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Outline

• Finite state automata 

• Regular Expressions 

• WS1S 

• 𝜔-Automata 

• Linear temporal logic
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Computation

• What is the model of a computation machine?

• What is the result of a computation?

3



FLOLAC 2017 Elementary Computation Theory

Computation

• What is the model of a computation machine?

• What is the result of a computation?

• The simplest model of computation machinery

• Finite state automata (FSA), or equivalently 
nondeterministic finite automata (NFA), nondeterministic 
finite word automata (NFW)
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Automaton M1

• This automaton recognizes words (strings) end with an “a”.

• Transitions: {(s0, a, s0), (s0, a, s1), (s0, b, s0)}


• Accepting states: {s1}

• Alphabet: {a, b}


• States: {s0, s1}


• Initial states: {s0}

4

s0 s1

a, b

a

1



FLOLAC 2017 Elementary Computation Theory

Alphabet
• An alphabet is a set of symbols. 

• Types of alphabet: classical and propositional 

• Examples: 

• {a, b} 

• {send, receive, ack} 

• {(p q), (¬p q), (p ¬q), (¬p ¬q)}

5
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Words
• Let Σ be a finite alphabet. 

• A word w over Σ (w ∈ Σ*) is a sequence of symbols a0a1a2…an-1 with ai ∈ Σ. 

• Length of w is n. 

• The empty word is denoted by 𝜖. 

• Examples (Σ = {a, b}): 

• a b b a 

• a b a b a b

6

w* : repeat w finitely many times
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Finite State Automata 
Syntax

• A finite state automaton is a 5-tuple (Q, Σ, 𝛿, I, F) where 

• Q is a finite set of states, 

• Σ is a finite alphabet, 

• 𝛿 : Q × Σ → 2Q is the transition function (sometimes written as 
a relation 𝛿 : Q × Σ × Q), 

• I ⊆ Q is the set of initial states, and 

• F ⊆ Q is the set of accepting (final) states

7
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Automaton M2

A = (Q, Σ, 𝛿, I, F) 

Σ = {a, b}

8

Q = ? 

𝛿 = ?

I = ? 

F = ?

s0 s1
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a
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Finite State Automata 
Semantics

• Let M = (Q, Σ, 𝛿, I, F) be a finite state automaton. 

• Let w = a0a1a2…an-1 be a word over Σ. 

• A run of w on M is a sequence of states s0s1s2…sn where 

• s0 ∈ I 

• (si, ai, si+1) ∈ 𝛿

9



FLOLAC 2017 Elementary Computation Theory

Runs

• What are the runs of the following words? 

• a b a b 

• a b b a

10
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Runs

• What are the runs of the following words? 

• a b a b 

• a b b a

10
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Runs

• What are the runs of the following words? 

• a b a b 

• a b b a

10

s0 s0 s0 s0 s0

s0 s0 s0 s0 s0 and s0 s0 s0 s0 s1

s0 s1

a, b

a
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Run Tree

11

s0 s1

a, b

a

1

the run tree of abba on M1

s0

s0

s0

s0

s0 s1

s1
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Finite State Automata 
Semantics (cont’d)

• M = (Q, Σ, 𝛿, I, F) 

• A run s0s1s2…sn is accepting if sn ∈ F. 

• A word w is accepted by M if there is an accepting run of w 
on M. 

• The language of M is the set of strings accepted by M, 
denoted by L(M).

12
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Accepting Runs

• Which run is accepting? 

• s0 s0 s0 s0 s0 

• s0 s0 s0 s0 s1

13

s0 s1

a, b

a
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• What is the language of M1? 

• The language recognized by a finite state automaton is a 
regular language.

Languages

14
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• What is the language of M1? 

• The language recognized by a finite state automaton is a 
regular language.

Languages

14

L(M1) = { a0a1…an | n∈ℕ and an = a}

s0 s1

a, b

a
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Exercise

• Given an alphabet {1, 2, +}, draw a finite state automaton 
such that the automaton accepts words evaluated to 3.

15
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Emptiness and Universality

• M = (Q, Σ, 𝛿, I, F) 

• An automaton M is empty if L(M) = ∅. 

• An automaton M is universal if L(M) = Σ*.

16
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Emptiness and Universality

• M = (Q, Σ, 𝛿, I, F) 

• An automaton M is empty if L(M) = ∅. 

• An automaton M is universal if L(M) = Σ*.

16

s0

1

is this automaton empty?
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Equivalence

• Two automata are equivalent if they recognize the same 
language.

17

L(M1) = L(M2)?

s0 s1

b

a

b

a

1

s0 s1

a, b

a
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Deterministic Finite Automata  
(DFA)

• An automaton M = (Q, Σ, 𝛿, I, F) is deterministic if 

• |I| = 1, and 

• |𝛿(s, a)| = 1 for all s ∈ Q and a ∈ Σ. 

• Which one is deterministic?

18

s0 s1

b

a

b

a
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s0 s1

a, b

a

1

(is complete if |𝛿(s, a)| ≥ 1)
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Determinism VS Nondeterminism

• Let D be a DFA. The language L(D) is accepted by the NFA 
D. (A DFA is also an NFA.)

• Let N be an NFA. Can we construct a DFA D such that 
L(D) = L(N)?

19
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Determinism VS Nondeterminism

• Let D be a DFA. The language L(D) is accepted by the NFA 
D. (A DFA is also an NFA.)

• Let N be an NFA. Can we construct a DFA D such that 
L(D) = L(N)?
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Determinism VS Nondeterminism

• Let D be a DFA. The language L(D) is accepted by the NFA 
D. (A DFA is also an NFA.)

• Let N be an NFA. Can we construct a DFA D such that 
L(D) = L(N)?

• DFA and NFA have the same expressive power.

19

◯
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Determinization
• Let N = (Q, Σ, 𝛿, I, F). 

• By subset construction, define D = (2Q, Σ, 𝛥, { I }, G) where 

• 𝛥(S, a) = ⋃s∈S 𝛿(s, a), and 

• G = { S ∈ 2Q | S ⋂ F ≠ ∅ }. 

• We can show that L(N) = L(D) by induction on the length of 
input words.

20

s0

s0

s0

s0
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Subset Construction

• What is the determinization of M1?

21

s0 s1

a, b

a

1

{s0} {s0, s1}

b

a

b

a
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Exercise
• Apply subset construction to determinize the following 

automaton

22

s0 s1

s2

a, b

a

bb

a, b
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𝜖-Transitions
• Assume 𝜖 does not belong to the alphabet. 

• An 𝜖-transition is a transition that does not need to consume any 
symbol. 

• 𝜖-transitions are only allowed in NFA. 

• DFA and NFA with 𝜖-transitions have the same expressive power.

23

s0 s1 s2

a, b

✏ a
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Elimination of 𝜖-Transitions
• M = (Q, Σ ∪ {𝜖}, 𝛿, I, F) is an NFA with 𝜖-transitions. 

• Let E(X) denote the 𝜖-closure of X ⊆ Q. 

• E(X) = { s | s ∈ X or s is reachable from a state in X through 𝜖-
transitions } 

• Construct an NFA N = (Q, Σ, 𝛥, J, F) where 

• 𝛥(s, a) = E(𝛿(s, a)), and 

• J = E(I)

24
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Elimination of 𝜖-Transitions 
Example

25

s0 s1 s2

a, b

✏ a
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Elimination of 𝜖-Transitions 
Example

25

s0 s1 s2

a, b

✏ a

1

s0

s1

s2
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Elimination of 𝜖-Transitions 
Example

25

s0 s1 s2

a, b

✏ a
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s0
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Elimination of 𝜖-Transitions 
Example

25

s0 s1 s2

a, b

✏ a
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Elimination of 𝜖-Transitions 
Example

25

s0 s1 s2

a, b

✏ a

1

s0

s1

s2

a, b

a, b a
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Single Initial State
• NFA may be defined as automata with single initial state. 

• NFA with multiple initial states does not have more expressive 
power.

26

s0

s1

1

s2

s0

s1

✏
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Closure Properties
• Regular languages are closed under the following operations. 

• union, 

• intersection, 

• concatenation, 

• Kleene closure, and 

• complementation.

27



FLOLAC 2017 Elementary Computation Theory

Union
• M1 = (Q1, Σ, 𝛿1, I1, F1), M2 = (Q2, Σ, 𝛿2, I2, F2) 

• Assume Q1 ⋂ Q2 = ∅. 

• M3 = (Q1 ⋃ Q2, Σ, 𝛿3, I1 ⋃ I2, F1 ⋃ F2) where (s, a, t) ∈ 𝛿3 if 

• (s, a, t) ∈ 𝛿1, or 

• (s, a, t) ∈ 𝛿2 

• L(M3) = L(M1) ⋃ L(M2)

28
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Union 
Example

29

q0 q1

a

b

a, b

1

s0 s1

a, b

a
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s0 s1

a, b

a

q0 q1

a
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a, b
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Intersection
• M1 = (Q1, Σ, 𝛿1, I1, F1), M2 = (Q2, Σ, 𝛿2, I2, F2) 

• M3 = (Q1 × Q2, Σ, 𝛿3, I1 × I2, F1 × F2) where ((s1, s2), a, (t1, 
t2)) ∈ 𝛿3 if 

• (s1, a, t1) ∈ 𝛿1, and 

• (s2, a, t2) ∈ 𝛿2 

• L(M3) = L(M1) ⋂ L(M2)

30
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Intersection 
Example

31

s0 s1

a, b

a

1

s0 s1

a

b

a, b

1

(s0, s0) (s0, s1) (s1, s1)

(s1, s0)

a

b

a

a, b

a
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Concatenation
• M1 = (Q1, Σ, 𝛿1, I1, F1), M2 = (Q2, Σ, 𝛿2, I2, F2) 

• Assume Q1 ⋂ Q2 = ∅ and 𝜖 ∉ Σ. 

• M3 = (Q1 ⋃ Q2, Σ ∪ {𝜖}, 𝛿3, I1, F2) where (s, a, t) ∈ 𝛿3 if 

• (s, a, t) ∈ 𝛿1, 

• (s, a, t) ∈ 𝛿2, or 

• a = 𝜖, s ∈ F1, and t ∈ I2. 

• L(M3) = L(M1)L(M2) = { uv | u ∈ L(M1) and v ∈ L(M2) }

32
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Concatenation 
Example

33

q0 q1

a

b

a, b

1

s0 s1

a, b

a

1

s0 s1

a, b

a

q0 q1

a

b

a, b
✏
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Kleene Closure
• An operation that repeat a string arbitrary number of times 

(including zero time).

34

s0 sn
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Kleene Closure
• An operation that repeat a string arbitrary number of times 

(including zero time).

34

s0 sn

1

s0 sn

✏

1



FLOLAC 2017 Elementary Computation Theory

Kleene Closure
• An operation that repeat a string arbitrary number of times 

(including zero time).

34

s0 sn

1

s0 sn

✏

1

s0 sn

✏

1
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Kleene Closure (cont’d)
• M = (Q, Σ, 𝛿, I, F) 

• Assume 𝜖 ∉ Σ and ss ∉ Q. 

• M’ = (Q ∪ {ss}, Σ ∪ {𝜖}, 𝛥, {ss}, F ∪ {ss}) where (s, a, t) ∈ 𝛥 if 

• s = ss, t ∈ I, and a = 𝜖, 

• (s, a, t) ∈ 𝛿, or 

• s ∈ F, t ∈ I, and a = 𝜖. 

• L(M’) = L(M)*

35
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Kleene Closure 
Example

36

s0 s1

a, b

a

1

ss s0 s1
✏

a, b

a

✏

1
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Complementation 
DFA

• M = (Q, Σ, 𝛿, I, F) is a DFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)

37
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Complementation 
DFA

• M = (Q, Σ, 𝛿, I, F) is a DFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)

37
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Complementation 
NFA

• M = (Q, Σ, 𝛿, I, F) is an NFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)?

38
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Complementation 
NFA

• M = (Q, Σ, 𝛿, I, F) is an NFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)?

38

s1 s2

s3

s4

s5

s6

1



FLOLAC 2017 Elementary Computation Theory

Complementation 
NFA

• M = (Q, Σ, 𝛿, I, F) is an NFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)?

38
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Complementation 
NFA

• M = (Q, Σ, 𝛿, I, F) is an NFA. 

• M’ = (Q, Σ, 𝛿, I, Q \ F) 

• L(M’) = Σ* \ L(M)?

38

×

s1 s2
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Exercise

• Let M1 = (Q1, Σ, 𝛿1, I1, F1) and M2 = (Q2, Σ, 𝛿2, I2, F2) be 
two NFAs. Construct an NFA M3 such that L(M3) = L(M1) 
\ L(M2). Please describe the components of M3 in detail.

39
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Minimization
• Given a DFA M1, can we construct a minimal DFA M2 such 

that L(M1) = L(M2)? 

• Given an NFA M1, can we construct a minimal NFA M2 such 
that L(M1) = L(M2)?

40
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Minimization
• Given a DFA M1, can we construct a minimal DFA M2 such 

that L(M1) = L(M2)? 

• Given an NFA M1, can we construct a minimal NFA M2 such 
that L(M1) = L(M2)?

40
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Minimization
• Given a DFA M1, can we construct a minimal DFA M2 such 

that L(M1) = L(M2)? 

• Given an NFA M1, can we construct a minimal NFA M2 such 
that L(M1) = L(M2)?

40

◯

◯ but harder
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Myhill-Nerode Theorem
• Given a language L ⊆Σ*, define a binary relation RL over Σ* as follows. 

• xRLy iff ∀z ∈Σ* (xz ∈ L ↔ yz ∈ L) 

• RL can be shown to be an equivalence relation. 

• RL divide the set of string into equivalence classes. 

• L is regular iff RL has a finite number of equivalence classes. 

• The number of states in the minimal DFA recognizing L is equal to the 
number of equivalence classes in RL.

41
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Minimization 
Idea

• For a language L ⊆ Σ*, compute the equivalence classes of 
L. 

• Construct a state for each equivalence class. 

• A equivalence class C1 can take an a-transition to another 
equivalence class C2 if there is a string x ∈ C1 such that xa ∈ 
C2. 

• How to find the equivalence classes?

42
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Minimization 
Hopcroft’s Algorithm

43

P := {F, Q \ F};
W := {F};
while (W is not empty) do
     choose and remove a set A from W
     for each c in Σ do
          let X be the set of states for which a transition on c leads to a state in A
          for each set Y in P for which X ∩ Y is nonempty and Y \ X is nonempty do
               replace Y in P by the two sets X ∩ Y and Y \ X
               if Y is in W
                    replace Y in W by the same two sets
               else
                    if |X ∩ Y| <= |Y \ X|
                         add X ∩ Y to W
                    else
                         add Y \ X to W
          end;
     end;
end;

the pseudocode is taken from https://en.wikipedia.org/wiki/DFA_minimization

https://en.wikipedia.org/wiki/DFA_minimization
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Language Expressions

• So far we know that a regular language can be accepted by a 
finite state automaton. 

• Can we represent a regular language in other forms?

44
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Language Expressions

• So far we know that a regular language can be accepted by a 
finite state automaton. 

• Can we represent a regular language in other forms?

44

regular expressions
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Regular Expressions (RE)
• Let Σ be an alphabet. 

• The regular expressions over Σ are defined as follows. 

• ∅ is a regular expression denoting the empty set; 

• 𝜖 is a regular expression denoting the set {𝜖}; 

• for each a ∈ Σ, a is a regular expression denoting the set {a}; 

• if r and s are regular expressions denoting the sets R and S respectively, then 
r+s, rs, and r* are regular expressions denoting R∪S, RS, and R* respectively. 

• The language of a regular expression e is denoted by L(e).

45
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Regular Expressions 
Examples

• Let Σ = {a, b}. 

• a*ba* = {w | w has exactly a single b} 

• Σ*bΣ* = {w | w has at least one b} 

• Σ*abaΣ* = {w | w has a substring aba} 

• a+b+aΣ*a+bΣ*b = {w | w starts and ends with the same 
symbol}

46
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Regular Expressions 
Examples (cont’d)

• r+∅ = ? 

• r+𝜖 = ? 

• r∅ = ? 

• r𝜖 = ?

47
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Regular Expressions 
Examples (cont’d)

• r+∅ = ? 

• r+𝜖 = ? 

• r∅ = ? 

• r𝜖 = ?

47
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Regular Expressions 
Examples (cont’d)

• r+∅ = ? 

• r+𝜖 = ? 

• r∅ = ? 

• r𝜖 = ?

47

r

r+𝜖
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Regular Expressions 
Examples (cont’d)

• r+∅ = ? 

• r+𝜖 = ? 

• r∅ = ? 

• r𝜖 = ?

47

r

r+𝜖

∅
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Regular Expressions 
Examples (cont’d)

• r+∅ = ? 

• r+𝜖 = ? 

• r∅ = ? 

• r𝜖 = ?

47

r

r+𝜖

∅
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Exercise

• Write regular expressions to describe the following languages. 
(Σ = {a, b}) 

• {w | the length of w is even} 

• {w | w has at most two b’s} 

• {w | every a in w is followed by b}

48
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Regular Expressions  
VS 

Finite State Automata

• A language is recognized by an NFA if and only if some 
regular expression describes it. 

• A language is regular if and only if some regular expression 
describes it.

49
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From RE to NFA

50

s0

1

s0

1

s0 s1
a

1

∅ 𝜖 a

Let Ar be an NFA recognizing the language of a regular expression r.


r+s: union of Ar and As 

rs: concatenation of Ar and As 

r*: the Kleene closure of Ar
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From NFA to RE

• Transitive Closure Method 

• State Removal Method 

• Brzozowski Algebraic Method

51
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Transitive Closure Method
• Let D = ({s1, …, sn}, Σ, 𝛿, {s1}, F) be a DFA. 

• Define 

• Rij
0
 = {a | (si, a, sj) ∈ 𝛿} if i ≠ j 

• Rij
0
 = {a | (si, a, sj) ∈ 𝛿} ∪ {𝜖} if i = j 

• Rij
k
 = Rik

k-1
(Rkk

k-1
)*Rkj

k-1
 ∪ Rij

k-1
 

• Rij
k
 represents the inputs that cause D to go from si to sj without passing through a state 

higher than sk. 

• Rij
k
 can be denoted by regular expressions.  

• L(D) = ⋃Sj ∈ F R1j
n
.

52
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Transitive Closure Method 
Example

53

s1 s2

b

a

b

a

1

k = 0 k = 1 k = 2

R11k b+𝜖 (b+𝜖)(b+𝜖)*(b+𝜖)+(b+𝜖) 
= b*

R12k a (b+𝜖)(b+𝜖)*a+a 
= b*a

b*a(b*a+𝜖)*(b*a+𝜖)+b*a 
= (a+b)*a

R21k b b(b+𝜖)*(b+𝜖)+b 
= b+

R22k a+𝜖 b(b+𝜖)*a+(a+𝜖) 
= b*a+𝜖

b+ = bb*
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State Removal Method

• Make the NFA has a single accepting state. 

• Make the NFA has a single initial state. 

• Remove states and change transition labels (may be regular 
expressions) until there is only the initial state and the 
accepting state. 

• Compute the regular expression.

54
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State Removal Method 
Example

55
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State Removal Method 
Example
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State Removal Method 
Example
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State Removal Method 
Example
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s0 s1

s2

b

a

a

bb

a

1

s0 s1

b+ aa

ab

a+ bb

ba

1

s0

ab+ (b+ aa)(ba)⇤(a+ bb)

1

(ab+(b+aa)(ba)*(a+bb))*

×

×
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Brzozowski Algebraic Method

• M = (Q, Σ, 𝛿, {q0}, F) is an NFA containing no 𝜖-
transitions. 

• For every qi, create the equation 

• Solve the equation system and find Q0.

56

Qi =+qi
a!qj

aQj +

⇢
{✏}, if qi 2 F
?, else
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Brzozowski Algebraic Method 
Example

Q0 = bQ1 + aQ2 + 𝜖 
Q1 = aQ0 + bQ2 
Q2 = bQ0 + aQ1

57

s0 s1

s2

b

a

a

bb

a

1

Q2 = bQ0 + aQ1 
    = bQ0 + a(aQ0 + bQ2) 
    = abQ2 + (b+aa)Q0

by Arden’s Lemma: 
L = UL+V iff L = U*V where L,U,V⊆Σ* with 𝜖 ∉ U

Q2 = (ab)*(b+aa)Q0
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Q0 = bQ1 + aQ2 + 𝜖 
    = b(aQ0 + bQ2) + aQ2 + 𝜖 
    = baQ0 + (bb+a)Q2 + 𝜖 
    = (ba+(bb+a)(ab)*(b+aa))Q0 + 𝜖

Brzozowski Algebraic Method 
Example (cont’d)

Q0 = bQ1 + aQ2 + 𝜖 
Q1 = aQ0 + bQ2 
Q2 = bQ0 + aQ1

58

s0 s1

s2

b

a

a

bb

a

1

Q2 = (ab)*(b+aa)Q0

Q0 = (ba+(bb+a)(ab)*(b+aa))*

by Arden’s Lemma: 
L = UL+V iff L = U*V where L,U,V⊆Σ* with 𝜖 ∉ U
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Exercise
• Express the language of the following automaton by a regular 

expression.

59

s0 s1

s2

a

b

a

b

a

b

1
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WS1S
• Syntax of S1S (monadic second-order logic of one successor) 

• First-order variable set: V = {x1, x2, …} 

• Second-order variable set: X = {X1, X2, …} 

• Terms: t ::= 0 | xi 

• Formulas: 𝜑 ::= S(t, t) | Xi(t) | ¬ 𝜑 | 𝜑 ∧ 𝜑 | ∃xi.𝜑 | ∃Xi.𝜑 

• S is the successor predicate. 

• WS1S: fragment of S1S which allows only quantification over finite sets

60
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Semantics of S1S
• Signature  

• Interpretation 

• Satisfiability 

• Validity

61

� = h�1,�2i,�1 : V ! N,�2 : X ! 2N

� |= X(t) i↵ �(t) 2 �(X)

� |= S(t, t

0
) i↵ �(t) + 1 = �(t

0
)

� |= ¬' i↵ � 6|= '

� |= '1 ^ '2 i↵ � |= '1 and � |= '2

� |= 9x.' i↵ �[n/x] |= ' for some n 2 N
� |= 9X.' i↵ �[N/X] |= ' for some N 2 2

N

|= ' i↵ � |= ' for all interpretations �

hN, Si
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Abbreviations

62

'1 _ '2 := ¬(¬'1 ^ ¬'2)
'1 ! '2 := ¬'1 _ '2

8x.' := ¬9x.¬'
8X.' := ¬9X.¬'
x  y := 8X.(y 2 X ^ 8z.8z0.(z 2 X ^ S(z0, z) ! z

0 2 X) ! X(x))
x < y := x  y ^ ¬(y  x)
first(x) := ¬9y.S(y, x)
last(x) := ¬9y.S(x, y)
X ✓ Y := 8x.(x 2 X ! x 2 Y )
X = Y := X ✓ Y ^ Y ✓ X

X = ? := 8Z,X ✓ Z

sing(X) := X 6= ? ^ 8Y.(Y ✓ X ! (X ✓ Y _ Y = ?))



FLOLAC 2017 Elementary Computation Theory

WS1S on Words
• Let Σ be a finite set of alphabet. 

• A word is defined as w = a0a1 … an-1. 

• A unary predicate Pa is defined for every a ∈ Σ such that Pa(i) if and 
only if ai = a. 

• Domain of w: dom(w) = {0, …, |w| - 1} 

• Word model of w: ⟨dom(w), Sw, (Pa)a∈Σ⟩ 

• Büchi Theorem: a language L ⊆ Σ* is regular if and only if L is 
expressible in WS1S.
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WS1S Examples
• the last symbol is a 

• ∃x.(Pa(x) ∧ ¬∃y.(x < y)) 

• contains substring ab 

• ∃x.∃y.(Pa(x) ∧ Pb(y) ∧ S(x,y)) 

• has substring ba*b 

• ∃x.∃y.(x < y ∧ Pb(x) ∧ Pb(y) ∧ ∀z((x < z ∧ z < y) → Pa(z))) 

• non-empty word with a even length 

• ∃f.∃l.∃X.(first(f) ∧ last(l) ∧ X(f) ∧ ¬X(l) ∧ ∀y.∀z.(S(y,z) → (X(y) ↔ ¬X(z))))

64



FLOLAC 2017 Elementary Computation Theory

Exercises

• Write WS1S formulas to describe the following words. 

• Only a’s can occur between any two occurrences of b’s  

• Has an odd length (please start with ∃)

65
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From NFA to WS1S
• Let M = (Q, Σ, 𝛿, {s0}, F) be an NFA.  

• Assume Q = {s0, s1, …, sn}. 

• Non-empty accepting words will satisfy the following formula.

66

9X0 . . . Xn. ( ^i 6=j 8.x¬(x 2 Xi ^ x 2 Xj)
^ 8x.(first(x) ! x 2 X0)
^ 8x.8y.(S(x, y) ! _(si,a,sj)2�(x 2 Xi ^ x 2 Pa ^ y 2 Xj))
^ 8x.(last(x) ! _(si,a,sf )2�;sf2F (x 2 Xi ^ x 2 Pa)))
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A Better Encoding
• Assume |Σ| = 2

m. 

• A symbol is binary encoded as (t0, t1, …, tm-1). 

• A word is defined as w = a0a1 … an-1. 

• A unary predicate Pi is defined for every i ∈ {0,…,m-1} such that Pi(j) if and only if the 
i-th track of aj is 1. 

• Example: 

• m = 2, Σ = {a, b, c, d}, a = (00), b = (01), c = (10), d = (11) 

• P0 = {0, 3, 4}, P1 = {1, 4} 

• w = (10)(01)(00)(10)(11) = cbacd

67
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Non-regular Languages

• Examples of non-regular languages: 

• { anbn | n ∈ ℕ } 

• { w#w | w ∈ {a, b}* } 

• How to prove that a language is non-regular?
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Pumping Lemma

• If L is a regular language, then there is a number p ≥ 1 (the 
pumping length) such that, if s is any string in L and |s| ≥ p, 
then s may be divided as s = xyz satisfying 

• for each i ≥ 0, xyiz ∈ L, 

• |y| > 0, and 

• |xy| ≤ p.

69
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Pumping Lemma 
Example

• Let’s show that L = { anbn | n ∈ ℕ } is non-regular. 

• Assume L is regular and let w = apbp. 

• By pumping lemma, there are x, y, and z such that w = xyz, 

• xyiz ∈ L for each i ≥ 0, 

• |y| ≥ 0, and 

• |xy| ≤ p. 

• With |xy| ≤ p, we know that y contains only a. 

• But xy2z ∉ L.
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Formal Languages

71

Chomsky Hierarchy Grammar Language Computation Model

Type-0 Unrestricted Recursively enumerable Turing machine

Type-1 Context-sensitive Context-sensitive Linear-bounded

Type-2 Context-free Context-free Pushdown

Type-3 Regular Regular Finite

the list of formal languages in this table is not complete
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Tools

• MONA (http://www.brics.dk/mona/) 

• JFLAP (http://www.jflap.org)

72

http://www.brics.dk/mona/
http://www.jflap.org
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Infinite Computations

• A reactive system is a system that continuously interacts with 
its environment. 

• Computations of a reactive system are infinite. 

• How to model such infinite computations? 

• Automata on infinite words

73
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Infinite Words
• Let Σ be a finite alphabet. 

• An infinite word w over Σ (w ∈ Σ𝜔) is a sequence of symbols a0a1a2… 
with ai ∈ Σ. 

• Length of w is 𝜔. 

• Examples (Σ = {a, b}): 

• a b (b a)𝜔 

• a b a (b a b)𝝎
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𝜔-Automata 
Syntax

• An 𝜔-automaton is a tuple (Q, Σ, 𝛿, q0, Acc) where 

• Q is a finite set of states, 

• Σ is a finite alphabet, 

• 𝛿: Q × Σ → 2Q is the transition function, 

• q0 is the initial state, and 

• Acc is the acceptance condition. 

• Different 𝜔-automata can be defined by different acceptance conditions.

75
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𝜔-Automata 
Semantics

• Let M = (Q, Σ, 𝛿, q0, Acc) be an 𝜔-automaton. 

• Let w = a0a1a2… be an infinite word over Σ. 

• A run of w on M is a sequence of states q0q1q2… where (qi, 
ai, qi+1) ∈ 𝛿.
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𝜔-Automata 
Semantics (cont’d)

• A run is accepting if the run satisfies the acceptance 
condition Acc. 

• A word is accepted if there is a run of M on the word. 

• The language of M, denoted by L(M), is the set of words 
accepted by M. 

• Define Inf(𝜌) = {s | s occurs in 𝜌 infinitely many times}.

77
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Acceptance Conditions

78

Acceptance 
Condition

Acc Satisfaction Abbrev. Note

Büchi Acc = F ⊆ Q Inf(𝜌) ∩ F ≠ ∅ NBW

co-Büchi Acc = F ⊆ Q Inf(𝜌) ∩ F = ∅ NCW

Generalized 
Büchi

Acc = {F1, …, Fn}, 
Fi ⊆ Q

Inf(𝜌) ∩ Fi ≠ ∅ for all Fi ∈ 
F

NGW

Rabin Acc = {(E1, F1), …, (En, Fn)}, 
Fi ⊆ Q, Ei ⊆ Q

Inf(𝜌) ∩ Ei = ∅ and 
Inf(𝜌) ∩ Fi ≠ ∅ for some i

NRW

Streett Acc = {(E1, F1), …, (En, Fn)}, 
Fi ⊆ Q, Ei ⊆ Q

Inf(𝜌) ∩ Fi ≠ ∅ implies 
Inf(𝜌) ∩ Ei ≠ ∅ for all i

NSW

Muller Acc = {F1, …, Fn}, 
Fi ⊆ Q

Inf(𝜌) = Fi for some i NMW

Parity Acc: Q→ℕ min parity in 𝜌 is even NPW Acc(q) is the 
parity of q
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Büchi Automata 
Example 1

79

q0 q1

¬p

p

True

1

accepts infinite words where p holds eventually
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Büchi Automata 
Example 2

80

accepts infinite words where eventually p will always hold

q0 q1

True

p

p

1
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Büchi Automata 
Example 3

81

accepts infinite words where p holds until q holds

q0 q1

p ¬q

q

True

1
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Exercise

• Draw a Büchi automaton that accepts infinite words where p 
holds infinitely many times. (Σ = {p, ¬p})

82
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Deterministic VS Nondeterministic

83

q0 q1

True

p

p

1

• Can you find a deterministic Büchi automaton (DBW) that 
accepts the same language?
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Deterministic VS Nondeterministic

83

q0 q1

True

p

p

1

• Can you find a deterministic Büchi automaton (DBW) that 
accepts the same language?

{q0} {q0, q1}

¬p

p

¬p

p

1

determinization using

subset construction
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Deterministic VS Nondeterministic

83

q0 q1

True

p

p

1

• Can you find a deterministic Büchi automaton (DBW) that 
accepts the same language?

NBW is more expressive than DBW

{q0} {q0, q1}

¬p

p

¬p

p

1

determinization using

subset construction
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Model VS Specification

• So far we already learnt some abstract machines as models of 
computations. 

• We may require that the computations must satisfy some 
properties. 

• How do we check?

84
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Model Checking
• Model the computations of a system as an automaton M. 

• Model the computations allowed by the specification as an automaton 
S. 

• Check if the system satisfies the specification by checking if L(M) ⊆ 
L(S). 

• Or equivalently checking if P is empty where P is the intersection of 

• M and 

• the complement of S.

85

M
S
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Emptiness Test

86

q1 q2

q3

q4

q5

q6

1

• Use double depth-first search to find an accepting lasso.
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Büchi Automata 
Intersection

• M1 = (Q1, Σ, 𝛿1, q01, F1), M2 = (Q2, Σ, 𝛿2, q02, F2) 

• Construct M = (Q1×Q2×{0,1,2}, Σ, 𝛿, (q01, q02, 0), Q1×Q2×{0}) where ((q1, q2, 
i), a, (q1’, q2’, j)) ∈ 𝛿 if 

• (q1, a, q1’) ∈ 𝛿1 and (q2, a, q2’) ∈ 𝛿2, 

• j = 1 if i = 0, 

• j = i if i ≠ 0 and qi ∉ Fi, and 

• j = (i + 1) mod 2 if i ≠ 0 and qi ∈ Fi. 

• L(M) = L(M1) ∩ L(M2)

87
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Büchi Automata 
Complementation

88

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one?

q0 q1

¬p

p

¬p

p

1

q0 q1

¬p

p

¬p

p

1
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Büchi Automata 
Complementation

88

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one?×
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Büchi Automata 
Complementation

88

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one?×
Complementation of NBW is much harder than that of NFA.

q0 q1

¬p

p

¬p

p
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q0 q1

¬p

p

¬p

p

1
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Büchi Automata 
Complementation

88

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one?×
Complementation of NBW is much harder than that of NFA.

We may express specifications using logic formulas.

q0 q1

¬p

p

¬p

p

1

q0 q1

¬p

p

¬p

p

1
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LTL Model Checking
• Express the behavior of a system as a Büchi automaton M 

(usually converted from a Kripke structure). 

• Express the specification as a formula f in linear temporal 
logic (LTL). 

• Translation ¬f to a Büchi automaton A¬f with labels on 
states. 

• Check if L(M)∩L(A¬f) is empty.

89
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Linear Temporal Logic 
Syntax

• AP is a finite set of atomic propositions. 

• The alphabet Σ is defined as 2AP. 

• A linear temporal logic (LTL) formula is defined as follows. 

• For every p ∈ AP, p is an LTL formula. 

• If f and g are LTL formulas, then so are ¬ f, f ∧ g, X f, and f 
U g. 

• X and U are (future) temporal operators.

90
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Linear Temporal Logic 
Semantics

• A state is a subset of AP, containing exactly those propositions that 
evaluate to true in that state. 

• An LTL formula is interpreted over an infinite sequence of states 𝜌 = s0s1….

91

(𝜌, i) ⊨ p       iff  p ∈ si 

(𝜌, i) ⊨ ¬ f     iff  (𝜌, i) ⊭ f 

(𝜌, i) ⊨ f ∧ g   iff  (𝜌, i) ⊨ f and (𝜌, i) ⊨ g 

(𝜌, i) ⊨ X f    iff  (𝜌, i + 1) ⊨ f 

(𝜌, i) ⊨ f U g  iff  exists j ≥ i such that (𝜌, j) ⊨ g and 

                        for all i ≤ k < j, (𝜌, k) ⊨ f
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• (𝜌, i) ⊨ X f  iff  (𝜌, i + 1) ⊨ f 

• (𝜌, i) ⊨ f U g  iff  exists j ≥ i such that (𝜌, j) ⊨ g and for all i ≤ k < j, (𝜌, k) ⊨ f

Next and Until

92

0

X p p

i i + 1

0

p U q
p

i i + 1

p … p q

jj - 1
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Future and Global

93

• (𝜌, i) ⊨ F f  iff  (𝜌, j) ⊨ f for some j ≥ i 

• (𝜌, i) ⊨ G f  iff  (𝝆, j) ⊨ f for all j ≥ i

0

F p p

i j

0

G p
p

i

p p p p …p
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Release

94

• (𝜌, i) ⊨ f R g iff exists j ≥ i such that (𝜌, j) ⊨ f and for all i ≤ k ≤ j, (𝜌, k) ⊨ 
g; or for all j ≥ i, (𝜌, j) ⊨ g

0

p R q
q

i

q q qq
p

j

0

p R q

q

i

q q q …q q
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Abbreviations
• true := p ∨ ¬p 

• false := ¬true 

• f ∨ g := ¬(¬f ∧ ¬g) 

• f → g := ¬f ∨ g 

• f ↔ g := (f → g) ∧ (g → f)

95

• f R g := ¬(¬f U ¬g) 

• F g := true U g 

• G f := false R f

◯ = X, ♢ = F, ☐ = G
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Exercise

• Express the following sentences in LTL formulas. 

• “p occurs infinitely often” 

• “whenever a message is sent, eventually an 
acknowledgement will be received”

96
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Satisfaction, Validity, and Congruence

• 𝜌 ⊨ f: a state sequence 𝜌 satisfies an LTL formula f 

• 𝜌 ⊨ f  iff (𝜌, 0) ⊨ f 

• ⊨ f: an LTL formula f is valid 

• ⊨ f  iff 𝜌 ⊨ f for all 𝜌 

• f ≅ g: two formulas f and g are congruent 

• f ≅ g iff ⊨ G (f ↔ g)
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Congruent Formulas
• ¬ X f ≅ X ¬ f 

• ¬ F g ≅ G ¬ g 

• ¬ G f ≅ F ¬ f 

• G G f ≅ G f 

• F F g ≅ F g 

• ¬ ¬ f ≅ f

98



FLOLAC 2017 Elementary Computation Theory

Basic Formulas

• A literal is either a proposition or its negation. 

• A basic formula is either a literal or an X-formula.
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Expansion Formulas

• F g ≅ g ∨ X F g  

• G f ≅ f ∧ X G f 

• f U g ≅ g ∨ (f ∧ X (f U g)) 

• f R g ≅ g ∧ (f ∨ X (f R g))

100
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Expressive Power of LTL
• LTL is strictly less expressive than NBW. 

• “even p” can be expressed in NBW but not LTL. 

• NBW is as expressive as QPTL (Quantified Propositional 
Temporal Logic). 

• “even p” in QPTL: ∃ t. t ∧ G (t ↔ X ¬t) ∧ G (t → p)

101

q0 q1

p

True

1
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From LTL to Labeled NGW
• Translate an LTL formula f to a labeled NGW (with labels on states). 

• Take the negation normal form (NNF) of f. 

• Expand fNNF into basic formulas as the initial states. 

• Construct successors of states based on X-formulas. 

• For each subformula g U h, create an acceptance set such that h 
will become true eventually.

102

NNF: negation only occurs right before propositions



FLOLAC 2017 Elementary Computation Theory

From LTL to Labeled NGW 
Example

• f := G F p 

• G F p ≅ (p ∨ X F p) ∧ X G F p ≅ (p ∧ X G F p) ∨ (X F p ∧ X G F p) 

• F p ≅ p ∨ X F p

103

p, X G F p

X F p, X G F p
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From Labeled NGW to NGW

104

q0

q1

q2

True

p

True

p True

p

1

p, X G F p

X F p, X G F p
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From NGW to NBW
• Apply the same technique in the intersection of NBW. 

• Use an index i to remember the next acceptance set in {F1, F2, 
…, Fn} to be passed. 

• Once a state in Fi is passed, increase the index i by 1. 

• If every Fi ∈ {F1, F2, …, Fn} has been passed at least once, 
change the index to 0 and set the index to 1 in the successors. 

• A run is accepting if the index 0 is passed infinitely many times.
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Tools

• LTL2BA (http://www.lsv.fr/~gastin/ltl2ba/index.php) 

• LTL3BA (https://sourceforge.net/projects/ltl3ba/) 

• SPIN (http://spinroot.com/spin/whatispin.html) 

• NuSMV (http://nusmv.fbk.eu) 

• GOAL (http://goal.im.ntu.edu.tw/wiki/doku.php)
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http://www.lsv.fr/~gastin/ltl2ba/index.php
https://sourceforge.net/projects/ltl3ba/
http://spinroot.com/spin/whatispin.html
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