Software Verification with Satisfiability Modulo Theories
- Decision Procedures -

Ming-Hsien Tsai

Institute of Information Science
Academia Sinica

FLOLAC 2017

Reference book: Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer 2007



Outline

The theory Tz and its quantifier-free fragment

Deciding T'z-satisfiability of quantifier-free Yz-formulae

e Congruence closure algorithm

Implementation of the decision procedure

Trps - recursive data structures
o Tcons - |iStS

Ty - arrays

FLOLAC 2017

2

Software Verification with Satisfiability Modulo Theories



Theory of Equality



Theory of Equality

Denoted by Tk

Referred to as the theory of EUF (Equality with
Uninterpreted Functions)

Play a central role in combining theories that share the
equality predicate

FLOLAC 2017 4 Software Verification with Satisfiability Modulo Theories



Signature of Tz

Ye:{=,a,b¢c, ... f,9 h, ....p, q 1, ..}

consists of
e —, a binary predicate;

e and all constant, function and predicate symbols

FLOLAC 2017 5 Software Verification with Satisfiability Modulo Theories



ZEuformulae

e z=g(y, ) = flx) = flg(y, 2))

o fififla)) = a n AAffifla))))) = a A fla) # a

f(a) # a abbreviates =(f(a) = a)

FLOLAC 2017 6 Software Verification with Satisfiability Modulo Theories



Axioms of Equality

o Reflexivity: vx. x = x
e Symmetry: Vx,y. Xx=y — y = X

o Iransitivity: VX,y,z X=yAy=2zZ — X=2Z

FLOLAC 2017 7 Software Verification with Satisfiability Modulo Theories



Axioms of Equality

o Reflexivity: vx. x = x
e Symmetry: Vx,y. Xx=y — y = X

o Iransitivity: VX,y,z X=yAy=2zZ — X=2Z

with the three axioms, = is defined
to be an equivalence relation

FLOLAC 2017 7 Software Verification with Satisfiability Modulo Theories



Equality of Function Terms

e When two function terms are equal?

flz) = flg(y, 2))

FLOLAC 2017 8 Software Verification with Satisfiability Modulo Theories



Function Congruence

e Function congruence (axiom schema)
o VX, Y. (Aic1ton i = 4i) — fIX) = AY)
e Instantiated axioms:
o Vry z=y— flz) = fly)
® VI, 12,Y1,Y2. T1 = Y1 A Tp = Y2 — g(x1, :132) — g(y1, y2)

Capital X and Y are vectors of variables
FLOLAC 2017 9 Software Verification with Satisfiability Modulo Theories



Function Congruence

e Function congruence (axiom schema)
® VX, Y. (/\@':1 ton Li = yz) — f(X) — f(Y)

e Instantiated axioms:

o Vz,y. z = y — flz) = fly)

® VIL,m,YLY2. T1 = Y1 A T2 = Y2 — g(21, 2) = (Y1, ¥2)
makes = a congruence relation

Capital X and Y are vectors of variables
FLOLAC 2017 9 Software Verification with Satisfiability Modulo Theories



Predicate Congruence

e Predicate congruence

o VX Y. (/\7;:1 ton Li = yz) — (p(X) « p(Y))

FLOLAC 2017 10 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 1

e Is the following Yeformula Tssatisfiable?

o fl) =fy) Az #y

r # y abbreviates =(z = y)

FLOLAC 2017 11 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififla)) = a n AAfIfa))))) = a A fla) # a

FLOLAC 2017 12 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififla)) = a n AAfIfa))))) = a A fla) # a

1. ff(f(fla)))) = fla) (function congruence)

FLOLAC 2017 12 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififa)) = a A (ffififa))) = a A fla) # a

1. f(f(f(fla)))) = fla) (function congruence)
2. ffff0) = fifa) (function congruence)

FLOLAC 2017 12 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififa)) = a A (ffififa))) = a A fla) # a

1. f(f(f(fla)))) = fla) (function congruence)
2. ffff0) = fifa) (function congruence)
3. ffla)) = AAAAA))))) (symmetry)

FLOLAC 2017 12 Software Verification with Satisfiability Modulo Theories



TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

4.

fififa)) = a A (ffififa))) = a A fla) # a

fifla)) = a

FLOLAC 2017

12

(function congruence)

(function congruence)

(symmetry)

(transitivity)

Software Verification with Satisfiability Modulo Theories



Get Rid of Predicate

Congruence

e Transform a Ypformula to a Yp-formula without predicates other than —
e Example pl

o 2=y — (p(x) & p(y)) is transformed to

o =y ((fi(z) = o) « (fi(y) = o))

e Example p2

o p(x) A gz, y) A qly, 2) = —q(z, 2) is transformed to

o fu(z) = o A flx,y) = oA fly, 2) =0 — flz,2) e

FLOLAC 2017 13 Software Verification with Satisfiability Modulo Theories



In The Following

e Consider Yg-formulae without predicates other than =
o T'p-satisfiability of Xzformulae is undecidable
e Consider only the quantifier-free fragment

e Consider formulae in disjunctive normal form (DNF)

(aiA@A...Aan) V ... V (b1AD2A...Abp)

FLOLAC 2017 14 Software Verification with Satisfiability Modulo Theories



Congruence Closure Algorithm



Observation

Applying (symmetry), (reflexivity), (transitivity), and (congruence) to
positive literals s = ¢ of a XYg-formula F produces more equalities over terms
occurring in formula F

There are only a finite number of terms in F
Only a finite number of equalities among these terms are possible

Then, either

e some equality is formed that directly contradicts a negative literal s’ # ¢
of F' or

e the propagation of equalities ends without finding a contradiction

FLOLAC 2017 16 Software Verification with Satisfiability Modulo Theories



Observation

Applying (symmetry), (reflexivity), (transitivity), and (congruence) to
positive literals s = ¢ of a XYg-formula F produces more equalities over terms
occurring in formula F

There are only a finite number of terms in F
Only a finite number of equalities among these terms are possible

Then, either

e some equality is formed that directly contradicts a negative literal s’ # ¢
of F' or

e the propagation of equalities ends without finding a contradiction
form the congruence closure of =

FLOLAC 2017 16 Software Verification with Satisfiability Modulo Theories



Class

e (Consider an equivalence relation R over a set S

e The equivalence class of s € S under R is the set

o.

Is|r £ {s" € S: sRs’}

e If R is a congruence relation over S, then |s|r is the
congruence class of s

FLOLAC 2017 17 Software Verification with Satisfiability Modulo Theories



Example of Class

e (Consider the set Z of integers and the equivalence relation =2
such that

e m=2n iff (m mod2) = (n mod 2)

13|l-2={neZ:(nmod?2)= (3 mod2)}
={neZ:(nmod2) =1}
= {n e Z: nisodd}

FLOLAC 2017 18 Software Verification with Satisfiability Modulo Theories



Partition

A partition P of S'is a set of subsets of S that is total,
(US’EP S’) — Sv
and disjoint,

V51,52 € P. 51+ 52— 51n S =0

FLOLAC 2017 19 Software Verification with Satisfiability Modulo Theories



Quotient

e The quotient S/R of S by the equivalence (congruence)

relation R is a partition of S: it is a set of equivalence
(congruence) classes

e S/R={|s|lr:se S}

FLOLAC 2017 20 Software Verification with Satisfiability Modulo Theories



Example of Quotient

® The quotient Z/=2 is a partition: it is the set of equivalence
classes

e {{neZ:nisodd}, {neZ: niseven}}

FLOLAC 2017 21 Software Verification with Satisfiability Modulo Theories



Equivalence Relation, Partition,

and Quotient

e An equivalence relation R induces a partition S/R of S

e A given partition P of S induces an equivalence relation over

S

e s51Rs iff for some S’ € P, both s1,50 € 5

FLOLAC 2017 22 Software Verification with Satisfiability Modulo Theories



Relation Refinement

Consider two binary relations R; and Rz over the set S

Riis a refinement of R, or R1 < Ro, if

® Vsi,s2€ 5. s1R1s2 — s1Raso

We also say that R; refines R

Viewing the relations as sets of pairs, B1 C R»

FLOLAC 2017

23

Software Verification with Satisfiability Modulo Theories



Example 1 of Relation

Refinement

S ={a, b}
R1: {aR1b}
R> : {aR2b, bR2b}

R1 < R»

FLOLAC 2017 24 Software Verification with Satisfiability Modulo Theories



Example 2 of Relation

Refinement

Consider set S
Ri: {sRis: se S}
Ry : {sRat: s;te S}

R1 < R»

FLOLAC 2017 25 Software Verification with Satisfiability Modulo Theories



Example 2 of Relation

Refinement

Consider set S
Ri: {sRis: s€ S} Pr:{{s}:se 5}
Ry : {sRat: s;te S}

R1 < R»

FLOLAC 2017 25 Software Verification with Satisfiability Modulo Theories



Example 2 of Relation

Refinement
Consider set S
Ri:{sRis: se S} Pr:{{s}:s€ 5}
Ry : {sRst: ste S} Py {8}

R1 < R»

FLOLAC 2017 25 Software Verification with Satisfiability Modulo Theories



Example 3 of Relation

Refinement

Consider the set Z
Ri : {xR1y : x mod 2 = y mod 2}
Ry : {zR1y : x mod 4 = y mod 4}

Rs < R

FLOLAC 2017 26 Software Verification with Satisfiability Modulo Theories



Closure

e The equivalence closure R¥ of the binary relation R over S is the
equivalence relation such that

e R refines RY: R < R%:

e for all other equivalence relations R’ such that R < R’, either
e R = RY or
o RE< R

e RYis the smallest equivalence relation that covers R

FLOLAC 2017 27 Software Verification with Satisfiability Modulo Theories



Example of Equivalence Closure

e Then,
o aRb, bRc, dRd € R’ (since R € R");
e aRa, bRb, cRc € R (by reflexivity);
e bRa, cRb € Rr" (by symmetry); 5 = {CL, b’ © d}
e aRce R’ (by transitivity); R — {aRb7 bRC, de}
e cRae R (by symmetry);
e Hence
e R — {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}

FLOLAC 2017 28 Software Verification with Satisfiability Modulo Theories



Congruence Closure

e The congruence closure R¢ of R is the smallest congruence
relation that covers R

FLOLAC 2017 29 Software Verification with Satisfiability Modulo Theories



Congruence Closure

e The congruence closure R¢ of R is the smallest congruence
relation that covers R

Compute the congruence closure of a term set

FLOLAC 2017 29 Software Verification with Satisfiability Modulo Theories



Subterm Set

e Subterm set Sg of Ypformula F'is the set that contains
precisely the subterms of F

e Example:
o F': fla, b) = an fifla, b), b) # a

o Sr= {CL, ba f(aa b)v f(f(&, b)v b)}

FLOLAC 2017 30 Software Verification with Satisfiability Modulo Theories



Congruence Relation over
Subterm Set

F:si=tAn..ANSn=1%tn A Sni1F i1 A ... ANSp F 1y

e F'is Tr-satistiable iff there exists a congruence relation ~ over
Sr such that

e foreach i e {1, ..., m}, si~ t;

e foreachie {m+ 1, ..., n}, si =t

FLOLAC 2017 31 Software Verification with Satisfiability Modulo Theories



T'e-interpretation

e The congruence relation ~ defines a Trinterpretation I : (Dr,
aj) of F

e [Djconsists of |Srp / ~| elements

e «; assigns elements of Drto the terms of Srin a way that
respects ~

® ayassigns to = a binary relation over D;that behaves like ~

e \We abbreviate (D[, a]) = Fwith ~ & F

FLOLAC 2017 32 Software Verification with Satisfiability Modulo Theories



Congruence Closure Algorithm

F:si=tA..ANSpn=1%tn A Sni1F i1 A ... NSy F 1y

1. Construct the congruence closure ~ of
{51 — tl, coes Sm — tm}
over the subterm set Sr

2. If s;~ t;forany 1€ {m + 1, ..., n}, return unsatisfiable

3. Otherwise, ~ E F so return satisfiable

FLOLAC 2017 33 Software Verification with Satisfiability Modulo Theories



Step 1

e Begin with ~¢ given by the partition {{s} : s € Sr}

e Import s; = t; by merging the congruence classes [s|-i1 and
ti] i1

e Form the union of [8¢]~¢.1 and [tf,;]Nz'_l

e Propagate new congruences that arise within the union

FLOLAC 2017 34 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }
e (g, f(a, b)}, 10}, {fifla, b), O)}}  (fa ) =0

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence
Closure Algorithm
F: fla,b) = an fifla ), b) # a
o {{a}, {b}, {fa, b)}, {fifla, b), b)}}
o {{a f(a, b)}, {b}, {f(Ma, ), D)} (flat) — 0

(function congruence)

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence
Closure Algorithm
F:fla,b) = anfifla, b), b) # a
o {{a}, {0}, {fla, )}, {/(fla, b), b)}}
o {{a, f(a, b)}, {0}, {A(fla, b), O)}}  (fa,b) =)
o {{a, fla, b), f(fla, b), D)}, {b}} (function congruence)

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 1 of Congruence
Closure Algorithm
F:fla,b) = anfifla, b), b) # a
o {{a}, {0}, {fla, )}, {/(fla, b), b)}}
o {{a, f(a, b)}, {0}, {A(fla, b), O)}}  (fa,b) =)
o {{a, fla, b), f(fla, b), D)}, {b}} (function congruence)

e T'r-unsatisfiable

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, Pla)}, {fla)}, 1F(a)}, f(a)}s {f(a)})  (Fla) — o)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

(function congruence)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a. P(a)}, {fa), F(a)}, {F(a), F(a)}) (unction congruence)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)

(£(a) = a)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)
o {{a Fla), Fla), P(@)}. {fla), F(a)}) (P = a

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)
o {{a Fla), Fla), P(@)}. {fla), F(a)}) (P = a

(function congruence)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

e {{a F(a)}, N0, (@)}, {F(a), Fla)}) (unction congruence)
o {{a Pa), Fla), F(a)}, {fa), f(a)}) (P = a
o {{a fla), £la), (o), f(a), Fa)}) (unction congruence)

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

e {{a F(a)}, N0, (@)}, {F(a), Fla)}) (unction congruence)
o {{a Pa), Fla), F(a)}, {fa), f(a)}) (P = a
o {{a fla), £la), (o), f(a), Fa)}) (unction congruence)

Trunsatisfiable

FLOLAC 2017 36 Software Verification with Satisfiability Modulo Theories



Example 3 of Congruence

Closure Algorithm

o 1zh W WD)} )}

FLOLAC 2017 37 Software Verification with Satisfiability Modulo Theories



Example 3 of Congruence

Closure Algorithm

FLOLAC 2017 37 Software Verification with Satisfiability Modulo Theories



Example 3 of Congruence

Closure Algorithm

o {z}, {v}, {f(®)}, {Ay}}
o {{z}, {y}, {f(2), y)}} (f(z) = f(3))

FLOLAC 2017 37 Software Verification with Satisfiability Modulo Theories



Example 3 of Congruence

Closure Algorithm

o {z}, {v}, {f(®)}, {Ay}}
o {{z}, {y}, {f(2), y)}} (f(z) = f(3))

e T'r-satisfiable

FLOLAC 2017 37 Software Verification with Satisfiability Modulo Theories



Exercise

e Apply the decision procedure for T'r to the following > gformulas.
Provide a level of details as in the slides.

1. f(xay) — f(y,:E) A f(avy) F f(yaa)
2. flg(z)) = g(f(x)) A [9([y)) =z A y) =z A g(fz) # 2
3. fif(fa))) = f(fla) A f(f(fla))) = an fla) # a

4. p(z) A fiflz)) = z A f(fifz)) = = A —~p(f2))

FLOLAC 2017 38 Software Verification with Satisfiability Modulo Theories



Implementation



DAG

1:f
o A directed graph G : (N, E) p
e nodes N = {ni, ng, ..., ni} Q |

e edges £ = {..., {(nj, np, ...} ‘

e A directed acyclic graph (DAG) is a directed graph containing
no loop (or cycle)

FLOLAC 2017 40 Software Verification with Satisfiability Modulo Theories



Subterm Set as DAG

FLOLAC 2017 41 Software Verification with Satisfiability Modulo Theories



Node
type node = {

id : id (unique identification number)

fn : string (constant or function symbol)

args : id list (identification numbers of the function arguments)
mutable find : id (another node in its congruence class)

(following a chain of find references leads to the representative)

mutable ccpar : id set (congruence closure parents,@ for non-representative nodes)

FLOLAC 2017 42 Software Verification with Satisfiability Modulo Theories



DAG as Partition

node 2 = node 3 = {
id = 2; id = 3;
tn = f; fn = a;
args = [3; 4J; args = ||;
find = 3; find = 3;
ccpar — O; ccpar = {1, 2};

Partition: {{f(f(a, b), b), f(a, b), a}, {b}}

FLOLAC 2017 43 Software Verification with Satisfiability Modulo Theories



NOD]

Union-Find Algorithm -

NODE

4 returns the node n with i1d 7

(NODE 4).id = i
(NODE 2).find = 3

FLOLAC 2017 44 Software Verification with Satisfiability Modulo Theories



Union-Find Algorithm -
FIND

(L
let rec FIND 7 =
let n = NODE 4 in >
:/
Y

it n.find = 7 then 7 else FIND n.find

FIND 2 =3

FIND 1 =3
FLOLAC 2017 45 Software Verification with Satisfiability Modulo Theories




Union-Find Algorithm -
UNION

let UNION 21 70 =

let 1 = NODE (FIND 41) in

let n = NODE (FIND 4,) in

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢

FLOLAC 2017 46 Software Verification with Satisfiability Modulo Theories



Union-Find Algorithm -
UNION

let UNION 21 70 = UNION 1 2

let n1 = NODE (FIND 4) in Q
let no = NODE (FIND ) in 0

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢

FLOLAC 2017 46 Software Verification with Satisfiability Modulo Theories



Union-Find Algorithm -
UNION

let UNION 74 72 = UNION 1 2

ni
let n1 = NODE (FIND 4) in Q
let no = NODE (FIND 4) in 0
ni.find + ne.find;

FLOLAC 2017 46 Software Verification with Satisfiability Modulo Theories

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢



Union-Find Algorithm -
UNION

let UNION 74 72 = UNION 1 2

ni
let n1 = NODE (FIND 4) in Q
let no = NODE (FIND 4) in 0
ni.find + ne.find;

FLOLAC 2017 46 Software Verification with Satisfiability Modulo Theories

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢



Union-Find Algorithm -
UNION

let UNION 21 70 = UNION 1 2

let 1 = NODE (FIND 41) in

let n = NODE (FIND 4,) in

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢

FLOLAC 2017 46 Software Verification with Satisfiability Modulo Theories



Union-Find Algorithm -
CCPAR

let CCPAR 1 =

(NODE (FIND 1)).ccpar

FLOLAC 2017 47 Software Verification with Satisfiability Modulo Theories



Congruence Closure Algorithm -
CONGRUENT

let CONGRUENT 4 2 =

let n1 = NODE 4 in

let n2 = NODE 4 in

ni.In = ne.In

A |mi.args| = |no.args|

A Vi e {1, ..., |m.args|}. FIND ni.args|i] = FIND np.args|i]

FLOLAC 2017 48 Software Verification with Satisfiability Modulo Theories



Congruence Closure Algorithm -
MERGE

let rec MERGE 4, 4, =

if FIND 4, # FIND 4, then begin h
let P, = CCPAR i, in 1:f
let P, = CCPAR 4, in b2

7
/
foreach t;, t, € P; X P, do # !

it FIND ¢, # FIND ¢, A CONGRUENT ¢, ¢, Q @

then MERGE tl t2

done

end FLOLAC 2017 49 Software Verification with Satisfiability Modulo Theories



Decision Procedure for 7T';-
Satisfiability

F:si=tAn..ANSn=tn A Sni1 F i1 Ao NSy F Iy

Construct the initial DAG for the subterm set Sg

For ¢ € {1, ers m}, MERGE s; t;

If FIND s; = FIND ¢; for someie {m + 1, ..., n}, return
unsatisfiable

Otherwise, return satisfiable

FLOLAC 2017 50 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 p
1:f

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 .
(1) P, = CCPAR 2 = {1} '

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories




Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 .
(1) P, = CCPAR 2 = {1} '
(2) Ps = CCPAR 3 = {2}

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories




Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 g
(1) P, = CCPAR 2 = {1} X
(2) Ps = CCPAR 3 = {2}

(3) UNION 2 3 @

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories




Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 g
(1) P, = CCPAR 2 = {1} X
(2) Ps = CCPAR 3 = {2}

(3) UNION 2 3 . _

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 |
(1) P, — CCPAR 2 — {1} e/
(2) P CCPARS—{Q}

(3)
(4)

2
3) UNION 2 3 e
4) MERGE 1 2

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE23 |
(1) P, = CCPAR 2 = {1} L/
(2) P; = CCPAR 3 = {2}

(3)
(4)

2
3 UNION23 S
4) MERGE 1 2 '-

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n fifla,

b), b) * a

SF = {CL, b, f(av b)7 f(f(aa b)7 b)}

1. MERGE 2 3
(1) Py = CCPAR 2 = {1}
(2) Ps = CCPAR 3 = {2}
(3) UNION 2 3
(4) MERGE 1 2

Trunsatisfiable

FLOLAC 2017 51

Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30

------
.......
- i

-

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30

-
-
“

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 5 0

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 5 0

~
------

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 5 0

~
------

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 50

------ “,—A ..... A .~~A
Tr-unsatisfiable D NS ¢

FLOLAC 2017 52 Software Verification with Satisfiability Modulo Theories



Soundness and Completeness

Theorem (Sound & Complete). Quantifier-free conjunctive Xp-
formula F'is Tr-satisfiable iff the congruence closure algorithm
returns satisfiable

FLOLAC 2017 53 Software Verification with Satisfiability Modulo Theories



Complexity

Let e be the number of edges and n be the number of nodes in
the initial DAG.

Theorem (Complexity). The congruence closure algorithm run in
time O(e?) for O(n) MERGEs.

FLOLAC 2017 54 Software Verification with Satisfiability Modulo Theories



Recursive Data
Structures



1'rDs

e Can model
e records
o lists
e trees
e stacks
e Cannot model

® queues

FLOLAC 2017 56 Software Verification with Satisfiability Modulo Theories



Theory of Lists - T'ons

Yeons : {cons, car, cdr, atom, =}

cons: a binary function, called the constructor;
car: a unary function, called the left projector;
cdr: a unary function, called the right projector;
atom: a unary predicate;

—: a binary predicate

car(cons(a, b))

a
cdr(cons(a, b)) = b

FLOLAC 2017 57 Software Verification with Satisfiability Modulo Theories



Axioms of T.,,.

o Axioms of (reflexivity), (symmetry), and (transitivity) of T

e Instantiations of the (function congruence) axiom schema for cons, car, and
cdr:

® VI, To,Y1,Y2- Tt = Ty A Y1 = Yo — cons(xy, Y1) = cons(Ta, 1)
o Vy,y. =y — car(x) = car(y)
o Vr,y. x =y — cdr(z) = cdr(y)
e An instantiation of the (predicate congruence) axiom schema for atom:

o Vr,y. x = y — (atom(z) < atom(y))

FLOLAC 2017 58 Software Verification with Satisfiability Modulo Theories



Axioms of T.,,.

v,y car(cons(x, y)) = x (left projection)
v,y cdr(cons(x, y)) = y (right projection)
vz. matom(x) — cons(car(z), cdr(z)) = x (construction)
vx,y. —atom(cons(x, y)) (atom)

FLOLAC 2017 59 Software Verification with Satisfiability Modulo Theories



Decidability

e T..,.s: undecidable

e quantifier-free T.ons: decidable

FLOLAC 2017 60 Software Verification with Satisfiability Modulo Theories



Preprocess

By the (construction) axiom, replace
—atom( u;)
with

wi = cons(uit, ui)

vz. —atom(x) — cons(car(x), cdr(z)) = x (construction)

FLOLAC 2017 61 Software Verification with Satisfiability Modulo Theories



Decision Procedure

F:si=HtAn...ANS8=1tn A Sni1 F tmi1l A ... NSy F Iy
A atom(u) A ... A atom(w)

Construct the initial DAG for the subterm set S,

By the (left projection) and (right projection) axioms, for each node n such that n.fn = cons,
e add car(n) to the DAG and MERGE car(n) n.args|1];
e add cdr(n) to the DAG and MERGE cdr(n) n.args|2|;

For i1 € {1, ..., m}, MERGE s, t,

For ie {m + 1, ..., n}, if FIND s, = FIND ¢, return unsatisfiable

By the (atom axiom), for i € {1, ..., I}, if 3v. FIND v = FIND u; A v.fn = cons, return
unsatisfiability

Otherwise, return satisfiable

FLOLAC 2017 62 Software Verification with Satisfiability Modulo Theories



Combining Ty and T . -

Example

F: car(x) = car(y) A cdr(z) = cdr(y) A flx) #= fly) A

—atom(x) A —atom(y)

F @ car(x) = car(y) A cdr( r) = cdr( ) flx) = fly) A

r = cons(ui, v1) A y = cons(uz, 1)

NN

‘A

FLOLAC 2017 Software Verification with Satisfiability Modulo Theo

Step 1: initial DAG



Combining T and T_,, . -

cons

Example

Step 2: add car(n) and cdr(n)

FLOLAC 2017

64

Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

Step 3: MERGE s; t;

FLOLAC 2017

Example

agLags

65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

Example

L ) — aars) ch C(g
2 _pa @

=)=t
ONOIOINO

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

- = m g,
> ~~

1. car(x) = car(y) @ @

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

- = m g,
> ~~

1. car(x) = car(y) @ @

2. cdr(z) = cdr(y)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

--------
......

Step 3: MERGE s; \CP \CP

1. car(x) = car(y) @ @

2. cdr(z) = cdr(y)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

- - =
.......

Step 3: MERGE s; \CP \CP

L.
2.
3.

car(x) — car (y) @ @

cdr(x) = cdr(y)

z = cons(ui, v)
| | | I

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



'¢¢ A ~
Step 3: MERGE s; \CP \CP

L.
2.
3.

Combining Tz and T, -

- - =
.......

car(x) — car (y) @ @

cdr(x) = cdr(y)

z = cons(ui, v) @ i
| | | I

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



'¢’ . 4 NA L J
Step 3: MERGE s # ‘\MP @QP @

L.
2.
3.

Combining Tz and T, -

- . - .
''''''''

car(x) = car(y) @ @

cdr(x) = cdr(y)

r = cons(u1, v1) .. '
R

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(uz, 1)

Software Verification with Satisfiability Modulo Theories

FLOLAC 2017 65



Combining Ty and T,
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(uz, 1)

Software Verification with Satisfiability Modulo Theories

FLOLAC 2017 65



Combining Ty and T,
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Ty and T,
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Ty and T,

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(ug, 1)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Exercise

e Apply the decision procedure for T'cons to the following

Tcons-formulas. Please write down the call sequence to the
MERGE procedure, draw the final DAG, and draw the final
DAG.

o car(x) = y A cdr(z) = 2z Az F cons(y,2)

o —atom(x) A car(x) = y A cdr(z) = z A x # cons(y,z)

Hint: Apply preprocessing to the formulae if it is necessary.

FLOLAC 2017 66 Software Verification with Satisfiability Modulo Theories






Theory of Arrays - T4

Sac: ][], (e, =)

e ali: a binary function; ali| represents the value of array a at

position 1

e a(i<wv): a ternary function; ali<v) represents the modified

array a in which position ¢ has value v;

e —: a binary predicate

FLOLAC 2017 68 Software Verification with Satisfiability Modulo Theories



Axioms of T

Axioms of (reflexivity), (symmetry), and (transitivity) of Tx

vVa,ij. 1 = 5 — a[z] — a[]] (array congruence)
Va,v,1,7. 1 = j — a{i<w|j] = v (read-over-write 1)
vVa,,1,7. 1 F J] — al1< 1})[]] - a[]] (read-over-write 2)

FLOLAC 2017 69 Software Verification with Satisfiability Modulo Theories



Decision Procedure

e Based on a reduction to T'z-satisfiability via applications of
the (read-over-write) axioms

o If the formula does not contain any write terms, then the
read terms can be viewed as uninterpreted function terms

e Otherwise, any write term must occur in the context of a

read

FLOLAC 2017 70 Software Verification with Satisfiability Modulo Theories



Decision Procedure - Step 1

If F' does not contain any write terms ai<v), perform the
following steps.

1. Associate each array variable a with a fresh function symbol
fa, and replace each read term ali| with f,(7)

2. Decide and return the T-satistiability of the resulting
formula

FLOLAC 2017 71 Software Verification with Satisfiability Modulo Theories



Decision Procedure - Step 2

Select some read-over-write term a{i<w)|j|, and split on two cases:
1. According to (read-over-write 1), replace
Flai<=w|j|| with Fy: Flu| A i =
and recurse on F). If F} is found to be T's-satisfiable, return satisfiable
2. According to (read-over-write 2), replace
Flai<v|j]] with Fy: Fla[j]] A i # j
and recurse on I,. If F, is found to be T's-satisfiable, return satisfiable
If both F; and F, are found to be T 4-unsatisfiable, return unsatisfiable

FLOLAC 2017 72 Software Verification with Satisfiability Modulo Theories



Example of T4

F:io=j3nu* 2Aaj =u A aa<ve<w|j £ aj
o First case:
e Fiiip=jAii=jA@# inAalf] =uAwvn*aj
e Fiip=jAit=jA0i# A fulf) = v Aw#E fuf))

e [ is Ts-unsatisfiable

FLOLAC 2017 73 Software Verification with Satisfiability Modulo Theories



Example of T4

F:a=7Aa0%*2Aaj=uvAaa<oye<swl|j] # dj

e Second case:
e FoipFjAU=JA0F @2Aalj =u A aia<v] # alj
o i =jAbFjAG=JALFE BAa]=1uAuv E aj

P F4:z'1¢j/\i2¢j/\i1:j/\’i1¢iQAaljlzlea[j]¢
alj|

e F5is Ts-unsatisfiable

FLOLAC 2017 74 Software Verification with Satisfiability Modulo Theories



Soundness and Completeness

Theorem (Sound & Complete). Given quantifier-free conjunctive
Y s-tformula F, the decision procedure returns satisfiable iff F'is
T's-satisfiable; otherwise, it returns unsatisfiable

FLOLAC 2017 75 Software Verification with Satisfiability Modulo Theories



Complexity

Theorem (Complexity). Ts-satisfiability of quantifier-free

conjunctive X 4-formula is NP-complete

FLOLAC 2017 76 Software Verification with Satisfiability Modulo Theories



Exercise

e Apply the decision procedure for quantifier-free T4 to the
following > a-formulas.

o wi<efl =eni#*y

° a,<7,<16><]<1f>lk'] — g A JF ]fAi:jA CL[]C] * ¢

FLOLAC 2017 77 Software Verification with Satisfiability Modulo Theories



Summary

Congruence closure algorithm

e relations, equivalence relations, congruence relations, partitions,
quotients, classes, closures

DAG-based implementation
e union-find, merge
Recursive data structures

o Tons

Arrays

FLOLAC 2017 78 Software Verification with Satisfiability Modulo Theories



