
The π-calculus

The π-calculus was first presented in 1989 by Milner, Parrow and Walker, based on
an extension of CCS by Engberg and Nielsen.

It is useful for building models of concurrent/distributed/mobile systems and study
their properties, like Turing Machines and the λ-calculus are useful for studying
sequential computation.

The impact of π-calculus on industry and academia:

• Message-passing programming (SJ, Session C, MPI, Go, Scala, Erlang, ...).

• Distributed programming (JBoss Red Hat Scribble and Savara projects and
the Ocean Observatories Initiative)

• Web services and IoT (e.g. W3C Web Service Choreography Description
Languages) Financial protocols; and Block-chains (RChain)

• Systems Biology and Security: the asynchronous π-calculus is used to specify
and verify security protocols

• Active field of research, especially in Europe, in the UK, and at Imperial
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About the π-calculus

• There is no “canonical” π-calculus. For each application domain, there are
alternative notations and lots of specialised variants:

– we fix one notation and stick to it (once you know one notation, it’s easy
to understand the others)

– we start with the simplest variant (the asynchronous π-calculus) and explore
various extensions

• An interaction happens by message passing rather than synchronisation.

• In the asynchronous π-calculus, the communication is asynchronous rather than
synchronous.

• The π-calculus evolved from (value-passing) CCS, but it is more expressive:

– channel mobility: send and receive channel names as messages

– restriction is interpreted as new (private, secret) channel generation
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Some Picture

Overview of the π-calculus lectures

• A simple version of asynchronous π-calculus: syntax and semantics

• The asynchronous π-calculus: syntax and semantics

• Joyful Hacking in asynchronous π-calculus

• Protocols and Session-calculus
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The asynchronous π-calculus

The asynchronous π-calculus is a subset of the π-calculus presented independently
by Honda and Tokoro (1991), and by Boudol (1992).

Communication is asynchronous: the output process a〈b〉 represents a message which
is in the communication layer waiting to be picked up by a receiver (it does not have
a continuation P like the synchronous process a〈b〉.P ). Several messages can be
in the communication layer at the same time, and their order is not preserved.
Asynchronous communication is common in distributed systems, and can be used
to simulate synchronous communication (handshake) when needed.

The asynchronous π-calculus is easier and more efficient to implement than the full
π-calculus. It is widely used as the basis for building more complicated calculi, by
adding primitives for distributed or object-oriented programming.

As a start, we consider a subset of asynchronous π-calculus, called asynchronous
CCS.
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Syntax of CCS

a, b, c, .. name

P,Q ::= processes

0 nil process

P |Q parallel composition of P and Q

(ν a)P restriction of a (scope) in P

a output on channel a

a.P input on channel a, with continuation P

Notation:

{
ã

df
= a1, ... , an when we don’t care about each ai

(ν a1, ... , an)P
df
= (ν a1) . . . (ν an)P

Abbreviation:

{
a

df
= a.0 when we don’t have a continuation

a
df
= a.0 when we don’t have a continuation
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Examples of CCS

• 0 means nothing and 0 | 0 is as same as one 0, hence nothing

• a is one message to a; and a | a means two messages to a.

• a | b | c
One message to a, one message to b and One message to c

• a | b is as the same as b | a.

• a.b.c inputs from a, then inputs from b and then inputs from c

• a.b does not mean b.a

• a.b inputs from a then outputs to b, and a.(b | c | d) inputs from a, then outputs
to b, c and d.

• a.b.(c | a)

• a.(b.c | d.e)
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Bad Syntax of CCS

• a.b and a.b

• a.(b | c).d and a.(b | c).d

• 0.0
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Reduction of CCS: Informally

We write P −→ Q if P reduces to Q, like 8 + 2 −→ 10.

• a | a.0 −→ 0

• a | a.b −→ b

• a | a.b | c | c.d (hint: (10 + 2)− (2 + 4))

• a | a.b | a.c reduces to either b | a.c or a.b | c, that is

a | a.b | a.c −→ b | a.c or a | a.b | a.c −→ a.b | c

• a | a | a.b | a.c

• a | b | a.b.e | b.a.d
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Name Restriction of CCS: Informally

• (ν a)(a | a.b) | a.c means (ν d)(d | d.b) | a.c
Similar with f(x) = x+ 2 means f(y) = y + 2

• (ν a)(a | a.b) | a.c −→ (ν a)b | a.c ≡ b | a.c

• but (ν a)(a | a.b) | a.c 6−→ a.b | c
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Names and Variables

We separate channel names, which are like constants in a programming language,
from variables, which are used to instantiate messages received in input. Conse-
quently, we have two sorts:

a, b, c ∈ N Channel Names

x, y, z ∈ V Variables

This distinction is not mandatory to build the theory, but is convenient when the
calculus is used to model actual systems.
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Syntax of asynchronous π-calculus

u, v ::= identifiers

a, b, c, .. name

x, y, z, .. variable

P,Q ::= processes

0 nil process

P |Q parallel composition of P and Q

(ν a)P generation of a with scope P (also called restriction)

!P replication of P , i.e. infinite parallel composition P |P |P | . . .
u〈v〉 output of v on channel u

u(x).P input of distinct variables x on u, with continuation P

Notation:

{
ũ

df
= u1, ... , un when we don’t care about each ui

(ν a1, ... , an)P
df
= (ν a1) . . . (ν an)P

Later on, we will consider other operators such as choice, output continuation,
recursive definitions.
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Free variables and free names

In order to understand the formal semantics of the π-calculus, it is important to
know exactly what are the free variables fv and the free names fn of each term.

fv(x) = {x} fn(x) = ∅
fv(a) = ∅ fn(a) = {a}
fv(0) = ∅ fn(0) = ∅

fv(P |Q) = fv(P ) ∪ fv(Q) fn(P |Q) = fn(P ) ∪ fn(Q)

fv((ν a)P ) = fv(P ) fn((ν a)P ) = fn(P ) \ {a}
fv(!P ) = fv(P ) fn(!P ) = fn(P )

fv(u〈v〉) = fv(u) ∪ fv(v) fn(u〈v〉) = fn(u) ∪ fn(v)

fv(u(x).P ) = fv(u) ∪ (fv(P ) \ {x}) fn(u(x).P ) = fn(u) ∪ fn(P )

Both u(−) and (ν−) are called binders. A term is closed if it has no free variables,
it is open otherwise.

In the process P = (ν b)a(x).(x〈z〉 | x〈b〉), we have highlighted all the free occurrences
of names and variables. In particular, fv(P ) = {z} and fn(P ) = {a}. Above, the first
occurrences of b and x are called binding occurrences, whereas the second occurrence
of b and the second and third occurrences of x are called bound.
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α-conversion

α-conversion is the meta-operation of renaming consistently (i.e. avoiding clashes)
the bound names or variables of a process. If P is obtained from Q by α-conversion,
we say that P and Q are α-equivalent, and we write P =α Q. For example:

(ν a)(a〈b〉 | (ν c)c〈a〉) =α (ν d)(d〈b〉 | (ν c)c〈d〉)
But we cannot replace a with b:

(ν a)(a〈b〉 | (ν c)c〈a〉) 6=α (ν b)(b〈b〉 | (ν c)c〈b〉)
Can we replace a with c?

(ν a)(a〈b〉 | (ν c)c〈a〉) 6=α (ν c)(c〈b〉 | (ν c)c〈c〉)
Not naively! We can if, for example, we first α-convert the name c to e.

(ν a)(a〈b〉 | (ν c)c〈a〉) =α (ν c)(c〈b〉 | (ν e)e〈c〉)

The intuition is that α-conversion preserves each difference between names. We will
use α-conversion very often, without explicit mention.

14



Substitution

A substitution {a/x} applied to a process P (denoted by P{a/x}), has the effect of
replacing all the free occurrences of x in P with a.

The substitution avoids clashes with any bound names by implicitly using α-conversion
(capture-avoiding substitution). For example:

((ν d)(a〈b〉 | a〈d〉 | a〈x〉)){d/x} = (ν c)(a〈b〉 | a〈c〉 | a〈d〉))

where we have avoided the capture of the external d by α-converting (ν d) to (ν c).

Given a substitution σ and an open process P , if Pσ is closed (i.e. fv(Pσ) = ∅) we

say that σ is a closing substitution. For example, {b/x} is closing for a(y).x〈y〉:

a(y).x〈y〉{b/x} = a(y).b〈y〉 fv(a(y).b〈y〉) = ∅

As a shorthand, we use the notation {v1, ... , vn/x1, ... , xn}
df
= {v1/x1

} . . . {vn/xn}.
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Quiz: α-conversion and substitution

1. Correct?

(ν a)(a〈b〉 | c〈a〉) =α (ν d)(d〈b〉 | c〈d〉)

2. Correct?

(ν a)(a〈b〉 | (ν a)c〈a〉) =α (ν d)(d〈b〉 | (ν a)c〈a〉)

3. Correct?

(ν a)(a〈b〉 | (ν a)c〈a〉) =α (ν d)(d〈b〉 | (ν a)c〈d〉)

4. Correct?

a(y).x〈y〉{b/y} = a(b).x〈b〉

5. Correct?

a(y).(x〈y〉 | (ν a)c〈a〉){a/x} = a(y).(a〈y〉 | (ν a)c〈a〉)

6. Correct?

a(y).(x〈y〉 | (ν a)c〈x〉){a/x} = a(y).(a〈y〉 | (ν a)c〈a〉)
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Quiz: Answers: α-conversion and substitution
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Structural congruence (1)

The reduction semantics of the π-calculus is inspired by the Chemical Abstract
Machine (CHAM) of Berry and Boudol. Processes ”float around” like molecules in
a solution using structural congruence (≡) and ”react” using a reduction relation
(−→).

The intuition is that if P ≡ Q then we consider P and Q completely interchangeable.

Structural congruence is an equivalence relation, is preserved by all the syntactic
operators, and contains α-equivalence.

P ≡ P (Eq Reflexivity)

P ≡ Q =⇒ Q ≡ P (Eq Symmetry)

P ≡ R and R ≡ Q =⇒ P ≡ Q (Eq Transitivity)

P ≡ Q =⇒ (ν a)P ≡ (ν a)Q (Cong Res)

P ≡ Q =⇒ P |R ≡ Q |R (Cong Par)

P ≡ Q =⇒ u(x).P ≡ u(x).Q (Cong In)

P ≡ Q =⇒ !P ≡ !Q (Cong Rep)

P =α Q =⇒ P ≡ Q (α-equivalence)

Structural congruence satisfies also additional rules specific to the π-calculus. . .
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Some Picture

Structural congruence (2)

The set of all processes, with the operation of parallel composition, and with the nil
process as the neutral element are a commutative monoid.

P | (Q |Q′) ≡ (P |Q) |Q′ (Associativity)

P |Q ≡ Q |P (Commutativity)

P | 0 ≡ P (Zero)

That is, we can exchange freely the position of parallel processes and we can insert
or delete the 0 process at will. For example:

0 | 0 |P |Q |R ≡ Q | 0 |R |P

Replication can be folded or unfolded as many times as needed.

!P ≡ P | !P (Rep)

Thanks to this rule, the π-calculus can express infinite computations.
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Structural congruence (3)

The last rules that complete the definition of ≡ state that the scope of a restricted
name can be extended (or contracted) across terms which do not contain free
occurrences of that name.

(ν a)0 ≡ 0 (Res Nil)

(ν a)(ν b)P ≡ (ν b)(ν a)P (Res Res)

a 6∈ fn(P ) =⇒ P | (ν a)Q ≡ (ν a)(P |Q) (Res Par)

For example:

(ν a, b)(a(x).x〈c〉 | a〈b〉) ≡ (ν a)(a(x).x〈c〉 | (ν b)(a〈b〉))

(ν a, b)(c(x).c〈x〉 | c〈d〉) ≡ c(x).c〈x〉 | c〈d〉

It is very important to gain familiarity with structural congruence, we will use it very
often during the rest of the course.

Question 1 Prove (ν c)P ≡ P if c 6∈ fn(P ).

Question 2 Prove if P ≡ Q then fn(P ) = fn(Q) and fv(P ) = fv(Q).
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Reduction relation

Reduction describes how processes interact by exchanging messages. It is the small-
est partial relation between processes satisfying the rules given below.

a〈v〉 | a(x).P −→ P{v/x} (Comm)

P −→ P ′

P |Q −→ P ′ |Q
(Par)

P −→ P ′

(ν a)P −→ (ν a)P ′
(Res)

P ≡ Q −→ Q′ ≡ P ′

P −→ P ′
(Struct)

As a shorthand notation, we write P
∗−→ Q if P ≡ Q or P −→ . . . −→ Q.
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Reduction Examples

Communication:

a(x).x〈c〉 | a〈b〉 −→ b〈c〉 by (Struct), (Commutativity) and (Comm)

a(x).x〈c〉 | a〈b〉
≡ a〈b〉 | a(x).x〈c〉 by (Struct), (Commutativity)

−→ b〈c〉 by (Comm)

Scope extrusion:

(ν b)(a〈b〉) | a(x).c〈x〉 −→ (ν b)c〈b〉 by (Struct), (Res Par), (Res) and (Comm)

(ν b)(a〈b〉) | a(x).c〈x〉 note b 6∈ fn(a(x).c〈x〉)
≡ (ν b)(a〈b〉 | a(x).c〈x〉) by (Struct), (Res Par)
−→ (ν b)c〈b〉 by (Res) and (Comm)
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Infinite behaviour and Sorts

We use the macros for process definition A(x̃) and usage A〈ṽ〉 only informally. To
represent infinite behaviour, we use the replication operator !P , stating that there
are as many copies of P as needed, all running in parallel. For example:

a(x).P | a(x).Q | !a〈b〉 −→ P{b/x} | a(x).Q | !a〈b〉 −→ P{b/x} |Q{b/x} | !a〈b〉

Replication is very simple, yet combined with channel generation it can encode
recursive definitions (later on we will see how).
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Reduction Examples

Infinite behaviour:

a〈b〉 | !a(x).a〈x〉 −→ a〈b〉 | !a(x).a〈x〉 by (Struct), (Rep), (Par) and (Comm)

a〈b〉 | !a(x).a〈x〉
≡ a〈b〉 | a(x).a〈x〉 | !a(x).a〈x〉 by (Struct), (Rep)
−→ a〈b〉 | !a(x).a〈x〉 by (Par) and (Comm)

Nondeterminism:

a〈b〉 | a〈d〉 | a(x).c〈x〉
↗ a〈b〉 | c〈d〉 by (Par) and (Comm)

↘ a〈d〉 | c〈b〉 using also (Struct), (Commutativity)
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Atoms for Name Passing
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Small Agents (1)

Forwarder FW(a, b)
df
= a(z).b〈z〉

A forwarder from channel a to channel b, is a process that forwards a message for
a on b.

FW〈a, b〉 | a〈d〉 −→ b〈d〉

(ν b)(FW〈a, b〉 |FW〈b, c〉) | a〈d〉 −→−→ c〈d〉

Duplicator D(a, b, c)
df
= a(z).(b〈z〉 | c〈z〉)

A duplicator from channel a to b and c, is a process that duplicates a message for
a to b and c.

D〈a, b, c〉 | a〈d〉 −→ (b〈d〉 | c〈d〉)

(ν b)(D〈a, b, c1〉 |D〈b, c2, c3〉) | a〈d〉 −→−→ (c1〈d〉 | c2〈d〉 | c3〈d〉)

Killer K(a)
df
= a(z).0

A killer at channel a is a process that kills a message from a.

a(z).(P |Q) can be decomposed as (ν c1, c2)(D〈a, c1, c2〉 | c1(z).P | c2(z).Q).

For example, a(z).(b〈z〉 | 0) is the same as (ν c1, c2)(D〈a, c1, c2〉 |FW〈c1, b〉 |K〈c2〉)
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Small Agents (3)

Identity Receptor I(a)
df
= !FW〈a, a〉

An identity receptor at channel a is a process that forwards messages for a on a.

a〈d〉 | I〈a〉 −→ a〈d〉 | I〈a〉 −→ a〈d〉 | I〈a〉 −→ a〈d〉 | I〈a〉 . . .

Equator EQ(a, b)
df
= !FW〈a, b〉 | !FW〈b, a〉.

An equator between two channels a and b, is a process that forwards all messages
for a on b, and viceversa, making a and b in some sense “equivalent”. For example,

a〈d〉 |EQ〈a, b〉 −→ b〈d〉 |EQ〈a, b〉 −→ a〈d〉 |EQ〈a, b〉 −→ . . .

Omega Ω
df
= (ν a)(!FW〈a, a〉 | a〈a〉)

An omega is a process that continues infinite reductions by himself.

Ω −→ Ω −→ Ω −→ · · ·

New Name Generator NN(a)
df
= !a(x).(ν b)x〈b〉. A new name generator is a process

that creates a new name infinitely when it is asked.

a〈c〉 | a〈d〉 |NN〈a〉 −→ (ν b)c〈b〉 | a〈d〉 |NN〈a〉 −→ (ν b)c〈b〉 | (ν b′)d〈b′〉 |NN〈a〉
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Quiz: Name Generateor

1. Is NN(a)
df
= !a(x).(ν b)x〈b〉 structural congruent with NN1(a) = (ν b)!a(x).x〈b〉?

2. Is NN(a)
df
= !a(x).(ν b)x〈b〉 structural congruent with NN2(a) =!(ν b)a(x).x〈b〉?
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Quiz: Answer: Name Generateor
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Quiz: Small Agents
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Joyful Hacking in π-calculus

32



Channel mobility example

Internet connection: a Client and a Server talk on dedicated communication ports,
set up using the channel a:

Client(a, c)
df
= (a〈c〉 | c(x).Client1〈c, x〉)

Server(a, s)
df
= a(y).(y〈s〉 | Server1〈y, s〉)

Difference with CCS: the variable y is used as the name of a channel.

Client〈a, c〉 |Server〈a, s〉
−→ c(x).Client1〈c, x〉 | c〈s〉 | Server1〈c, s〉
−→ Client1〈c, s〉 |Server1〈c, s〉

After the two communication steps, client and server know each other’s port.
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Channel generation example

We can make the Internet connection example more flexible. To avoid external
interferences, the client and server exchange newly generated port names:

Client(a)
df
= (ν c)(a〈c〉 | c(x).Client1〈c, x〉)

Server(a)
df
= a(y).(ν s)(y〈s〉 | Server1〈y, s〉)

No other process knows about c and s because they are inside the name restriction:
you can imagine that they will be created at run-time by the ν operator (pronounced
“new”).

Client〈a〉 |Server〈a〉
−→ (ν c)(c(x).Client1〈c, x〉 | (ν s)(c〈s〉 | Server1〈c, s〉))

−→ (ν c, s)(Client1〈c, s〉 |Server1〈c, s〉)

Note that Client1 and Server1 are now within the scope of the ν operator. This

phenomenon, called scope extrusion, is a distinguishing feature of the π-calculus.
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Secure client-server communication

We can now represent secure client-server communication. The client creates a new
(secret) channel c before contacting the server on the public channel a:

SClienti(a)
df
= (ν c)(a〈c〉 | c(x).PClienti〈c, x〉)

The server is a replicated process, ready to spawn a session for each client request:

SServer(a)
df
= !a(y).(ν s)(y〈s〉 | PServer〈y, s〉)

The server can interact with multiple clients at the same time:

SClient1〈a〉 |SClient2〈a〉 |SServer〈a〉
∗−→

(ν s1, c1)(PClient1〈c1, s1〉 |PServer〈c1, s1〉)
| (ν s2, c2)(PClient2〈c2, s2〉 |PServer〈c2, s2〉)
|SServer〈a〉

Each session is protected from the external environment by the restriction on the
client and server communication ports, which can be used to exchange data without
external interferences.
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