Homework Assignment [Compiled on July 7, 2015]

- 1. (40 Points) Apply the decision procedure for T_E to the following Σ_E -formulae. Provide a level of details as in slides #39 and #40.
 - (a) $f(x,y) = f(y,x) \land f(a,y) \neq f(y,a)$
 - (b) $f(g(x)) = g(f(x)) \wedge f(g(f(y))) = x \wedge f(y) = x \wedge g(f(x)) \neq x$
 - (c) $f(f(f(a))) = f(f(a)) \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$
 - (d) $p(x) \wedge f(f(x)) = x \wedge f(f(f(x))) = x \wedge \neg p(f(x))$
- 2. (20 Points) Apply the decision procedure for T_{cons} to the following T_{cons} -formulae. Please write down the call sequence to the *MERGE* procedure and draw the final DAG.
 - (a) $car(x) = y \wedge cdr(x) = z \wedge x \neq cons(y, z)$
 - (b) $\neg atom(x) \land car(x) = y \land cdr(x) = z \land x \neq cons(y, z)$

Hint: Apply preprocessing to the formulae if it is necessary.

- 3. (20 Points) Apply the decision procedure for quantifier-free T_A to the following Σ_A -formulae.
 - (a) $a\langle i \triangleleft e \rangle[j] = e \land i \neq j$
 - (b) $a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [k] = g \land j \neq k \land i = j \land a[k] \neq g$
- 4. (20 Points) Consider a variant of the T_{cons} -satisfiability procedure in which Steps 2 and 3 are swapped. What is wrong with reversing these two steps? Identify a counterexample to its correctness: find a T_{cons} -unsatisfiable (conjunctive, quantifier-free) Σ_{cons} -formula that the incorrect procedure claims is satisfiable, and show the final DAGs for both the incorrect and the correct procedures.

Note:

Step 2: By the (left projection) and (right projection), ... Step 3: For $i \in \{1, ..., m\}$, *MERGE* $s_i t_i$