
The full π-calculus: simple and expressive



π-Refresh. What we know so far?

• We have studied the asynchronous monadic π-calculus

– no continuation on the output (asynchronous) u〈v〉.P

– only one value is communicated (monadic) u〈v〉

P,Q ::= processes

0 nil process

P |Q parallel composition of P and Q

(ν a)P generation of a with scope P (also called restriction)

!P replication of P , i.e. infinite parallel composition P |P |P | . . .
u〈v〉 output of v on channel u

u(x).P input of distinct variables x on u, with continuation P

1



π-calculus: simple, but expressive

• Why expressive:

– encoding data structures

– encoding polyadic communication with monadic primitives

– encoding synchronous communication with asynchronous (Honda/Tokoro,
Boudol)

– encoding choice (Nestmann, Palamidessi)

– encoding recursion

– encoding Higher order functions

Today you will learn how to master that expressiveness ... !!!
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Synchronous π-calculus

• It is time to add continuation on output: u〈v〉.P

• We can define the synchronous calculus as follows:

a〈b〉.P | a(x).Q −→ P |Q{b/x}

Q: Can we simulate synchronous communication with asynchronous?
Hint: we need additional messages
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Basic Encoding Definition

• [[P ]] = Q is a function (mapping) from P to Q.

• A good mapping should be homomorphic.

– [[0]] = 0

– [[P |Q]] = [[P ]] | [[Q]]

– [[(ν a)P ]] = (ν a)[[P ]]

– [[!P ]] =![[P ]]

• Question:

– [[a〈b〉.P ]] = some asynchronous π-term

– [[a(x).P ]] = some asynchronous π-term
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Synchronous π-calculus

Synchronous Asynchronous
⇓ ⇓

[[u〈v〉.P ]] = (ν c)(u〈c〉 | c(y).(y〈v〉 | [[P ]])) where y 6∈ fv(P ), c 6∈ fn(P )

[[u(x).P ]] = u(y).(ν d)(y〈d〉 | d(x).[[P ]]) where y 6∈ fv(P ), d 6∈ fn(P )

• Note: [[P ]] represents the formal notation for the encoding of P

• Example:

[[b〈e〉.P ]] | [[b(x).Q]] −→ (ν c)(c(y).(y〈e〉 | [[P ]]) | (ν d)(c〈d〉 | d(x).[[Q]]))
−→ (ν d)(d〈e〉 | [[P ]] | d(x).[[Q]]) −→ [[P ]] | [[Q]]{e/x}

• How it works:

– The channel u is used to exchange a private name c

– The meaning of u is that the receiver will be engaged in the rendez-vous
with the sender

– The sender confirms on c by sending the private channel d

– Now the actual transmission can occur on the channel d
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Polyadic π-calculus

• Monadic channels carry exactly one name: u〈v〉, u(x)

• Polyadic channels carry a vector of names:

P ::=

u(x1, .., xn).P input

u〈v1, .., vn〉.P output

• We can communicate multiple values at the same time

• Reduction Rule:

a〈c1, ..., cn〉.P | a(x1, ..., xn).Q −→ P |Q{c̃/x̃}

Is there an encoding from polyadic to monadic channels?
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Let’s Try

• For every complex problem there is a simple solution ... that is wrong :)

[[u(x1, .., xn).P ]] = u(x1).u(x2)...u(xn).[[P ]]

[[u〈v1, .., vn〉.P ]] = u〈v1〉.u〈v2〉...u〈vn〉.[[P ]]

• Why the above encoding is ... wrong ?

• Hint: encode two processes in parallel sending on the same channel

[[a(x1, x2).P1 | a(x3, x4).P2 | a〈c1, c2〉.P3]]
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Encoding Polyadic π-calculus

[[a(x1, x2).P1]] | [[a(x3, x4).P2]] | [[a〈c1, c2〉.P3]] =
a(x1).a(x2).[[P1]] | a(x3).a(x4).[[P2]] | a〈c1〉.a〈c2〉.[[P3]] = R

• This reduction is fine:
R −→ [[P ]]{c1/x1

, c2/x2
} | a(x3, x4).[[P2]] | [[P3]]

• But this is a mess:
R −→ a(x2).[[P1]]{c1/x1

} | a(x4).[[P2]]{c2/x3
} | [[P3]]

Lets try again

Any Ideas?
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Another approach

• Use new binding

– We need private channel for each tuple

[[u(x1, .., xn).P ]] = u(z).z(x1)...z(xn).[[P ]]

[[u〈v1, .., vn〉.P ]] = (ν c)u〈c〉.c〈v1〉...c〈vn〉.[[P ]]

– We still haven′t finished? We need a condition ...
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Let’s put it all together
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Adding more constructs ... Choice

In the asynchronous π-calculus there is no built-in choice operator +. Yet, we can
represent internal nondeterminism.

P ⊕Q df
= (ν a)(a | a.P | a.Q) where a 6∈ fn(P |Q)

There are two possible reductions:

• either P ⊕Q −→ P | (ν a)a.Q

• or P ⊕Q −→ (ν a)a.P |Q

Intuitively, since (ν a)a.Q and (ν a)a.P cannot reduce, the processes above are equiv-
alent respectively to P and to Q.
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Branching and Selection

• Structured external choice in the polyadic synchronous π-calculus:

P ::= ... | u� {l1 : P1[] · · · []ln : Pn} | u� l.P

• We have labels (ranged over l, l′, ...)

• The branching waits for the selector to select a label

• The reduction is:

a� {l1 : P1[] · · · []ln : Pn} | a� lk.P −→ Pk | P (1 ≤ k ≤ n)

Is there an encoding into the polyadic synchronous π-calculus
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Branching and selection

The encoding of branching and selection into the polyadic synchronous π-
calculus is defined as follows.

• [[0]] = 0, [[P |Q]] = [[P ]] | [[Q]], [[(ν a)P ]] = (ν a)[[P ]], [[!P ]] =![[P ]],

• [[u〈ṽ〉]] = u〈ṽ〉, [[u(x̃).P ]] = u(x̃).[[P ]], and

•
[[u� {l1 : P1 [] l2 : P2}]] = u(x).(ν c1, c2)(x〈c1, c2〉 | c1.[[P1]] | c2.[[P2]])

[[u� l1.P ]] = (ν c)(u〈c〉 | c(z1, z2).z1.[[P ]])

[[u� l2.P ]] = (ν c)(u〈c〉 | c(z1, z2).z2.[[P ]])

• We still haven′t finished? We need a condition ...

13



Recursion

• We have

– recursive definition A(x̃)
df
= Q

– a process P which uses this definition, by calling A〈ṽ〉

• How to encode that behaviour in the asynchronous π-calculus ?

• Theorem to the rescue:

– Theorem: Any process involving recursive denitions is representable using
replication, and conversely replication is redundant in the presence of recur-
sion.

– Tricky: we also need restriction
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Recursion vs Replication

Using replication and restriction we can encode recursive definitions. Suppose we

have the recursive definition A(x̃)
df
= Q and a process P which uses this definition,

by calling A〈ṽ〉. We can encode this behaviour in the asynchronous π-calculus as
follows:

1. choose a fresh channel name a not occurring in P or Q;

2. let Pa and Qa be P and Q, where each recursive call of the form A〈ṽ〉 is replaced
by an output process a〈ṽ〉;

3. replace P by (ν a)(Pa | !a(x̃).Qa)

For example, consider the recursive definition and the reduction

BufferNext(x)
df
= x(y).(x〈y〉 |BufferNext〈y〉)

b〈c〉 |BufferNext〈b〉 −→ b〈c〉 |BufferNext〈c〉
with their non-recursive version

BufferNexta
df
= x(y).(x〈y〉 | a〈y〉)

(ν a)(b〈c〉 | a〈b〉 | !a(x).BufferNexta)
∗−→ (ν a)(b〈c〉 | a〈c〉 | !a(x).BufferNexta)
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