid s \triangleleft \text{apple}$
- Race during Session Interaction Bad $s(x).P_1 | \overline{s} \langle v \rangle.P_2 | \overline{s} \langle w \rangle.P_3$ Good $s(x).P_1 | \overline{s} \langle v \rangle.P_2 | s'(x).Q_1 | \overline{s'} \langle w \rangle.Q_2$
- Communication Mismatch Bad $s(x).\overline{s}\langle w \rangle.0 | s(y).\overline{s}\langle v \rangle.0$ Good $s(x).\overline{s}\langle w \rangle.0 | \overline{s}\langle v \rangle.s(y).0$

Can we statically ensure no such errors occur during communications programming!

SESSION TYPES

or how to formally specify protocols

"well-typed programs cannot go wrong"

A Theory of Type Polymorphism in Programming (Milner 1978)

Properties of Session Types

- 1. Communication Error-Freedom No communication mismatch
- 2. Session Fidelity

The communication sequence in a session follows the scenario declared in the types.

Progress
 No deadlock/ Stuck in a session

"well-typed channels cannot go wrong"

Properties of Session Types

- 1. Communication Error-Freedom No communication mismatch
- 2. Session Fidelity

The communication sequence in a session follows the scenario declared in the types.

Progress
 No deadlock/ Stuck in a session

"well-typed channels are free from communication errors"

SESSION TYPES ON ONE SLIDE

The type for the Customer is:

![string]; ?[double]; ⊕{accept :![string]; ?[nat,nat,nat]; end, reject :end}

Its dual type is:

?[string]; ![double]; &{accept :?[string]; ![nat,nat,nat]; end, reject :end}

SESSION TYPES:SYNTAX

$$\begin{split} S &::= & \text{Sort} \\ & \text{bool} \mid \text{nat} \mid \text{string} \dots \\ T &::= & \text{Type} \\ & ![\tilde{S}]; T & \text{sending} \\ & ![T]; T' & \text{sending} \\ & \&\{l_1 \colon T_1, \dots, l_n \colon T_n\} & \text{branchi} \\ & ?[\tilde{S}]; T & \text{receivin} \\ & ?[\tilde{S}]; T & \text{receivin} \\ & & eli 1 \colon T_1, \dots, l_n \colon T_n\} & \text{selection} \\ & & t & \text{t} \\ & & \mu t. T & \text{recursive} \\ & & \text{end} & & \text{end of} \end{split}$$

sending a value of type \widetilde{S} sending a type T (delegation) branching behaviour (external choice) receiving a value of type \widetilde{S} receiving a type T (delegation) selection (internal choice)

recursive behaviour end of a session

SESSION TYPES: SYNTAX EXPLAINED

The type $![\tilde{S}]$; T represents the behaviour of first sending values of type \tilde{S} and then continues as specified by the type T; ![T]; T' represents similar behaviour, which starts with sending a channel(delegation) instead.

The $?[\tilde{S}]$; T and ?[T]; T' are the dual of $![\tilde{S}]$; \overline{T} and ![T]; $\overline{T'}$ respectively, receiving values, instead of sending.

 $\mu t.\,T$ represents recursive behaviour - start doing $\,T$, when t is encountered recur to $\,T$ again.

&{ $l_1 : T_1, \ldots, l_n : T_n$ } shows the branching behaviour: it waits with n options, and behaves as type T_i if *i*-th action is selected (external choice).

 \oplus { l_1 : T_1, \ldots, l_n : T_n } then represents the behaviour which would select one of l_i and then behaves as T_i , according to the selected l_i (internal choice).

Session Calculus : $\overline{s}\langle place(i)\rangle$. s(price). if is_a

if is_acceptable(*price*) then $s \triangleleft accept.\overline{s} \langle address \rangle.s(date)$ else $s \triangleleft reject$

Session Types : ![string]; ?[double]; \oplus {

```
accept :![string]; ?[nat,nat,nat]; end,
reject :end}
```

Session Types are types for session channels

Session Calculus : $\overline{s}\langle place(i)\rangle$. s(price). if is_a

if is_acceptable(*price*) then $s \triangleleft accept.\overline{s} \langle address \rangle.s(date)$ else $s \triangleleft reject$

Session Types : ![string]; ?[double]; \oplus {

```
accept :![string]; ?[nat,nat,nat]; end,
reject :end}
```

Session Types are types for session channels

DUALITY

a(s).Qwhere $s \text{ in } Q \text{ has a type } \overline{T}$ $\Gamma \vdash Q \triangleright \Delta' \cdot s : \overline{T}$

 $P \mid Q$ is typable

DUAL TYPES

For a type T, its dual or co type, written \overline{T} , is defined by exchanging ? and !, and & and \oplus . The inductive definition is given below:

$$\frac{\overline{[\widetilde{S}]; T}}{[\widetilde{S}]; T} = ![\widetilde{S}]; \overline{T} \qquad \overline{\oplus \{l_i : T_i\}_{i \in I}} = \&\{l_i : \overline{T_i}\}_{i \in I} \qquad \overline{\overline{?[T]; T'}} = ![T]; \overline{T'} \\ = & \emptyset\{l_i : T_i\}_{i \in I} = & \emptyset[T]; T' = & \mathbb{P}[T]; T' \\ = & \mu t. \overline{T} \qquad \overline{t} = & t$$

Duality is essential for checking type compatability. Compatible types mean that each common channel *s* is associated with complementary behaviour, thus ensuring the interactions on *s* to run without errors.

SESSION TYPES:SYNTAX

$S ::= \langle T, \overline{T} \rangle \mid$	Sort	
bool nat	string	
T ::=	Туре	
$![\widetilde{S}]; T$	sending a value of type \widetilde{S}	
![T]; T'	sending a type T (delegation)	
$\& \{ l_1 : T_1,\}$	$\ldots, l_n : T_n$ branching behaviour (external che	oice)
$?[\widetilde{S}]; T$	receiving a value of type \widetilde{S}	
?[T]; T'	receiving a type T (delegation)	
$\oplus \{l_1 : T_1,$	$\ldots, l_n : T_n$ selection (internal choice)	
t		
$\mu t.T$	recursive behaviour	
end	end of a session	

EXERCISE

Give the dual type for the following types:

1. ![string]; ?[int]

2. ![string]; ![T']; end

3. &{read:?[nat]; end, write:![nat]; end}

```
4. \mu t \in \{ \texttt{read:?[nat]}; t, \texttt{write:![nat]}; \texttt{end} \}
```

EXERCISE

Give the dual type for the following types:

- 2. ![string]; ![T']; end
 ?[string]; ?[T']; end
- 3. &{read:?[nat]; end, write:![nat]; end}
 ⊕{read:![nat]; end, write:?[nat]; end}

4. $\mu t \oplus \{ \text{read}:?[\text{nat}]; t, \text{write}:![\text{nat}]; \text{end} \}$ $\mu t \& \{ \text{read}:![\text{nat}]; t, \text{write}:?[\text{nat}]; \text{end} \}$

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \triangleright$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

The typing judgement reads as:

Under the environment Θ and Γ , the process *P* has typing Δ

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \rhd \Delta$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

 $\frac{\Gamma \vdash e \rhd \texttt{bool} \quad \Theta; \Gamma \vdash P \rhd \Delta \quad \Theta; \Gamma \vdash Q \rhd \Delta}{\Theta; \Gamma \vdash \texttt{if } e \texttt{ then } P \texttt{ else } Q \rhd \Delta} [\texttt{If}]$

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \triangleright$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

$$\frac{\Gamma \vdash a \triangleright \langle T, \overline{T} \rangle \qquad \Theta; \Gamma \vdash P \triangleright \Delta \cdot s : T}{\Theta; \Gamma \vdash a(s).P \triangleright \Delta}$$
[Acc]

$$\frac{\Gamma \vdash a \rhd \langle T, \overline{T} \rangle \qquad \Theta; \Gamma \vdash P \rhd \Delta \cdot s : \overline{T}}{\Theta; \Gamma \vdash \overline{a}(s) \cdot P \rhd \Delta} [\mathsf{Req}]$$

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \rhd$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

$$\frac{\Gamma \vdash \tilde{e} \rhd \tilde{S}}{\Theta; \Gamma \vdash P \rhd \Delta \cdot s : T} \text{[Send]}$$
$$\frac{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : ! [\tilde{S}]; T}{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : ! [\tilde{S}]; T}$$

$$\frac{\Theta; \Gamma \cdot \widetilde{x} : \widetilde{S} \vdash P \rhd \Delta \cdot s : T}{\Theta; \Gamma \vdash s(\widetilde{x}) . P \rhd \Delta \cdot s : ?[\widetilde{S}]; T} [\mathsf{Recv}]$$

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \rhd$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

$$\frac{\Theta; \Gamma \vdash P_1 \triangleright \Delta \cdot s : T_1 \quad \dots \quad \Theta; \Gamma \vdash P_n \triangleright \Delta \cdot s : T_n}{\Theta; \Gamma \vdash s \triangleright \{l_1 : P_1 \mid \cdots \mid l_n : P_n\} \triangleright \Delta \cdot s : \& \{l_1 : T_1, \dots, l_n : T_n\}} [Br]$$

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \cdot s : T_j \quad (1 \le j \le n)}{\Theta; \Gamma \vdash s \triangleleft l_j . P \triangleright \Delta \cdot s : \bigoplus \{l_1 : T_1, \dots, l_n : T_n\}} [Sel]$$

process environment

 Θ is a mapping from process variables to sorts and types. Example: X : ST

typing environment

 $\Theta; \Gamma \vdash P \rhd \Delta$

 Γ is a mapping from share channels and variables to sorts. Example: $a : \langle T, \overline{T} \rangle$, x : S

session environment

mapping from session channels to session types. Example: s : T

 $\frac{\Theta \cdot X : ST; \Gamma \cdot x : S \vdash P \rhd s : T}{\Theta; \Gamma \vdash \mathsf{def} \ X(x,s) = P \text{ in } Q \rhd \Delta} [\mathsf{Def}]$

 $\frac{\Delta \text{ contains only end}}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} \text{[Var]}$

TYPING DERIVATION

Consider the variable example from the beginning of the lecture.

$$\operatorname{Var}(a, x) \stackrel{\mathsf{df}}{=} a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle | | \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle]$$

 $\operatorname{Reader}(a) = \overline{a}(s) \cdot s \triangleleft \operatorname{read}(s) \cdot s$

Writer
$$(a, x) = \overline{a}(s) \cdot s \triangleleft \text{write} \cdot \overline{s} \langle x \rangle \cdot 0$$

where $a : \langle T, \overline{T} \rangle$ and

 $T = \&\{ read: ![nat]; end, write: ?[nat]; end \}$

 $\overline{T} = \bigoplus \{ \texttt{read}: ?[\texttt{nat}]; \texttt{end}, \texttt{write}: ![\texttt{nat}]; \texttt{end} \}$

TYPING DERIVATION

Writer $(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$

$$s:\overline{T} = \bigoplus \{ \texttt{read}: ?[\texttt{nat}]; \texttt{end}, \texttt{write}: ![\texttt{nat}]; \texttt{end} \}$$

 $a: \langle T, \overline{T} \rangle$

Typing derivation for the \mathbf{Writer} process:

$\Theta; \Gamma \vdash \overline{a}(s).s \triangleleft write.\overline{s}(5).0 \rhd \Delta$

[Req]

$$\frac{\Gamma \vdash a \rhd \langle T, \overline{T} \rangle \qquad \Theta; \Gamma \vdash P \rhd \Delta \cdot s : \overline{T}}{\Theta; \Gamma \vdash \overline{a}(s).P \rhd \Delta} [\mathsf{Req}]$$

Writer $(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

Typing derivation for the \mathbf{Writer} process:

$\Theta; \Gamma \vdash \overline{a}(s).s \triangleleft write.\overline{s}(5).0 \rhd \Delta$

[Req]

$$\begin{array}{c|c} \Gamma \vdash a \vartriangleright \langle T, \overline{T} \rangle & \Theta; \Gamma \vdash P \vartriangleright \Delta \cdot s : \overline{T} \\ \Theta; \Gamma \vdash \overline{a}(s) . P \vartriangleright \Delta \end{array} [\mathsf{Req}] \end{array}$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

$$\frac{\Gamma \vdash a \rhd \langle T, \overline{T} \rangle}{\Theta; \Gamma \vdash \overline{a}(s).P \rhd \Delta} \xrightarrow{[\mathsf{Req}]} [\mathsf{Req}]$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{ \texttt{read}: ?[\texttt{nat}]; \texttt{end}, \texttt{write}: ![\texttt{nat}]; \texttt{end} \}$$

 $a: \langle T, \overline{T} \rangle$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{ \texttt{read}:?[\texttt{nat}]; \texttt{end}, \texttt{write}:![\texttt{nat}]; \texttt{end} \}$$

 $a: \langle T, \overline{T} \rangle$

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \cdot s : T_j}{\Theta; \Gamma \vdash s \triangleleft l_j . P \triangleright \Delta \cdot s : \bigoplus \{l_1 : T_1, \dots, l_n : T_n\}}$$
[Sel]

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{ \texttt{read}:?[\texttt{nat}]; \texttt{end}, \texttt{write}:![\texttt{nat}]; \texttt{end} \}$$

 $a: \langle T, \overline{T} \rangle$

$$\frac{\Gamma \vdash \tilde{e} \rhd \tilde{S}}{\Theta; \Gamma \vdash P \rhd \Delta \cdot s : T} \text{[Send]}$$
$$\frac{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : ! [\tilde{S}]; T}{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : ! [\tilde{S}]; T}$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

$$\begin{array}{c|c} \Gamma \vdash \widetilde{e} \vartriangleright \widetilde{S} & \Theta; \Gamma \vdash P \vartriangleright \Delta \cdot s : T \\ \Theta; \Gamma \vdash \overline{s} \langle \widetilde{e} \rangle . P \vartriangleright \Delta \cdot s : ! [\widetilde{S}]; T \end{array} [\mathsf{Send}] \end{array}$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

$$\frac{\Gamma \vdash \tilde{e} \rhd \tilde{S}}{\Theta; \Gamma \vdash \overline{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : T} [Send]$$

$$(Send)$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

Writer
$$(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$$

$$\begin{array}{l} s:\overline{T}=\oplus\{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}\\ a:\langle T,\overline{T}\rangle\end{array}$$

TYPING DERIVATION

Writer $(a, x) \stackrel{\mathsf{df}}{=} \overline{a}(s) \cdot s \triangleleft \mathsf{write} \cdot \overline{s} \langle x \rangle \cdot \mathbf{0}$

$$s:\overline{T} = \bigoplus \{\texttt{read}:?[\texttt{nat}];\texttt{end},\texttt{write}:![\texttt{nat}];\texttt{end}\}$$
$$a:\langle T,\overline{T}\rangle$$

Typing derivation for the Writer process:

Exercise: Give the derivation tree for the Reader

?

 $\overline{\Theta; \Gamma \vdash s} \triangleleft \mathsf{read.} s(y).0 \rhd s : \oplus \{\mathsf{read}: ?[\mathsf{nat}]; \mathsf{end}, \mathsf{write}: ![\mathsf{nat}]; \mathsf{end}\}$ [?]

TYPING THE VARIABLE PROCESS

 $Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a, x \rangle || \text{ write} : s(y).Var\langle a, y \rangle]$ $s: T = \&\{\text{read}: ![\text{nat}]; \text{end}, \text{write}: ?[\text{nat}]; \text{end}\}$ $a: \langle T, \overline{T} \rangle$ x: nat

Typing derivation for the Var process:

 $\Theta; \Gamma \vdash a(s).s \triangleright [\mathsf{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle [] write : s(y). \operatorname{Var}\langle a, y \rangle] \triangleright \Delta$

where

 $T = \&\{ \texttt{read:![nat]}; \texttt{end}, \texttt{write:?[nat]}; \texttt{end} \}$

[Acc]

and

 $\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$ Δ is empty

$$\begin{array}{c} \hline \vdash a \rhd \langle T, \overline{T} \rangle & \Theta; \Gamma \vdash P \rhd \Delta \cdot s : T \\ \Theta; \Gamma \vdash a(s).P \rhd \Delta \end{array} \text{ [Acc]} \\ \hline \\ \textbf{Var}(a, x) \stackrel{\text{df}}{=} a(s).s \succ [\texttt{read} : \overline{s}\langle x \rangle. \texttt{Var}\langle a, x \rangle \text{ [] write } : s(y). \texttt{Var}\langle a, y \rangle] \\ s : T = \& \{\texttt{read} : ![\texttt{nat}]; \texttt{end}, \texttt{write} : ?[\texttt{nat}]; \texttt{end}\} \\ a : \langle T, \overline{T} \rangle \\ x : \texttt{nat} \end{array}$$

Typing derivation for the \mathbf{Var} process:

$$\frac{\Gamma \vdash a \triangleright \langle T, \overline{T} \rangle}{\Theta; \Gamma \vdash a(s).s \triangleright [\mathsf{read} : \overline{s} \langle x \rangle. \operatorname{Var} \langle a, x \rangle [] \text{ write } : s(y). \operatorname{Var} \langle a, y \rangle] \triangleright \Delta}$$
[Acc]

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c|c} \Gamma \vdash a \rhd \langle T, \overline{T} \rangle & \Theta; \Gamma \vdash P \rhd \Delta \cdot s : T \\ \hline \Theta; \Gamma \vdash a(s).P \rhd \Delta \end{array} \text{[Acc]} \\ \hline \text{Var}(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle. \text{Var}\langle a, x \rangle \text{ [] write} : s(y). \text{Var}\langle a, y \rangle \text{]} \\ s : T = \& \{\text{read} : ![\text{nat}]; \text{end}, \text{write} : ?[\text{nat}]; \text{end} \} \\ a : \langle T, \overline{T} \rangle \\ x : \text{nat} \end{array}$$

 $\frac{\Gamma \vdash a \rhd \langle T, \overline{T} \rangle}{\Theta; \Gamma \vdash a(s).s \rhd [\mathsf{read} : \overline{s} \langle x \rangle. \operatorname{Var} \langle a, x \rangle [] \text{ write } : s(y). \operatorname{Var} \langle a, y \rangle] \rhd s : T}{\Theta; \Gamma \vdash a(s).s \rhd [\mathsf{read} : \overline{s} \langle x \rangle. \operatorname{Var} \langle a, x \rangle [] \text{ write } : s(y). \operatorname{Var} \langle a, y \rangle] \rhd \Delta}$ [Acc]

where

 $T = \&\{ \texttt{read:![nat]; end, write:?[nat]; end} \}$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c} \Theta; \Gamma \vdash P_{1} \rhd \Delta \cdot s : T_{1} \quad \dots \quad \Theta; \Gamma \vdash P_{n} \rhd \Delta \cdot s : T_{n} \\ \overline{\Theta}; \Gamma \vdash s \rhd \{l_{1} : P_{1} \mid \cdots \mid l_{n} : P_{n}\} \rhd \Delta \cdot s : \oplus \{l_{1} : T_{1}, \dots, l_{n} : T_{n}\} \end{array} [Br] \\ \mathbf{Var}(a, x) \stackrel{\mathrm{df}}{=} a(s).s \triangleright [\mathsf{read} : \overline{s}\langle x \rangle. \mathrm{Var}\langle a, x \rangle \mid \mathsf{write} : s(y). \mathrm{Var}\langle a, y \rangle] \\ s : T = \& \{\mathsf{read} : ![\mathsf{nat}]; \mathsf{end}, \mathsf{write} : ?[\mathsf{nat}]; \mathsf{end}\} \\ a : \langle T, \overline{T} \rangle \\ x : \mathsf{nat} \end{array}$$

 $\frac{\Gamma \vdash a \rhd \langle T, \overline{T} \rangle \qquad \Theta; \Gamma \vdash s \rhd [\mathsf{read} : \overline{s} \langle x \rangle. \operatorname{Var} \langle a, x \rangle \ [] \ \mathsf{write} : s(y). \operatorname{Var} \langle a, y \rangle] \rhd s : T}{\Theta; \Gamma \vdash a(s). s \rhd [\mathsf{read} : \overline{s} \langle x \rangle. \operatorname{Var} \langle a, x \rangle \ [] \ \mathsf{write} : s(y). \operatorname{Var} \langle a, y \rangle] \rhd \Delta} \quad [\mathsf{Acc}]$

where

$$T = \&\{ \texttt{read:![nat]}; \texttt{end}, \texttt{write:?[nat]}; \texttt{end} \}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c} \Theta; \Gamma \vdash P_{1} \rhd \Delta \cdot s : T_{1} \\ \Theta; \Gamma \vdash s \triangleright \{l_{1} : P_{1} \parallel \cdots \parallel l_{n} : P_{n}\} \rhd \Delta \cdot s : \oplus \{l_{1} : T_{1}, \ldots, l_{n} : T_{n}\} \\ \Theta; \Gamma \vdash s \triangleright \{l_{1} : P_{1} \parallel \cdots \parallel l_{n} : P_{n}\} \rhd \Delta \cdot s : \oplus \{l_{1} : T_{1}, \ldots, l_{n} : T_{n}\} \\ \nabla \operatorname{ar}(a, x) \stackrel{\mathrm{df}}{=} a(s).s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle \parallel \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \\ s : T = \& \{\operatorname{read} : ![\operatorname{nat}]; \operatorname{end}, \operatorname{write} : ?[\operatorname{nat}]; \operatorname{end}\} \\ a : \langle T, \overline{T} \rangle \\ x : \operatorname{nat} \end{array}$$

 $\frac{\Theta; \Gamma \vdash s(y). \operatorname{Var}\langle a, y \rangle \triangleright s :?[\operatorname{nat}]; \operatorname{end}}{\Gamma \vdash a \triangleright \langle T, \overline{T} \rangle \qquad \Theta; \Gamma \vdash s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle [] \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \triangleright s : T}{\Theta; \Gamma \vdash a(s). s \triangleright [\operatorname{read} : \overline{s}\langle x \rangle. \operatorname{Var}\langle a, x \rangle [] \operatorname{write} : s(y). \operatorname{Var}\langle a, y \rangle] \triangleright \Delta} \qquad [\operatorname{Bra}]$

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c} \Theta; \Gamma \vdash P_{1} \rhd \Delta \cdot s : T_{1} & \dots & \Theta; \Gamma \vdash P_{n} \rhd \Delta \cdot s : T_{n} \\ \Theta; \Gamma \vdash s \rhd \{l_{1} : P_{1} \mid \cdots \mid l_{n} : P_{n}\} \rhd \Delta \cdot s : \oplus \{l_{1} : T_{1}, \dots, l_{n} : T_{n}\} \end{array} [Br] \\ \mathbf{Var}(a, x) \stackrel{\mathrm{df}}{=} a(s).s \triangleright [\mathsf{read} : \overline{s}\langle x \rangle. \mathrm{Var}\langle a, x \rangle \mid \mathsf{write} : s(y). \mathrm{Var}\langle a, y \rangle] \\ s : T = \& \{\mathsf{read} : ![\mathsf{nat}]; \mathsf{end}, \mathsf{write} : ?[\mathsf{nat}]; \mathsf{end}\} \\ a : \langle T, \overline{T} \rangle \\ x : \mathsf{nat} \end{array}$$

where

 $T = \&\{ \texttt{read:![nat]; end, write:?[nat]; end} \}$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a, x \rangle || \text{ write} : s(y).Var\langle a, y \rangle]$$

s: T = & {read: ![nat]; end, write: ?[nat]; end}
a: \langle T, \overline{T} \rangle
x: nat

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\frac{\Theta; \Gamma \cdot \tilde{x} : \tilde{S} \vdash P \rhd \Delta \cdot s : T}{\Theta; \Gamma \vdash s(\tilde{x}) . P \rhd \Delta \cdot s : ?[\tilde{S}]; T} [\mathsf{Recv}]$$

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a, x \rangle [| \text{ write} : s(y).Var\langle a, y \rangle]$$
$$s: T = \&\{\text{read}: ![\text{nat}]; \text{end}, \text{ write}: ?[\text{nat}]; \text{end}\}$$
$$a: \langle T, \overline{T} \rangle$$
$$x: \text{nat}$$

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c|c} \Delta \text{ contains only end} & \overline{\Gamma \vdash e \triangleright S} \\ \hline \Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T \end{array} [Var] \\ \hline \text{Var}(a,x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s} \langle x \rangle. \text{Var} \langle a, x \rangle \text{ [] write } : s(y). \text{Var} \langle a, y \rangle] \\ s: T = \& \{\text{read} : ![\text{nat}]; \text{end}, \text{write} : ?[\text{nat}]; \text{end} \} \\ a: \langle T, \overline{T} \rangle \\ x: \text{nat} \end{array}$$

. . .

Typing derivation for the Var process:

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\frac{\Gamma \vdash \tilde{e} \triangleright \tilde{S}}{\Theta; \Gamma \vdash P \triangleright \Delta \cdot s : T} [Send]$$
$$\frac{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \triangleright \Delta \cdot s : ! [\tilde{S}]; T}{\Theta; \Gamma \vdash \bar{s} \langle \tilde{e} \rangle . P \triangleright \Delta \cdot s : ! [\tilde{S}]; T}$$

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a, x \rangle || \text{ write} : s(y).Var\langle a, y \rangle]$$
$$s: T = \&\{\text{read}: ![\text{nat}]; \text{end}, \text{write}: ?[\text{nat}]; \text{end}\}$$
$$a: \langle T, \overline{T} \rangle$$
$$x: \text{nat}$$

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\frac{\Gamma \vdash \widetilde{e} \rhd \widetilde{S}}{\Theta; \Gamma \vdash P \rhd \Delta \cdot s : T} [Send]$$

$$\frac{\Theta; \Gamma \vdash \overline{s} \langle \widetilde{e} \rangle . P \rhd \Delta \cdot s : ! [\widetilde{S}]; T}{\Theta; \Gamma \vdash \overline{s} \langle \widetilde{e} \rangle . P \rhd \Delta \cdot s : ! [\widetilde{S}]; T}$$

$$Var(a,x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a,x \rangle [| \text{ write} : s(y).Var\langle a,y \rangle]$$
$$s: T = \&\{\text{read}:![\text{nat}]; \text{end}, \text{ write}:?[\text{nat}]; \text{end}\}$$
$$a: \langle T, \overline{T} \rangle$$
$$x: \text{nat}$$

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$\begin{array}{c|c} \Delta \text{ contains only end} & \hline{\Gamma \vdash e \triangleright S} \\ \hline{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} \end{array} [Var] \\ \hline{Var}(a,x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s} \langle x \rangle. \text{Var} \langle a, x \rangle \parallel \text{write} : s(y). \text{Var} \langle a, y \rangle] \\ s: T = \&\{\text{read} : ![\text{nat}]; \text{end}, \text{write} : ?[\text{nat}]; \text{end}\} \\ a: \langle T, \overline{T} \rangle \\ x: \text{nat} \end{array}$$

. . . .

Typing derivation for the Var process:

where

$$T = \&\{ \texttt{read:![nat]}; \texttt{end}, \texttt{write:?[nat]}; \texttt{end} \}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

$$Var(a, x) \stackrel{\text{df}}{=} a(s).s \triangleright [\text{read} : \overline{s}\langle x \rangle.Var\langle a, x \rangle || \text{ write} : s(y).Var\langle a, y \rangle]$$

s: T = & {read:![nat]; end, write:?[nat]; end}
a: \langle T, \overline{T} \rangle
x: nat

where

$$T = \&\{\texttt{read:![nat]; end, write:?[nat]; end}\}$$

$$\Theta = \Theta' \cdot \mathbf{Var} : [\langle T, \overline{T} \rangle; \mathtt{nat}]$$

 Δ is empty

DERIVATION TREE

EXERCISE

So far we have shown that: (1) variable process is typable with $a : \langle T, \overline{T} \rangle$ and s : T(2) writer process is typable with $a : \langle T, \overline{T} \rangle$ and $s : \overline{T}$

The final step is to show that our whole program is typable: $\operatorname{Var}(a, x) \stackrel{\text{df}}{=} P, \operatorname{Writer}(a, x) \stackrel{\text{df}}{=} Q$ in $(\operatorname{Var}\langle a, 0 \rangle | \operatorname{Writer}\langle a, 5 \rangle)$

Using the rule [Def] and the rule [Var] try to complete the derivation tree on your own.

EXERCISE: IS IT WELL-TYPED?

 $s(x : Bool).0 | \overline{s} \langle true \rangle.0$

 $\overline{s}\langle x\rangle.0 \,|\, \overline{s}\langle \texttt{true}\rangle.0$

 \overline{s} (false).0 | s(x : Bool).0 | s(y : Bool)

 $\overline{s}\langle 42 \rangle . s'(x : Int) . 0 | \overline{s}\langle 11 \rangle . s(y : Int)$

 $s(x: Int).\overline{s'}\langle 42 \rangle.0 | \overline{s}\langle 11 \rangle.s'(y: Int).0$

 $s \triangleleft \mathsf{ack}.P \mid s \rhd \{\mathsf{req}_1 : P_1 \mid \cdots \mid \mathsf{req}_n : P_n\}$

EXERCISE: IS IT WELL-TYPED?

- $s(x : Bool).0 | \overline{s} \langle true \rangle.0$
 - $\overline{s}\langle x
 angle.0\,|\,\overline{s}\langle { t true}
 angle.0$
- $\overline{s}(\texttt{false}).0 \mid \underline{s}(x : \texttt{Bool}).0 \mid \underline{s}(y : \texttt{Bool})$
 - $\overline{s}\langle 42 \rangle . s'(x : Int) . 0 | \overline{s}\langle 11 \rangle . s(y : Int)$
- $s(x: Int).\overline{s'}\langle 42 \rangle.0 | \overline{s}\langle 11 \rangle.s'(y: Int).0$
- $s \triangleleft \mathsf{ack}.P \,|\, s \rhd \{\mathsf{req}_1 : P_1 \mid \cdots \mid \mathsf{req}_n : P_n\}$

TYPING RECURSIVE PROCESSES

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

The derivation tree is given below:

where $\Theta' = \Theta \cdot X$: nat; T and $\Gamma' = \Gamma \cdot x$: nat

$$\frac{\Theta \cdot X : ST; \Gamma \cdot x : S \vdash P \triangleright s : T}{\Theta; \Gamma \vdash \mathsf{def} \ X(x,s) = P \text{ in } Q \triangleright \Delta} [\mathsf{Def}]$$

 $\frac{\Delta \text{ contains only end } \Gamma \vdash e \rhd S}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \rhd \Delta \cdot s : T} \text{ [Var]}$

$$\frac{\Theta \cdot X : ST; \Gamma \cdot x : S \vdash P \rhd s : T}{\Theta; \Gamma \vdash \mathsf{def} \ X(x,s) = P \text{ in } Q \rhd \Delta} [\mathsf{Def}]$$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

$$\begin{array}{c|c} \Theta \cdot X : ST; \Gamma \cdot x : S \vdash P \rhd s : T & \Theta \cdot X : ST; \Gamma \vdash Q \rhd \Delta \\ \Theta; \Gamma \vdash \mathsf{def} \ X(x,s) = P \ \mathsf{in} \ Q \rhd \Delta \end{array} [\mathsf{Def}]$$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

$$\begin{array}{ll} \Theta \cdot X : ST; \Gamma \cdot x : S \vdash P \rhd s : T & \Theta \cdot X : ST; \Gamma \vdash Q \rhd \Delta \\ \Theta; \Gamma \vdash \mathsf{def} \ X(x,s) = P \ \mathsf{in} \ Q \rhd \Delta \end{array} [\mathsf{Def}] \end{array}$$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Gamma \vdash \tilde{e} \rhd \tilde{S} \qquad \Theta; \Gamma \vdash P \rhd \Delta \cdot s : T}{\Theta; \Gamma \vdash \overline{s} \langle \tilde{e} \rangle . P \rhd \Delta \cdot s : ! [\tilde{S}]; T} [\mathsf{Send}]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Gamma \vdash \widetilde{e} \rhd \widetilde{S} \qquad \Theta; \Gamma \vdash P \rhd \Delta \cdot s : T}{\Theta; \Gamma \vdash \overline{s} \langle \widetilde{e} \rangle . P \rhd \Delta \cdot s : ! [\widetilde{S}]; T} [\mathsf{Send}]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Delta \text{ contains only end}}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} [Var]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Delta \text{ contains only end}}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} [Var]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Delta \text{ contains only end}}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} [Var]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle . X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

 $\frac{\Delta \text{ contains only end}}{\Theta \cdot X : ST; \Gamma \vdash X \langle e, s \rangle \triangleright \Delta \cdot s : T} [Var]$

Consider the following counter process X that counts from 0 to infinity. def $X(x,s) = \overline{s}\langle x \rangle X \langle x + 1, s \rangle$ in $X \langle 0, s \rangle$

The type for X is [nat]; T where $T = \mu t.![nat]$; t The type for s is T

EXERCISE: TYPING RECURSIVE PROCESSES

Consider now the reader process:

Consider the variable example from the beginning of the lecture.

 $\operatorname{Var}(a, x) = a(s) \cdot \operatorname{Var}_1(x, s)$

 $\operatorname{Var}_1(x, s) = s \triangleright [\operatorname{read} : \overline{s} \langle x \rangle. \operatorname{Var}_1 \langle x, s \rangle [] \text{ write } : s(y). \operatorname{Var}_1 \langle y, s \rangle [] \text{ stop } : \operatorname{Var} \langle a, x \rangle]$

Types:

$$T = \mu t.\&\{\texttt{read}: ![\texttt{nat}]; t, \texttt{write}: ?[\texttt{nat}]; t, \texttt{stop}: \texttt{end}\}$$

$$\overline{T} = \mu t. \oplus \{\texttt{read}: ?[\texttt{nat}]; t, \texttt{write}: ![\texttt{nat}]; t, \texttt{stop}: \texttt{end}\}$$

Exercise: Show the type derivation for Var_1 : nat; T and s: T

TYPING DELEGATION

$$\frac{\Theta; \Gamma \vdash P \vartriangleright \Delta \cdot s : T'}{\Theta; \Gamma \vdash \overline{s}(s') . P \vartriangleright \Delta \cdot s : ! [T]; T' \cdot s' : T} [\mathsf{Thr}]$$

$$\frac{\Theta; \Gamma \vdash P \vartriangleright \Delta \cdot s : T' \cdot s' : T}{\Theta; \Gamma \vdash s(s') . P \vartriangleright \Delta \cdot s : ?[T]; T'} [Cat]$$

SESSION TYPES

properties or how to verify protocols

ERRORS: REVISITED

We wish to avoid the following runtime errors in various protocols.

- Base Type Error $\overline{s}\langle Apple \rangle . P_1 | \underline{s}(x) . \overline{\underline{s}'} \langle 1 + x \rangle$
- Arity Mismatch $\overline{s}\langle 1\rangle P_1 | s(x,y) \cdot \overline{s'} \langle x+y \rangle$
- Label Undefined $s \triangleright \{\text{repeat} : P_1 \mid \text{reject} : P_2\} \mid s \triangleleft \text{apple}$
- Race during Session Interaction
 Bad s(x).P₁ | s(v).P₂ | s(w).P₃
 Good s(x).P₁ | s(v).P₂ | s'(x).Q₁ | s'(w).Q₂
- Communication Mismatch Bad $s(x).\overline{s}\langle w \rangle.0 | s(y).\overline{s}\langle v \rangle.0$ Good $s(x).\overline{s}\langle w \rangle.0 | \overline{s}\langle v \rangle.s(y).0$

But the following should be OK since a is a shared channel.

 $|a(x).P|\overline{a}(s_1).P_1|\cdots|\overline{a}(s_n).P_n$

Can we statically ensure no such errors occur during communications programming!
PROPERTIES

Communication safety

No communication mismatch

Session Fidelity

The communication sequence in a session follows the scenarios declared by the types

Progress

No deadlock/stuck in a session

SUBJECT REDUCTION

$\begin{array}{ll} \Theta; \Gamma \vdash P \triangleright \Delta & \Theta; \Gamma \vdash P \triangleright \Delta \\ \downarrow & & \parallel \\ \Theta; \Gamma \vdash P' \triangleright \Delta & \Theta; \Gamma \vdash P' \triangleright \Delta \end{array}$

Subject reduction

Subject congruence

Yields: Communication Safety and Session Fidelity

PROPERTIEAS

- Subject Reduction
 - session fidelity
 - communication safety
 - error-freedom: no communication mismatch on session channels
 - linearity: session channels are used linearly (exactly once)
- Type Safety
 - a typable program never reduces to an error

SUMMARY

- Session calculus: a conservative extension of pi-calculus
- Session Types: types for session channels
- Key features:
 - Duality: the relationship between the types of opposite endpoints of a session channel
 - Linearity: each channel endpoint occurs <u>exactly once</u> in a collection of a parallel processes
 - A session is a structure sequence of interactions
- Properties: communication safety, session fidelity, progress

- Honda, "Types for Dyadic Interaction", CONCUR 1993.
- Takeuchi, Honda, Kubo: An Interaction-based Language and its Typing System. PARLE 1994: 398-413
- Honda, Vasconcelos, Kubo: Language Primitives and Type Discipline for Structured Communication- Based Programming. ESOP 1998: 122-138
- Yoshida, Vasconcelos: Language Primitives and Type Discipline for Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session.
 Communication. Electr. Notes Theor. Comput. Sci. 171(4): 73-93 (2007)

EXERCISE: IS IT WELL-TYPED?

 \checkmark $s(x : Bool).0 | \overline{s} \langle true \rangle.0$ Х $\overline{s}\langle x\rangle.0 | \overline{s}\langle \text{true}\rangle.0$ × \overline{s} (false).0 | s(x : Bool).0 | s(y : Bool) \checkmark $\overline{s}\langle 42 \rangle . s'(x : Int) . 0 | \overline{s}\langle 11 \rangle . s(y : Int)$ \checkmark $s(x: Int).\overline{s'}\langle 42 \rangle.0 | \overline{s}\langle 11 \rangle.s'(y: Int).0$ $s \triangleleft \operatorname{ack}.P \mid s \triangleright \{\operatorname{req}_1 : P_1 \mid \cdots \mid \operatorname{req}_n : P_n\}$ Х