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Theory of Equality



Theory of Equality

Denoted by Tk

Referred to as the theory of EUF (Equality with
Uninterpreted Functions)

Play a central role in combining theories that share the
equality predicate
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Signature of Tz

Ye:{=,a,b¢c, ... f,9 h, ....p, q 1, ..}

consists of
e —, a binary predicate;

e and all constant, function and predicate symbols
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ZEuformulae

e z=g(y, ) = flx) = flg(y, 2))

o fififla)) = a n AAffifla))))) = a A fla) # a

f(a) # a abbreviates =(f(a) = a)
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Axioms of Equality

o Reflexivity: vx. x = x
e Symmetry: Vx,y. Xx=y — y = X

o Iransitivity: VX,y,z X=yAy=2zZ — X=2Z
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Axioms of Equality

o Reflexivity: vx. x = x
e Symmetry: Vx,y. Xx=y — y = X

o Iransitivity: VX,y,z X=yAy=2zZ — X=2Z

with the three axioms, = is defined
to be an equivalence relation
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Equality of Function Terms

e When two function terms are equal?

flz) = flg(y, 2))
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Function Congruence

e Function congruence (axiom schema)
o VX, Y. (Aic1ton i = 4i) — fIX) = AY)
e Instantiated axioms:
o Vry z=y— flz) = fly)
® VI, 12,Y1,Y2. T1 = Y1 A Tp = Y2 — g(x1, :132) — g(y1, y2)

Capital X and Y are vectors of variables
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Function Congruence

e Function congruence (axiom schema)
® VX, Y. (/\@':1 ton Li = yz) — f(X) — f(Y)

e Instantiated axioms:

o Vz,y. z = y — flz) = fly)

® VIL,m,YLY2. T1 = Y1 A T2 = Y2 — g(21, 2) = (Y1, ¥2)
makes = a congruence relation

Capital X and Y are vectors of variables
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Predicate Congruence

e Predicate congruence

o VX Y. (/\7;:1 ton Li = yz) — (p(X) « p(Y))
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TrSatistiablility - Example 1

e Is the following Yeformula Tssatisfiable?

o fl) =fy) Az #y

r # y abbreviates =(z = y)
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TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififla)) = a n AAfIfa))))) = a A fla) # a
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TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififla)) = a n AAfIfa))))) = a A fla) # a

1. ff(f(fla)))) = fla) (function congruence)
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TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififa)) = a A (ffififa))) = a A fla) # a

1. f(f(f(fla)))) = fla) (function congruence)
2. ffff0) = fifa) (function congruence)
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TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

fififa)) = a A (ffififa))) = a A fla) # a

1. f(f(f(fla)))) = fla) (function congruence)
2. ffff0) = fifa) (function congruence)
3. ffla)) = AAAAA))))) (symmetry)
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TrSatistiablility - Example 2

Is the following Y g-formula Tz-satisfiable?

4.

fififa)) = a A (ffififa))) = a A fla) # a

fifla)) = a

FLOLAC 2017
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(function congruence)

(symmetry)

(transitivity)
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Get Rid of Predicate

Congruence

e Transform a Ypformula to a Yp-formula without predicates other than —
e Example pl

o 2=y — (p(x) & p(y)) is transformed to

o =y ((fi(z) = o) « (fi(y) = o))

e Example p2

o p(x) A gz, y) A qly, 2) = —q(z, 2) is transformed to

o fu(z) = o A flx,y) = oA fly, 2) =0 — flz,2) e
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In The Following

e Consider Yg-formulae without predicates other than =
o T'p-satisfiability of Xzformulae is undecidable
e Consider only the quantifier-free fragment

e Consider formulae in disjunctive normal form (DNF)

(aiA@A...Aan) V ... V (b1AD2A...Abp)
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Congruence Closure Algorithm



Observation

Applying (symmetry), (reflexivity), (transitivity), and (congruence) to
positive literals s = ¢ of a XYg-formula F produces more equalities over terms
occurring in formula F

There are only a finite number of terms in F
Only a finite number of equalities among these terms are possible

Then, either

e some equality is formed that directly contradicts a negative literal s’ # ¢
of F' or

e the propagation of equalities ends without finding a contradiction
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Observation

Applying (symmetry), (reflexivity), (transitivity), and (congruence) to
positive literals s = ¢ of a XYg-formula F produces more equalities over terms
occurring in formula F

There are only a finite number of terms in F
Only a finite number of equalities among these terms are possible

Then, either

e some equality is formed that directly contradicts a negative literal s’ # ¢
of F' or

e the propagation of equalities ends without finding a contradiction
form the congruence closure of =
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Class

e (Consider an equivalence relation R over a set S

e The equivalence class of s € S under R is the set

o.

Is|r £ {s" € S: sRs’}

e If R is a congruence relation over S, then |s|r is the
congruence class of s
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Example of Class

e (Consider the set Z of integers and the equivalence relation =2
such that

e m=2n iff (m mod2) = (n mod 2)

13|l-2={neZ:(nmod?2)= (3 mod2)}
={neZ:(nmod2) =1}
= {n e Z: nisodd}
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Partition

A partition P of S'is a set of subsets of S that is total,
(US’EP S’) — Sv
and disjoint,

V51,52 € P. 51+ 52— 51n S =0
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Quotient

e The quotient S/R of S by the equivalence (congruence)

relation R is a partition of S: it is a set of equivalence
(congruence) classes

e S/R={|s|lr:se S}
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Example of Quotient

® The quotient Z/=2 is a partition: it is the set of equivalence
classes

e {{neZ:nisodd}, {neZ: niseven}}
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Equivalence Relation, Partition,

and Quotient

e An equivalence relation R induces a partition S/R of S

e A given partition P of S induces an equivalence relation over

S

e s51Rs iff for some S’ € P, both s1,50 € 5
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Relation Refinement

Consider two binary relations R; and Rz over the set S

Riis a refinement of R, or R1 < Ro, if

® Vsi,s2€ 5. s1R1s2 — s1Raso

We also say that R; refines R

Viewing the relations as sets of pairs, B1 C R»
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Example 1 of Relation

Refinement

S ={a, b}
R1: {aR1b}
R> : {aR2b, bR2b}

R1 < R»
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Example 2 of Relation

Refinement

Consider set S
Ri: {sRis: se S}
Ry : {sRat: s;te S}

R1 < R»
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Example 2 of Relation

Refinement

Consider set S
Ri: {sRis: s€ S} Pr:{{s}:se 5}
Ry : {sRat: s;te S}

R1 < R»
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Example 2 of Relation

Refinement
Consider set S
Ri:{sRis: se S} Pr:{{s}:s€ 5}
Ry : {sRst: ste S} Py {8}

R1 < R»
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Example 3 of Relation

Refinement

Consider the set Z
Ri : {xR1y : x mod 2 = y mod 2}
Ry : {zR1y : x mod 4 = y mod 4}

Rs < R
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Closure

e The equivalence closure R¥ of the binary relation R over S is the
equivalence relation such that

e R refines RY: R < R%:

e for all other equivalence relations R’ such that R < R’, either
e R = RY or
o RE< R

e RYis the smallest equivalence relation that covers R
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Example of Equivalence Closure

e Then,
o aRb, bRc, dRd € R’ (since R € R");
e aRa, bRb, cRc € R (by reflexivity);
e bRa, cRb € Rr" (by symmetry); 5 = {CL, b’ © d}
e aRce R’ (by transitivity); R — {aRb7 bRC, de}
e cRae R (by symmetry);
e Hence
e R — {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}
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Congruence Closure

e The congruence closure R¢ of R is the smallest congruence
relation that covers R
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Congruence Closure

e The congruence closure R¢ of R is the smallest congruence
relation that covers R

Compute the congruence closure of a term set
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Subterm Set

e Subterm set Sg of Ypformula F'is the set that contains
precisely the subterms of F

e Example:
o F': fla, b) = an fifla, b), b) # a

o Sr= {CL, ba f(aa b)v f(f(&, b)v b)}
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Congruence Relation over
Subterm Set

F:si=tAn..ANSn=1%tn A Sni1F i1 A ... ANSp F 1y

e F'is Tr-satistiable iff there exists a congruence relation ~ over
Sr such that

e foreach i e {1, ..., m}, si~ t;

e foreachie {m+ 1, ..., n}, si =t
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T'e-interpretation

e The congruence relation ~ defines a Trinterpretation I : (Dr,
aj) of F

e [Djconsists of |Srp / ~| elements

e «; assigns elements of Drto the terms of Srin a way that
respects ~

® ayassigns to = a binary relation over D;that behaves like ~

e \We abbreviate (D[, a]) = Fwith ~ & F
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Congruence Closure Algorithm

F:si=tA..ANSpn=1%tn A Sni1F i1 A ... NSy F 1y

1. Construct the congruence closure ~ of
{51 — tl, coes Sm — tm}
over the subterm set Sr

2. If s;~ t;forany 1€ {m + 1, ..., n}, return unsatisfiable

3. Otherwise, ~ E F so return satisfiable
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Step 1

e Begin with ~¢ given by the partition {{s} : s € Sr}

e Import s; = t; by merging the congruence classes [s|-i1 and
ti] i1

e Form the union of [8¢]~¢.1 and [tf,;]Nz'_l

e Propagate new congruences that arise within the union
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Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }
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Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }
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Example 1 of Congruence

Closure Algorithm

F: fla, b) = an f(fla, b), b) * a

e 1ia}, 105, 1fla, D)}, {fifla, b), D)} }
e (g, f(a, b)}, 10}, {fifla, b), O)}}  (fa ) =0
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Example 1 of Congruence
Closure Algorithm
F: fla,b) = an fifla ), b) # a
o {{a}, {b}, {fa, b)}, {fifla, b), b)}}
o {{a f(a, b)}, {b}, {f(Ma, ), D)} (flat) — 0

(function congruence)
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Example 1 of Congruence
Closure Algorithm
F:fla,b) = anfifla, b), b) # a
o {{a}, {0}, {fla, )}, {/(fla, b), b)}}
o {{a, f(a, b)}, {0}, {A(fla, b), O)}}  (fa,b) =)
o {{a, fla, b), f(fla, b), D)}, {b}} (function congruence)
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Example 1 of Congruence
Closure Algorithm
F:fla,b) = anfifla, b), b) # a
o {{a}, {0}, {fla, )}, {/(fla, b), b)}}
o {{a, f(a, b)}, {0}, {A(fla, b), O)}}  (fa,b) =)
o {{a, fla, b), f(fla, b), D)}, {b}} (function congruence)

e T'r-unsatisfiable

FLOLAC 2017 35 Software Verification with Satisfiability Modulo Theories



Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, Pla)}, {fla)}, 1F(a)}, f(a)}s {f(a)})  (Fla) — o)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

(function congruence)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {a}, a)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a. P(a)}, {fa), F(a)}, {F(a), F(a)}) (unction congruence)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)

(£(a) = a)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)
o {{a Fla), Fla), P(@)}. {fla), F(a)}) (P = a
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

e {{a. P}, (@)} (R}, {F(}, {F(@)}} (0w
e {{a F(a)}, {fa), £(a)}, {F(a), F(a)}) (unction congruence)
o {{a Fla), Fla), P(@)}. {fla), F(a)}) (P = a

(function congruence)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

e {{a F(a)}, N0, (@)}, {F(a), Fla)}) (unction congruence)
o {{a Pa), Fla), F(a)}, {fa), f(a)}) (P = a
o {{a fla), £la), (o), f(a), Fa)}) (unction congruence)
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Example 2 of Congruence

Closure Algorithm
F:f(a) =an fla) =an fla) #a
o {{a}, o)}, {F(a)}, {F(a)}, {F(a)}, {f(a)}}

o 1o, fla)}, {fla)}, 1F(a)}, 1f(a)}s {f(a)}) (Fla) o)

e {{a F(a)}, N0, (@)}, {F(a), Fla)}) (unction congruence)
o {{a Pa), Fla), F(a)}, {fa), f(a)}) (P = a
o {{a fla), £la), (o), f(a), Fa)}) (unction congruence)

Trunsatisfiable
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Example 3 of Congruence

Closure Algorithm

o 1zh W WD)} )}
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Example 3 of Congruence

Closure Algorithm
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Example 3 of Congruence

Closure Algorithm

o {z}, {v}, {f(®)}, {Ay}}
o {{z}, {y}, {f(2), y)}} (f(z) = f(3))
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Example 3 of Congruence

Closure Algorithm

o {z}, {v}, {f(®)}, {Ay}}
o {{z}, {y}, {f(2), y)}} (f(z) = f(3))

e T'r-satisfiable
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Exercise

e Apply the decision procedure for T'r to the following > gformulas.
Provide a level of details as in the slides.

1. f(xay) — f(y,:E) A f(avy) F f(yaa)
2. flg(z)) = g(f(x)) A [9([y)) =z A y) =z A g(fz) # 2
3. fif(fa))) = f(fla) A f(f(fla))) = an fla) # a

4. p(z) A fiflz)) = z A f(fifz)) = = A —~p(f2))
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Implementation



DAG

1:f
o A directed graph G : (N, E) p
e nodes N = {ni, ng, ..., ni} Q |

e edges £ = {..., {(nj, np, ...} ‘

e A directed acyclic graph (DAG) is a directed graph containing
no loop (or cycle)
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Subterm Set as DAG
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Node
type node = {

id : id (unique identification number)

fn : string (constant or function symbol)

args : id list (identification numbers of the function arguments)
mutable find : id (another node in its congruence class)

(following a chain of find references leads to the representative)

mutable ccpar : id set (congruence closure parents,@ for non-representative nodes)
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DAG as Partition

node 2 = node 3 = {
id = 2; id = 3;
tn = f; fn = a;
args = [3; 4J; args = ||;
find = 3; find = 3;
ccpar — O; ccpar = {1, 2};

Partition: {{f(f(a, b), b), f(a, b), a}, {b}}
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NOD]

Union-Find Algorithm -

NODE

4 returns the node n with i1d 7

(NODE 4).id = i
(NODE 2).find = 3
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Union-Find Algorithm -
FIND

(L
let rec FIND 7 =
let n = NODE 4 in >
:/
Y

it n.find = 7 then 7 else FIND n.find

FIND 2 =3

FIND 1 =3
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Union-Find Algorithm -
UNION

let UNION 21 70 =

let 1 = NODE (FIND 41) in

let n = NODE (FIND 4,) in

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢
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Union-Find Algorithm -
UNION

let UNION 21 70 = UNION 1 2

let n1 = NODE (FIND 4) in Q
let no = NODE (FIND ) in 0

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢
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Union-Find Algorithm -
UNION

let UNION 74 72 = UNION 1 2

ni
let n1 = NODE (FIND 4) in Q
let no = NODE (FIND 4) in 0
ni.find + ne.find;
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Union-Find Algorithm -
UNION

let UNION 74 72 = UNION 1 2

ni
let n1 = NODE (FIND 4) in Q
let no = NODE (FIND 4) in 0
ni.find + ne.find;
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Union-Find Algorithm -
UNION

let UNION 21 70 = UNION 1 2

let 1 = NODE (FIND 41) in

let n = NODE (FIND 4,) in

ni.find < ng.find;

Nn2.cCpar <— ni.ccpar U np.ccpar;

ni.ccpar <— ¢
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Union-Find Algorithm -
CCPAR

let CCPAR 1 =

(NODE (FIND 1)).ccpar
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Congruence Closure Algorithm -
CONGRUENT

let CONGRUENT 4 2 =

let n1 = NODE 4 in

let n2 = NODE 4 in

ni.In = ne.In

A |mi.args| = |no.args|

A Vi e {1, ..., |m.args|}. FIND ni.args|i] = FIND np.args|i]
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Congruence Closure Algorithm -
MERGE

let rec MERGE 4, 4, =

if FIND 4, # FIND 4, then begin h
let P, = CCPAR i, in 1:f
let P, = CCPAR 4, in b2

7
/
foreach t;, t, € P; X P, do # !

it FIND ¢, # FIND ¢, A CONGRUENT ¢, ¢, Q @

then MERGE tl t2

done
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Decision Procedure for 7T';-
Satisfiability

F:si=tAn..ANSn=tn A Sni1 F i1 Ao NSy F Iy

Construct the initial DAG for the subterm set Sg

For ¢ € {1, ers m}, MERGE s; t;

If FIND s; = FIND ¢; for someie {m + 1, ..., n}, return
unsatisfiable

Otherwise, return satisfiable
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Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}
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Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
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1:f
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Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE 2 3 |
(1) P, — CCPAR 2 — {1} e/
(2) P CCPARS—{Q}

(3)
(4)

2
3) UNION 2 3 e
4) MERGE 1 2

FLOLAC 2017 51 Software Verification with Satisfiability Modulo Theories



Deciding T';-Satisfiability
Example 1

F: fla, b) = a n f(fla, b), ) # a
Sr={a, b, fla, b), f(f{a, b), b)}

1. MERGE23 |
(1) P, = CCPAR 2 = {1} L/
(2) P; = CCPAR 3 = {2}

(3)
(4)

2
3 UNION23 S
4) MERGE 1 2 '-
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Deciding T';-Satisfiability
Example 1

F: fla, b) = a n fifla,

b), b) * a

SF = {CL, b, f(av b)7 f(f(aa b)7 b)}

1. MERGE 2 3
(1) Py = CCPAR 2 = {1}
(2) Ps = CCPAR 3 = {2}
(3) UNION 2 3
(4) MERGE 1 2

Trunsatisfiable

FLOLAC 2017 51

Software Verification with Satisfiability Modulo Theories



Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}
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Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
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Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30

------
.......
- i

-
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Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 5 0
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Deciding T-Satisfiability
Example 2

F:f(a)=an f(a) =an fla) #a
Sr = {a, fla), F(a), Fla), f(a), P(a))}

1. MERGE 30
2. MERGE 50

------ “,—A ..... A .~~A
Tr-unsatisfiable D NS ¢
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Soundness and Completeness

Theorem (Sound & Complete). Quantifier-free conjunctive Xp-
formula F'is Tr-satisfiable iff the congruence closure algorithm
returns satisfiable
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Complexity

Let e be the number of edges and n be the number of nodes in
the initial DAG.

Theorem (Complexity). The congruence closure algorithm run in
time O(e?) for O(n) MERGEs.
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Recursive Data
Structures



1'rDs

e Can model
e records
o lists
e trees
e stacks
e Cannot model

® queues
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Theory of Lists - T'ons

Yeons : {cons, car, cdr, atom, =}

cons: a binary function, called the constructor;
car: a unary function, called the left projector;
cdr: a unary function, called the right projector;
atom: a unary predicate;

—: a binary predicate

car(cons(a, b))

a
cdr(cons(a, b)) = b
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Axioms of T.,,.

o Axioms of (reflexivity), (symmetry), and (transitivity) of T

e Instantiations of the (function congruence) axiom schema for cons, car, and
cdr:

® VI, To,Y1,Y2- Tt = Ty A Y1 = Yo — cons(xy, Y1) = cons(Ta, 1)
o Vy,y. =y — car(x) = car(y)
o Vr,y. x =y — cdr(z) = cdr(y)
e An instantiation of the (predicate congruence) axiom schema for atom:

o Vr,y. x = y — (atom(z) < atom(y))
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Axioms of T.,,.

v,y car(cons(x, y)) = x (left projection)
v,y cdr(cons(x, y)) = y (right projection)
vz. matom(x) — cons(car(z), cdr(z)) = x (construction)
vx,y. —atom(cons(x, y)) (atom)
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Decidability

e T..,.s: undecidable

e quantifier-free T.ons: decidable
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Preprocess

By the (construction) axiom, replace
—atom( u;)
with

wi = cons(uit, ui)

vz. —atom(x) — cons(car(x), cdr(z)) = x (construction)
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Decision Procedure

F:si=HtAn...ANS8=1tn A Sni1 F tmi1l A ... NSy F Iy
A atom(u) A ... A atom(w)

Construct the initial DAG for the subterm set S,

By the (left projection) and (right projection) axioms, for each node n such that n.fn = cons,
e add car(n) to the DAG and MERGE car(n) n.args|1];
e add cdr(n) to the DAG and MERGE cdr(n) n.args|2|;

For i1 € {1, ..., m}, MERGE s, t,

For ie {m + 1, ..., n}, if FIND s, = FIND ¢, return unsatisfiable

By the (atom axiom), for i € {1, ..., I}, if 3v. FIND v = FIND u; A v.fn = cons, return
unsatisfiability

Otherwise, return satisfiable
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Combining Ty and T . -

Example

F: car(x) = car(y) A cdr(z) = cdr(y) A flx) #= fly) A

—atom(x) A —atom(y)

F @ car(x) = car(y) A cdr( r) = cdr( ) flx) = fly) A

r = cons(ui, v1) A y = cons(uz, 1)

NN

‘A

FLOLAC 2017 Software Verification with Satisfiability Modulo Theo

Step 1: initial DAG



Combining T and T_,, . -

cons

Example

Step 2: add car(n) and cdr(n)
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Combining Tz and T, -

Step 3: MERGE s; t;

FLOLAC 2017

Example

agLags
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Combining Tz and T, -

Example

L ) — aars) ch C(g
2 _pa @

=)=t
ONOIOINO
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Combining Tz and T, -

- = m g,
> ~~

1. car(x) = car(y) @ @
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Combining Tz and T, -

- = m g,
> ~~

1. car(x) = car(y) @ @

2. cdr(z) = cdr(y)

FLOLAC 2017 65 Software Verification with Satisfiability Modulo Theories



Combining Tz and T, -

--------
......

Step 3: MERGE s; \CP \CP

1. car(x) = car(y) @ @

2. cdr(z) = cdr(y)
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Combining Tz and T, -

- - =
.......

Step 3: MERGE s; \CP \CP

L.
2.
3.

car(x) — car (y) @ @

cdr(x) = cdr(y)

z = cons(ui, v)
| | | I
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'¢¢ A ~
Step 3: MERGE s; \CP \CP

L.
2.
3.

Combining Tz and T, -

- - =
.......

car(x) — car (y) @ @

cdr(x) = cdr(y)

z = cons(ui, v) @ i
| | | I
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'¢’ . 4 NA L J
Step 3: MERGE s # ‘\MP @QP @

L.
2.
3.

Combining Tz and T, -

- . - .
''''''''

car(x) = car(y) @ @

cdr(x) = cdr(y)

r = cons(u1, v1) .. '
R
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Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v1)
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Combining Tz and T, -
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(uz, 1)

Software Verification with Satisfiability Modulo Theories
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Combining Ty and T,
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(uz, 1)

Software Verification with Satisfiability Modulo Theories

FLOLAC 2017 65



Combining Ty and T,
Example

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)
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Combining Ty and T,
Example
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)
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Combining Ty and T,

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)
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Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. == cons(ui, n
4

)
y = cons(uz, 1)
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Combining Tz and T, -

Step 3: MERGE s; t;
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x= cons(ui, v
4

)
y = cons(ug, 1)
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Exercise

e Apply the decision procedure for T'cons to the following

Tcons-formulas. Please write down the call sequence to the
MERGE procedure, draw the final DAG, and draw the final
DAG.

o car(x) = y A cdr(z) = 2z Az F cons(y,2)

o —atom(x) A car(x) = y A cdr(z) = z A x # cons(y,z)

Hint: Apply preprocessing to the formulae if it is necessary.
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Theory of Arrays - T4

Sac: ][], (e, =)

e ali: a binary function; ali| represents the value of array a at

position 1

e a(i<wv): a ternary function; ali<v) represents the modified

array a in which position ¢ has value v;

e —: a binary predicate
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Axioms of T

Axioms of (reflexivity), (symmetry), and (transitivity) of Tx

vVa,ij. 1 = 5 — a[z] — a[]] (array congruence)
Va,v,1,7. 1 = j — a{i<w|j] = v (read-over-write 1)
vVa,,1,7. 1 F J] — al1< 1})[]] - a[]] (read-over-write 2)
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Decision Procedure

e Based on a reduction to T'z-satisfiability via applications of
the (read-over-write) axioms

o If the formula does not contain any write terms, then the
read terms can be viewed as uninterpreted function terms

e Otherwise, any write term must occur in the context of a

read
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Decision Procedure - Step 1

If F' does not contain any write terms ai<v), perform the
following steps.

1. Associate each array variable a with a fresh function symbol
fa, and replace each read term ali| with f,(7)

2. Decide and return the T-satistiability of the resulting
formula
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Decision Procedure - Step 2

Select some read-over-write term a{i<w)|j|, and split on two cases:
1. According to (read-over-write 1), replace
Flai<=w|j|| with Fy: Flu| A i =
and recurse on F). If F} is found to be T's-satisfiable, return satisfiable
2. According to (read-over-write 2), replace
Flai<v|j]] with Fy: Fla[j]] A i # j
and recurse on I,. If F, is found to be T's-satisfiable, return satisfiable
If both F; and F, are found to be T 4-unsatisfiable, return unsatisfiable
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Example of T4

F:io=j3nu* 2Aaj =u A aa<ve<w|j £ aj
o First case:
e Fiiip=jAii=jA@# inAalf] =uAwvn*aj
e Fiip=jAit=jA0i# A fulf) = v Aw#E fuf))

e [ is Ts-unsatisfiable
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Example of T4

F:a=7Aa0%*2Aaj=uvAaa<oye<swl|j] # dj

e Second case:
e FoipFjAU=JA0F @2Aalj =u A aia<v] # alj
o i =jAbFjAG=JALFE BAa]=1uAuv E aj

P F4:z'1¢j/\i2¢j/\i1:j/\’i1¢iQAaljlzlea[j]¢
alj|

e F5is Ts-unsatisfiable
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Soundness and Completeness

Theorem (Sound & Complete). Given quantifier-free conjunctive
Y s-tformula F, the decision procedure returns satisfiable iff F'is
T's-satisfiable; otherwise, it returns unsatisfiable
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Complexity

Theorem (Complexity). Ts-satisfiability of quantifier-free

conjunctive X 4-formula is NP-complete
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Exercise

e Apply the decision procedure for quantifier-free T4 to the
following > a-formulas.

o wi<efl =eni#*y

° a,<7,<16><]<1f>lk'] — g A JF ]fAi:jA CL[]C] * ¢
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Summary

Congruence closure algorithm

e relations, equivalence relations, congruence relations, partitions,
quotients, classes, closures

DAG-based implementation
e union-find, merge
Recursive data structures

o Tons

Arrays
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