
Dependently Typed Programming

Shin-Cheng Mu

FLOLAC, 2016

Types as Specifications

• The type of a function specifies properties it
should satisfy.

• The type checker verifies our claim that the func-
tion does indeed has the property.

• The more expressive the type system is, the more
we can say in a type.

Some Notes on Conventions

• Note that “f has type τ” is usually denoted f ∶ τ .
Haskell, due to a historical mistake, uses f ∶∶ τ .
We will use a single colon from now on.

• For reason we will not explain here, a type in
some dependently typed languages is called a
“Set”. We will use the convention here.

Some Specifications

• Monomorphic: f ∶ [Int]→ Int .

– f takes a list of numbers and returns a num-
ber.

• Polymorphic: f ∶ ∀a b→ [a]→ [b]→ [(a, b)].

– A correct implementation of f must not in-
spect the contents of the list.

– Note that a ∶ Set (type), and [] ∶ Set → Set .

• 2nd-rank polymorphism: f ∶ ∀a → (∀s → s →
(s, a))→ a.

– s must not be shared!

Some More

• If we denote “the type of lists whose elements
are of type a and whose length is n” by [a]n, we
have (++) ∶ ∀a m n→ [a]m → [a]n → [a]m+n.

– Notice: [] ∶ Set → N→ Set .

– It’s a dependent type — a type that depends
on values!

• The function sort typically has type [N]→ [N].

– What about sort ∶ (xs ∶ [N]) →

(ys,perm xs ys ∧ ordered ys)?

– The type says that a correct implementa-
tion of sort must, of course, sort!

Dependent Type

• So called because a type may depend on a value.

• Very expressive — with it a lot can be said.

• But not that accessible yet — we are still learn-
ing how to actually use it effectively in program-
ming.

• Thus many theorem provers / programming lan-
guages have been developed, aiming to bridge
the gap.

Dependently Typed Languages

• Coq (’89-).

• Cayenne (Augustsson ’98).

• Dependent ML / ATS (Pfenning & Xi ’98).

• Epigram (McBride & McKinna ’04).

• Agda 2 (Norell & Danielsson ’05).

• Meanwhile, Haskell also gradually supports more
and more dep. type-like features. GADT, type
families...

1

1 A Quick Introduction to
Agda

A Simple Algebraic Type

• In Haskell we write

data Bool = True ∣ False .

• The constructors have types true ∶ Bool and
false ∶ Bool .

• In Agda we write

data Bool ∶ Set where
true ∶ Bool
false ∶ Bool ,

– which explicitly says that “Bool is a Set ,
with two constructors, whose types are. . . ”.

– This so-called GADT notation may look
a bit cumbersome now, but will be useful
later.

– Constructors (and types) need not start
with capital letters. Values and types are
treated more uniformly in a dependently
typed language.

Our First Function

• Given only one Bool , this is probably the most
interesting function:

not ∶ Bool → Bool
not false = true
not true = false .

• See the use of pattern matching in action (and
how Agda expand the cases for you).

• The type could also be written in the “named
argument” notation: not ∶ (b ∶ Bool)→ Bool.

– It still says that not maps Bool to Bool .

– However, the first argument now has a
name b, which can be used in later parts
of the type. We do not need it now, but we
will soon.

– In general, if we write f ∶ (x ∶ τ) → σ, we
may mention x in σ.

A Type Parameterised by a Type

• The type [] in Haskell can be written in Agda
as

data List (A ∶ Set) ∶ Set where
[] ∶ List A
∶∶ ∶ A→ List A→ List A .

• The declaration says “List , when given a param-
eter A (which is a Set), yields a Set . It has two
constructors whose types are. . . ”

– A is in the scope of the constructors of List ;
the constructors may use A.

• ∶∶ is an infix operator. The underline marks
the positions of its arguments.

Type Arguments

• “Polymorphic” functions are treated as a func-
tion that takes a type as an argument.

id ′ ∶ (A ∶ Set)→ A→ A
id ′ A x = x .

– Note that we are using the “named argu-
ment” notation we introduced just now.

– “id ′ is a function that takes a Set as its ar-
gument. Call it A. It then delivers a func-
tion of type A→ A.”

• To call id ′ we have to explicitly pass the type:

– id ′ Bool true evaluates to true.

Implicit Arguments

• It is rather cumbersome having to explicitly pass
the type argument all the time. Agda allows you
to declare an argument as implicit, by surround-
ing it in curly brackets:

id ∶ {A ∶ Set}→ A→ A
id x = x .

• id is still a function that takes a type A and
yields a function of type A → A. But the argu-
ment A need not be given, and Agda will try to
infer the value of A from its context.

• We may then call id in the Haskell-ish way:

2

– id true evaluates to true. Agda could guess
that A must be Bool .

• Inference of implicit arguments may not always
succeed! In such cases Agda marks the problem-
atic code yellow.

• When Agda cannot infer implicit arguments, or
when you just want to be clear, you may explic-
itly give implicit arguments using the following
syntax:

– id {Bool} true evaluates to true.

• An implicit argument need not be a type. It
could be a value too. Agda treat them uni-
formly.

f ∶ {A ∶ Set}→ {x ∶ A}→ . . .x . . .
f = . . .

• When we need to mention an explicit argument
on the RHS, we could mention it in the LHS.

f ∶ {A ∶ Set}→ {x ∶ A}→ . . . use x or A . . .
f {A} {x} . . . = . . . use x or A . . .

∀-Quantification

• ∀ x is a shorter syntax for (x ∶ τ) when τ can be
inferred.

• ∀ {A} is a shorter syntax for {A ∶ τ} when τ can
be inferred.

null ∶ ∀ {A}→ List A→ Bool
null [] = true
null (x ∶∶ xs) = false .

– From the definition of data List (A ∶ Set) ∶
Set . . ., we know that A must be a Set .

Natural Numbers

• Such an important type that we spell it out:

data N ∶ Set where
zero ∶ N
suc ∶ N→ N .

• Isn’t it similar to List?

• The function that removes the data in the list:

length ∶ ∀{A}→ List A→ N
length [] = zero
length (x ∶∶ xs) = suc (length xs) .

2 Inductive Family

Vectors

• Vec A n denotes the type of lists whose elements
are of type A and whose length is exactly n.

data Vec (A ∶ Set) ∶ N→ Set where
[] ∶ Vec A zero
∶∶ ∶ {n ∶ N}→ A→ Vec A n→ Vec A (suc n) .

• While List defines a datatype inductively, Vec
inductively defines a family of types

– Vec A 0 is the base case, with only one value
[].

– Vec A 1 is defined in terms of Vec A 0, and
V ec A 2 is defined in terms of Vec A 1 . . .

• Agda allows us to reuse the symbols [] and ∶∶

(it complains in case of ambiguity).

3 Practicals

• As programming with dependent types is best
done through conversation with the computer,
teaching dependently typed programming is bet-
ter done through practicals.

• The rest of the lecture proceeds by walking
through the practicals accompanying this course.

3

A Agda Emacs Mode Key Combinations

Global commands

C-c C-l Load a file
C-c C-x C-c Compile a file
C-c C-x C-q Quit
C-c C-x C-r Kill and restart Agda
C-c C-x C-d Remove goals and highlighting (deactivate)
C-c C-x C-h Toggle display of hidden arguments
C-c C-= Show constraints
C-c C-s Solve constraints
C-c C-? Show goals
C-c C-f Next goal (forward)
C-c C-b Previous goal (back)
C-c C-d Infer (deduce) type

C-u C-c C-d Infer type (normalised)
C-c C-o Module contents
C-c C-n Compute normal form

C-u C-c C-n Compute normal form (ignoring abstract)
C-c C-x M-; Comment/uncomment the rest of the buffer

Commands working in the context of a specific goal

C-c C-SPC Give
C-c C-r Refine
C-c C-a Auto (proof search)
C-c C-c Case
C-c C-t Goal type

C-u C-c C-t Goal type (without normalising)
C-c C-e Context (environment)

C-u C-c C-e Context (without normalising)
C-c C-d Infer (deduce) type

C-u C-c C-d Infer type (normalised)
C-c C-, Goal type and context

C-u C-c C-, Goal type and context (without normalising)
C-c C-. Goal type and inferred type

C-u C-c C-. Goal type and inferred type (without normalising)
C-c C-o Module contents
C-c C-n Compute normal form

C-u C-c C-n Compute normal form (ignoring abstract)

Other commands

TAB Indent the current line (cycles between positions)
S-TAB Indent the current line (cycles in the other direction)
M-. Go to the definition of the identifier under point
Middle mouse button Go to the definition of the identifier clicked on
M-* Go back

4

