
Software Modelling and
Validation Using VDM

Hsin-Hung Lin
September 7, 2017

FLOLAC’17

Based on slides from overturetools.org
Credits: John Fitzgerald, Peter Gorm Larsen, Takahiko Ogino

1

Introduction

2

Software Today:
why we need to model systems
• Challenges in software development
• Modelling Computing Systems
• Formality
• Formal specification languages
• The structure & content of this lecture

3

Characteristics of Software

• We build computing systems out of software
• Engineers in other disciplines use physical materials like

steel, electronic devices or advanced materials.

• What makes software different?

4

Software Today: challenges

• Technological:
• you can do more in software than before

• Software is often used for critical tasks.
• Name some safety- or security-critical applications

• For example?

5

Software Today: challenges

• Economic Challenges: the cost of rework

• Software development takes place on a huge scale,
and often goes wrong!

• How much software gets used as delivered?

6

Software Today: challenges
Rework Costs

Requirements Analysis

System Design

System Specification

Software Design

Software implementation

Acceptance Test

System Test

Integration Test

Unit Test

7

Software Today: challenges
Rework Costs

• The rework cost to fix a bug is related to “distance”
between the commission and the discovery of the
error.

• Improved analysis of requirements and designs
could reduce the rework costs for some of the most
expensive errors.

• This lecture is about a particular class of techniques
which help us to do this kind of analysis.

8

Modelling Computing Systems

• In other engineering disciplines (Mechanical,
Electrical, Aeronautical etc.) system models are
built to help gain confidence in requirements and
designs.

• For example?

• In this lecture, we will look at how we can build and
analyze models of software. There are two
characteristics of these models which are crucial to
their successful use: abstraction and rigour.

9

Modelling: Abstraction

• Engineering models omit details which are not
relevant to the purpose of the model.

• The omission of detail not relevant to a model’s
purpose is called abstraction. The choice of which
details to omit is a matter of engineering skill.

10

Modelling: Abstraction

• Compare these extracts from two descriptions of the same
system.

The FlightFinder System is to be used by travel agents and their
customers. Details are entered, including point of departure,
destination, preferred dates and times. The system will respond
with a range of itineraries and fares, along with the relevant
restrictions.

The system record locations as nodes in a connected graph
structure. Each node struct contains an array of pointers to
reachable destinations plus, for each pointer, a timetable of flights
stored as a hash table. Each record in the hash table has a flight
number (8 character string), departure and arrival times (standard
time formats) and operating dates (standard date format). To obtain
the optimal route, the graph must be traversed using a shortest
path algorithm on a modified adjacency matrix ...

11

Modelling: Rigor

• The most important property of a model of a
computing system is its suitability for analysis. The
analysis must be objective (not down to the
opinion of the individual engineers performing it).
It should also be repeatable and susceptible to
machine support.

• The language in which a model is expressed should
be rigorously defined: little room for disagreement
about what a model actually says; analysis tools
reach the same conclusion about the properties of
models.

12

Modelling computing systems

• How do these concepts of system modelling transfer to
software development?

• A range of modelling techniques are used in software
development:

• For example?
• Models constructed in early development stages are

specifications; those developed in later stages are
designs. We will generally be concerned with
specifications (because of the importance of modelling
in early development stages) but we will tend to use
the term model to refer to the system descriptions that
we develop.

13

Formality

• This lecture concentrates on formal languages for
expressing models.

• A language is formal if its syntax rules and its
semantics (the meaning of every construct in the
language) are so precisely defined that there is no
room for disagreement about the meaning of a
model. Models expressed in a formal language are
susceptible to a wide range of analysis techniques
including mathematical proof (we can, in principle,
prove that a model embodies a property such as
safety or indeed prove that a program is correct
with respect to a specification).

14

Formal Specification Languages

• A formal specification language is a formal language
used for expressing models of computing systems.
Such languages typically provide support for
abstraction and rigour.

15

General Purpose

VDM-SL

Z

RSL (RAISE)

Special Purpose

CCS

CSP

Real-Time Logic

Deontic Logics

Formal Specification Languages:
VDM-SL
• Vienna Development Method (VDM)
• Spec. Language is VDM-SL
• ISO Standardized: fully formal
• Support Tools are available
• Good record of industrial use
• Support for abstraction of data and functionality

16

Structure of Lecture

• Introduction
• Guided tour through a formal model
• Basic abstractions: data types
• Principal abstractions: sets, sequences, mappings
• State, function, and operation
• Validation
• Case studies

17

Principle of Lecture

• Formal Methods are part of practical Systems
Engineering, not theoretical Computing Science!

• All examples are based on real formal models
developed in a commercial context.

• Practice is the key to master the modelling skills
used in this lecture.

18

References and Reading

• Fitzgerald & Larsen, “Modelling Systems: Practical
Tools and Techniques in Software Development”,
Cambridge Univ. Press 1998, ISBN 0-521-62348-0

• Documents on http://overturetool.org/
• Language manual
• Guides of Overture tool

19

http://overturetool.org/

Constructing a Model
A guided tour through a model in VDM-SL

20

Deriving a Model

• Chemical Plant Alarm System

• Requirements
• Data Types and invariants
• Functions and pre-conditions

21

The example is derived from a subcomponent of a large alarm and
callout system developed by IFAD, a Danish high-technology firm for the
local telephone company Tele Danmark Process.

The contents of a model in VDM-SL

22

Type Definitions, e.g.

Altitude = real
inv alt == alt >= 0

Position :: lat : Latitude
long : Longitude
alt : Altitude

Function definitions, e.g.

Move: Id * Position * ATCSystem -> ATCSystem
Move(id, pos, sys) == … expression …
pre … expression …

The contents of a model in VDM-SL

23

Data Types built from basic types (int, real, char, bool etc.)
using type constructors (sets, sequences, mappings, records).

Newly constructed types can be named and used throughout the
model.

A data type invariant is a Boolean expression that is used to
restrict a data type to contain only those values that satisfy the
expression.

Functions define the functionality of the system. Functions are
referentially transparent - no side-effects and no global
variables. In cases where it is intuitive to have global variables,
a different operational style of modelling is used.

A pre-condition is a Boolean expression over the input
variables that is used to record restrictions assumed to hold on
the inputs.

The contents of a model in VDM-SL

24

Data abstraction is provided by the unconstrained nature of the
data types in VDM-SL. Sets, sequences and mappings, although
finite, are unbounded.

Function abstraction, when required, is provided by implicit
specification.

SquareRoot(x:nat)r:real

pre x >= 0

post r*r = x

Post-conditions are Boolean expressions relating inputs and
outputs. Post-conditions are used when we do not wish to explicitly
define which output is to be returned, or where the explicit
definition would be too concrete.

Deriving a Formal Model from Scratch

25

• No right or wrong way to construct a formal model from a
requirements description.

• Always begin by considering a model’s purpose, as this guides
abstraction decisions during development.

• Following steps:
1. Read the requirements.
2. Extract a list of possible data types (often from nouns) and

functions (often from verbs/actions).
3. Sketch out representations for the data types.
4. Sketch out signatures for the functions.
5. Complete type definitions by determining invariants.
6. Complete the function definitions, modifying data type

definitions if required.
7. Review the requirements, noting how each clause has been

treated in the model.

Requirements for the Alarm Example

26

A chemical plant has monitors which can raise alarms in response to
conditions in the plant. When an alarm is raised, an expert must be called
to the scene. Experts have different qualifications for coping with different
kinds of alarm.
R1: A computer-based system is to be developed to manage expert call-
out in response to alarms.
R2: Four qualifications: electrical, mechanical, biological and chemical.

R3: There must be experts on duty at all times.

R4: Each expert can have a whole list of qualifications, not just one.

R5: Each alarm has a description (text for the expert) and a qualification.
R6: When an alarm is raised, the system should output the name of a
qualified and available expert who can then be called in.

R7: It shall be possible to check when a given expert is available.

R8: It shall be possible to assess the number of experts on duty at a
given period

Purpose of the model ...

• To clarify the rules governing the duty rota and the
calling out of experts in response to alarms.

27

Aside: We often find in professional practice that the purpose for
which a model is to be developed is only rarely made clear. Yet it is
this purpose which should govern the choice of abstractions made in
the development of the model and hence the success, ease of use
etc. of the model itself.

Possible data types and functions

• Types
• Plant
• Qualification
• Alarm
• Period
• Expert
• Description

• Functions
• ExpertToPage
• ExpertIsOnDuty
• NumberOfExperts

28

Sketching type representations:
Enumerated types

29

R2: Four qualifications: electrical, mechanical, biological and
chemical.

Qualification = <Elec> | <Mech> | <Bio> | <Chem>

• The | constructs the union of several types or quote literals

• The individual quoted values are put in angle brackets <…>

• This type has four elements corresponding to the four kinds
of alarm and qualification.

• Just like an enumerated type in a programming language.

Sketching type representations:
Record types

30

R5: Each alarm has a description (text for the expert) and a qualification.

It is always worth asking
clients whether they mean “a”
or “some” or “at least one”.

Alarm :: alarmtext : seq of char
quali : Qualification

31

Alarm :: alarmtext : seq of char
quali : Qualification

To say that a value v has type T, we write

v : T

So, to state that a is an alarm, we write

a : Alarm

To extract the fields from a record, we use a dot notation:

a.alarmtext

To say that a is made up from some values, we use a record
constructor “mk_”:

a = mk_Alarm(“Disaster - get here fast!”, <Elec>)

This constructor builds a record
from the values for its fields

Record types

Sketching type representations:
Mapping types

32

R4: Each expert can have a whole list of qualifications, not just one.
Ask the client “Did you really
mean a list, i.e. the order in
which they are presented is
important?

Expert :: expertId : ExpertId
quali : set of Qualification

Sometimes requirements given in natural language do not mean exactly
what they say. If in doubt, consult an authority or the client! Hence a set
here rather than a sequence.

We try to keep the formal model as abstract as possible - we only record
the information that we need for the purpose of the model. The choice of
what is relevant and what is not relevant is a matter of serious engineering
judgement, especially where safety is concerned.

Sketching type representations:
Token types

33

The informal requirements give us little indication that we will need
to look inside the experts’ identifiers. When we need a type, but no
detailed representation, we use the special symbol token.

ExpertId = token

The same is also true for the periods into which the plant’s
timetable is split:

Period = token

Sketching type representations:
Mapping types

34

R3: There must be experts on duty at all times.

R7: It shall be possible to check when a given expert is available.

These requirements imply that there must be some sort of
schedule relating each period of time to the set of experts who
are on duty during that period:

Monday a.m.

Monday p.m.

Tuesday p.m.

Tuesday a.m.

{e1, e7}

{e5, e3, e4}

{e2}

Schedule = map Period to (set of Expert)

Sketching type representations:
The whole plant

35

R1: A computer-based system is to be developed to manage
expert call-out in response to alarms.

Plant :: sch : Schedule
alarms : set of Alarm

The model so far - type definitions

36

Plant :: sch : Schedule
alarms : set of Alarm

Schedule = map Period to set of Expert

Period = token

Expert :: expertid : ExpertId
quali : set of Qualification

ExpertId = token

Qualification = <Elec> | <Mech> | <Bio> | <Chem>

Alarm :: alarmtext : seq of char
quali : Qualification

Sketching function signatures

37

Possible functions were: ExpertToPage
ExpertIsOnDuty

NumberOfExperts

A function definition shows the types of the input parameters and
the result in a signature:

ExpertToPage: Alarm * Period * Plant -> Expert

ExpertIsOnDuty: Expert * plant -> set of Period

NumberOfExperts: Period * Plant -> nat

Complete type definition:
Data type invariants

38

Additional constraints on the values in the system which must hold at all
times are called data type invariants.

Example: suppose we agree with the client that experts should always have
at least one qualification. This is a restriction on the type Expert. To state
the restriction, consider a typical value ex of type Expert

ex.quali <> {}

We attach invariants to the definition of the relevant data type:

Expert :: expertid : ExpertId
quali : set of Qualification

inv ex == ex.quali <> {}

The body of the invariant is a
Boolean expression recording the
restriction on the formal
parameter which represents a
typical element of the type.

This is a formal
parameter standing for a
typical element of the
type.

Complete type definition:
Data type invariants

39

R3: There must be experts on duty at all times.

This is a restriction on the schedule to make sure that, for all
periods, the set of experts is not empty.

Again, we state this formally. Consider a typical schedule, called
sch

forall exs in set rng sch & exs <> {}

Attaching this to the relevant type definition:
Schedule = map Period to set of Expert
inv sch == forall exs in set rng sch & exs <> {}

Complete function definitions

40

A function definition contains:

A signature

NumberOfExperts: Period * Plant -> nat

A parameter list

NumberOfExperts(per,pl) ==

A body

card pl.sch(per)

A pre-condition (optional)

pre per in set dom pl.sch

If omitted, the pre-condition is assumed to be true so the
function can be applied to any inputs of the correct type.

Complete function definitions

41

R7: It shall be possible to check when a given expert is available.

ExpertIsOnDuty: Expert * Plant -> set of Period
ExpertIsOnDuty(ex,pl) ==

{per | per in set dom pl.sch &
ex in set pl.sch(per)}

For convenience, we can use the record constructor in the input
parameter to make the fields of the record pl available in the body
of the function without having to use the selectors:

ExpertIsOnDuty: Expert * Plant -> set of Period
ExpertIsOnDuty(ex,mk_Plant(sch,alarms)) ==

{per | per in set dom sch & ex in set sch(per)}

Complete Function Definitions

42

ExpertIsOnDuty: Expert * Plant -> set of Period

ExpertIsOnDuty(ex, mk_Plant(sch,-)) ==

{per | per in set dom sch & ex in set sch(per)}

The alarms component of the mk_Plant(sch,alarms)
parameter is not actually used in the body of the function and
so may be replaced by a -. The final version of the function is:

Complete Function Definitions

43

R6: When an alarm is raised, the system should output the name
of a qualified and available expert who can then be called in.

ExpertToPage: Alarm * Period * Plant -> Expert
ExpertToPage(al,per,pl) == ???

Can we specify what result has to be returned without worrying
about how we find it? Use an implicit definition:

ExpertToPage(al:Alarm, per:Period, pl:Plant) r:Expert
pre …
post r in set pl.sch(per) and

al.quali in set r.quali

Have you spotted a problem with the system?

44

The requirements were silent about ensuring that there is always
an expert with the correct qualifications available. After consulting
with the client, it appears to be necessary to ensure that there is
always at least one expert with each kind of qualification available.
How could we record this in the model?

Plant :: sch : Schedule
alarms : set of Alarm

inv mk_Plant(sch,alarms) ==
forall a in set alarms &

forall per in set dom sch &
exists ex in set sch(per) &

a.quali in set ex.quali

Finally, review the requirements

45

R1: system to manage expert call-out in response to alarms.

R2: Four qualifications.

R3: experts on duty at all times.

R4: expert can have list of qualifications.

R5: Each alarm has description & qualification.

R6: output the name of a qualified and available expert

R7: check when a given expert is available.

R8: assess the number of experts on duty at a given period

Finally, review the requirements

46

Recall the original requirements.

R1: A computer-based system is to be developed to manage expert call-
out in response to alarms.
R2: Four qualifications: electrical, mechanical, biological and chemical.

R3: There must be experts on duty at all times.

R4: Each expert can have a whole list of qualifications, not just one.

R5: Each alarm has a description (text for the expert) and a qualification.
R6: When an alarm is raised, the system should output the name of a
qualified and available expert who can then be called in.

R7: It shall be possible to check when a given expert is available.

R8: It shall be possible to assess the number of experts on duty at a
given period

Weaknesses in the requirements

• Silence on ensuring that at least one suitable expert
is available.

• Use of identifiers for experts was implicit.
• “List” really meant “set”.
• Silence on the fact that experts without

qualifications are useless.
• “A qualification” meant “several qualifications”.

47

Summary

48

Process of developing a model depends crucially on the statement
of the model’s purpose.

VDM-SL models are based round type definitions and functions.
Abstraction provided by the basic data types and type constructors
and the ability to give implicit function definitions.

Basic types:

Type constructors:

Invariants:

Functions:

Logic Expressions

49

Logic Expressions in VDM

50

Our ability to state invariants, record preconditions and post-
conditions, and the ability to reason about a formal model
depend on the logic on which the modelling language is based.

• Classical logical propositions and predicates

• Connectives

• Quantifiers

• Handling undefinedness: the logic of partial functions

The temperature monitor example

51

30

20

10

0
1 2 3 4 5 6 7 8 9

Temperature (C)

Time (s)

The monitor records the last
five temperature readings

25 105510

The temperature monitor example

52

The following conditions are to be detected by the monitor:

Rising: the last reading in the sample is greater than the first

Over limit: there is a reading in the sample in excess of 400 C

Continually over limit: all the readings in the sample exceed 400 C

Safe: If readings do not exceed 400 C by the middle of the sample, the
reactor is safe. If readings exceed 400 C by the middle of the sample,
the reactor is still safe provided that the reading at the end of the
sample is less than 400 C.

Alarm: The alarm is to be raised if and only if the reactor is not safe

Formal Model of the monitor:

Monitor :: temps : seq of int
alarm : bool

inv m == len m.temps = 5

Predicates: Propositions

53

Predicates are simply logical expressions. The simplest kind of
logical predicate is a proposition.

A proposition is a logical assertion about a particular value or
values, usually involving a Boolean operator to compare the
values, e.g.

3 < 27 5 = 9

Propositions are normally either true or false (but in VDM we
also have to handle undefined values - see the later notes on
the Logic of Partial Functions).

Propositions have very limited value:

Predicates: General predicates

54

A predicate is a logical expression that is not specific to
particular values but contains variables which can stand for one
of a range of possible values, e.g.

x < 27

(x**2) + x - 6 = 0

The truth or falsehood of a predicate depends on the value taken
by the variables.

Predicates in the monitor example

55

Monitor :: temps : seq of int
alarm : bool

inv m == len m.temps = 5

Consider a monitor m. m is a sequence so we can index into it:

First reading in m:

Last reading in m:

Predicate stating that the first reading in m is strictly less
than the last reading:

The truth of the predicate depends on the value of m.

Predicates: The rising condition

56

The last reading in the sample is greater than the first

Monitor :: temps : seq of int
alarm : bool

inv m == len m.temps = 5

We can express the rising condition as a Boolean function:

Rising: Monitor -> bool

Rising(m) == m.temps(1) < m.temps(5)

For any monitor m, the expression Rising(m) evaluates to true iff the
last reading in the sample in m is higher than the first, e.g.

Rising(mk_Monitor([233,45,677,650,900], false))

Basic logical operators

57

We build more complex logical expressions out of simple ones
using logical connectives:

not negation

and conjunction

or disjunction

=> implication (if … then …)

<=> biimplication (if and only if)

Basic logical operators: Negation

58

Negation allows us to state that the opposite of some logical
expression is true, e.g.

The temperature in the monitor mon is not rising:

not Rising(mon)

A

true

false

not A

false

true

Truth table for negation:

Basic logical operators: Disjunction

59

Disjunction allows us to express alternatives that are not
necessarily exclusive:

Over limit: There is a reading in the sample in excess of 400 C
OverLimit: Monitor -> bool

OverLimit(m) ==

A

true

true

false

false

B

true

false

true

false

A or B

true

true

true

false

Truth table for disjunction:

Basic logical operators: Conjunction

60

Conjunction allows us to express the fact that all of a collection
of facts are true.
Continually over limit: all the readings in the sample exceed 400 C

COverLimit: Monitor -> bool

COverLimit(m) == m.temps(1) > 400 and
m.temps(2) > 400 and
m.temps(3) > 400 and
m.temps(4) > 400 and
m.temps(5) > 400

A

true

true

false

false

B

true

false

true

false

A and B

true

false

false

false

Truth table for conjunction:

Basic logical operators: Implication

61

Implication allows us to express facts which are only true under certain
conditions (“if … then …”):

Safe: If readings do not exceed 400 C by the middle of the sample, the
reactor is safe. If readings exceed 400 C by the middle of the sample,
the reactor is still safe provided that the reading at the end of the
sample is less than 400 C.

Safe: Monitor -> bool

Safe(m) == temp(3) > 400 => temp(5) < 400

A

true

true

false

false

B

true

false

true

false

A => B

true

false

true

true

Basic logical operators: Biimplication

62

Biimplication allows us to express equivalence (“if and only if”).

Alarm: The alarm is to be raised if and only if the reactor is not
safe

This can be recorded as an invariant property:

Monitor :: temps : seq of int
alarm : bool

inv m == len m.temps = 5 and not Safe(temps) <=> alarm

A

true

true

false

false

B

true

false

true

false

A <=> B

true

false

false

true

Quantifiers

63

For large collections of values, using a variable makes more sense than
dealing with each case separately.

inds m.temps represents indices (1-5) of the sample

The “over limit” condition can then be expressed more economically as:

exists i in set inds m.temps & temps(i) > 400

The “continually over limit” condition can then be expressed
using “forall”:

Quantifiers

64

Syntax:

forall binding & predicate

exists binding & predicate

There are two types of binding:

Type Binding, e.g.

x:nat

n: seq of char

Set Binding, e.g.

i in set inds m

x in set {1,…,20}

A type binding lets the
bound variable range
over a type (a possibly
infinite collection of
values).

A set binding lets the
bound variable range
over a finite set of
values.

Quantifiers

65

Several variables may be bound at once by a single quantifier,
e.g.

forall x,y in set {1,…,5} &

not m.temp(x) = m.temp(y)

Would this predicate be true for the following value of m.temp ?

[320, 220, 105, 119, 150]

Quantifiers: Exercises

66

All the readings in the sample are less than 400 and greater than 50.

Each reading in the sample is up to 10 greater than its predecessor.

There are two distinct readings in the sample which are over 400.

Quantifiers: Exercises

67

All the readings in the sample are less than 400 and greater than 50.

Each reading in the sample is up to 10 greater than its predecessor.

There are two distinct readings in the sample which are over 400.

forall i in set inds temp & temp(i) < 400 and temp(i) > 50

forall i in set inds temp\{1} &
temp(i-1) > temp(i) and temp(i-1) + 10 >= temp(i)

exists i,j in set inds temp &
i <> j and temp(i) > 400 and temp(j) > 400

Quantifiers: Exercises

68

Suppose we have to formalise the following property:

There is a “single minimum” in the sequence of readings, i.e.
there is a reading which is strictly smaller than any of the
other readings.

Suppose the order of the quantifiers is reversed.

Hint: use two quantifiers

Quantifiers: Exercises

69

Suppose we have to formalise the following property:

There is a “single minimum” in the sequence of readings, i.e.
there is a reading which is strictly smaller than any of the
other readings.

Suppose the order of the quantifiers is reversed.

Hint: use two quantifiers
exists min in set {1,...,5} &

forall i in set {1,...,5} &
i <> min => temp(i) > temp(min)

forall i in set {1,...,5} &
exists min in set {1,...,5} &

i <> min => temp(i) > temp(min)

Summary

70

• Propositions

• Predicates involve free variables

• Predicates may be combined using connectives

• Free variables can range over collections of values, using quantifiers

• Quantifiers can be mixed

LPF: coping with undefinedness

71

Suppose sensors can fail in such a way that they generate the value
Error instead of a valid temperature.

In this case we can not make comparisons like

Error < 400

The logic in VDM is equipped with facilities for handling undefined
applications of operators (e.g. if division by zero could occur).

Truth tables are extended to deal with the possibility that undefined
values can occur, e.g.

A

true

false

*

not A

false

true

*

* represents the
undefined value

Disjunction in LPF

72

A

true

true

true

false

false

false

*

*

*

B

true

false

*

true

false

*

true

false

*

A or B

true

true

true

true

false

*

true

*

*

If one disjunct is true, we know
that the whole disjunction is
true, regardless of whether the
other disjunct is true, false or
undefined.

Conjunction in LPF

73

A

true

true

true

false

false

false

*

*

*

B

true

false

*

true

false

*

true

false

*

A and B

true

false

*

false

false

false

*

false

*

If one conjunct is false, we know
that the whole conjunction is
false, regardless of whether the
other disjunct is true, false or
undefined.

Implication and Biimplication in LPF

74

A

true

true

true

false

false

false

*

*

*

B

true

false

*

true

false

*

true

false

*

A => B

true

false

*

true

true

true

true

*

*

A

true

true

true

false

false

false

*

*

*

B

true

false

*

true

false

*

true

false

*

A <=> B

true

false

*

false

true

*

*

*

*

Datatypes in VDM

75

Type Definitions

76

• Basic data types
Boolean
Numeric
Tokens
Characters
Quotations

• Compound data types
Set types
Sequence types
Map types
Product types
Record types
Union types
Operation types
Function types

Invariants can be added to types

bool

77

Values: true, false

78

int
nat
nat1
real

char

79

Values: ’a’, ’b’, ’1’, ’2’, ’+’, ’-’, ...

For a sequence type defined as
string = seq of char

The following expression is true
[‘a’, ’b’, ’c’, ’d’, ’e’] = “abcde”

quote

80

Values: <RED>, <CAR>, <QuoteLit>, ...

Quote types are usually used with union to represent enumerations
For example:

A = <NEG> | <ZERO> | <POS>
to represent the abstraction of integers

token

81

Values: mk_token(5), mk_token({9, 3}), ...

Tokens are used for representing types that is not needed to be in detail.
Usually used for values that are not accessed or changed by
functionalities of a system. There are no ordering between tokens.

set

82

S = set of A

83

seq

84

S = seq of A

85

map

86

S = map A to B
S = inmap A to B

87

product / tuple

88

T = A1 * A2 * ... * An

record

89

A :: first : A1
second : A2

90

union

91

B = A1 | A2 | ... | An

92

Useful Expression Styles

93

let-in

94

Syntax: let p1 = e1, ..., pn = en in e

Example:

let-be-such-that

95

Syntax: let b be st e1 in e2

Example:

Define Expression

96

Syntax: def pb1 = e1;
...
pbn = en

in
e

Example:

def user = lib(copy)
in

if user = <OUT> then true else false

If-Then-Else, Case

97

Syntax: if e1
then e2
else e3

Example:

Case

98

Syntax: cases e :
p11, p12, ..., p1n -> e1,
... -> ...,
pm1, pm2, ..., pmk -> em,
others -> emplus1

end

Example:

Sets

99

Modelling using sets

100

• Sets:
• The finite set type constructor
• Value definitions: enumeration, subrange, comprehension
• Operators on sets

To define a type:

• a type constructor

• ways of writing down values

• ways of operating on values

The idea of a set ...

101

An unordered collection of values:

The order doesn’t matter:

Nor do duplicates:

The set type constructor

102

The finite set type constructor is: set of _

What are the types of the following expressions?

{1, -3, 12}

{ {9, 13, 77}, {32, 8}, {}, {77} }

The set type constructor

103

The type set of X is the class of all possible finite sets of values
drawn from the type X. For example:

set of nat1 sets of non-zero Natural numbers
set of Student sets of student records
set of (seq of char) sets of sequences of characters

(e.g. sets of names)
set of (set of int) sets of sets of integers, e.g.

{ {3,56,2},{-2},{},{-33,5} }

Defining sets ...

104

(1) Enumeration: {1,2,3,4,5}

{‘a’,’b’,’c’}

(2) Subrange (integers only): {integer1,...,integer2}
e.g. {12,...,20} =

{12,...,12} =

{9,...,3} =

(0) Empty Set: {}

Defining sets ...

105

(3) Comprehension

{ expression | binding & predicate }

The set of values of the expression under each assignment of values to
bound variables satisfying the predicate.

Consider all the values that can be taken by the variables in the binding.

Restrict this to just those combinations of values which satisfy the
predicate.

Evaluate the expression for each combination. This gives you the values in
the set.

e.g. { x**2 | x:nat & x < 5 }

Defining sets ...

106

Examples of Comprehensions:

{x | x:nat & x < 5}

{x | x in set {0,...,4} }

{x | x in set {1,...,15} & x < 5}

{y | y:nat & y < 0}

{x+y | x,y:nat & x<3 and y<4}

{y | y in set {1,...,20} &

exist x in set {1,...,3} & x*2=y}

Defining sets

107

Finiteness

In VDM-SL, sets should be finite, so be careful when writing
comprehensions that you don’t define a predicate that could be
satisfied by an infinite number of values.

Example: {x | x:nat & x > 10}

Define a type with invariant instead if you need infinite values

Example: BigNat = nat
inv x == x > 10

Operators on Sets

108

There are plenty of built-in operators on sets.

Each one has a signature defining the number and types of
operand expected, e.g. the set union operator:

_ union _ : set of A * set of A -> set of A

The type of the
result.

What can you tell about the union operator from this signature?

Name of the operator.
The underscores show
where the arguments go
when the operator is
used.

Types of the
inputs, in order.
The “*” separates
each input type.

Operators on Sets

109

_ union _ : set of A * set of A -> set of A

Are the following expressions legal, according to the signature?

union({4, 7, 9} {23, 6})

3 union {7, 1, 12}

{12,…,15} union {x-y | x,y:nat & x<4 and y<10}

{} union {}

{12} union {x**y | x,y:nat & x<4 and y>2}

Operators on Sets

110

_ union _ : set of A * set of A -> set of A

_ inter _ : set of A * set of A -> set of A

_ \ _ : set of A * set of A -> set of A

dunion : set of (set of A) -> set of A

dinter : set of (set of A) -> set of A

card : set of A -> nat

_ in set _ : A * set of A -> bool

_ subset _ : set of A * set of A -> bool

Note: we don’t show the
underscores when the operator is
normally used in a prefix form, e.g.

card {12, 45, 12, 3} = 4

Operators on Sets

111

distributed operators

The most common operators have special forms in which they
are extended to a whole set of arguments, not just two.

dunion : set of (set of A) -> set of A

dinter : set of (set of A) -> set of A

Operators on Sets

112

In side a function definition, we may need to select an arbitrary
element from a set, not caring how it is selected. We can do this
by using a local definition, i.e. in the body of the function say

let x in set S in …

(now x stands for some arbitrary member of S)

Alternatively, we could just define a general function for selecting
an element from a set. Since we are not interested in the means
of selection, we could do this by an implicit function definition:

Select (s:set of X) result:X

pre s <> {}

post result in set s

… and now we can use Select(_) whenever we want to select an
element of a set.

Sequences

113

Modelling using Sequences

114

• Sequences
• The finite sequence constructor
• Value definitions: enumeration, subsequence
• Operators on Sequences

The finite sequence type constructor

115

In VDM-SL, a sequence is a finite ordered collection of values.
The presence of duplicates and the order in which elements are
presented is significant.

The finite sequence type constructor is:
seq of X

where X is an arbitrary type. The type seq of X is the class of
all possible finite sequences of values drawn from the type X.
For example:

seq of nat1

seq of (seq of char)

Finite sequence value definitions

116

Sequence values can be represented in various ways:

• Enumeration, e.g. [3, 5, 2, 5, 45]
[{34}, {34,7}, “Fred”]

empty sequence []

• Sequences of characters may be given as strings in quotation
marks, e.g.

[‘l’,’i’,’n’,’u’,’x’] = “linux”

• Subsequence: If we have a sequence q then we can take an
extract from q, e.g. q(3,…,5)= [q(3), q(4), q(5)]

•Comprehension: The sequence comprehension notation is
not often used and is described in the text.

• Note that sequences, like sets, are finite.

Operators on finite sequences

117

hd: seq of X -> X Partial operator: s <> []
First element

tl: seq of X -> seq of X Partial operator: s <> []
Tail (NB: a sequence!)

len: seq of X -> nat length of sequence

elems: seq of X -> set of X elements in the sequence
(reduced to a set)

inds: seq of X -> set of nat indices of the sequence
{1,…,len s}

_ ^ _ : seq of X * seq of X -> seq of X

sequence concatenation

conc: seq of (seq of X) -> seq of X

conc s = the concatenation of all the sequences in s

Mappings

118

Modelling using Mappings

119

• Mappings:
• The finite mapping type constructor
• Value definitions: enumeration, comprehension
• Operators on mappings

The finite mapping type constructor

120

A mapping is a functional relationship between two sets of values: a domain
and a range. Mappings are common in many models, e.g.

“Each bank account has exactly one balance”

“Each reactor has an input, an output and an operating temperature.”

Mappings represent one-to-one or many-to-one relationships, but
not one-to-many!

The finite mapping type constructor

121

The mapping type constructor is map X to Y

where X and Y are data types

e.g. “each bank account has exactly one bank balance”:

AccountNumber = seq of char

Balance = int

Accounts = map AccountNumber to Balance

“Fitz1355”

“Blair1009”

“Gates31”

-500

20000

An example
mapping:

Value definitions:
enumeration, comprehension

122

To enumerate a mapping, we present the related domain element-range
element pairs (called maplets). For the mapping illustrated above, the
enumeration would be:

{“Fitz1355“ |-> -500, “Blair1009” |-> 20000, “Gates31” |-> 20000}

A maplet relating domain element x to range element y is written
x |-> y

“Fitz1355”

“Blair1009”

“Gates31”

-500

20000

Value definitions:
enumeration, comprehension

123

A mapping comprehension has the following form:

{ expression |-> expression | binding & predicate }

The mapping consisting of the maplets formed by evaluating the
expressions under each assignment of values to bound variables
satisfying the predicate.

Consider all the values that can be taken by the variables in the binding.

Restrict this to just those combinations of values which satisfy the
predicate.

Evaluate the expressions for each combination. This gives you the maplets
in the mapping.

e.g. { x |-> x/2 | x:nat & x < 5 }

Value definitions:
enumeration, comprehension

124

Like sets and sequences, mappings are finite. Are the following mappings
defined?

{ x |-> x**2 | x:nat1 & x**2 > 3 }

{ x |-> y | x,y:nat1 & x<4 and y<3 }

{ x |-> x**2 | x:int & x < 10 }

Operators on mappings

125

dom: map A to B -> set of A

Domain

rng: map A to B -> set of A

Range

Evaluate the following:

dom { n |-> 3*n | n:nat & n<50 }

rng { n |-> 3*n | n:nat & n<50 }

Operators on mappings

126

() : map A to B * A -> B

Mapping Lookup

For a mapping m and a domain element a, the expression

m(a)

denotes the range element pointed to by a.

*Is this a total or a partial operator?

Operators on mappings

127

Example of mapping lookup:

Accounts = map AccountNumber to Balance

Define a function with the following signature which returns the names of
overdrawn account holders:

overdrawn : Accounts -> set of AccountNumber

overdrawn(acs) ==
{a | a in dom acs & acs(a) < 0 }

Operators on mappings

128

The mapping merge or mapping union operator joins two mappings together:

_ munion _ : (map A to B) * (map A to B) -> (map A to B)

Example:

{ “John” |-> -500, “Tony” |-> 20000 }

munion { “Cherie” |-> 150 }

= { “John” |-> -500, “Tony” |-> 20000, “Cherie” |-> 150 }

This operator is partial. Can you see why?

Operators on mappings

129

Mapping union is only defined on inputs that are compatible. We can define
a function to check for mapping compatibility:

compatible: (map A to B) * (map A to B) -> bool

compatible(m1,m2) ==

forall x in set dom m1 inter dom m2 & m1(x) = m2(x)

Operators on mappings

130

An alternative operator is the mapping override operator:

_ ++ _ : (map A to B) * (map A to B) -> (map A to B)

This operator is defined just like munion, except that where m1 and m2 are
not compatible, m2 wins, e.g.

{ “John” |-> -500, “Tony” |-> 20000 }

++ { “Tony” |-> 300, “Cherie” |-> 150 }

= { “John” |-> -500, “Tony” |-> 300, “Cherie” |-> 150 }

A very common use of this operator is to update a mapping at a point, e.g.

m ++ {x |-> e}

updates the mapping m so that x now points to e.

Operators on mappings

131

There are some operators to modify mappings by restricting the domain or
range:

_ <-: _ : (set of A) * (map A to B) -> (map A to B)

The expression s <-: m is the same as m except that the elements of s have been
removed from its domain (and any unattached range elements are removed too).

_ <: _ : (set of A) * (map A to B) -> (map A to B)

The expression s <: m is the same as m except that the domain is restricted down
to just the elements of s (and any unattached range elements are removed too).

_ :-> _ : (map A to B) * (set of B) -> (map A to B)

The expression m :-> s is the same as m except that the elements of s have been
removed from its range (and any unattached domain elements are removed too).

_ :> _ : (map A to B) * (set of B) -> (map A to B)

The expression m :> s is the same as m except that the range is restricted down to
just the elements of s (and any unattached domain elements are removed too).

Details are in the text.

Operators on mappings

132

Example:

Define a function returning the accounts mapping for those account holders
who are not overdrawn.

AccountNumber = seq of char

Balance = int

Accounts = map AccountNumber to Balance

credit-map : Accounts -> Accounts

credit-map (acs) ==

credit-map(acs) ==
{a |-> acs(a) | a in dom acs & acs(a) >= 0 }

Modelling State
State, Functions, and Operations

133

Explicit Function Definitions

• VDM features a (functional/procedural)
programming language

• Function definitions include a signature and the
expression

• Syntax of explicit function

• Example

134

f: X1 * ... * Xn -> R
f(x1, ..., xn) == ...

mult: nat * nat -> nat
mult(x, y) ==

if y = 1 then x else mult(x, y - 1) + y

Implicit Function Definitions

• Sometimes one does not want / know how to
define a function Implicit function definitions allow
to express what is to be computed, not how

• Syntax of implicit function

• Example

135

f(x1: X1, ..., xn: Xn) res: R
pre P(x1, ..., xn)
post Q(x1, ..., xn, res)

mult(x: nat , y: nat) res: R
pre true
post res = x * y

Implicit+Explicit Function Definitions

• Both implicit and explicit can be used at the same
time

• Syntax

• Example

136

f: X1 * ... * Xn -> R
f(x1, ..., xn) == ...
pre P(x1, ..., xn)
post Q(x1, ..., xn, RESULT)

mult: nat * nat -> nat
mult(x, y) ==

if y = 1 then x else mult(x, y - 1) + y
pre true
post RESULT = x * y

Limitations of functional style

• So far, the models we have looked at have used a
high level of abstraction.

• Functionality has been largely modelled by explicit
functions, e.g.

• Few computing systems are implemented using
only pure functions

137

Update: System * Input -> System
Update(oldsys, val) == mk_System(…)

Persistent state

• More often, “real” systems have variables holding
data, which may be modified by operations
invoked by a user

• VDM-SL provides facilities for state-based
modelling:

• state definition
• operations
• auxiliary definitions (types, functions)

138

Example: Alarm Clock

• An alarm clock keeps track of current time and
allows user to set an alarm time

• The alarm could be represented as a record type:

Time = nat
Clock :: now : Time

alarm: Time
alarmOn: bool

• Instead, we will use a state-based model

139

State definition

• State is defined with the following syntax:

• Definition introduces a new type (Name) treated
as a record type, with state variables as fields

140

state Name of
component-name : type
component-name : type
…
component-name : type

inv optional-invariant
init initial-state-definition
end

State definition

• Variables which represent the state of the system are
collected into a state definition

• This represents the persistent data, to be read or modified
by operations

• A model has only one state definition
• init clause sets initial values for persistent data

141

state Clock of
now : Time
alarm : Time
alarmOn : bool

init cl == cl = mk_Clock(0,0,false)
end

Operations

• Procedures which can be invoked by the system’s
users – human or other systems – are operations

• Operations (can) take input and generate output
• Operations have side effects – can read, and modify,

state variables

• Operations may be implicit or explicit, just as with
functions

142

Explicit Operations

• An explicit operation has signature and body just
like an explicit function, but the body need not
return a value:

• e.g. alarm is set to a given time, which must be in
the future:

SetAlarm: Time ==> ()
SetAlarm(t) == (alarm :=t ; alarmOn := true)
pre t > now

• Note features:
• no return value (in this case)
• sequence of assignments to state variables

143

Implicit Operations

• Explicit operations produce a relatively concrete model
• Normally in state-based model, begin with implicit

operations
• better abstraction
• not executable

• e.g. implicit version of SetAlarm operation:
SetAlarm(t: Time)
ext wr alarm: Time

wr alarmOn: bool
rd now: Time

pre t > now
post alarm = t and alarmOn

144

Implicit operations

• Implicit operations have the following components:
header with operation name, names and types of input

and any result parameters
externals clause lists the state components used by the

operation, and whether they are read-only or may be
modified by the operation

pre-condition recording the conditions assumed to hold
when the operation is applied

post-condition relates state and result value after the
operation is completed, to the initial state and input
values. Post-condition must respect restrictions in the
externals clause, and define “after” values of all
writeable state components

145

Implicit operation syntax

• Operation definition is a specification for a piece of
code with input/output parameters and side effects
on state components

146

OpName(param:type, param:type, …) result:type
ext wr/rd state-variable:type

wr/rd state-variable:type
...
wr/rd state-variable:type

pre logical-expression
post logical-expression

Alarm clock: modelling time

• We might also model the passing of time:
• Implicit operation:

• Explicit operation:

147

Tick()
ext wr now: Time
post now = now~ + 1

Tick: () ==> ()
Tick() == now := now + 1;

State-based modelling

• Development usually proceeds from abstract to
concrete

• identify state and persistent state variables
• define implicit operations in terms of their access to

state variables, pre and postconditions
• complete definitions of types, functions noting any

restrictions to be captured as invariants and
preconditions, check internal consistency

• transform implicit operations to explicit (and to code) by
provably correct steps

148

Validation

149

The Idea of Validation

150

How confident can you be that a formal model accurately describes the
system that the customer wanted?

• Requirements are often incomplete and ambiguous: modellers have
to resolve these in unambiguous models.

• Requirements often state the client’s intention incorrectly.

Validation is the process of increasing confidence that a model is an
accurate representation of the system under consideration. Two
aspects of this:

1. Checking internal consistency of a model.

2. Checking that the model describes the required behaviour of the
system being modelled.

Internal Consistency

151

If a modelling language is formal then it must have:

• a formal syntax: rules restricting the symbols in the language and
saying where they can be used.

• a formal semantics: rules for determining the meaning of a model
written in accordance with the formal syntax.

If the syntax is formal, then we can check it with the aid of a tool (c.f.
syntax checker in a programming language compiler).

If the semantics is formal, then we can check at least some aspects with
the aid of a tool (c.f. type checker in a programming language compiler).

But we can’t check everything!

Internal Consistency: Behaviour

152

The other aspect of validation is checking the accuracy with which the
model records the desired system behaviour.

We will look at three approaches:

• Animating the model - works well with clients unfamiliar with
the modelling notation but requires a good interface.

• Testing the model - can assess coverage but limited to the
quality of the tests and the model must be executable.

• Proving properties of the model - provides excellent coverage
and does not require executability, but not well supported by tools.

Internal Consistency: Type checking

153

A simple form of internal consistency checking is type checking.
Consider a type checking tool working on the following extracts from
function definitions:

Student :: …

Sid = token

Dbase = map Sid to Student

newStudent1: Sid * Student * Dbase -> Dbase

newStudent1(sid,s,db) == db ++ { sid |-> s }

newStudent2: Sid * Student * Dbase -> Dbase

newStudent2(sid,s,db) == db ^ { sid |-> s }

newStudent3: Sid * Student * Dbase -> Dbase

newStudent3(sid,s,db) == db munion { sid |-> s }

Internal Consistency: Type checking

154

newStudent3: Sid * Student * Dbase -> Dbase

newStudent3(sid,s,db) == db munion { sid |-> s }

pre sid in set dom db

We know that this is OK, but could a machine work it out? What about …

newStudent3: Sid * Student * Dbase -> Dbase

newStudent3(sid,s,db) == db munion { sid |-> s }

pre sid in set {s1 | s1 : Sid &
exists y in set rng db & db(s1) = y}

We can’t provide a completely general tool that can automatically check
that all uses of operators are properly protected (programming
languages have the same problem - you can’t produce a general tool
that can automatically statically check whether division by zero will occur
unless the language is very restricted and inexpressive).

Internal consistency: Type checking

155

Models
Definitely OK

Definitely Wrong

Maybe, maybe not -
a machine can’t tell
you which.

Much of the current research in formal modelling aims to develop
techniques and tools to reduce the size of the middle area by
performing more and more checks automatically.

Internal consistency: Proof obligations

156

If a check cannot be performed automatically, the techniques of
mathematical proof are required to complete it.

The collection of all checks to be performed on a VDM model are called
proof obligations. A proof obligation is a logical expression which must
be shown to hold before a VDM-SL model can be regarded as formally
internally consistent.

We look at three proof obligations on VDM-SL models:

• Domain Checking

• Satisfiability of explicit definitions

• Satisfiability of implicit definitions

Proof Obligations: Domain Checking

157

Using a partial operator outside its domain of definition is usually an
error on the part of the modeller. Two kinds of construct are impossible
to check automatically:

• applying a function that has a pre-condition; and

• applying a partial operator.

Some definitions:

f:T1 * T2 * … * Tn -> R
f(a1,…,an) == ...
pre ...

We can refer to the precondition of f as a Boolean function with the
following signature:

pre_f:T1 * T2 * … * Tn -> Bool

Proof Obligations: Domain Checking

158

Domain Checking for Functions with Pre-conditions
If a function g uses a function f:T1*…*Tn -> R in its body, occurring
as an expression f(a1,…,an), then it is necessary to show

pre-f(a1,…,an)

for any a1,…,an that can arise in this position.

Example:
Delete: Tracker * ContainerId * PhaseId -> Tracker
Delete(tkr,cid,source) ==

mk_Tracker({cid} <-: tkr.containers,
Remove(tkr,cid,source).phases)

pre pre_Remove(tkr,cid,source)

Proof obligation for domain checking:

forall tkr:Tracker, cid:ContainerId, source:PhaseId &
pre_Delete(tkr,cid,source) => pre_Remove(tkr,cid,source)

Proof Obligations: Domain Checking

159

Domain Checking for Partial Operators
Each application of a partial operator must be protected. For example,
consider:

Introduce: Tracker * ContainerId * real * Material -> Tracker
Introduce(trk,cid,quan,mat)==

mk_Tracker(trk.containers munion
{cid |-> mk_Container(quan,mat)},
trk.phases)

pre cid not in set dom trk.containers

The obligation is:

forall trk:Tracker, cid:ContainerId, quan:real, mat:Material &
pre_Introduce(trk,cid,quan,mat) =>

compatible(trk.containers,{cid |-> mk_Container(quan,mat)})

Proof Obligations: Domain Checking

160

Partial operators can be protected by pre-conditions (as in the
Permission example) or by including an explicit check in the body of the
function, e.g.

Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases), cid, dest) ==

cid in set dom containers and
dest in set dom phases and
card phases(dest).contents < phases(dest).capacity and
containers(cid).material in set

phases(dest).expected_materials

Proof obligation

forall mk_Tracker(containers,phases):Tracker,
cid:ContainerId, dest:PhaseId &
(cid in set dom containers and
dest in set dom phases) => dest in set dom phases

Proof Obligations: Domain Checking

161

Exercise: What is the proof obligation generated by the highlighted
expression below?

Move: Tracker * ContainerId * PhaseId * PhaseId -> Tracker

Move(trk,cid,ptoid,pfromid) ==

let pha = mk_Phase(trk.phases(ptoid).contents union {cid},

trk.phases(ptoid).capacity)

in

mk_Tracker(trk.containers,

Remove(trk,cid,pfromid).phases ++ {ptoid |-> pha})

pre Permission(trk,cid,ptoid) and pre_Remove(trk,cid,pfromid)

forall trk:Tracker, cid:ContainerId, ptoid:PhaseId &
pre_Move(trk,cid,ptoid) =>

ptoid in set dom trk.phases

Proof Obligations: Domain Checking

162

It can be difficult to decide what to include in a pre-condition.

• Some conditions are determined by the requirements.

• Many conditions are there to guard applications of partial
operators and functions.

When you write a function definition, read through it
systematically, highlighting each application of a partial operator,
and ensure that you have guarded against misapplication of that
operator by adding a suitable conjunct to the precondition.

Proof Obligations: Satisfiability

163

An explicit function without a pre-condition defined

f:T1*...*Tn -> R
f(a1,...,an) == ...

is said to be satisfiable if, for all inputs, the result defined by the
function body is of the correct type. Formally,

forall p1:T1,…,pn:Tn & f(p1,…,pn) : R

An explicit function with a pre-condition:

f:T1*...*Tn -> R
f(a1,...,an) == ...

is said to be satisfiable if, for all inputs satisfying the pre-condition,
the result defined by the function body is of the correct type. Formally,

forall p1:T1,…,pn:Tn &
pre_f(p1,…,pn) => f(p1,…,pn) : R

Proof Obligations: Satisfiability

164

For example, consider

Introduce: Tracker * ContainerId * real * Material ->
Tracker

Introduce(trk,cid,quan,mat)==
mk_Tracker(trk.containers munion

{cid |-> mk_Container(quan,mat)},
trk.phases)

pre cid not in set dom trk.containers

The satisfiability proof obligation is:

forall mk_Tracker(containers, phases): Tracker,
cid: ContainerId, quan: real, mat: Material &
pre_Introduce(trk, cid, quan, mat) =>

Introduce(trk,cid,quan,mat): Tracker

Proof Obligations: Satisfiability

• Most of the work in showing satisfiability comes in
showing, not that the result returned belongs to
the correct general type, but that it respects the
invariant on that type.

165

Proof Obligations: Satisfiability

166

Satisfiability of implicit function definitions
A function f defined implicitly as follows

f(a1:T1,…,an:Tn) r:R
pre ...
post ...

is said to be satisfiable if, for all inputs satisfying the pre-condition,
there exists a result of the correct type satisfying the post-condition.
Formally,

forall p1:T1,…,pn:Tn &
pre_f(p1,…,pn) =>

exists x:R & post_f(p1,…,pn,x)

Proof Obligations: Satisfiability

167

Example:

Find(trk:Tracker,cid:ContainerId) p:(PhaseId|<NotAllocated>)
pre cid in set dom trk.containers
post if exists pid in set dom trk.phases &

cid in set trk.phases(pid).contents
then p in set dom trk.phases and

cid in set trk.phases(p).contents
else p = <NotAllocated>

The satisfiability proof obligation is as follows:

forall trk:Traceker, cid:ContainerId &
pre_Find(trk,cid) =>

exists p:(PhaseId|<NotAllocated>) &
post_Find(trk,cid,p)

Animation

168

The goal of validation is to increase confidence that a model accurately
reflects the customer’s intentions.

However, customers rarely understand the modelling language used,
whether it is formal or not.

Animation is the execution of the model through an interface. The
interface can be coded in a programming language of choice so long as
a dynamic link facility exists for linking the interface code to the model.

Formal
model

Interpreter

Interface

Animation

169

The interface functions (in C++) have to be made known to the
VDM-SL layer, This can be done in a dynamic link module which
also provides a file name reference to the compiled C++ code.

Systematic Testing

170

The level of confidence gained through an animation is only as good as
the particular choice of scenarios executed by the user through the
interface.

More systematic testing is also possible:

define a collection of test cases

execute each test case on the formal model

compare with expectation

Test cases can be generated by hand or automatically. Automatic
generation can however produce a vast number of individual test cases.

Techniques for test generation in functional programs carry over to
formal models.

Dynamic type checking in executing a formal model can help validating
proof obligations (but not proving them)

Systematic Testing

171

Executing the test:

Permission(mk_Tracker({|->},{|->}),mk_token(1),mk_token(2))

yields false. We can also tell which parts of the permission function have
been exercised (“covered”) by the test:

Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases), cid, dest) ==

cid in set dom containers and
dest in set dom phases and
card phases(dest).contents < phases(dest).capacity and
containers(cid).material in set

phases(dest).expected_materials

It is possible to have a tool highlight parts of the model that are not
exercised by a test and use this information to devise other tests.

Systematic Testing with Tool Support

172

The Overture Tool

Validation by Proof

173

Systematic testing and animation are only as good as the tests and
scenarios used. Proof allows the modeller to assess the behaviour of a
the model for whole classes of inputs in one analysis.

In order to prove a property of a model, the property has to be
formulated as a logical expression (like a proof obligation). A logical
expression describing a property which is expected to hold in a model
is called a validation conjecture.

Proofs can be time-consuming. Machine support is much more limited:
it is not possible to build a machine that can automatically construct
proofs of conjectures in general, but it is possible to build a tool that
can check a proof once the proof itself is constructed. Considerable skill
is required to construct a proof - but a successful proof gives high
assurance of the truth of the conjecture about the model.

Summary

174

Validation: the process of increasing confidence that a model accurately
reflects the client requirements.

• Internal consistency:

• domain checking: partial ops and functions with precondition

• satisfiability of explicit and implicit function

• Checking accuracy:

• animation

• testing

• proof

Case Study:
the explosives storage example

175

Case Study:
the explosives storage example

176

• The system to be modelled is part of a controller for a
robot that positions explosives such as dynamite and
detonators in a store.

• The store is a rectangular building. Positions within the
building are represented as coordinates with respect to
one corner designated the origin. The store’s dimensions
are represented as maximum x and y coordinates.

• Objects in the store are rectangular packages, aligned
with the walls of the store. Each object has dimensions in
the x and y directions. The position of an object is
represented as the coordinates of its lower left corner. All
objects must fit within the store and there must be no
overlap between objects.

Case Study:
the explosives storage example

177

The positioning controller must provide functions to:

1. return the number of objects in a given store;

2. suggest a position where a given object may be
accommodated in a given store;

3. update a store record to note that a given object has been
placed in a given position;

4. update a store record to note that all the objects at a given
set of positions have been removed.

Purpose of the model: to clarify the rules for the storage of
explosives.

178

y

x

ybound

xbound

position xlength

ylength

object

store

Case Study:
the explosives storage example

179

Store :: contents :
xbound :
ybound :

Object :: position :
xlength :
ylength :

Case Study:
the explosives storage example

180

Store :: contents :
xbound :
ybound :

inv mk_Store(contents,xbound,ybound) ==

Case Study:
the explosives storage example

181

Store :: contents :
xbound :
ybound :

inv mk_Store(contents,xbound,ybound) ==

set of Object
nat
nat

All objects in the store is within the bounds of the store
and
All objects in the store are not overlapped with each other

Point :: x : nat
y : nat

Object :: position : Point
xlength : nat
ylength : nat

Case Study:
the explosives storage example

182

Store :: contents :
xbound :
ybound :

inv mk_Store(contents,xbound,ybound) ==

forall o in set contents &
InBounds(o,xbound,ybound) and

not exists o1, o2 in set contents &
o1 <> o2 and Overlap(o1,o2)

InBounds: Object * nat * nat -> bool
InBounds(o,xb,yb) == ???

Overlap: Object * Object -> bool
Overlap(o1,o2) == ???

Case Study:
the explosives storage example

183

Store :: contents :
xbound :
ybound :

inv mk_Store(contents,xbound,ybound) ==

forall o in set contents &
InBounds(o,xbound,ybound) and

not exists o1, o2 in set contents &
o1 <> o2 and Overlap(o1,o2)

InBounds: Object * nat * nat -> bool
InBounds(o,xb,yb) == ???

Overlap: Object * Object -> bool
Overlap(o1,o2) == ???

set of Object
nat
nat

184

InBounds(o,xb,yb) ==
o.position.x + o.xlength <= xb and
o.position.y + o.ylength <= yb

Overlap(o1,o2) == Points(o1) inter Points(o2) <> {}

Points: Object -> set of Point
Points(o) ==

let o=mk_Object(pos,xlen,ylen) in
{mk_Point(x,y) | x in set {pos.x,...,pos.x+xlen},

y in set {pos.y,...,pos.y+ylen} }

Case Study:
the explosives storage example

185

1. return the number of objects in a given store;

NumObjects: Store -> nat

2. suggest a position where a given object may be
accommodated in a given store;

SuggestPos: nat * nat * Store -> Store

3. update a store record to note that a given object has been
placed in a given position;

Place: Object * Store Point -> Store

4. update a store record to note that all the objects at a given
set of positions have been removed.

Remove: Store * set of Point -> Store

Case Study:
the explosives storage example

186

NumObjects: Store -> nat

NumObject(s) == ???

Case Study:
the explosives storage example

187

NumObjects: Store -> nat

NumObject(s) == card s.contents

Case Study:
the explosives storage example

188

SuggestPos: nat * nat * Store -> Store

SuggestPos(xlength,ylength,s) == ???

There might be any number of viable positions, but the
requirements are not specific about which one ought to be
returned - any point with sufficient space will do.

Since we do not have to give a specific point, there is not need
to give an algorithm for finding a suitable point: we can use an
implicit function definition instead.

Case Study:
the explosives storage example

189

An implicit definition does not have a body, but does describe the
result by means of a postcondition.

functionName (input vars & types) result & type

pre precondition

post postcondition

sqrt(x:real) r:real

pre x >= 0

post r*r = x

Case Study:
the explosives storage example

190

SuggestPos: nat * nat * Store -> Store

SuggestPos(xlength,ylength,s) == ???

SuggestPos(xlength:nat, ylength:nat, s:Store) p:[Point]

post -- if there is a point with enough room
-- then return some point where there is
-- enough room
-- else return nil

if exists poss:Point &
RoomAt(xlength,ylength,s,poss)

then RoomAt(xlength,ylength,s,p)

else p = nil

Case Study:
the explosives storage example

191

RoomAt: nat * nat * Store * Point -> bool

RoomAt(xlength,ylength,s,p) ==

let new_o = mk_Object(p,xlength,ylength) in

Case Study:
the explosives storage example

192

RoomAt: nat * nat * Store * Point -> bool

RoomAt(xlength,ylength,s,p) ==

let new_o = mk_Object(p,xlength,ylength) in

InBounds(new_o,s.xbound,s.ybound) and
not exists o1 in set s.contents &

Overlap(o1,new_o)

Case Study:
the explosives storage example

193

3. update a store record to note that a given object has been
placed in a given position;

Place: Object * Store Point -> Store

Place(o,s,p) ==

let new_o = mk_Object(p,o.xlength,o.ylength) in

mk_Store (

)

pre

Case Study:
the explosives storage example

194

3. update a store record to note that a given object has been
placed in a given position;

Place: Object * Store * Point -> Store

Place(o,s,p) ==

let new_o = mk_Object(p,o.xlength,o.ylength) in

mk_Store (

)

pre

s.contents union {new_o},
s.xbound,
s.ybound

RoomAt(o.xlength, o.ylength, s, p)

Case Study:
the explosives storage example

195

An extension - Suppose we have a site which consists of a
collection of stores:

Store :: name : token
...

Site = set of Store
inv site ==
forall store1, store 2 in set site &

store1. name = store2.name => store1 = store2

and we need to take an inventory of the site:

Inventory = set of inventoryItem
InventoryItem :: store : token

item : Object

Case Study:
the explosives storage example

196

We could take the union of the individual inventories of each store:

SiteInventory: Site -> Inventory
SiteInventory(site) ==
dunion{StoreInventory(store) | store in set site}

StoreInventory: Store -> Inventory
StoreInventory(store) ==
{mk_InventoryItem(store.name,o) |

o in set store.contents}

Case Study:
the explosives storage example
• Summary

• Use implicit specification (postcondition) when
there is no need to give a particular result;

• Use auxiliary function definitions to break down
and simplify the task of building the model.

197

The tracking manager example

198

The tracking manager example

199

A model of an architecture for tracking the movement of
containers of hazardous waste as they go through
reprocessing was developed by a team in Manchester
Informatics with BNFL (British Nuclear Fuels Limited) in 1995.

The purpose of the model was to establish the rules
governing the movement of containers of waste which the
tracking manager would have to enforce. The model was
safety-related, but note that the model was built simply in
order to understand the problem better, not as a basis for
software development. Models don’t just have to serve as
specifications.

200

The tracking manager example

201

At the top level, the tracker holds information about containers and the
phases of the plant:

Tracker :: containers : ContainerInfo

phases : PhaseInfo

The container and phase information is modelled as a mapping from
identifiers to details (this is a very common use of mappings, with
identifiers in the domain and data types defining details in the range)

ContainerInfo = map ContainerId to Container

PhaseInfo = map PhaseId to Phase

The tracking manager example

202

The details of how identifiers are represented are immaterial:

ContainerId =

PhaseId =

For each container, we record the fissile mass of its contents and the
kind of material it contains.

Container =

Material

The tracking manager example

203

The details of how identifiers are represented are immaterial:

For each container, we record the fissile mass of its contents and the
kind of material it contains.

ContainerId = token
PhaseId = token

Container :: fiss_mas : real
material : Material

Material = token

The tracking manager example

204

Each phase houses a number of containers, expects certain material
types and has a maximum capacity.

Try modelling this yourself:

The tracking manager example

205

Each phase houses a number of containers, expects certain material
types and has a maximum capacity.

Try modelling this yourself:

Phase :: contents : set of ContainerId
expected_materials : set of Material
capacity = nat

The tracking manager example

206

In the real tracking manager project, domain experts from BNFL were
closely involved with the development of the formal model. We relied on
the domain experts to point out the safety properties that had to be
respected by the tracker. For example, the number of containers in a
phase should not exceed the phase’s capacity:

Phase ::

inv p ==

The domain experts from BNFL often commented that this ability to
record constraints formally as invariants was extremely valuable.

The tracking manager example

207

In the real tracking manager project, domain experts from BNFL were
closely involved with the development of the formal model. We relied on
the domain experts to point out the safety properties that had to be
respected by the tracker. For example, the number of containers in a
phase should not exceed the phase’s capacity:

The domain experts from BNFL often commented that this ability to
record constraints formally as invariants was extremely valuable.

Phase :: contents : set of ContainerId
expected_materials : set of Material
capacity = nat

inv p = card p.contents <= p.capacity

The tracking manager example

208

Tracker :: containers : ContainerInfo

phases : PhaseInfo

inv mk_Tracker(containers,phases) ==

Consistent(containers,phases) and

PhasesDistinguished(phases) and

MaterialSafe(containers,phases)

Invariant:
1. All of the containers present in phases are known about in the

containers mapping.

2. No two distinct phases may have any containers in common.
3. In each phase, all its containers contain materials as expected by

the phase.

The tracking manager example

209

Consistent: ContainerInfo * PhaseInfo -> bool

Consistent(containers,phases) ==

-- all of the containers present in phases are known

-- about in the containers mapping.

forall ph in set rng phases &

ph.contents subset dom containers

The tracking manager example

210

PhasesDistinguished: PhaseInfo -> bool

PhaseDistinguished(phases) ==

-- no two distinct phases may have any containers

-- in common

not exists p1, p2 in set dom phases &

p1 <> p2 and

phases(p1).contents inter phases(p2).contents <> {}

The tracking manager example

211

MaterialSafe: ContainerInfo * PhaseInfo -> bool

MaterialSafe(containers,phases) ==

-- In each phase, all its containers contain materials

-- as expected by the phase

forall ph in set rng phases &

forall cid in ph.contents &

cid in set dom containers and

containers(cid).material in set ph.expected_materials

The tracking manager example

212

• introduce a new container to the tracker, giving its identifier and
contents;

• give permission for a container to move into a given phase;

• remove a container from a phase;

• delete a container from the plant.

Introduce: Tracker * ContainerId * real * Material

-> Tracker

Introduce(trk, cid, quan, mat) ==

mk_Tracker(

trk.containers munion {cid |-> mk_Container(quan,mat)},

trk.phases)

pre cid not in set dom trk.containers

The tracking manager example

213

Permission: Tracker * ContainerId * PhaseId -> bool

Permission(mk_Tracker(containers,phases),cid,dest) ==

-- must check that the tracker invariant will be

-- maintained by the move

cid in set dom containers and

dest in set dom phases and

card phases(dest).contents < phases(dest).capacity and

containers(cid).material in set

phases(dest).expected_materials

• give permission for a container to move into a given phase

container consistency

phase capacity

material safety

The tracking manager example

214

Remove: Tracker * Containerid * PhaseId -> Tracker

Remove(mk_Tracker(containers,phases),cid,pid) ==

mk_Tracker(containers,

phases ++ {pid |->

pre pid in set dom phases and

cid in set phases(pid).contents

• remove a container from a phase

The tracking manager example

215

Remove: Tracker * Containerid * PhaseId -> Tracker

Remove(mk_Tracker(containers,phases),cid,pid) ==

mk_Tracker(containers,

phases ++ {pid |->

}

pre pid in set dom phases and

cid in set phases(pid).contents

mk_Phase(
phases(pid).containers\cid,
phases(pid).expected_materials,
phases(pid).capacity

)

• remove a container from a phase

The tracking manager example

216

We can simplify function definitions by using a local declaration given in
a let expression:

Remove: Tracker * Containerid * PhaseId -> Tracker

Remove(mk_Tracker(containers,phases),cid,pid) ==

let pha = mk_Phase(phases(pid).contents \ {cid},

phases(pid).expected_materials,

phases(pid).capacity)

in

mk_Tracker(containers, phases ++ {pid |-> pha})

pre pid in set dom phases and

cid in set phases(pid).contents

The tracking manager example

217

To delete a container, two things have to be done:

• we have to remove the container from the containers mapping;
and

• we have to remove the container from the phase in which it occurs
(just as in the Remove function).

Delete: Tracker * Containerid * PhaseId -> Tracker

Delete(tkr, cid, pid) ==

mk_Tracker({cid} <-: containers,

Remove(tkr, cid, pid).phases)

pre pre_Remove(tkr, cid, source)

*precondition of other functions can be used like this

*delete the element of key cid

The Overture Tool

218

The Overture Tool

• http://overturetool.org/download/
• The latest version: 2.5.0
• Interface based on Eclipse
• Functionalities

• Editor with syntax highlight
• Type check, Animation (Execution, Testing), Proof

obligation generation (Integration check)

• How to start: unzip and execute

219

http://overturetool.org/download/

Start a VDM-SL Project

• File -> New -> Project -> VDM-SL Project
• Set project name
• …
• Add file with extension “.vdmsl”

220

221

module CMDS
definitions

types
CMD = <R> | <L>;
CMD_series = seq of [CMD];
CMD_times = map CMD to nat;

state S of
commands : CMD_series
inv s == forall k in set {1,...,len s.commands - 1} &

s.commands(k) <> s.commands(k+1)
init p == p = mk_S([])

end

operations
push_cmd(a:[CMD])
pre commands = [] or hd commands <> a
post hd commands = a and tl commands = commands~;

functions
times_count : CMD_series -> CMD_times
times_count(a) == { <R> |-> len [i | i in set inds a & a(i)=<R>],

<L> |-> len [i | i in set inds a & a(i)=<L>] };

end CMDS

Create a VDM-SL project

222

Debug config.

Launch in console

223

Run some tests
> init
> set dtc off
> p inv_S(mk_S([]))
true
> p inv_S(mk_S([<R>,<R>,nil,<R>]))
false
> p inv_S(mk_S([<R>,<L>,nil,nil]))
false
> p pre_push_cmd(<R>,mk_S([]))
true
> p pre_push_cmd(<R>,mk_S([<R>]))
false
> p pre_push_cmd(<R>,mk_S([<L>]))
true
> p post_push_cmd(<R>,mk_S([]),mk_S([<R>]))
true
> p post_push_cmd(<R>,mk_S([<L>,nil,<L>]),mk_S([<L>,nil,<L>,<R>]))
false
> p post_push_cmd(<R>,mk_S([<L>,nil,<L>]),mk_S([<R>,<L>,nil,<L>]))
true
> p times_count([<R>,<L>,nil,<R>,<L>,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5, <L> |-> 2}
true
> p times_count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5}
false
> p times_count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5, <L> |-> 0}
true

Initialize and set dynamic type check off

‘p’ means “print”

224

Debug config.

Launch from
an entry point

(function or operation)

225

> coverage
Test coverage for mysample.vdmsl:

module CMDS
definitions

types
CMD = <R> | <L>;
CMD_series = seq of [CMD];
CMD_times = map CMD to nat;

state S of
commands : CMD_series

+ inv s == forall k in set {1,...,len s.commands - 1} & s.commands(k) <> s.command
+ init p == p = mk_S([])
end

operations
- push_cmd(a:[CMD])
+ pre commands = [] or hd commands <> a
+ post hd commands = a and tl commands = commands~;

functions
times_count : CMD_series -> CMD_times

+ times_count(a) == { <R> |-> len [i | i in set inds a & a(i)=<R>], <L> |-> len [

end CMDS

Coverage = 90.0%

Test Coverage

226

Test Coverage

Try Yourself

• Import a module from Overture examples and run
• For example, the chemical plant alarm.

227

Try Yourself

• VDM Quick interpreter
• Quickly check a VDM expression
• For example, to know the resulted set from a set

comprehension expression

228

> { a | a in set {0, … , 10} & a mod 2 = 0}
{0,2,4,6,8,10}

> { a : nat & a mod 2 = 0}

What if ?

Type binding (unexecutable) vs. Set binding (unexecutable)

	Software Modelling and Validation Using VDM
	Introduction
	Software Today:�why we need to model systems
	Characteristics of Software
	Software Today: challenges
	Software Today: challenges
	Software Today: challenges�					Rework Costs
	Software Today: challenges�					Rework Costs
	Modelling Computing Systems
	Modelling: Abstraction
	Modelling: Abstraction
	Modelling: Rigor
	Modelling computing systems
	Formality
	Formal Specification Languages
	Formal Specification Languages: VDM-SL
	Structure of Lecture
	Principle of Lecture
	References and Reading
	Constructing a Model
	Deriving a Model�
	The contents of a model in VDM-SL
	The contents of a model in VDM-SL
	The contents of a model in VDM-SL
	Deriving a Formal Model from Scratch
	Requirements for the Alarm Example
	Purpose of the model ...
	Possible data types and functions
	Sketching type representations:�Enumerated types
	Sketching type representations:�Record types
	投影片編號 31
	Sketching type representations:�Mapping types
	Sketching type representations:�Token types
	Sketching type representations:�Mapping types
	Sketching type representations:�The whole plant
	The model so far - type definitions
	Sketching function signatures
	Complete type definition:�Data type invariants
	Complete type definition:�Data type invariants
	Complete function definitions
	Complete function definitions
	Complete Function Definitions
	Complete Function Definitions
	Have you spotted a problem with the system?
	Finally, review the requirements
	Finally, review the requirements
	Weaknesses in the requirements
	Summary
	Logic Expressions
	Logic Expressions in VDM
	The temperature monitor example
	The temperature monitor example
	Predicates: Propositions
	Predicates: General predicates
	Predicates in the monitor example
	Predicates: The rising condition
	Basic logical operators
	Basic logical operators: Negation
	Basic logical operators: Disjunction
	Basic logical operators: Conjunction
	Basic logical operators: Implication
	Basic logical operators: Biimplication
	Quantifiers
	Quantifiers
	Quantifiers
	Quantifiers: Exercises
	Quantifiers: Exercises
	Quantifiers: Exercises
	Quantifiers: Exercises
	Summary
	LPF: coping with undefinedness
	Disjunction in LPF
	Conjunction in LPF
	Implication and Biimplication in LPF
	Datatypes in VDM
	Type Definitions
	bool
	投影片編號 78
	char
	quote
	token
	set
	投影片編號 83
	seq
	投影片編號 85
	map
	投影片編號 87
	product / tuple
	record
	投影片編號 90
	union
	投影片編號 92
	Useful Expression Styles
	let-in
	let-be-such-that
	Define Expression
	If-Then-Else, Case
	Case
	Sets
	Modelling using sets
	The idea of a set ...
	The set type constructor
	The set type constructor
	Defining sets ...
	Defining sets ...
	Defining sets ...
	Defining sets
	Operators on Sets
	Operators on Sets
	Operators on Sets
	Operators on Sets
	Operators on Sets
	Sequences
	Modelling using Sequences
	The finite sequence type constructor
	Finite sequence value definitions
	Operators on finite sequences
	Mappings
	Modelling using Mappings
	The finite mapping type constructor
	The finite mapping type constructor
	Value definitions: �enumeration, comprehension
	Value definitions: �enumeration, comprehension
	Value definitions: �enumeration, comprehension
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Operators on mappings
	Modelling State
	Explicit Function Deﬁnitions
	Implicit Function Deﬁnitions
	Implicit+Explicit Function Definitions
	Limitations of functional style
	Persistent state
	Example: Alarm Clock
	State definition
	State definition
	Operations
	Explicit Operations
	Implicit Operations
	Implicit operations
	Implicit operation syntax
	Alarm clock: modelling time
	State-based modelling
	Validation
	The Idea of Validation
	Internal Consistency
	Internal Consistency: Behaviour
	Internal Consistency: Type checking
	Internal Consistency: Type checking
	Internal consistency: Type checking
	Internal consistency: Proof obligations
	Proof Obligations: Domain Checking
	Proof Obligations: Domain Checking
	Proof Obligations: Domain Checking
	Proof Obligations: Domain Checking
	Proof Obligations: Domain Checking
	Proof Obligations: Domain Checking
	Proof Obligations: Satisfiability
	Proof Obligations: Satisfiability
	Proof Obligations: Satisfiability
	Proof Obligations: Satisfiability
	Proof Obligations: Satisfiability
	Animation
	Animation
	Systematic Testing
	Systematic Testing
	Systematic Testing with Tool Support
	Validation by Proof
	Summary
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	投影片編號 178
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	投影片編號 184
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	Case Study:�the explosives storage example
	The tracking manager example
	The tracking manager example
	投影片編號 200
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The tracking manager example
	The Overture Tool
	The Overture Tool
	Start a VDM-SL Project
	投影片編號 221
	投影片編號 222
	投影片編號 223
	投影片編號 224
	投影片編號 225
	投影片編號 226
	Try Yourself
	Try Yourself

