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Quantifier Elimination

@ A theory T admits quantifier elimination if for every quantified
formula, there exists an equivalent quantifier-free formula.

@ A quantifier elimination procedure is an algorithm that
computes an equivalent, quantifier-free formula for any
quantified formula

@ Quantifier elimination algorithm for a theory T allows deciding
satisfiability of any quantified T-formula. Why?
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Quantifier Elimination

@ A theory T admits quantifier elimination if for every quantified
formula, there exists an equivalent quantifier-free formula.

@ A quantifier elimination procedure is an algorithm that
computes an equivalent, quantifier-free formula for any
quantified formula

@ Quantifier elimination algorithm for a theory T allows deciding
satisfiability of any quantified T-formula. Why?

@ Because we can use quantifier elimination algorithm to obtain
equivalent quantifier-free formula and use decision procedure
for quantifier-free fragment
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A Simplification

e For developing a quantifier elimination (QE) algorithm,
sufficient to consider formulas of the form dx.F where F is
quantifier free
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A Simplification

For developing a quantifier elimination (QE) algorithm,
sufficient to consider formulas of the form dx.F where F is
quantifier free

Why is this the case?

Given arbitrary formula G, first look at innermost quantified
formula

This innermost formula is either of the form Vx.F or 3x.F

If it is of the form dx.F, apply QE algorithm
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A Simplification,cont

o If innermost quantified formula is of the form Vx.F, equivalent
to =(Ix.—F)

In this case, apply QE algorithm to dx.—F to obtain quantifier
free formula F’

Since F’ is equivalent to dx.—F, Vx.F equivalent to —=F’
Thus, result of eliminating quantifier from Vx.F is =F’

In either case, formula contains one less quantifier

e 6 o6 o

Repeat this process, removing innermost quantifier at each
step
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Suppose we have a procedure for eliminating quantifier from
formula dx.F where F is quantifier-free

Let us see how to use it to eliminate quantifiers from formula

Ix.Vy.3z.Fi[x,y, 2]

Start with innermost quantified formula 3z.F[x, y, z]

Suppose QE elimination procedure returns F|[x, y]

Now, the formula is Ix.Vy.F[x, y]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic



Example, cont

Current formula: Ix.Vy.F[x, y]

Continue with innermost quantified formula Vy.F;[x, y]
Rewrite it as —=3y.—F[x, y]

Apply QE algorithm to Jy.—Fz[x, y]

Suppose result is F3; now formula is Ix.—F3[x]

Now, apply QE procedure one last time to obtain
quantifier-free formula
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@ As example illustrates, sufficient to have quantifier elimination
procedure for dx.F

@ Because this also allows us to eliminate universal quantifiers

@ Thus, our QE procedure will only deal with existential
quantifiers

@ Furthermore, only talk about quantifier elimination in linear
integer arithmetic
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Theory of Integers

o Earlier we talked about theory of integers Ty with signature:
Yz :{.,-2,-1,0,1,2, ..., 4+, —, =<}

@ In this theory, we can write formulas such as: dx.2x = y

@ What does this formula imply about y?
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Theory of Integers

o Earlier we talked about theory of integers Ty with signature:
Yz :{.,-2,-1,0,1,2, ..., 4+, —, =<}

@ In this theory, we can write formulas such as: dx.2x = y

@ What does this formula imply about y? vy is even
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Theory of Integers

o Earlier we talked about theory of integers Ty with signature:
Yz :{.,-2,-1,0,1,2, ..., 4+, —, =<}

@ In this theory, we can write formulas such as: dx.2x = y

@ What does this formula imply about y? vy is even

@ Similarly, dw.3w = z expresses z is evenly divisible by 3

@ Unfortunately, without additional divisibility predicate, we
cannot write equivalent quantifier-free formula!

@ Thus, this formulation of theory of integers does not admit

quantifier elimination
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)
@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable?
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)
@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable? Yes, e.g., x =2,y =2
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)

@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable? Yes, e.g., x =2,y =2

e What about —(2|x) A 4|x7
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)

@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable? Yes, e.g., x =2,y =2

e What about —(2|x) A 4|x? No
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)
@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable? Yes, e.g., x =2,y =2

e What about —(2|x) A 4|x? No

o We will write 7'; to denote T with additional divisibility
predicate and additional axiom:

V.x.k|x <> Jy.x = ky

e Is x|y well-formed formula in 777
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Augmented Theory of Integers

@ To admit quantifier elimination, we will add an additional
divisibility predicates k|- to Tz (k positive integer)
@ Intended interpretation: k|x is true if k evenly divides x

@ According to this interpretation, is x > 1Ay > 1A2|x+y
satisfiable? Yes, e.g., x =2,y =2

e What about —(2|x) A 4|x? No

o We will write 7'; to denote T with additional divisibility
predicate and additional axiom:

V.x.k|x <> Jy.x = ky

o Is x|y well-formed formula in Tz? No!
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Quantifier Elimination for T,

e Fortunately, 7’2 admits quantifier elimination Z

@ Which quantifier-free formula is equivalent to Ix.3x = y?
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Quantifier Elimination for T,

e Fortunately, 7’2 admits quantifier elimination Z

e Which quantifier-free formula is equivalent to 3x.3x = y? 3|y
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Quantifier Elimination for T,

Fortunately, Tz admits quantifier elimination Z

Which quantifier-free formula is equivalent to 3x.3x = y? 3|y

The quantifier elimination method for 7’2 was given by
Cooper in 1972 in a paper called Theorem Proving in
Arithmetic without Multiplication

Thus, known as Cooper's method

Rest of lecture: Learn about Cooper's method
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Overview of Cooper's Method

e Given Tz—formula 3x.F[x], where F is quantifier-free,
Cooper’s method constructs quantifier-free Tz-formula that is
equivalent to 3Ix.F[x].

@ Cooper's method has five main steps:

@ Put F[x] into NNF

@ Normalize literals: s < t,k|t, or —(k|t)

© Isolate terms containing x on one side: hx < t,s < hx

© Ensure x has same coefficient d everywhere and replace dx
with new variable x’

© Replace F[x] with a disjunction of F[j]'s for finitiely many j
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Step 1: Put Formula in Negation Normal Form

e A formula is in negation normal form (NNF) if the negation
operator (—) is only applied to variables and predicates

@ Recursively apply the following rules (left to right):
o 1(Vx.G) & Ix.—G

~(Ix.G) © Yx.G

-G & G

_‘(Gl A Gz) = (_‘Gl) \Y (—\Gz)

—‘(Gl V G2) =4 (—\Gl) AN (—|G2)
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o Wxdyx>y &
0 Ix.~dyx>y &
e Ix.Vy.=(x > y)

Convert —Vx.(x > z V dy.x > y) to NNF
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Step 2: Normalize Literals: s < t,k|t, or =(k|t)

e Normalize literals so that every literal is of the form s < t, k|t,
or —(k|t)

@ To do this, we need to rewrite s = t, =(s = t), and —(s < t)
as a boolean combination of literals of the form s’ < t/

@ Rewrite rules:

Qs=tes<t+1lAt<s+1
Q (s=t)es<tVi<s+1
Q (s<t)et<s+1
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@ Let us normalize literals in the following formula:

Ax <y)A-(x=y+3)

“(x<y)ey<x+1
A(x=y+3)ex<y+3Vy+3<x

(]

Normalized formula after step 2:

y<x+1IA(x<y+3Vy+3<x)
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Step 3: Collect Terms Containing x on One Side

After step 3, literals should be of one of the following forms:
hx < t,t < hx, k|hx + t,—=(k|hx + t)

where t is a term not containing x and h,k are positive

Example: Let us apply this transformation to the formula:
X+x+y<z+3z+2y—4x

Result: 6x <4z +y
Example: 5/(—=7x + t)
After applying transformation,we get: 5[(7x — t)
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Step 4a: Ensure x Has the Same Coefficient Everywhere

o After previous step, formula is of the form 3x.F3[x]

e Compute least common multiple (lcm) of x's coefficients:

d = lem{h : h is coefficient of x in F3[x]}

e Now, multiply literals in F3[x] by constants so that x's
coefficient is d everywhere:
hx <t < dx < W't where d = hH’
t < hx & h't < dx where d = hH’
k|(hx +t) <  Hk|(dx+ h't)  where d = hH
=(k|(hx + t)) & —(Wk|(dx + h't) where d = hH'
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@ Consider the formula
2x <y V(2z <3x A 3|(4x + 1))

@ What is the lcm of x's coefficients in this formula? 12

@ Rewrite each literal so that x has coefficient 12:
2x <y <& 12x <6y
2z <3x & 8z < 12x
3|(4x +1) < 9|(12x+3)

@ New formula after transformation:

12x < 6y V (8z < 12x A 9|(12x + 3))
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Step 4b: Replace dx with New Variable x’

@ After Step 4a, variable x has the same coefficient d
everywhere

@ Now, we replace dx with a new variable x’

@ Since x’ is implicitly equal to dx, what can we say about x'?
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Step 4b: Replace dx with New Variable x’

@ After Step 4a, variable x has the same coefficient d
everywhere

@ Now, we replace dx with a new variable x’

@ Since x’ is implicitly equal to dx, what can we say about x'?
x" must be divisible by d
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Step 4b: Replace dx with New Variable x’

@ After Step 4a, variable x has the same coefficient d
everywhere

@ Now, we replace dx with a new variable x’

@ Since x’ is implicitly equal to dx, what can we say about x'?
x" must be divisible by d

@ Thus, we also add the constraint d|x’

@ Example: Consider previous formula after Step 4a:
12x < 6y V (8z < 12x A 9|(12x + 3))
@ What is the resulting formula after this step?

(X' <6y V(8z < x' A9|(X +3)))A(12]x")
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Formula after Step 4b

o After this step, formula is of the form Ix’.F4[x/]

e Furthermore 3x’.F4[x'] is equivalent to 3x.F[x]

e In addition, each literal in 3x’.F4[x’] is one of the following:
Q X <a
Q b< X
Q h|(x' +¢)
Q ~(k[(x" +d))

@ Here, a, b, ¢, d do not contain x and h, k are positive
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Step 5: Intuition

@ Most involved part of Cooper's method
@ Recall: We want to eliminate x’ from the formula 3x’.F4[x']

@ There are two possibilities:
@ Either infinitely many small numbers n satisfying F4[n]
@ Or there exists a least integer n that satisfies F4[n]
@ Step 5 of Cooper’'s method is a case analysis on these two
possibilities
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Step 5a: Left Infinite Projection

We want to eliminate x’ from 3x’.F4[x’] under the assumption
there are infinitely many small numbers n satisfying F4[n]

@ Thus, define left infinite projection F_ . [x'] for formula F4[x’]
@ F_.[x] corresponds to projection of F that is only satisfied
by very small values of x’
o Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity
@ To compute left infinite projection:
@ Replace literals x’ < a by
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Step 5a: Left Infinite Projection

We want to eliminate x’ from 3x’.F4[x’] under the assumption
there are infinitely many small numbers n satisfying F4[n]

@ Thus, define left infinite projection F_ . [x'] for formula F4[x’]

@ F_.[x] corresponds to projection of F that is only satisfied
by very small values of x’

o Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity

@ To compute left infinite projection:

@ Replace literals x’ < aby T
@ Replace literals b < x by
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Step 5a: Left Infinite Projection

We want to eliminate x’ from 3x’.F4[x’] under the assumption
there are infinitely many small numbers n satisfying F4[n]

@ Thus, define left infinite projection F_ . [x'] for formula F4[x’]

@ F_.[x] corresponds to projection of F that is only satisfied
by very small values of x’

o Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity

@ To compute left infinite projection:

@ Replace literals x’ < aby T
@ Replace literals b < x" by |

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic



e In F_[x'], no literals of the form x’ < a and b < x’ because
for very small numbers they evaluate to true or false

@ But we still have divisibility predicates of the form

h|(x" + ¢) and —(k|x" + d)

@ Unfortunately, can't just replace these with T or L. Why?
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e In F_[x'], no literals of the form x’ < a and b < x’ because
for very small numbers they evaluate to true or false

But we still have divisibility predicates of the form

h|(x" + ¢) and —(k|x" + d)

Unfortunately, can't just replace these with T or L. Why?

Because for an arbitrary very small number, these divisibility
predicates need not hold

@ Thus, want to figure out if there exists a very small number
satisfying divisibility predicates
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@ Good news: If there exists a very small number satisfying
divisibility constraints, there must also exist a number in a
finite precomputable range [1, d] satisfying these predicates

@ This is known as peridocity property of divisibility predicates

@ Periodicity property: Suppose m|d, then, m|n iff m|(n+ AJ)
for all integers A

@ In other words, divisibility by m cannot distinguish between
numbers n and n+ A

@ Thus, if some very small number satisfies divisibility
constraints in F_, there must exist a number n € [1, 0]

@ But what is this §7
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e Consider two literals of the form k|x" and m|x’

e We want to find the smallest number 0 such that both k|§
and m|d

@ What number has this property?
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e Consider two literals of the form k|x" and m|x’

e We want to find the smallest number 0 such that both k|§
and m|d

@ What number has this property? lcm(k, m)
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Consider two literals of the form k|x" and m|x’

e We want to find the smallest number 0 such that both k|§
and m|d

What number has this property? lcm(k, m)

Thus, ¢ should be the least common multiple of the LHS of
divisibility constraints

Specifically:

5= I h of literals h|(x" + ¢)
N k of literals —=(k|(x" + d))

@ Thus, to determine if there exists a very small number n
satisfying F_, sufficient to numbers in the range [0, ]
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Step 5a, Summary

@ Assume infinitely many small numbers satisfy 3x’. Fa[x']
@ First compute left infinite projection F_, of F4

o Cooper’s result: Ix’.Fy is satisfiable iff there exists n in the
range [1, 4] satisfying F_, i.e.,:

1)
\/ Foooli]
j=1

@ Under the assumption there are infinitely many small numbers
satisfying Ix.F[x], we have the equivalence:

0
Ix.Flx] < \/ Fooli]
j=1
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Step 5b: Exists a Least Satisfying Number

Now, let's consider case with a least number satisfying Fs[x']

Recall: All the inequality literals are either x’ < a3 or b < x’

If there is a least number satisfying F4[x’], one of these
inequality literals must be responsible for it

Can a literal x' < a be responsible for this least number?
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Step 5b: Exists a Least Satisfying Number

Now, let's consider case with a least number satisfying Fs[x']

Recall: All the inequality literals are either x’ < a3 or b < x’

If there is a least number satisfying F4[x’], one of these
inequality literals must be responsible for it

Can a literal x' < a be responsible for this least number? No
because x’ < a satisfied no matter how small x’ is
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Step 5b: Exists a Least Satisfying Number

@ Now, let's consider case with a least number satisfying Fa[x']
@ Recall: All the inequality literals are either x’ < a or b < x’

o If there is a least number satisfying F4[x'], one of these
inequality literals must be responsible for it

e Can a literal X’ < a be responsible for this least number? No
because x’ < a satisfied no matter how small x’ is

@ Thus,if there is least value of x', it is due to some b < x’

@ Thus, disregarding divisibility constraints, least number
satisfying F4[x'] must be one of these b's!
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Step 5b, cont

Now, let's take the divisibility constraints into account

Because of the divisibility constraints, least number satisfying
F4[x'] might not be exactly b

It might be greater than b to satisfy divisibility constraints
But it can't be greater than b+ ¢ (6 same as before). Why?
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Step 5b, cont

@ Now, let’s take the divisibility constraints into account

@ Because of the divisibility constraints, least number satisfying
F4[x'] might not be exactly b

@ It might be greater than b to satisfy divisibility constraints
@ But it can't be greater than b+ ¢ (6 same as before). Why?

@ Because of periodicity, if there is no number in the range
[b, b+ )], there can't be number greater than b + \ satisfying
divisibility constraints

@ Thus, assuming some literal b < x’ is limiting factor,
Ix’.F4[x'] has solution iff:

5
\/ Fa[b +J]

J=1
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Step 5b, cont

@ Not done yet because we don't know which literal of the form
b < x" is the most constraining literal

@ Suppose we have n literals by < x', by < x/,..., b, < X’

@ We need to take into the possibility that any of them could be
most constraining

@ Thus, assuming there is a least number satisfying F4[x],
dx.F[x] equivalent to:

n 6

\/ \/ Fa[bj + j]

i=1j=1
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Step 5, summary

@ Now, let's combine the two case analysis
@ Assuming F|[x] satisfied by infinitely many small x, we have:

)
Ix.Fix] < \/ Foooli]
j=1

@ Assuming there is least x satisfying F[x], we have:

n 0
Ix.Fix] < \/ \/ Falbi + ]

i=1j=1

@ Combining these two, we get the final result of step 5:

3x.Flx] < \/ Fooolj] V \/ \/ Falbi + ]

i=1j=1
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@ Use Cooper's method to eliminate quantifier from:

Ix.—y <3x—2y+1A2x—6<zA2|(x+1)

Step 1: Already in NNF
Step 2: Already normalized

Step 3: Collect x-terms on one side:

Ixy —1<3xA2x<z+6A2|(x+1)

Step 4a: Make coefficients of x equal everywhere

What is lcm of x's coefficients?
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@ Use Cooper's method to eliminate quantifier from:

Ix.—y <3x—2y+1A2x—6<zA2|(x+1)

Step 1: Already in NNF
Step 2: Already normalized

Step 3: Collect x-terms on one side:

Ixy —1<3xA2x<z+6A2|(x+1)

Step 4a: Make coefficients of x equal everywhere

What is lcm of x's coefficients? 6
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Example,cont

Ixy —1<3xA2x<z+6A2|(x+1)

@ Multiply literals so that x has coefficient 6 everywhere:

Ix.2y —2 < 6x A b6x < 3z + 18 A 12|(6x + 6)

@ Step 4b: Replace 6x with x’; add divisibility constraint 6|x’

o Formula after step 4:

Ix'2y —2 < X' A X' <3z + 18 A12|(x" +6) A 6|x
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Example, cont

Ix'2y —2 < X' Ax' < 3z+ 18 A12|(X" +6) A 6|

Step 5a: Assume there are infinitely many small numbers
satisfying formula

Construct left infinite projection:

Fooo: LATAL2|(X +6) A6|X

This simplifies to L

Step 5b: Assume there is least number satisfying formula

Which inequalities could be responsible for least n?
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Example, cont

Ix'2y —2 < X' Ax' < 3z+ 18 A12|(X" +6) A 6|

Step 5a: Assume there are infinitely many small numbers
satisfying formula

Construct left infinite projection:

Fooo: LATAL2|(X +6) A6|X

This simplifies to L

Step 5b: Assume there is least number satisfying formula

Which inequalities could be responsible for least n?
2y —2 < X
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Example, cont

Ix'2y —2 < X' AxX' < 3z+ 18 A12|(X +6) A6|X

@ Thus, if there is solution, must lie in range [2y — 2,2y — 2 + ]
o What is § here?
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Example, cont

Ix'2y —2 < X' AxX' < 3z+ 18 A12|(X +6) A6|X

@ Thus, if there is solution, must lie in range [2y — 2,2y — 2 + ]
o What is § here? 12
o Now putting everything together, we get:
12
\V 0<jn2y+j<3z+20A12]2y +j+4)A6]2y —2+
j=1
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Example 2

Apply Cooper’'s method to Ix.2x = y (already in NNF)

Step 2: Normalize literals:

Ixy <2x+1A2x<y—+1

Step 3: Collect x on one side:

Ixy —1<2xA2x<y—+1

Step 4a: x's coefficients already same everywhere

Step 4b: Replace 2x with x’; add divisibility constraint: 2|x’

Iy —1<xXAX <y+1A2|X
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Example 2,cont

Iy —1<xXAX <y+1A2X

@ Step 5a: Compute left infinite projection: L
@ Step 5b: Assume there is a least n satisfying formula

@ Which literal could be responsible?
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Example 2,cont

Iy —1<xXAX <y+1A2X

@ Step 5a: Compute left infinite projection: L
@ Step 5b: Assume there is a least n satisfying formula

@ Which literal could be responsible? y — 1 < x’

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic



Example 2,cont

Iy —1<xXAX <y+1A2X

@ Step 5a: Compute left infinite projection: L
@ Step 5b: Assume there is a least n satisfying formula
@ Which literal could be responsible? y — 1 < x’

@ In what range must this least n be?
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Example 2,cont

Iy —1<xXAX <y+1A2X

@ Step 5a: Compute left infinite projection: L

@ Step 5b: Assume there is a least n satisfying formula
@ Which literal could be responsible? y — 1 < x’

@ In what range must this least n be? [y — 1,y — 1+ 2]
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Example 2,cont

Iy —1<xXAX <y+1A2X

Step 5a: Compute left infinite projection: L

Step bb: Assume there is a least n satisfying formula
Which literal could be responsible? y — 1 < x’

In what range must this least n be? [y — 1,y — 1+ 2]

Thus, x’ must beoneof y —1,y,y +1
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Example 2,cont

Iy —1<XAX <y+1A2X

o x' mustbeoneof y —1,y,y +1
@ Plugin y — 1 for x/, we get:
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Example 2,cont

Iy —1<XAX <y+1A2X

o x' mustbeoneof y —1,y,y +1
@ Pluginy —1 for x/, we get: |
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Example 2,cont

Iy —1<XAX <y+1A2X

o x' mustbeoneof y —1,y,y +1
@ Pluginy —1 for x/, we get: |

@ Plug in y for x/, we get:
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Example 2,cont

Iy —1<XAX <y+1A2X

o x' mustbeoneof y —1,y,y +1
@ Pluginy —1 for x/, we get: |
@ Plug in y for x’, we get: 2|y
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Example 2,cont

Iy —1<XAX <y+1A2X

@ x' must beoneof y —1,y,y +1
@ Pluginy —1 for x/, we get: |
@ Plug in y for x’, we get: 2|y

@ Plugin y + 1 for x/, we get:
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Example 2,cont

Iy —1<XAX <y+1A2X

@ x' must beoneof y —1,y,y +1
@ Pluginy —1 for x/, we get: |
@ Plug in y for x’, we get: 2|y

@ Plugin y +1 for x/, we get: |
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Example 2,cont

Iy —1<XAX <y+1A2X

x' must beoneof y —1,y,y +1
Plug in y — 1 for x/, we get: |
Plug in y for x’, we get: 2|y
Plug in y + 1 for x/, we get: |

Thus, formula equivalent to:
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Example 2,cont

Iy —1<XAX <y+1A2X

x' must beoneof y —1,y,y +1
Plug in y — 1 for x/, we get: |
Plug in y for x’, we get: 2|y
Plug in y + 1 for x/, we get: |

Thus, formula equivalent to: 2|y
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An Alternative Construction

@ To produce equivalent formula, we performed a case analysis:

© Either there are infinitely many very small numbers satisfying it
@ Or there exists a least number satisfying it

@ But we could have also performed the case analysis this way:

@ Either there are infinitely many very large numbers satisfying it
@ Or there exists a greatest number satisfying it
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with L
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_

@ Replace x’ < a with L
@ Replace b < x" with
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_

@ Replace x’ < a with L
@ Replace b < x" with T
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with L
@ Replace b < x" with T
@ For the second case (i.e., greatest number), which literals
must be responsible?
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with L
@ Replace b < x" with T
@ For the second case (i.e., greatest number), which literals
must be responsible? x’ < a
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with L
@ Replace b < x" with T
@ For the second case (i.e., greatest number), which literals
must be responsible? x’ < a
o If literal x' < a is responsible for greatest satisfying number,
in which range must this greatest number lie?
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Alternative Case Analysis

@ Let's see what happens using this alternative case analysis
o For the first case, we construct F, o, instead of F_
@ Replace x’ < a with L
@ Replace b < x’ with T
@ For the second case (i.e., greatest number), which literals
must be responsible? x’ < a
o If literal x' < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a — ¢, 4]
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@ Using this alternative construction, we obtain the equivalence:

6 k

Ix.Flx] & \/ F+—oolj] v \/ \/ Falai — ]

j=1 i=1j=1

@ This immediately gives a way to optimize Cooper’'s method

@ Observe: If there are n terms of the form b < x/, we get n
disjuncts using left infinite projection

@ Observe: If there are k terms of the form x’ < a, we get k
disjuncts using right infinite projection
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Using this alternative construction, we obtain the equivalence:

6 k

Ix.Flx] & \/ F+—oolj] v \/ \/ Falai — ]

j=1 i=1j=1

This immediately gives a way to optimize Cooper's method
Observe: If there are n terms of the form b < x/, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x’ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < X/,
advantageous to use
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Using this alternative construction, we obtain the equivalence:

6 k

Ix.Flx] & \/ F+—oolj] v \/ \/ Falai — ]

j=1 i=1j=1

This immediately gives a way to optimize Cooper's method
Observe: If there are n terms of the form b < x/, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x’ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < X/,
advantageous to use F;
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Using this alternative construction, we obtain the equivalence:

6 k

Ix.Flx] & \/ F+—oolj] v \/ \/ Falai — ]

j=1 i=1j=1

This immediately gives a way to optimize Cooper's method
Observe: If there are n terms of the form b < x/, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x’ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < X/,
advantageous to use F;

If there are more x’ < a terms, better to use F_.
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@ Consider the formula:
Ix(x<13VIS <x)Ax <y

@ Which projection is better?
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@ Consider the formula:
Ix(x<13VIS <x)Ax <y

@ Which projection is better? left infinite
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Consider the formula:

Ix(x<13VIS <x)Ax <y

Which projection is better? left infinite

There are two terms of the form x < a forming upper bound
on x: construction using F;~ has 2 disjuncts

There is one term of the form b < x forming lower bound:
construction using F_., has one disjunct

Thus, left infinite projection yields smaller formula
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Theory of Rationals

@ Now we discuss theory of rationals Tg with signature:

Yo:{n—2,-1,012 .. 4, — =<}

Quantifier elimination for Tg is simpler than @

The algorithm is called Ferrante and Rackoff's method

The idea is very similar to Cooper’s method
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Ferrante and Rackoff's method

@ Ferrante and Rackoff’s method has four main steps:
@ Put F[x] into NNF
@ Normalize literals:
o ((s<t)yet<sVti=s
o (s=t)et<sVt>s
© Isolate terms containing x on one side: hx < t,s < hx and
replace literals cx ® t with x ® t/c, for ® € {>,=,<}.
@ Replace F[x] with a disjunction of F[j]'s for finitiely many j
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Formula after Step 3

o After step 3, formula is of the form Ix.F3[x]
e Furthermore Ix.F3[x] is equivalent to Ix.F[x]

@ In addition, each literal in 3x.F3[x] is one of the following:

A x<a
B b<x
Cx=c

@ Here, a, b, ¢ do not contain x
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:
© Replace literals x < a by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:

© Replace literals x < a by T
@ Replace literals b < x by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:

© Replace literals x < a by T
@ Replace literals b < x by L
© Replace literals ¢ = x by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:

© Replace literals x < a by T
@ Replace literals b < x by L
© Replace literals ¢ = x by L

@ To compute right infinite projection F..:
© Replace literals x < a by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:
© Replace literals x < a by T
@ Replace literals b < x by L
© Replace literals ¢ = x by L

@ To compute right infinite projection F..:

© Replace literals x < a by L
@ Replace literals b < x by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:
© Replace literals x < a by T
@ Replace literals b < x by L
© Replace literals ¢ = x by L

@ To compute right infinite projection F..:
© Replace literals x < a by L
@ Replace literals b< x by T
© Replace literals ¢ = x by
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Step 4a: Left and Right Infinite Projection

@ To compute left infinite projection F_:
© Replace literals x < a by T
@ Replace literals b < x by L
© Replace literals ¢ = x by L

@ To compute right infinite projection F..:
© Replace literals x < a by L
@ Replace literals b< x by T
© Replace literals ¢ = x by L
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Step 4b: Remove Quantifiers

@ Let S be the set of a, b, ¢ terms for the A, B, C atoms in F3

@ The final result:

s—l—t]
2

Ix.F[x] € Froo V Fise V \/ Fil
s,teS

e Intuition: for any Tg-interpretation, |S| — 1 pairs s,t € S are

adjacent; ST“ is indistinguishable with any other point in the

interval (s, t).
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