The full m-calculus: simple and expressive

m-Refresh. What we know so far?

e We have studied the asynchronous monadic w-calculus
— no continuation on the output (asynchronous) w(v).P

— only one value is communicated (monadic) u(v)

P,Q = processes
0 nil process
PlQ parallel composition of P and Q
(va)P generation of a with scope P (also called restriction)

| P replication of P, i.e. infinite parallel composition P|P|P]| ...

u(v) output of v on channel u
uw(x).P input of distinct variables x on wu, with continuation P

m-calculus: simple, but expressive

e \Why expressive:
— encoding data structures
— encoding polyadic communication with monadic primitives

— encoding synchronous communication with asynchronous (Honda/Tokoro,
Boudol)

— encoding choice (Nestmann, Palamidessi)
— encoding recursion

— encoding Higher order functions

Today you will learn how to master that expressiveness ... !l

Synchronous w-calculus
e It is time to add continuation on output: w(v).P

e We can define the synchronous calculus as follows:

a(b).Pla(z).Q — P|Q{b/:}

Q: Can we simulate synchronous communication with asynchronous?
Hint: we need additional messages

Basic Encoding Definition
e [P]] = Q is a function (mapping) from P to Q.

e A good mapping should be homomorphic.
— [0 =0
— [P|QI =0IrPIIQI
— [(va)Pll = (va)[PI
— ['PI =![P]
e Question:

— [[@a(b).P]] = some asynchronous n-term

— [a(x).P]] = some asynchronous w-term

Svynchronous w-calculus

Synchronous Asynchronous
J 2
[u(v). Pl = (ve)(ulc) | c(y)-(y(v) [[P])) where y € fo(P),c & fm(P)
[u(z).P] = u(y).(vd)(y(d) | d(z).[P]) where y & fo(P),d & fu(P)

e Note: [P] represents the formal notation for the encoding of P

e Example:

[b(e).PT | [6(x).Q1 — (ve)(e(w).(@le) | [P]) | (v d)(&(d) | d(x).[Q]))
— (vd)(d{e) | [P]|d(=).[Q]) — [PI|[QI{¢/s:}
e How it works:
— The channel v is used to exchange a private name c

— The meaning of u is that the receiver will be engaged in the rendez-vous
with the sender

— The sender confirms on ¢ by sending the private channel d

— Now the actual transmission can occur on the channel d

Polyadic w-calculus
e Monadic channels carry exactly one name: u(v), u(x)

e Polyadic channels carry a vector of nhames:

P =
u(x1,..,xn).P input
w(vi, .., n). P output

e \We can communicate multiple values at the same time

e Reduction Rule:
alct, ..., o). Pla(zy, ..., zn).Q — P|Q{¢/3}

"9 Is there an encoding from polyadic to monadic channels?

Let's Try

e For every complex problem there is a simple solution ... that is wrong :)

Tu(zi,..,z,).P] = u(z1).u(z2)..u(z,).[P]
[w(vi,..,vn).P] = w{vi).u{va)...u{vy).[P]

e Why the above encoding is ... wrong 7

e Hint: encode two processes in parallel sending on the same channel

Ta(z1,x2).P1|a(xs, z4).Pa|alc1, c2).P3]

Encoding Polyadic w-calculus

Ta(x1,x2).P1] | [a(xs, za). Pl | [alc1, c2).P3]] =
a(z1).a(x2).[P1] | a(z3).a(zs).[Pa] | a{c1).alco).[P3] = R

e T his reduction is fine:
R — [PI{/ ¢,/ 2o} | a(z3, xa).[P2] | [P5]]

e But this is a mess:
R — a(22).[PAI{/ 5, } | a@a).[P2D{¢2/ x5} | [Ps]

) Lets try again

§ Any Ideas?

Another approach

e Use new binding
— We need private channel for each tuple
Tu(zi,..,zn).P] = u(2).2(x1)...2(x).[P]
[a(vi,..,vn).P] = (ve)u(c).c{vi)...c{vp).[P]

— We still haven’t finished? We need a condition ...

Let’s put it all together

Asynchronous

Synchronous

Monadic

u(v)

u(x).P
u{v). P
u(x).P

Polyadic

V)
.- Xp).Py

:Un). Py
. Xn). Py

10

Adding more constructs ... Choice

In the asynchronous m-calculus there is no built-in choice operator +. Yet, we can
represent internal nondeterminism.

PaQ L wa)@|a.P|a.Q) where ad fu(P|Q)
There are two possible reductions:
e cither P& Q — P|(va)a.Q
e Or PHPQ — (va)a.P|Q

Intuitively, since (va)a.QQ and (va)a.P cannot reduce, the processes above are equiv-
alent respectively to P and to Q.

11

Branching and Selection

e Structured external choice in the polyadic synchronous w-calculus:

P:i=..|lu{1:Pll---lln: P} | u<lP
e We have labels (ranged over [, 1, ...)
e T he branching waits for the selector to select a label

e [he reduction is:

a>{li:P]l---ln: P} |a<ly.P— P, | P (1<k<n)

Is there an encoding into the polyadic synchronous mw-calculus

12

Branching and selection

") The encoding of branching and selection into the polyadic synchronous -
W ! calculus is defined as follows.

e [0] =0, [P|Q] =[PI|IQ] [(va)P]l = (wa)[PI, ['PI ='[P],
o [a®)] =a®@), [w@).P] =u(®).[P], and

fu>{li:P1 | lo: P}] = wu(x).(ver,c2)(@T{ci,co)|ci.[Pi]l]e2-TP2])
fu<li.P] = we)(u(ce)|c(z1,22).z21.[P])
fu<i.P] = we)(uwlc)l|c(z1,22).z2.[P])

e \We still haven’t finished? We need a condition ...

13

Recursion

e \We have

— recursive definition A(x) dr Q

— a process P which uses this definition, by calling A(v)
e How to encode that behaviour in the asynchronous w-calculus 7

e [heorem to the rescue:

— Theorem: Any process involving recursive denitions is representable using
replication, and conversely replication is redundant in the presence of recur-
sion.

— Tricky: we also need restriction

14

Recursion vs Replication

Using replication and restriction we can encode recursive definitions. Suppose we

: . ~y df : : o
have the recursive definition A(x) d @ and a process P which uses this definition,
by calling A(v). We can encode this behaviour in the asynchronous w-calculus as
follows:

1. choose a fresh channel name a not occurring in P or Q;

2. let P, and Q, be P and @, where each recursive call of the form A(v) is replaced
by an output process a(v);

3. replace P by (va)(P,|'a(Z).Q.)

For example, consider the recursive definition and the reduction
BufferNext(x) Sl z(y).(Z(y) | BufferNext(y))
E(c) | — E(c) | BufferNext(c)
with their non-recursive version

BufferNext, d z(y).(T{y)
(va)(blc) | | la(z).BufferNext,) — (v a)(b(c)

()
(c) |la(x).BufferNext,)

|a
|a

15

