Software Modelling and Validation Using VDM

Hsin-Hung Lin

September 7, 2017

FLOLAC'17

Based on slides from overturetools.org Credits: John Fitzgerald, Peter Gorm Larsen, Takahiko Ogino

Introduction

Software Today: why we need to model systems

- Challenges in software development
- Modelling Computing Systems
- Formality
- Formal specification languages
- The structure & content of this lecture

Characteristics of Software

- We build computing systems out of software
 - Engineers in other disciplines use physical materials like steel, electronic devices or advanced materials.
- What makes software different?

Software Today: challenges

- Technological:
 - you can do more in software than before
- Software is often used for critical tasks.
 - Name some safety- or security-critical applications
- For example?

Software Today: challenges

- Economic Challenges: the cost of rework
- Software development takes place on a huge scale, and often goes wrong!
- How much software gets used as delivered?

Software Today: challenges Rework Costs

Software Today: challenges Rework Costs

- The rework cost to fix a bug is related to "distance" between the commission and the discovery of the error.
- Improved analysis of requirements and designs could reduce the rework costs for some of the most expensive errors.
- This lecture is about a particular class of techniques which help us to do this kind of analysis.

Modelling Computing Systems

- In other engineering disciplines (Mechanical, Electrical, Aeronautical etc.) system models are built to help gain confidence in requirements and designs.
 - For example?
- In this lecture, we will look at how we can build and analyze models of software. There are two characteristics of these models which are crucial to their successful use: abstraction and rigour.

Modelling: Abstraction

- Engineering models omit details which are not relevant to the purpose of the model.
- The omission of detail not relevant to a model's purpose is called abstraction. The choice of which details to omit is a matter of engineering skill.

Modelling: Abstraction

Compare these extracts from two descriptions of the same system.

The FlightFinder System is to be used by travel agents and their customers. Details are entered, including point of departure, destination, preferred dates and times. The system will respond with a range of itineraries and fares, along with the relevant restrictions.

The system record locations as nodes in a connected graph structure. Each node struct contains an array of pointers to reachable destinations plus, for each pointer, a timetable of flights stored as a hash table. Each record in the hash table has a flight number (8 character string), departure and arrival times (standard time formats) and operating dates (standard date format). To obtain the optimal route, the graph must be traversed using a shortest path algorithm on a modified adjacency matrix ...

Modelling: Rigor

- The most important property of a model of a computing system is its suitability for analysis. The analysis must be **objective** (not down to the opinion of the individual engineers performing it). It should also be **repeatable** and **susceptible to machine support**.
- The language in which a model is expressed should be rigorously defined: little room for disagreement about what a model actually says; analysis tools reach the same conclusion about the properties of models.

Modelling computing systems

- How do these concepts of system modelling transfer to software development?
- A range of modelling techniques are used in software development:
 - For example?
- Models constructed in early development stages are specifications; those developed in later stages are designs. We will generally be concerned with specifications (because of the importance of modelling in early development stages) but we will tend to use the term model to refer to the system descriptions that we develop.

Formality

- This lecture concentrates on formal languages for expressing models.
- A language is formal if its syntax rules and its semantics (the meaning of every construct in the language) are so precisely defined that there is no room for disagreement about the meaning of a model. Models expressed in a formal language are susceptible to a wide range of analysis techniques including mathematical proof (we can, in principle, prove that a model embodies a property such as safety or indeed prove that a program is correct with respect to a specification).

Formal Specification Languages

 A formal specification language is a formal language used for expressing models of computing systems.
 Such languages typically provide support for abstraction and rigour.

General Purpose	Special Purpose
VDM-SL	CCS
Z	CSP
RSL (RAISE)	Real-Time Logic
	Deontic Logics

Formal Specification Languages: VDM-SL

- Vienna Development Method (VDM)
- Spec. Language is VDM-SL
- ISO Standardized: fully formal
- Support Tools are available
- Good record of industrial use
- Support for abstraction of data and functionality

Structure of Lecture

- Introduction
- Guided tour through a formal model
- Basic abstractions: data types
- Principal abstractions: sets, sequences, mappings
- State, function, and operation
- Validation
- Case studies

Principle of Lecture

- Formal Methods are part of practical Systems Engineering, not theoretical Computing Science!
- All examples are based on real formal models developed in a commercial context.
- Practice is the key to master the modelling skills used in this lecture.

References and Reading

- Fitzgerald & Larsen, "Modelling Systems: Practical Tools and Techniques in Software Development", Cambridge Univ. Press 1998, ISBN 0-521-62348-0
- Documents on http://overturetool.org/
 - Language manual
 - Guides of Overture tool

Constructing a Model

A guided tour through a model in VDM-SL

Deriving a Model

- Chemical Plant Alarm System
- Requirements
- Data Types and invariants
- Functions and pre-conditions

The example is derived from a subcomponent of a large alarm and callout system developed by IFAD, a Danish high-technology firm for the local telephone company Tele Danmark Process.

The contents of a model in VDM-SL

Type Definitions, e.g.

```
Altitude = real

inv alt == alt >= 0

Position :: lat : Latitude

long : Longitude

alt : Altitude
```

```
Function definitions, e.g.
Move: Id * Position * ATCSystem -> ATCSystem
Move(id, pos, sys) == ... expression ...
pre ... expression ...
```

The contents of a model in VDM-SL

Data Types built from basic types (int, real, char, bool etc.) using type constructors (sets, sequences, mappings, records).

Newly constructed types can be named and used throughout the model.

A **data type invariant** is a Boolean expression that is used to restrict a data type to contain only those values that satisfy the expression.

Functions define the functionality of the system. Functions are referentially transparent - no side-effects and no global variables. In cases where it is intuitive to have global variables, a different **operational style** of modelling is used.

A **pre-condition** is a Boolean expression over the input variables that is used to record restrictions assumed to hold on the inputs.

The contents of a model in VDM-SL

Data abstraction is provided by the unconstrained nature of the data types in VDM-SL. Sets, sequences and mappings, although finite, are unbounded.

Function abstraction, when required, is provided by **implicit specification**.

```
SquareRoot(x:nat)r:real
pre x >= 0
post r*r = x
```

Post-conditions are Boolean expressions relating inputs and outputs. Post-conditions are used when we do not wish to explicitly define which output is to be returned, or where the explicit definition would be too concrete.

Deriving a Formal Model from Scratch

- No right or wrong way to construct a formal model from a requirements description.
- Always begin by considering a model's **purpose**, as this guides abstraction decisions during development.
- Following steps:
 - 1. Read the requirements.
 - 2. Extract a list of possible data types (often from nouns) and functions (often from verbs/actions).
 - 3. Sketch out representations for the data types.
 - 4. Sketch out signatures for the functions.
 - 5. Complete type definitions by determining invariants.
 - 6. Complete the function definitions, modifying data type definitions if required.
 - 7. Review the requirements, noting how each clause has been treated in the model.

Requirements for the Alarm Example

A chemical plant has monitors which can raise alarms in response to conditions in the plant. When an alarm is raised, an expert must be called to the scene. Experts have different qualifications for coping with different kinds of alarm.

R1: A computer-based system is to be developed to manage expert callout in response to alarms.

- **R2**: Four qualifications: electrical, mechanical, biological and chemical.
- R3: There must be experts on duty at all times.
- R4: Each expert can have a whole list of qualifications, not just one.

R5: Each alarm has a description (text for the expert) and a qualification.

R6: When an alarm is raised, the system should output the name of a qualified and available expert who can then be called in.

R7: It shall be possible to check when a given expert is available.

R8: It shall be possible to assess the number of experts on duty at a given period

Purpose of the model ...

• To clarify the rules governing the duty rota and the calling out of experts in response to alarms.

Aside: We often find in professional practice that the purpose for which a model is to be developed is only rarely made clear. Yet it is this purpose which should govern the choice of abstractions made in the development of the model and hence the success, ease of use etc. of the model itself.

Possible data types and functions

- Types
 - Plant
 - Qualification
 - Alarm
 - Period
 - Expert
 - Description

- Functions
 - ExpertToPage
 - ExpertIsOnDuty
 - NumberOfExperts

Sketching type representations: Enumerated types

R2: Four qualifications: electrical, mechanical, biological and chemical.

Qualification = <Elec> | <Mech> | <Bio> | <Chem>

- The | constructs the union of several types or quote literals
- The individual quoted values are put in angle brackets <...>
- This type has four elements corresponding to the four kinds of alarm and qualification.
- Just like an enumerated type in a programming language.

Sketching type representations: **Record types**

R5: Each alarm has a description (text for the expert) and a qualification.

It is always worth asking clients whether they mean "a" or "some" or "at least one".

Alarm :: alarmtext : **seq of** char quali : Qualification Alarm :: alarmtext : **seq of** char quali : Qualification

To say that a value v has type T, we write

v : T

So, to state that a is an alarm, we write

a : Alarm Record types

To extract the fields from a record, we use a dot notation:

a.alarmtext

To say that a is made up from some values, we use a record constructor "mk_":

a = mk_Alarm("Disaster - get here fast!", <Elec>)

This constructor builds a record — from the values for its fields

Sketching type representations: Mapping types

R4: Each expert can have a whole list of qualifications, not just one.

Ask the client "Did you really — mean a **list**, i.e. the order in which they are presented is important?

Expert :: expertId : ExpertId quali : **set of** Qualification

Sometimes requirements given in natural language do not mean exactly what they say. If in doubt, consult an authority or the client! Hence a set here rather than a sequence.

We try to keep the formal model as abstract as possible - we only record the information that we need for the **purpose** of the model. The choice of what is relevant and what is not relevant is a matter of serious engineering judgement, especially where safety is concerned.

Sketching type representations: **Token types**

The informal requirements give us little indication that we will need to look inside the experts' identifiers. When we need a type, but no detailed representation, we use the special symbol token.

ExpertId = token

The same is also true for the periods into which the plant's timetable is split:

Period = token

Sketching type representations: Mapping types

R3: There must be experts on duty at all times.

R7: It shall be possible to check when a given expert is available.

These requirements imply that there must be some sort of schedule relating each period of time to the set of experts who are on duty during that period:

Sketching type representations: The whole plant

R1: A computer-based system is to be developed to manage expert call-out in response to alarms.

Plant :: sch : Schedule alarms : set of Alarm

The model so far - type definitions

Plant :: sch : Schedule alarms : set of Alarm Schedule = map Period to set of Expert Period = tokenExpert :: expertid : ExpertId quali : set of Qualification ExpertId = token Qualification = <Elec> | <Mech> | <Bio> | <Chem> Alarm :: alarmtext : seq of char quali : Qualification
Sketching function signatures

Possible functions were: ExpertToPage ExpertIsOnDuty NumberOfExperts

A function definition shows the types of the input parameters and the result in a signature:

ExpertToPage: Alarm * Period * Plant -> Expert

ExpertIsOnDuty: Expert * plant -> set of Period

NumberOfExperts: Period * Plant -> nat

Complete type definition: Data type invariants

Additional constraints on the values in the system which must hold at all times are called *data type invariants*.

Example: suppose we agree with the client that experts should always have at least one qualification. This is a restriction on the type Expert. To state the restriction, consider a typical value ex of type Expert

ex.quali <> {}

We attach invariants to the definition of the relevant data type:

Complete type definition: Data type invariants

R3: There must be experts on duty at all times.

This is a restriction on the schedule to make sure that, for all periods, the set of experts is not empty.

Again, we state this formally. Consider a typical schedule, called sch

```
forall exs in set rng sch & exs <> {}
```

Attaching this to the relevant type definition:

```
Schedule = map Period to set of Expert
inv sch == forall exs in set rng sch & exs <> {}
```

Complete function definitions

A function definition contains:

A signature

```
NumberOfExperts: Period * Plant -> nat
```

A parameter list

```
NumberOfExperts(per,pl) ==
```

A body

```
card pl.sch(per)
```

A pre-condition (optional)

pre per in set dom pl.sch

If omitted, the pre-condition is assumed to be true so the function can be applied to any inputs of the correct type.

Complete function definitions

R7: It shall be possible to check when a given expert is available.

```
ExpertIsOnDuty: Expert * Plant -> set of Period
ExpertIsOnDuty(ex,pl) ==
    {per | per in set dom pl.sch &
        ex in set pl.sch(per)}
```

For convenience, we can use the record constructor in the input parameter to make the fields of the record pl available in the body of the function without having to use the selectors:

ExpertIsOnDuty: Expert * Plant -> set of Period
ExpertIsOnDuty(ex,mk_Plant(sch,alarms)) ==
 {per | per in set dom sch & ex in set sch(per)}

Complete Function Definitions

The alarms component of the mk_Plant(sch,alarms) parameter is not actually used in the body of the function and so may be replaced by a -. The final version of the function is:

ExpertIsOnDuty: Expert * Plant -> set of Period
ExpertIsOnDuty(ex, mk_Plant(sch,-)) ==

{per | per in set dom sch & ex in set sch(per)}

Complete Function Definitions

R6: When an alarm is raised, the system should output the name of a qualified and available expert who can then be called in.

```
ExpertToPage: Alarm * Period * Plant -> Expert
ExpertToPage(al,per,pl) == ???
```

Can we specify what result has to be returned without worrying about how we find it? Use an *implicit definition:*

Have you spotted a problem with the system?

The requirements were silent about ensuring that there is always an expert with the correct qualifications available. After consulting with the client, it appears to be necessary to ensure that there is always at least one expert with each kind of qualification available. How could we record this in the model?

Plant :: sch : Schedule alarms : set of Alarm

```
inv mk_Plant(sch,alarms) ==
forall a in set alarms &
forall per in set dom sch &
    exists ex in set sch(per) &
        a.quali in set ex.quali
```

Finally, review the requirements

- R1: system to manage expert call-out in response to alarms.
- R2: Four qualifications.
- R3: experts on duty at all times.
- R4: expert can have list of qualifications.
- R5: Each alarm has description & qualification.
- R6: output the name of a qualified and available expert
- R7: check when a given expert is available.
- R8: assess the number of experts on duty at a given period

Finally, review the requirements

Recall the original requirements.

R1: A computer-based system is to be developed to manage expert callout in response to alarms.

- **R2**: Four qualifications: electrical, mechanical, biological and chemical.
- R3: There must be experts on duty at all times.
- **R4**: Each expert can have a whole list of qualifications, not just one.
- **R5**: Each alarm has a description (text for the expert) and a qualification.

R6: When an alarm is raised, the system should output the name of a qualified and available expert who can then be called in.

R7: It shall be possible to check when a given expert is available.

R8: It shall be possible to assess the number of experts on duty at a given period

Weaknesses in the requirements

- Silence on ensuring that at least one suitable expert is available.
- Use of identifiers for experts was implicit.
- "List" really meant "set".
- Silence on the fact that experts without qualifications are useless.
- "A qualification" meant "several qualifications".

Summary

Process of developing a model depends crucially on the statement of the model's purpose.

VDM-SL models are based round type definitions and functions. Abstraction provided by the basic data types and type constructors and the ability to give implicit function definitions.

Basic types:

Type constructors:

Invariants:

Functions:

Logic Expressions

Logic Expressions in VDM

Our ability to state invariants, record preconditions and postconditions, and the ability to reason about a formal model depend on the logic on which the modelling language is based.

- Classical logical propositions and predicates
- Connectives
- Quantifiers
- Handling undefinedness: the logic of partial functions

The temperature monitor example

The monitor records the last five temperature readings

25	10	5	5	10
----	----	---	---	----

The temperature monitor example

The following conditions are to be detected by the monitor:

Rising: the last reading in the sample is greater than the first

Over limit: there is a reading in the sample in excess of 400 C

Continually over limit: all the readings in the sample exceed 400 C

Safe: If readings do not exceed 400 C by the middle of the sample, the reactor is safe. If readings exceed 400 C by the middle of the sample, the reactor is still safe provided that the reading at the end of the sample is less than 400 C.

Alarm: The alarm is to be raised if and only if the reactor is not safe

Formal Model of the monitor:

Predicates: Propositions

Predicates are simply logical expressions. The simplest kind of logical predicate is a *proposition*.

A proposition is a logical assertion about a particular value or values, usually involving a Boolean operator to compare the values, e.g.

Propositions are normally either true or false (but in VDM we also have to handle undefined values - see the later notes on the Logic of Partial Functions).

Propositions have very limited value:

Predicates: General predicates

A predicate is a logical expression that is not specific to particular values but contains variables which can stand for one of a range of possible values, e.g.

$$(x^{*}2) + x - 6 = 0$$

The truth or falsehood of a predicate depends on the value taken by the variables.

Predicates in the monitor example

Consider a monitor m. m is a sequence so we can index into it:

First reading in m:

Last reading in m:

Predicate stating that the first reading in m is strictly less than the last reading:

The truth of the predicate depends on the value of m.

Predicates: The rising condition

The last reading in the sample is greater than the first

We can express the rising condition as a Boolean function:

```
Rising: Monitor -> bool
Rising(m) == m.temps(1) < m.temps(5)</pre>
```

For any monitor m, the expression Rising(m) evaluates to true iff the last reading in the sample in m is higher than the first, e.g.

```
Rising( mk_Monitor([233,45,677,650,900], false) )
```

Basic logical operators

We build more complex logical expressions out of simple ones using logical connectives:

not	negation
and	conjunction
or	disjunction
=>	implication (if then)
<=>	biimplication (if and only if)

Basic logical operators: Negation

Negation allows us to state that the opposite of some logical expression is true, e.g.

The temperature in the monitor mon is not rising:

not Rising(mon)

Truth table for negation:	А	not A
	true	false
	false	true

Basic logical operators: Disjunction

Disjunction allows us to express alternatives that are not necessarily exclusive:

Over limit: There is a reading in the sample in excess of 400 C

OverLimit: Monitor -> bool
OverLimit(m) ==

Truth table for disjunction:

A	В	A or B
true	true	true
true	false	true
false	true	true
false	false	false

Basic logical operators: Conjunction

Conjunction allows us to express the fact that all of a collection of facts are true.

Continually over limit: all the readings in the sample exceed 400 C

COverLimit: Monitor -> bool
COverLimit(m) == m.temps(1) > 400 and
 m.temps(2) > 400 and
 m.temps(3) > 400 and
 m.temps(3) > 400 and
 m.temps(4) > 400 and
 m.temps(5) > 400

Truth table for conjunction:

A	В	A and B
true	true	true
true	false	false
false	true	false
false	false	false

Basic logical operators: Implication

Implication allows us to express facts which are only true under certain conditions ("if ... then ..."):

Safe: If readings do not exceed 400 C by the middle of the sample, the reactor is safe. If readings exceed 400 C by the middle of the sample, the reactor is still safe provided that the reading at the end of the sample is less than 400 C.

```
Safe: Monitor -> bool
Safe(m) == temp(3) > 400 => temp(5) < 400</pre>
```

А	В	A => B
true	true	true
true	false	false
false	true	true
false	false	true

Basic logical operators: Biimplication

Biimplication allows us to express equivalence ("if and only if").

Alarm: The alarm is to be raised if and only if the reactor is not safe

This can be recorded as an invariant property:

A	В	A <=> B
true	true	true
true	false	false
false	true	false
false	false	true

Quantifiers

For large collections of values, using a variable makes more sense than dealing with each case separately.

inds m.temps represents indices (1-5) of the sample

The "over limit" condition can then be expressed more economically as:

exists i in set inds m.temps & temps(i) > 400

The "continually over limit" condition can then be expressed using "forall":

Quantifiers

Syntax:

forall binding & predicate
exists binding & predicate

There are two types of binding:

Type Binding, e.g.A type binding lets the
bound variable range
over a type (a possibly
infinite collection of
values).Set Binding, e.g.A set binding lets the
bound variable range
over a finite set of

values.

x in set {1,...,20}

64

Quantifiers

Several variables may be bound at once by a single quantifier, e.g.

```
forall x,y in set {1,...,5} &
    not m.temp(x) = m.temp(y)
```

Would this predicate be true for the following value of m.temp ?

[320, 220, 105, 119, 150]

All the readings in the sample are less than 400 and greater than 50.

Each reading in the sample is up to 10 greater than its predecessor.

There are two distinct readings in the sample which are over 400.

All the readings in the sample are less than 400 and greater than 50.

forall i in set inds temp & temp(i) < 400 and temp(i) > 50

Each reading in the sample is up to 10 greater than its predecessor.

```
forall i in set inds temp\{1} &
   temp(i-1) > temp(i) and temp(i-1) + 10 >= temp(i)
```

There are two distinct readings in the sample which are over 400.

exists i,j in set inds temp &
 i <> j and temp(i) > 400 and temp(j) > 400

Suppose we have to formalise the following property:

There is a "single minimum" in the sequence of readings, i.e. there is a reading which is strictly smaller than any of the other readings.

Hint: use two quantifiers

Suppose the order of the quantifiers is reversed.

Suppose we have to formalise the following property:

There is a "single minimum" in the sequence of readings, i.e. there is a reading which is strictly smaller than any of the other readings.

Hint: use two quantifiers

```
exists min in set {1,...,5} &
    forall i in set {1,...,5} &
        i <> min => temp(i) > temp(min)
```

Suppose the order of the quantifiers is reversed.

```
forall i in set {1,...,5} &
    exists min in set {1,...,5} &
        i <> min => temp(i) > temp(min)
```

Summary

- Propositions
- Predicates involve free variables
- Predicates may be combined using connectives
- Free variables can range over collections of values, using quantifiers
- Quantifiers can be mixed

LPF: coping with undefinedness

Suppose sensors can fail in such a way that they generate the value **Error** instead of a valid temperature.

In this case we can not make comparisons like

Error < 400

The logic in VDM is equipped with facilities for handling undefined applications of operators (e.g. if division by zero could occur).

Truth tables are extended to deal with the possibility that undefined values can occur, e.g.

Disjunction in LPF

A	В	A or B
true	true	true
true	false	true
true	*	true
false	true	true
false	false	false
false	*	*
*	true	true
*	false	*
*	*	*

If one disjunct is true, we know that the whole disjunction is true, regardless of whether the other disjunct is true, false or undefined.
Conjunction in LPF

A	В	A and B
true	true	true
true	false	false
true	*	*
false	true	false
false	false	false
false	*	false
*	true	*
*	false	false
*	*	*

If one conjunct is false, we know that the whole conjunction is false, regardless of whether the other disjunct is true, false or undefined.

Implication and Biimplication in LPF

A	В	A => B
true	true	true
true	false	false
true	*	*
false	true	true
false	false	true
false	*	true
*	true	true
*	false	*
*	*	*

A	В	A <=> B
true	true	true
true	false	false
true	*	*
false	true	false
false	false	true
false	*	*
*	true	*
*	false	*
*	*	*

Datatypes in VDM

Type Definitions

• Basic data types

Boolean Numeric Tokens Characters

Quotations

 Compound data types Set types Sequence types Map types Product types **Record** types Union types **Operation types** Function types

Invariants can be added to types

bool

Values: true, false

Operator	Name	Type
not b	Negation	$bool \to bool$
a and b	Conjunction	$bool * bool \to bool$
a or b	Disjunction	$bool * bool \to bool$
a => b	Implication	$bool * bool \to bool$
a <=> b	Biimplication	$bool * bool \to bool$
a = b	Equality	$bool * bool \to bool$
a <> b	Inequality	$bool * bool \to bool$

Operator	Name	Туре
-x	Unary minus	$real \to real$
abs x	Absolute value	real o real
floor x	Floor	$real \to int$
x + y	Sum	$real * real \to real$
x - y	Difference	$real * real \to real$
x * y	Product	$real * real \to real$
х / у	Division	$real * real \to real$
x div y	Integer division	$int * int \to int$
x rem y	Remainder	$int * int \to int$
x mod y	Modulus	$int * int \to int$
x**y	Power	$real * real \to real$
х < у	Less than	$real * real \to bool$
x > y	Greater than	$real * real \to bool$
x <= y	Less or equal	$real * real \to bool$
x >= y	Greater or equal	$real * real \to bool$
x = y	Equal	$real * real \to bool$
x <> y	Not equal	$real * real \to bool$

int nat nat1 real

char

Values: 'a', 'b', '1', '2', '+', '-', ...

Operator	Name	Туре
c1 = c2	Equal	char * char o bool
c1 <> c2	Not equal	char * char o bool

For a sequence type defined as
 string = seq of char
The following expression is true
 [`a', 'b', 'c', 'd', 'e'] = ``abcde"

quote

Values: <RED>, <CAR>, <QuoteLit>, ...

Operator	Name	Type
q = r	Equal	$T * T \rightarrow bool$
q <> r	Not equal	$T * T \rightarrow bool$

Quote types are usually used with union to represent enumerations For example:

to represent the abstraction of integers

token

Values: mk_token(5), mk_token({9, 3}), ...

Operator	Name	Туре
s = t	Equal	$token \ast token \to bool$
s <> t	Not equal	token st token $ ightarrow$ bool

Tokens are used for representing types that is not needed to be in detail. Usually used for values that are not accessed or changed by functionalities of a system. There are no ordering between tokens.

set

S = set of A

Operator	Name	Type
e in set s1	Membership	$A * set \text{ of } A \to bool$
e not in set s1	Not membership	$A * set of \ A \to bool$
s1 union s2	Union	set of $A \ast set$ of $A \to set$ of A
s1 inter s2	Intersection	set of $A \ast set$ of $A \to set$ of A
s1 \ s2	Difference	set of $A \ast set$ of $A \to set$ of A
s1 subset s2	Subset	set of $A * set$ of $A \to bool$
s1 psubset s2	Proper subset	set of $A * set$ of $A \to bool$
s1 = s2	Equality	set of $A * set$ of $A \to bool$
s1 <> s2	Inequality	set of $A * set of A \to bool$
card s1	Cardinality	set of $A \rightarrow nat$
dunion ss	Distributed union	set of set of $A \to \operatorname{set}$ of A
dinter ss	Distributed intersection	set of set of $A \to \operatorname{set}$ of A
power s1	Finite power set	set of $A \to \operatorname{set}$ of set of A

Examples: Let s1 = {<France>,<Denmark>,<SouthAfrica>,<SaudiArabia>}, s2 = {2, 4, 6, 8, 11} and s3 = {} then:

```
\equiv false
<England> in set s1
10 not in set s2
                                                     \equiv true
                                                     \equiv {2, 4, 6, 8, 11}
s2 union s3
s1 inter s3
                                                     \equiv {}
(s2 \setminus \{2,4,8,10\}) union \{2,4,8,10\} = s2
                                                     \equiv false
                                                     \equiv false
s1 subset s3
s3 subset s1
                                                     \equiv true
                                                     \equiv false
s2 psubset s2
s2 \iff s2 union \{2, 4\}
                                                     \equiv false
card s2 union \{2, 4\}
                                                     \equiv 5
dunion {s2, {2,4}, {4,5,6}, {0,12}}
                                                \equiv \{0,2,4,5,6,8,11,12\}
dinter {s2, {2,4}, {4,5,6}}
                                                     \equiv \{4\}
                                                     \equiv {2,4}
dunion power \{2,4\}
dinter power \{2,4\}
                                                     \equiv {}
```

seq

S = seq of A

Operator	Name	Type
hd l	Head	seq1 of $A \to A$
tl l	Tail	seq1 of $A \to $ seq of A
len 1	Length	seq of $A \rightarrow nat$
elems 1	Elements	seq of $A \to set$ of A
inds 1	Indexes	seq of $A \rightarrow$ set of nat1
11 ^ 12	Concatenation	$(seq of A) \ast (seq of A) \to seq of A$
conc ll	Distributed concatenation	seq of seq of $A \to \operatorname{seq}$ of A
l ++ m	Sequence modification	seq of $A * \operatorname{map} \operatorname{nat} 1$ to $A \to \operatorname{seq}$ of A
l(i)	Sequence application	seq of $A * nat1 \to A$
11 = 12	Equality	$(seq \text{ of } A) * (seq \text{ of } A) \to bool$
11 <> 12	Inequality	$(seq of A) \ast (seq of A) \to bool$

Examples: Let 11 = [3,1,4,1,5,9,2], 12 = [2,7,1,8], 13 = [<England>, <Rumania>, <Colombia>, <Tunisia>] then:

len 11 \equiv 7 \equiv 3 hd (11¹2) tl (11^12) \equiv [1,4,1,5,9,2,2,7,1,8] 13(len 13) \equiv <Tunisia> "England"(2) \equiv 'n' $conc [11, 12] = 11^{12}$ \equiv true \equiv false conc $[11, 11, 12] = 11^{12}$ \equiv { <England>, <Rumania>, elems 13 <Colombia>,<Tunisia>} \equiv {1,2} (elems 11) inter (elems 12) $\equiv \{1,2,3,4,5,6,7\}$ inds 11 \equiv {1,2,3,4} (inds 11) inter (inds 12) 13 ++ {2 |-> <Germany>,4 |-> <Nigeria>} \equiv [<England>, <Germany>, <Colombia>, <Nigeria>]

map

S = map A to B

S = inmap A to B

Operator	Name	Туре
dom m	Domain	$(map\ A \ to\ B) \to set\ of\ A$
rng m	Range	$(map\ A \ to\ B) \to set\ of\ B$
m1 munion m2	Merge	$(map\ A \ to\ B) \ast (map\ A \ to\ B) \to map\ A \ to\ B$
m1 ++ m2	Override	$(map\ A \ to\ B) \ast (map\ A \ to\ B) \to map\ A \ to\ B$
merge ms	Distributed merge	set of (map A to B) \rightarrow map A to B
s <: m	Domain restrict to	$(set \text{ of } A) \ast (map \ A \text{ to } B) \rightarrow map \ A \text{ to } B$
s <-: m	Domain restrict by	$(set \ of \ A) \ast (map \ A \ to \ B) \to map \ A \ to \ B$
m :> s	Range restrict to	$(map\ A \ to\ B) \ast (set\ of\ B) \to map\ A \ to\ B$
m :-> s	Range restrict by	$(map\ A \ to\ B) \ast (set\ of\ B) \to map\ A \ to\ B$
m(d)	Map apply	$(map\ A\ to\ B)\ast A\to B$
m1 comp m2	Map composition	$(map\ B \ to\ C)*(map\ A \ to\ B)\tomap\ A \ to\ C$
m ** n	Map iteration	$(map\ A \ to\ A) * nat \to map\ A \ to\ A$
m1 = m2	Equality	$(map\ A \ to\ B) * (map\ A \ to\ B) \to bool$
m1 <> m2	Inequality	$(map\ A \ to\ B) * (map\ A \ to\ B) \to bool$
inverse m	Map inverse	inmap A to $B \to \text{inmap } B$ to A

$\mathbf{Examples:}\ \mathrm{Let}$

dom m1

rng m1

$$\equiv \{1, 2, 4, 9\}$$

product / tuple

T = A1 * A2 * ... * An

Operator	Name	Туре
t.#n	Select	$T * nat \to Ti$
t1 = t2	Equality	$T * T \rightarrow bool$
t1 <> t2	Inequality	$T * T \rightarrow bool$

Examples: Let $a = mk_{(1, 4, 8)}$, $b = mk_{(2, 4, 8)}$ then:

$$a = b \equiv false$$

 $a <> b \equiv true$
 $a = mk_{-}(2,4) \equiv false$

record

- A :: first : Al
 - second : A2

Operator	Name	Туре
r.i	Field select	$A * Id \to Ai$
r1 = r2	Equality	$A * A \rightarrow bool$
r1 <> r2	Inequality	$A * A \rightarrow bool$
is_A(r1)	Is	$Id * MasterA \rightarrow bool$

Examples: Let Score be defined as

```
Score :: team : Team
    won : nat
    drawn : nat
    lost : nat
    points : nat;
Team = <Brazil> | <France> | ...
```

```
and let
```

```
sc1 = mk_Score (<France>, 3, 0, 0, 9),
sc2 = mk_Score (<Denmark>, 1, 1, 1, 4),
sc3 = mk_Score (<SouthAfrica>, 0, 2, 1, 2) and
sc4 = mk_Score (<SaudiArabia>, 0, 1, 2, 1).
```

```
Then
```

sc1.team	\equiv	<france></france>
sc4.points	\equiv	1
<pre>sc2.points > sc3.points</pre>	\equiv	true
is_Score(sc4)		true
is_bool(sc3)	\equiv	false
is_int(sc1.won)		true
sc4 = sc1	\equiv	false
sc4 <> sc2		true

union

$B = A1 | A2 | \dots | An$

Operator	Name	Type
t1 = t2	Equality	$A * A \rightarrow bool$
t1 <> t2	Inequality	$A * A \to bool$

Examples: In this example Expr is a union type whereas Const, Var, Infix and Cond are composite types defined using the shorthand :: notation.

```
Expr = Const | Var | Infix | Cond;
Const :: nat | bool;
Var :: id:Id
        tp: [<Bool> | <Nat>];
Infix :: Expr * Op * Expr;
Cond :: test : Expr
        cons : Expr
        altn : Expr
```

and let expr = mk_Cond(mk_Var("b", <Bool>), mk_Const(3), mk_Var("v", nil)) then:

is_Cond(expr)	\equiv	true
is_Const(expr.cons)	\equiv	true
is_Var(expr.altn)	\equiv	true
<pre>is_Infix(expr.test)</pre>	\equiv	false

Useful Expression Styles

let-in

Syntax: let p1 = e1, ..., pn = en in e

```
map_disj : (map nat to nat) * (map nat to nat) -> map nat to nat
map_disj (m1,m2) ==
    let inter_dom = dom m1 inter dom m2
    in
        inter_dom <-: m1 munion
        inter_dom <-: m2
pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)
```

let-be-such-that

Syntax: let b be st e1 in e2

Example:

remove : nat * seq of nat -> seq of nat remove (x,l) == let i in set inds l be st l(i) = x in l(1,...,i-1)^l(i+1,...,len l) pre x in set elems l;

Define Expression

```
def user = lib(copy)
in
    if user = <OUT> then true else false
```

If-Then-Else, Case

Syntax: if e1 then e2 else e3

```
lmerge : seq of nat * seq of nat -> seq of nat
lmerge (s1,s2) ==
  if s1 = [] then s2
  elseif s2 = [] then s1
  elseif (hd s1) < (hd s2)
  then [hd s1]^(lmerge (tl s1, s2))
  else [hd s2]^(lmerge (s1, tl s2));
```

Case

```
mergesort : seq of nat -> seq of nat
mergesort (1) ==
    cases 1:
      [] -> [],
      [x] -> [x],
      11^12 -> lmerge (mergesort(l1), mergesort(l2))
    end
```

Sets

Modelling using sets

- Sets:
 - The finite set type constructor
 - Value definitions: enumeration, subrange, comprehension
 - Operators on sets

To define a type:

- a type constructor
- ways of writing down values
- ways of operating on values

The idea of a set ...

An unordered collection of values:

The order doesn't matter:

Nor do duplicates:

The set type constructor

The finite set type constructor is: set of _

What are the types of the following expressions?

$$\{1, -3, 12\}$$

 $\{ \{9, 13, 77\}, \{32, 8\}, \{\}, \{77\} \}$

The set type constructor

The type set of X is the class of all possible finite sets of values drawn from the type X. For example:

set of natl	sets of non-zero Natural numbers
set of Student	sets of student records
set of (seq of char	sets of sequences of characters
	(e.g. sets of names)
set of (set of int)) sets of sets of integers, e.g.
	{ {3,56,2},{-2},{},{-33,5} }

```
Defining sets ...
```

(0) Empty Set: { }

(1) Enumeration: {1,2,3,4,5}
{`a','b','c'}

(2) Subrange (integers only): {integer1,...,integer2}

e.g. $\{12, \ldots, 20\} =$ $\{12, \ldots, 12\} =$ $\{9, \ldots, 3\} =$

Defining sets ...

(3) Comprehension

{ expression | binding & predicate }

The set of values of the expression under each assignment of values to bound variables satisfying the predicate.

Consider all the values that can be taken by the variables in the binding.

Restrict this to just those combinations of values which satisfy the predicate.

Evaluate the expression for each combination. This gives you the values in the set.

e.g. { $x^{*}2$ | x:nat & x < 5 }

Defining sets ...

Examples of Comprehensions:

Defining sets

Finiteness

In VDM-SL, sets should be finite, so be careful when writing comprehensions that you don't define a predicate that could be satisfied by an infinite number of values.

```
Example: \{x \mid x: nat \& x > 10\}
```

Define a type with invariant instead if you need infinite values

Example: BigNat = nat inv x == x > 10

Operators on Sets

There are plenty of built-in operators on sets.

Each one has a *signature* defining the number and types of operand expected, e.g. the set union operator:

What can you tell about the union operator from this signature?
_ union _ : set of A * set of A -> set of A

Are the following expressions legal, according to the signature?

```
union({4, 7, 9} {23, 6})
3 union {7, 1, 12}
{12,...,15} union {x-y | x,y:nat & x<4 and y<10}
{} union {}
{12} union {x**y | x,y:nat & x<4 and y>2}
```

$_$ union $_$:	set	of	Α	*	set	of	A	->	set	of	Α
_ inter _	:	set	of	A	*	set	of	A	->	set	of	A
_ \ _	:	set	of	A	*	set	of	A	->	set	of	A
dunion	:	set	of	(ຣ	set	c of	A)		->	set	of	A
dinter	:	set	of	(ຣ	set	c of	A)		->	set	of	A
card	:	set	of	A					->	nat		
_ in set _	:	A *	set of A				->	bool				
subset	:	set	of	А	*	set	of	А	->	bool	L	

Note: we don't show the underscores when the operator is normally used in a prefix form, e.g. card {12, 45, 12, 3} = 4

distributed operators

The most common operators have special forms in which they are extended to a whole set of arguments, not just two.

dunion	:	set	of	(set	of	A)	->	set	of	A
dinter	:	set	of	(set	of	A)	->	set	of	A

In side a function definition, we may need to select an *arbitrary* element from a set, not caring how it is selected. We can do this by using a local definition, i.e. in the body of the function say

let x in set S in ...

(now x stands for some arbitrary member of S)

Alternatively, we could just define a general function for selecting an element from a set. Since we are not interested in the means of selection, we could do this by an implicit function definition:

```
Select (s:set of X) result:X
pre s <> {}
post result in set s
```

... and now we can use Select(_) whenever we want to select an element of a set.

Sequences

Modelling using Sequences

- Sequences
 - The finite sequence constructor
 - Value definitions: enumeration, subsequence
 - Operators on Sequences

The finite sequence type constructor

In VDM-SL, a **sequence** is a finite ordered collection of values. The presence of duplicates and the order in which elements are presented is significant.

The finite sequence type constructor is:

seq of X

where x is an arbitrary type. The type seq of x is the class of all possible finite sequences of values drawn from the type x. For example:

```
seq of nat1
seq of (seq of char)
```

Finite sequence value definitions

Sequence values can be represented in various ways:

• Enumeration, e.g. [3, 5, 2, 5, 45] [{34}, {34,7}, "Fred"] empty sequence []

• Sequences of characters may be given as strings in quotation marks, e.g.

['l','i','n','u','x'] = "linux"

• **Subsequence**: If we have a sequence q then we can take an extract from q, e.g. q(3, ..., 5) = [q(3), q(4), q(5)]

•Comprehension: The sequence comprehension notation is not often used and is described in the text.

• Note that sequences, like sets, are finite.

Operators on finite sequences

Partial operator: s <> [] hd: seq of X -> X First element Partial operator: s <> [] tl: seq of X -> seq of X Tail (NB: a sequence!) length of sequence len: seq of X -> nat elems: seq of $X \rightarrow set of X$ elements in the sequence (reduced to a set) inds: seq of X -> set of nat indices of the sequence $\{1, ..., \text{len } s\}$ $_$ ^ $_$: seq of X * seq of X -> seq of X sequence concatenation conc: seq of (seq of X) -> seq of X conc s = the concatenation of all the sequences in s

Mappings

Modelling using Mappings

- Mappings:
 - The finite mapping type constructor
 - Value definitions: enumeration, comprehension
 - Operators on mappings

The finite mapping type constructor

A mapping is a functional relationship between two sets of values: a domain and a range. Mappings are common in many models, e.g.

"Each bank account has exactly one balance"

"Each reactor has an input, an output and an operating temperature."

Mappings represent one-to-one or many-to-one relationships, but not one-to-many!

The finite mapping type constructor

The mapping type constructor is **map** X to Y

where X and Y are data types

e.g. "each bank account has exactly one bank balance":

AccountNumber = seq of char

Balance = int

Accounts = map AccountNumber to Balance

An example mapping:

Value definitions: enumeration, comprehension

To enumerate a mapping, we present the related domain element-range element pairs (called *maplets*). For the mapping illustrated above, the enumeration would be:

```
{"Fitz1355" |-> -500, "Blair1009" |-> 20000, "Gates31" |-> 20000}
```

A maplet relating domain element \mathbf{x} to range element \mathbf{y} is written

Value definitions: enumeration, comprehension

A mapping comprehension has the following form:

```
{ expression | -> expression | binding & predicate }
```

The mapping consisting of the maplets formed by evaluating the expressions under each assignment of values to bound variables satisfying the predicate.

Consider all the values that can be taken by the variables in the binding.

Restrict this to just those combinations of values which satisfy the predicate.

Evaluate the expressions for each combination. This gives you the maplets in the mapping.

e.g. { $x \mid -> x/2 \mid x: nat \& x < 5$ }

Value definitions: enumeration, comprehension

Like sets and sequences, mappings are finite. Are the following mappings defined?

{ x |-> x**2 | x:nat1 & x**2 > 3 }

{ x
$$\mid$$
 -> y \mid x,y:nat1 & x<4 and y<3 }

 $\{ x \mid -> x^{*} \geq | x: int \& x < 10 \}$

dom: map A to B -> set of A Domain rng: map A to B -> set of A Range

Evaluate the following:

dom { n |-> 3*n | n:nat & n<50 }

rng { n |-> 3*n | n:nat & n<50 }

() : map A to B * A -> B

Mapping Lookup

For a mapping m and a domain element a, the expression

m(a)

denotes the range element pointed to by a.

*Is this a total or a partial operator?

Example of mapping lookup:

```
Accounts = map AccountNumber to Balance
```

Define a function with the following signature which returns the names of overdrawn account holders:

```
overdrawn : Accounts -> set of AccountNumber
```

```
overdrawn(acs) ==
{a | a in dom acs & acs(a) < 0 }</pre>
```

The mapping merge or mapping union operator joins two mappings together:

_ munion _ : (map A to B) * (map A to B) -> (map A to B)

Example:

```
{ "John" |-> -500, "Tony" |-> 20000 }
munion { "Cherie" |-> 150 }
= { "John" |-> -500, "Tony" |-> 20000, "Cherie" |-> 150 }
```

This operator is partial. Can you see why?

Mapping union is only defined on inputs that are *compatible*. We can define a function to check for mapping compatibility:

```
compatible: (map A to B) * (map A to B) -> bool
compatible(m1,m2) ==
  forall x in set dom m1 inter dom m2 & m1(x) = m2(x)
```

An alternative operator is the mapping override operator:

_ ++ _ : (map A to B) * (map A to B) -> (map A to B)

This operator is defined just like munion, except that where m1 and m2 are not compatible, m2 wins, e.g.

A very common use of this operator is to update a mapping at a point, e.g. $m ++ \{x \mid -> e\}$

updates the mapping m so that x now points to e.

There are some operators to modify mappings by restricting the domain or range:

_ <-: _ : (set of A) * (map A to B) -> (map A to B)

The expression s < -: m is the same as m except that the elements of s have been removed from its domain (and any unattached range elements are removed too).

_ <: _ : (set of A) * (map A to B) -> (map A to B)

The expression s <: m is the same as m except that the domain is restricted down to just the elements of s (and any unattached range elements are removed too).

_ :-> _ : (map A to B) * (set of B) -> (map A to B)

The expression m : -> s is the same as m except that the elements of s have been removed from its range (and any unattached domain elements are removed too).

 $_$:> $_$: (map A to B) * (set of B) -> (map A to B)

The expression m :> s is the same as m except that the range is restricted down to just the elements of s (and any unattached domain elements are removed too).

Details are in the text.

Example:

Define a function returning the accounts mapping for those account holders who are not overdrawn.

Modelling State

State, Functions, and Operations

Explicit Function Definitions

- VDM features a (functional/procedural) programming language
- Function definitions include a signature and the expression
 - Syntax of explicit function

f: X1 * ... * Xn -> R f(x1, ..., xn) == ...

• Example

Implicit Function Definitions

- Sometimes one does not want / know how to define a function Implicit function definitions allow to express what is to be computed, not how
 - Syntax of implicit function

```
f(x1: X1, ..., xn: Xn) res: R
pre P(x1, ..., xn)
post Q(x1, ..., xn, res)
```

• Example

```
mult(x: nat , y: nat) res: R
pre true
post res = x * y
```

Implicit+Explicit Function Definitions

- Both implicit and explicit can be used at the same time
 - Syntax

```
f: X1 * ... * Xn -> R
f(x1, ..., xn) == ...
pre P(x1, ..., xn)
post Q(x1, ..., xn, RESULT)
```

• Example

Limitations of functional style

- So far, the models we have looked at have used a high level of abstraction.
- Functionality has been largely modelled by *explicit functions*, e.g.

```
Update: System * Input -> System
Update(oldsys, val) == mk_System( ... )
```

 Few computing systems are implemented using only pure functions

Persistent state

- More often, "real" systems have variables holding data, which may be modified by operations invoked by a user
- VDM-SL provides facilities for state-based modelling:
 - state definition
 - operations
 - auxiliary definitions (types, functions)

Example: Alarm Clock

- An alarm clock keeps track of current time and allows user to set an alarm time
- The alarm could be represented as a record type:

```
Time = nat
Clock :: now : Time
alarm: Time
alarmOn: bool
```

• Instead, we will use a state-based model

State definition

• State is defined with the following syntax:

• Definition introduces a new type (Name) treated as a record type, with state variables as fields

State definition

- Variables which represent the state of the system are collected into a state definition
- This represents the *persistent data*, to be read or modified by operations

```
state Clock of
  now : Time
  alarm : Time
  alarmOn : bool
init cl == cl = mk_Clock(0,0,false)
end
```

- A model has only one state definition
- init clause sets initial values for persistent data

Operations

- Procedures which can be invoked by the system's users – human or other systems – are operations
- Operations (can) take input and generate output
- Operations have side effects can read, and modify, state variables
- Operations may be *implicit* or *explicit*, just as with functions

Explicit Operations

- An explicit operation has signature and body just like an explicit function, but the body need not return a value:
- e.g. alarm is set to a given time, which must be in the future:

```
SetAlarm: Time ==> ()
SetAlarm(t) == (alarm :=t ; alarmOn := true)
pre t > now
```

- Note features:
 - no return value (in this case)
 - sequence of assignments to state variables

Implicit Operations

- Explicit operations produce a relatively concrete model
- Normally in state-based model, begin with implicit operations
 - better abstraction
 - not executable
- e.g. implicit version of SetAlarm operation:

```
SetAlarm(t: Time)
ext wr alarm: Time
    wr alarmOn: bool
    rd now: Time
pre t > now
post alarm = t and alarmOn
```
Implicit operations

- Implicit operations have the following components:
 - **header** with operation name, names and types of input and any result parameters
 - **externals clause** lists the state components used by the operation, and whether they are read-only or may be modified by the operation
 - **pre-condition** recording the conditions assumed to hold when the operation is applied
 - **post-condition** relates state and result value after the operation is completed, to the initial state and input values. Post-condition must respect restrictions in the externals clause, and define "after" values of all writeable state components

Implicit operation syntax

```
OpName(param:type, param:type, ...) result:type
ext wr/rd state-variable:type
    wr/rd state-variable:type
    ...
    wr/rd state-variable:type
pre logical-expression
post logical-expression
```

 Operation definition is a specification for a piece of code with input/output parameters and side effects on state components

Alarm clock: modelling time

- We might also model the passing of time:
- Implicit operation:

Tick() ext wr now: Time post now = now~ + 1

• Explicit operation:

Tick: () ==> () Tick() == now := now + 1;

State-based modelling

- Development usually proceeds from abstract to concrete
 - identify state and persistent state variables
 - define implicit operations in terms of their access to state variables, pre and postconditions
 - complete definitions of types, functions noting any restrictions to be captured as invariants and preconditions, check internal consistency
 - transform implicit operations to explicit (and to code) by provably correct steps

Validation

The Idea of Validation

How confident can you be that a formal model accurately describes the system that the customer wanted?

• Requirements are often incomplete and ambiguous: modellers have to resolve these in unambiguous models.

• Requirements often state the client's intention incorrectly.

Validation is the process of increasing confidence that a model is an accurate representation of the system under consideration. Two aspects of this:

1. Checking internal consistency of a model.

2. Checking that the model describes the required behaviour of the system being modelled.

Internal Consistency

If a modelling language is formal then it must have:

• a formal syntax: rules restricting the symbols in the language and saying where they can be used.

• a formal semantics: rules for determining the meaning of a model written in accordance with the formal syntax.

If the syntax is formal, then we can check it with the aid of a tool (c.f. *syntax checker* in a programming language compiler).

If the semantics is formal, then we can check at least some aspects with the aid of a tool (c.f. *type checker* in a programming language compiler).

But we can't check everything!

Internal Consistency: Behaviour

The other aspect of validation is checking the accuracy with which the model records the desired system behaviour.

We will look at three approaches:

• Animating the model - works well with clients unfamiliar with the modelling notation but requires a good interface.

• **Testing** the model - *can assess coverage but limited to the quality of the tests and the model must be executable.*

• **Proving** properties of the model - *provides excellent coverage* and does not require executability, but not well supported by tools.

Internal Consistency: Type checking

A simple form of internal consistency checking is type checking. Consider a type checking tool working on the following extracts from function definitions:

Student :: ...
Sid = token
Dbase = map Sid to Student
newStudent1: Sid * Student * Dbase -> Dbase
newStudent1(sid,s,db) == db ++ { sid |-> s }

newStudent2: Sid * Student * Dbase -> Dbase
newStudent2(sid,s,db) == db ^ { sid |-> s }

```
newStudent3: Sid * Student * Dbase -> Dbase
newStudent3(sid,s,db) == db munion { sid |-> s }
```

Internal Consistency: Type checking

```
newStudent3: Sid * Student * Dbase -> Dbase
newStudent3(sid,s,db) == db munion { sid |-> s }
pre sid in set dom db
```

```
We know that this is OK, but could a machine work it out? What about ...
newStudent3: Sid * Student * Dbase -> Dbase
newStudent3(sid,s,db) == db munion { sid |-> s }
pre sid in set {s1 | s1 : Sid &
    exists y in set rng db & db(s1) = y}
```

We can't provide a completely general tool that can automatically check that all uses of operators are properly protected (programming languages have the same problem - you can't produce a general tool that can automatically statically check whether division by zero will occur unless the language is very restricted and inexpressive).

Internal consistency: Type checking

Much of the current research in formal modelling aims to develop techniques and tools to reduce the size of the middle area by performing more and more checks automatically.

Internal consistency: Proof obligations

If a check cannot be performed automatically, the techniques of mathematical proof are required to complete it.

The collection of all checks to be performed on a VDM model are called *proof obligations*. A proof obligation is a logical expression which must be shown to hold before a VDM-SL model can be regarded as formally internally consistent.

We look at three proof obligations on VDM-SL models:

- Domain Checking
- Satisfiability of explicit definitions
- Satisfiability of implicit definitions

Using a partial operator outside its domain of definition is usually an error on the part of the modeller. Two kinds of construct are impossible to check automatically:

- applying a function that has a pre-condition; and
- applying a partial operator.

Some definitions:

```
f:T1 * T2 * ... * Tn -> R
f(a1,...,an) == ...
pre ...
```

We can refer to the precondition of f as a Boolean function with the following signature:

pre_f:T1 * T2 * ... * Tn -> Bool

Domain Checking for Functions with Pre-conditions

If a function g uses a function $f:T1*...*Tn \rightarrow R$ in its body, occurring as an expression f(a1,...,an), then it is necessary to show

pre-f(a1,...,an)

for any a1,..., an that can arise in this position.

```
Example:
Delete: Tracker * ContainerId * PhaseId -> Tracker
Delete(tkr,cid,source) ==
mk_Tracker({cid} <-: tkr.containers,
Remove(tkr,cid,source).phases)
```

```
pre pre_Remove(tkr,cid,source)
```

Proof obligation for domain checking:

forall tkr:Tracker, cid:ContainerId, source:PhaseId &
 pre_Delete(tkr,cid,source) => pre_Remove(tkr,cid,source)

Domain Checking for Partial Operators

Each application of a partial operator must be protected. For example, consider:

The obligation is:

forall trk:Tracker, cid:ContainerId, quan:real, mat:Material &
pre_Introduce(trk,cid,quan,mat) =>
 compatible(trk.containers,{cid |-> mk_Container(quan,mat)})

Partial operators can be protected by pre-conditions (as in the Permission example) or by including an explicit check in the body of the function, e.g.

```
Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases), cid, dest) ==
    cid in set dom containers and
    dest in set dom phases and
    card phases(dest).contents < phases(dest).capacity and
    containers(cid).material in set
    phases(dest).expected_materials</pre>
```

Proof obligation

Exercise: What is the proof obligation generated by the **highlighted** expression below?

in

```
mk_Tracker(trk.containers,
```

Remove(trk,cid,pfromid).phases ++ {ptoid |-> pha})
pre Permission(trk,cid,ptoid) and pre_Remove(trk,cid,pfromid)

forall trk:Tracker, cid:ContainerId, ptoid:PhaseId &
 pre_Move(trk,cid,ptoid) =>
 ptoid in set dom trk.phases

It can be difficult to decide what to include in a pre-condition.

- Some conditions are determined by the requirements.
- Many conditions are there to guard applications of partial operators and functions.

When you write a function definition, read through it systematically, highlighting each application of a partial operator, and ensure that you have guarded against misapplication of that operator by adding a suitable conjunct to the precondition.

An explicit function without a pre-condition defined

f:T1*...*Tn -> R f(a1,...,an) == ...

is said to be *satisfiable* if, for all inputs, the result defined by the function body is of the correct type. Formally,

forall p1:T1,...,pn:Tn & f(p1,...,pn) : R

An explicit function with a pre-condition:

f:T1*...*Tn -> R f(a1,...,an) == ...

is said to be *satisfiable* if, for all inputs satisfying the pre-condition, the result defined by the function body is of the correct type. Formally,

forall p1:T1,...,pn:Tn &
 pre_f(p1,...,pn) => f(p1,...,pn) : R

The satisfiability proof obligation is:

```
forall mk_Tracker(containers, phases): Tracker,
    cid: ContainerId, quan: real, mat: Material &
    pre_Introduce(trk, cid, quan, mat) =>
        Introduce(trk,cid,quan,mat): Tracker
```

 Most of the work in showing satisfiability comes in showing, not that the result returned belongs to the correct general type, but that it respects the invariant on that type.

Satisfiability of implicit function definitions

A function f defined implicitly as follows

```
f(a1:T1,...,an:Tn) r:R
pre ...
post ...
```

is said to be *satisfiable* if, for all inputs satisfying the pre-condition, there exists a result of the correct type satisfying the post-condition. Formally,

```
forall p1:T1,...,pn:Tn &
    pre_f(p1,...,pn) =>
        exists x:R & post_f(p1,...,pn,x)
```

Example:

The satisfiability proof obligation is as follows:

```
forall trk:Traceker, cid:ContainerId &
    pre_Find(trk,cid) =>
        exists p:(PhaseId|<NotAllocated>) &
        post_Find(trk,cid,p)
```

Animation

The goal of validation is to increase confidence that a model accurately reflects the customer's intentions.

However, customers rarely understand the modelling language used, whether it is formal or not.

Animation is the execution of the model through an interface. The interface can be coded in a programming language of choice so long as a *dynamic link* facility exists for linking the interface code to the model.

Animation

The interface functions (in C++) have to be made known to the VDM-SL layer, This can be done in a dynamic link module which also provides a file name reference to the compiled C++ code.

and grip						
Mode Translation © Rotation	() AAH	 Forward Backward 	🗋 Left 📋 Right	🗇 Up 🗇 Down	 Pitch down Pitch up 	
AH control output			L	I	8	
📋 Roll left	📋 Pitch dow	n 📋 Yaw left		Run control cycle		
📋 Roll right	📋 Pitch up	📋 Yaw rigt	📋 Yaw right		Clear settings	

Systematic Testing

The level of confidence gained through an animation is only as good as the particular choice of scenarios executed by the user through the interface.

More systematic testing is also possible:

define a collection of test cases

execute each test case on the formal model

compare with expectation

Test cases can be generated by hand or automatically. Automatic generation can however produce a vast number of individual test cases.

Techniques for test generation in functional programs carry over to formal models.

Dynamic type checking in executing a formal model can help validating proof obligations (but not proving them)

Systematic Testing

Executing the test:

```
Permission(mk_Tracker({ | -> }, { | -> }), mk_token(1), mk_token(2))
```

yields false. We can also tell which parts of the permission function have been exercised ("covered") by the test:

```
Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases), cid, dest) ==
    cid in set dom containers and
    dest in set dom phases and
    card phases(dest).contents < phases(dest).capacity and
    containers(cid).material in set
    phases(dest).expected_materials</pre>
```

It is possible to have a tool highlight parts of the model that are not exercised by a test and use this information to devise other tests.

Systematic Testing with Tool Support

The Overture Tool

🛞 alaı	rm.vdmsl 🖾 🛞 changeexpert.vdmsl 🛞 testalarm.vdmsl	- 8	🗄 Outline 🛛 🛛 🖓 🙀 💐 🔍 😾 🗖 🗖		
11 inv sch ==			1 DEFAULT		
12	forall exs in set rng sch &		Plant : record type		
13 exs <> {} and			schedule : Schedule		
14 forall ex1, ex2 in set exs &			alarms : set of (Alarm) inv_Plant(Plant) : bool		
15 ex1 <> ex2 => ex1.expertid <> ex2.expertid;					
16			Schedule : map Period to set of Expert		
17	Period = token;		inv_Schedule(map Period to set of Expert) : bool		
18		Period : token			
19	muli cot of Ourlification	▲ Expert : record type			
20	inv av == av guali <> ();	expertid : ExpertId			
22			quali : set of (Qualification)		
23	ExpertId = token:		inv_Expert(Expert) : bool		
24			▲ ExpertId : token		
25	<pre>Qualification = <elec> <mech> <bio> <chem>;</chem></bio></mech></elec></pre>	△ Qualification : <bio> <chem> <elec> <mech></mech></elec></chem></bio>			
26			 Alarm : record type 		
27	Alarm :: alarmtext : seq of char	alarmtext : seq of (char)			
28	quali : Qualification		quali : Qualification		
29			NumberOfExperts(Period, Plant) : nat		
30 f	unctions	ExpertIsOnDuty(Expert, Plant) : set of Period			
31		ExpertToPage(Alarm, Period, Plant) : Expert			
32	NumberOfExperts: Period * Plant -> nat	QualificationOK(set of Expert, Qualification) : bool			

Validation by Proof

Systematic testing and animation are only as good as the tests and scenarios used. *Proof* allows the modeller to assess the behaviour of a the model for whole classes of inputs in one analysis.

In order to prove a property of a model, the property has to be formulated as a logical expression (like a proof obligation). A logical expression describing a property which is expected to hold in a model is called a *validation conjecture*.

Proofs can be time-consuming. Machine support is much more limited: it is not possible to build a machine that can automatically construct proofs of conjectures in general, but it is possible to build a tool that can check a proof once the proof itself is constructed. Considerable skill is required to construct a proof - but a successful proof gives high assurance of the truth of the conjecture about the model.

Summary

Validation: the process of increasing confidence that a model accurately reflects the client requirements.

- Internal consistency:
 - domain checking: partial ops and functions with precondition
 - satisfiability of explicit and implicit function
- Checking accuracy:
 - animation
 - testing
 - proof

Case Study: the explosives storage example

Case Study: the explosives storage example

- The system to be modelled is part of a controller for a robot that positions explosives such as dynamite and detonators in a store.
- The store is a rectangular building. Positions within the building are represented as coordinates with respect to one corner designated the origin. The store's dimensions are represented as maximum x and y coordinates.
- Objects in the store are rectangular packages, aligned with the walls of the store. Each object has dimensions in the x and y directions. The position of an object is represented as the coordinates of its lower left corner. All objects must fit within the store and there must be no overlap between objects.

Case Study: the explosives storage example

The positioning controller must provide functions to:

- 1. return the number of objects in a given store;
- 2. suggest a position where a given object may be accommodated in a given store;
- 3. update a store record to note that a given object has been placed in a given position;
- 4. update a store record to note that all the objects at a given set of positions have been removed.

Purpose of the model: to clarify the rules for the storage of explosives.

ybound

Case Study: the explosives storage example

- Store :: contents :
 - xbound :
 - ybound :
- Object :: position :
 - xlength :
 - ylength :

Case Study: the explosives storage example

- Store :: contents :
 - xbound :
 - ybound :

inv mk_Store(contents, xbound, ybound) ==
Store	::	contents	:	set of Object
		xbound	:	nat
		ybound	:	nat

inv mk_Store(contents, xbound, ybound) ==

All objects in the store is within the bounds of the store and All objects in the store are not overlapped with each other

```
Point :: x : nat
    y : nat
Object :: position : Point
    xlength : nat
    ylength : nat
```

Store :: contents :

xbound :

ybound :

inv mk_Store(contents, xbound, ybound) ==

forall o in set contents &
 InBounds(o,xbound,ybound) and
not exists o1, o2 in set contents &
 o1 <> o2 and Overlap(o1,o2)

InBounds: Object * nat * nat -> bool
InBounds(o,xb,yb) == ???

Overlap: Object * Object -> bool Overlap(o1,o2) == ???

Store	::	contents	:	set of Object
		xbound	•	nat
		ybound	:	nat

inv mk_Store(contents, xbound, ybound) ==

forall o in set contents &
 InBounds(o,xbound,ybound) and
not exists o1, o2 in set contents &
 o1 <> o2 and Overlap(o1,o2)

InBounds: Object * nat * nat -> bool
InBounds(o,xb,yb) == ???

```
Overlap: Object * Object -> bool
Overlap(o1,o2) == ???
```

```
InBounds(o,xb,yb) ==
    o.position.x + o.xlength <= xb and
    o.position.y + o.ylength <= yb</pre>
```

```
Overlap(01,02) == Points(01) inter Points(02) <> {}
```

1. return the number of objects in a given store;

```
NumObjects: Store -> nat
```

2. suggest a position where a given object may be accommodated in a given store;

```
SuggestPos: nat * nat * Store -> Store
```

3. update a store record to note that a given object has been placed in a given position;

```
Place: Object * Store Point -> Store
```

4. update a store record to note that all the objects at a given set of positions have been removed.

```
Remove: Store * set of Point -> Store
```

NumObjects: Store -> nat
NumObject(s) == ???

NumObjects: Store -> nat

NumObject(s) == card s.contents

SuggestPos: nat * nat * Store -> Store

SuggestPos(xlength,ylength,s) == ???

There might be any number of viable positions, but the requirements are not specific about which one ought to be returned - any point with sufficient space will do.

Since we do not have to give a specific point, there is not need to give an algorithm for finding a suitable point: we can use an *implicit function definition* instead.

An implicit definition does not have a body, but does describe the result by means of a postcondition.

functionName (input vars & types) result & type

- **pre** precondition
- **post** postcondition

```
sqrt(x:real) r:real
pre x >= 0
post r*r = x
```

SuggestPos: nat * nat * Store -> Store

SuggestPos(xlength,ylength,s) == ???

SuggestPos(xlength:nat, ylength:nat, s:Store) p:[Point]

post -- if there is a point with enough room -- then return some point where there is -- enough room -- else return nil if exists poss:Point & RoomAt(xlength,ylength,s,poss) then RoomAt(xlength,ylength,s,p)

else **p** = nil

RoomAt: nat * nat * Store * Point -> bool

RoomAt(xlength,ylength,s,p) ==

let new_o = mk_Object(p,xlength,ylength) in

RoomAt: nat * nat * Store * Point -> bool

RoomAt(xlength,ylength,s,p) ==

let new_o = mk_Object(p,xlength,ylength) in

3. update a store record to note that a given object has been placed in a given position;

```
Place: Object * Store Point -> Store
Place(o,s,p) ==
    let new_o = mk_Object(p,o.xlength,o.ylength) in
    mk_Store (
```

3. update a store record to note that a given object has been placed in a given position;

An extension - Suppose we have a site which consists of a collection of stores:

```
Store :: name : token
...
Site = set of Store
inv site ==
forall store1, store 2 in set site &
   store1. name = store2.name => store1 = store2
```

and we need to take an inventory of the site:

We could take the union of the individual inventories of each store:

```
SiteInventory: Site -> Inventory
SiteInventory(site) ==
dunion{StoreInventory(store) | store in set site}
```

StoreInventory: Store -> Inventory
StoreInventory(store) ==
 {mk_InventoryItem(store.name,o) |
 o in set store.contents}

- Summary
- Use implicit specification (postcondition) when there is no need to give a particular result;
- Use auxiliary function definitions to break down and simplify the task of building the model.

A model of an architecture for tracking the movement of containers of hazardous waste as they go through reprocessing was developed by a team in Manchester Informatics with BNFL (British Nuclear Fuels Limited) in 1995.

The **purpose** of the model was to establish the rules governing the movement of containers of waste which the tracking manager would have to enforce. The model was safety-related, but note that the model was built simply in order to understand the problem better, not as a basis for software development. *Models don't just have to serve as specifications.*

At the top level, the tracker holds information about containers and the phases of the plant:

Tracker :: containers : ContainerInfo phases : PhaseInfo

The container and phase information is modelled as a mapping from identifiers to details (*this is a very common use of mappings, with identifiers in the domain and data types defining details in the range*)

```
ContainerInfo = map ContainerId to Container
PhaseInfo = map PhaseId to Phase
```

The details of how identifiers are represented are immaterial:

ContainerId =

PhaseId =

For each container, we record the fissile mass of its contents and the kind of material it contains.

Container =

Material

The details of how identifiers are represented are immaterial:

```
ContainerId = token
PhaseId = token
```

For each container, we record the fissile mass of its contents and the kind of material it contains.

```
Container :: fiss_mas : real
material : Material
Material = token
```

Each phase houses a number of containers, expects certain material types and has a maximum capacity.

Try modelling this yourself:

Each phase houses a number of containers, expects certain material types and has a maximum capacity.

Try modelling this yourself:

Phase	::	contents : set of ContainerId
		expected_materials : set of Material
		capacity = nat

In the real tracking manager project, domain experts from BNFL were closely involved with the development of the formal model. We relied on the domain experts to point out the safety properties that had to be respected by the tracker. For example, the number of containers in a phase should not exceed the phase's capacity:

Phase ::

inv p ==

The domain experts from BNFL often commented that this ability to record constraints formally as invariants was extremely valuable.

In the real tracking manager project, domain experts from BNFL were closely involved with the development of the formal model. We relied on the domain experts to point out the safety properties that had to be respected by the tracker. For example, the number of containers in a phase should not exceed the phase's capacity:

Phase	::	contents : set of ContainerId
		expected_materials : set of Material
		capacity = nat
inv p	= card	p.contents <= p.capacity

The domain experts from BNFL often commented that this ability to record constraints formally as invariants was extremely valuable.

Invariant:

- 1. All of the containers present in phases are known about in the containers mapping.
- 2. No two distinct phases may have any containers in common.
- 3. In each phase, all its containers contain materials as expected by the phase.

Consistent: ContainerInfo * PhaseInfo -> bool
Consistent(containers,phases) ==

- -- all of the containers present in phases are known
- -- about in the containers mapping.

forall ph in set rng phases &

ph.contents subset dom containers

PhasesDistinguished: PhaseInfo -> bool

PhaseDistinguished(phases) ==

-- no two distinct phases may have any containers

-- in common

not exists p1, p2 in set dom phases &

p1 <> p2 and

phases(p1).contents inter phases(p2).contents <> {}

MaterialSafe: ContainerInfo * PhaseInfo -> bool
MaterialSafe(containers,phases) ==

- -- In each phase, all its containers contain materials
- -- as expected by the phase

forall ph in set rng phases &

forall cid in ph.contents &

cid in set dom containers and

containers(cid).material in set ph.expected_materials

- introduce a new container to the tracker, giving its identifier and contents;
- give permission for a container to move into a given phase;
- remove a container from a phase;
- delete a container from the plant.

```
Introduce: Tracker * ContainerId * real * Material
                -> Tracker
Introduce(trk, cid, quan, mat) ==
mk_Tracker(
    trk.containers munion {cid |-> mk_Container(quan,mat)},
    trk.phases)
    pre cid not in set dom trk.containers
```

• give permission for a container to move into a given phase

Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases),cid,dest) ==
-- must check that the tracker invariant will be
-- maintained by the move
cid in set dom containers and container consistency
dest in set dom phases and
card phases(dest).contents < phases(dest).capacity and
containers(cid).material in set phases(dest).expected_materials</pre>

material safety

• remove a container from a phase

```
Remove: Tracker * Containerid * PhaseId -> Tracker
Remove(mk_Tracker(containers,phases),cid,pid) ==
```

```
mk_Tracker(containers,
```

```
phases ++ {pid |->
```

pre pid in set dom phases and

cid in set phases(pid).contents

• remove a container from a phase

```
Remove: Tracker * Containerid * PhaseId -> Tracker
```

```
Remove(mk_Tracker(containers,phases),cid,pid) ==
```

```
mk_Tracker(containers,
```

```
phases ++ {pid |->
    mk_Phase(
        phases(pid).containers\cid,
        phases(pid).expected_materials,
        phases(pid).capacity
        )
        pre pid in set dom phases and
```

cid in set phases(pid).contents

We can simplify function definitions by using a local declaration given in a **let** expression:

Remove: Tracker * Containerid * PhaseId -> Tracker
Remove(mk_Tracker(containers,phases),cid,pid) ==

mk_Tracker(containers, phases ++ {pid |-> pha})
pre pid in set dom phases and
 cid in set phases(pid).contents
The tracking manager example

To delete a container, two things have to be done:

- we have to remove the container from the containers mapping; and
- we have to remove the container from the phase in which it occurs (just as in the Remove function).

*precondition of other functions can be used like this

The Overture Tool

The Overture Tool

- http://overturetool.org/download/
- The latest version: 2.5.0
- Interface based on Eclipse
- Functionalities
 - Editor with syntax highlight
 - Type check, Animation (Execution, Testing), Proof obligation generation (Integration check)
- How to start: unzip and execute

Start a VDM-SL Project

- File -> New -> Project -> VDM-SL Project
 - Set project name
 - ...
 - Add file with extension ".vdmsl"

```
module CMDS definitions
```

types

```
CMD = <R> | <L>;
CMD_series = seq of [CMD];
CMD_times = map CMD to nat;
```

```
state S of
```

end

```
operations
  push_cmd(a:[CMD])
  pre commands = [] or hd commands <> a
   post hd commands = a and tl commands = commands~;
```

functions

Create, manage, and run o	configurations	to.	Debu
Image: Second g Image: Second	Name: mysample-s Main Runtime Debugger Develop Source Common Project Project: mysample-sl Launch Mode: O Entry Point O Remote Control O Console Entry Point: Module: Function/Operation:	Browse	Laun
SAFERSL	Remote Control: Fully qualified remote control class: Other: Generate coverage	Browse	
< Filter matched 12 of 13 iteı	Reyert	Apply	
?	Debug	Close	

config.

in console

```
> init
                    → Initialize and set dynamic type check off
> set dtc off
> p inv_S(mk_S([]))
true
> p inv_S(mk_S([<R>,<R>,nil,<R>]))
false
                                         'p' means "print"
> p inv S(mk S([<R>,<L>,nil,nil]))
false
> p pre push cmd(<R>,mk S([]))
true
> p pre push cmd(<R>,mk S([<R>]))
false
> p pre push cmd(<R>,mk S([<L>]))
true
> p post_push_cmd(<R>,mk_S([]),mk_S([<R>]))
true
> p post push cmd(<R>,mk S([<L>,nil,<L>]),mk S([<L>,nil,<L>,<R>]))
false
> p post push cmd(<R>,mk S([<L>,nil,<L>]),mk S([<R>,<L>,nil,<L>]))
true
> p times_count([<R>,<L>,nil,<R>,<L>,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5, <L> |-> 2}
true
> p times_count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5}
false
> p times count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5, <L> |-> 0}
true
                                                                              223
```

😵 Debug Configurations	5
------------------------	---

Create, manage, and run configurations

Debug

Debug config.

Launch from an entry point (function or operation)

📫 🗎 🗶 🖃 🆆 🔹	Name: mysample-sl						
type <mark>f</mark> ilter text	Main Runtime Debugger Develop 🐶 Source 🔲 Common						
VDM PP Model	1 PP Model Project						
Se KLVPP	Project: mysample-sl		Browse				
SAFERPP	Lound Med						
🚱 test step	Launch Mode:						
VDM RT Model	Console						
VDM SL Model	Entry Point:						
S ASTER	Module: CMDS		Search				
🐻 flolac2017_hw	Function/Operation: check()						
S mysample-sl	Remote Control:						
SAFERSL	Fully qualified remote control class:		Browse				
-	Other:						
	Generate coverage						
<							
Filter matched 13 of 14 iter	Reve	ert	Apply				
?	De	bug	Close				

```
Test Coverage
> coverage
Test coverage for mysample.vdmsl:
  module CMDS
  definitions
  types
  CMD = \langle R \rangle | \langle L \rangle;
  CMD series = seq of [CMD];
  CMD_times = map CMD to nat;
  state S of
    commands : CMD_series
+ inv s == forall k in set {1,...,len s.commands - 1} & s.commands(k) <> s.commands
    init p == p = mk S([])
+
  end
  operations
 push_cmd(a:[CMD])
+ pre commands = [] or hd commands <> a
    post hd commands = a and tl commands = commands~;
+
  functions
  times count : CMD series -> CMD times
+ times_count(a) == { <R> |-> len [ i | i in set inds a & a(i)=<R> ], <L> |-> len [
end CMDS
```

Coverage = 90.0%

```
Test Coverage
 7 CMD times = map CMD to nat;
 9 state S of
10 commands : CMD series
11 inv s == forall k in set {1,...,len s.commands - 1} & s.commands(k) <> s.commands(k+1)
12 init p == p = mk S([])
13 end
14
15 operations
16 push cmd(a:[CMD])
17 pre commands = [] or hd commands <> a
18 post hd commands = a and tl commands = commands~;
19
20 functions
21 times count : CMD series -> CMD times
22 times_count(a) == { <R> |-> len [ i | i in set inds a & a(i)=<R> ], <L> |-> len [ i | i in set inds a & a(i)=<L> ] };
23
24 check : () -> seq of bool
25 check() == [
26 inv S(mk S([])), -- true
27 inv S(mk S([<R>,<R>,nil,<R>])), -- false
28 inv S(mk S([<R>,<L>,nil,nil])), -- false
    pre push cmd(<R>,mk S([])), -- true
29
    pre push cmd(<R>,mk S([<R>])), -- false
30
    pre push cmd(<R>,mk S([<L>])), -- true
31
    post push cmd(<R>,mk_S([]),mk_S([<R>])), -- true
32
    post push cmd(<R>,mk S([<L>,ni1,<L>]),mk S([<L>,ni1,<L>,<R>])), -- false
33
    post push cmd(<R>,mk_S([<L>,nil,<L>]),mk S([<R>,<L>,nil,<L>])), -- true
34
    times count([<R>,<L>,ni1,<R>,<L>,ni1,<R>,ni1,<R>,ni1,<R>,ni1,<R>,ni1,<R>]) = {<R> |-> 5, <L> |-> 2}, -- true
35
    times count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5}, -- false
36
    times count([<R>,nil,<R>,nil,<R>,nil,<R>,nil,<R>]) = {<R> |-> 5, <L> |-> 0} -- true
37
38];
39
40 end CMDS
```

Try Yourself

- Import a module from Overture examples and run
 - For example, the chemical plant alarm.

Import Projects

Some projects cannot be imported because they already exist in the workspace

\bigcirc Select root directory:		\sim	Browse
Select archive file:	/C:/Users/YFC/Documents/Overture/plugir	ns/c ~	Browse
Projects:			
☑ AbstractPacemaker	^	Select All	
□ AccountSysSL (VDMSL/AccountSysSL/)			Deselect All
\square ACSSE (VDMSE/ACSSE/) \square ADTSL (VDMSE/ADTSL/)			Refresh
🛛 AlarmErrSL (VDMSL			
□ AlarmSL (VDMSL/A			
ATCSL (VDMSL/ATC	CSL/)		
☑ barSL (VDMSL/barS	L/)		
BOMSL (VDMSL/BC	DMSL/)		
☑ cashdispenserSL (VI	DMSL/cashdispenserSL/)	~	

Try Yourself

- VDM Quick interpreter
 - Quickly check a VDM expression
 - For example, to know the resulted set from a set comprehension expression

> { a | a in set {0, ..., 10} & a mod 2 = 0}
{0,2,4,6,8,10}

What if ?

> { a : nat & a mod 2 = 0 }

Type binding (unexecutable) vs. Set binding (unexecutable)