SMT and Its Application in
Software Verification

Yu-Fang Chen
1IS, Academia Sinica

Based on the slides of Barrett, Sanjit, Kroening , Rummer, Sinha,
Jhala, and Majumdar

Assertion in C

int main(){ e Useful tool for debugging.
int x; * Can be used to describe pre- and
scanf("%d", &x); post-conditions of a function.
assert(x > 10);) . A program ter_minates
immediately, if it reaches a
violated assertion.

[vfc@FM3 ~]$ gcc test.c
[vfc@FM3 ~]$./a.out

10
a.out: test.c:9: main: Assertion ¥ = 10' failed.

Aborted

Assertion in C

mti:]ta)'(r.](){ * Will this assertion be
scanf("%d", &x); violated?
while(x<10){
X++;
}

assert(x > 0);

Assertion in C

inti:]ta:.](){ * Will this assertion be
scanf("%d", &x); violated?
while(x<10){
X-=;
}

assert(x > 0);

Assertion in C

int main(){ e Will this assertion be

int x; violated?
scanf("%d", &x);

while(x<4324358){
X-=;
}
assert(x > 4324358); }

Assertion in C

* One more example:

void A (bool h, bool g) { void B (bool al,bool a2) {
h := !g; if (al)
g=B (g, h); return B (a2, al);
g=B (g, h); else

assert (qg) ; return a2;

The Problem We are Going to Solve

e Given a program with assertion, we want to
automatically detect if the assertion may be
violated.

Part I: Logic and Program Verification

First-Order Logic: A Quick Review

— Logical Symbols
* Propositional connectives: V, A, o, =, &
e Variables:v1,v2, ...
e Quantifiers: V, 3
— Non-logical Symbols
 Functions: +, -, *, sug, ...
* Predicates: <, =, ...
e Constant symbols: 0, 1, null, ...

— Example
e 3*v2+5*yv1 < 54

Why This is Relevant to Software Verification?

For example:
* Given an integer program without loop and function call.

* The assertion checking problem can be reduced to
satisfibility problem |of a trace formula”

int main(){
int x; scanf("%d", &x); (X, <10 A X, = X, -1 A X, =9)
if(x<10) x=x-1; A
assert(x !=9); (Xo=>10 A x, =9)

}

The assertion may be violated <:i_'ﬂ-:> The first order formula is satisfible

Note *: a FOL formula under theory of linear integer arithmetic.

First order logic Theories

e A first order theory T consists of
— Variables
— Logical symbols: AV =V 3 (")

— Signature). Constants, predicate and function
symbols

— The meanings of the signatures.

11

Examples

* TheoryT:
_ 2 — {0’1’ (+I’ l=I
e ‘0’,’1" are constant symbols

* ‘+’is a binary function symbol
e ‘=" s a binary predicate symbol

 An example of a T-formula:

Ix.x+0=1 Is it T-valid?

Structures

The most common way of specifying the meaning
of symbols is to specify a structure

Recallthat F=dx. x+0=1

Consider the structure S:

— Domain: N,

— Interpretation of the non-logical symbols :
‘0’ and ‘1’ are mapped to 0 and 1 in NV,
e ‘="t = (equality)
* '+’ > * (multiplication)

Now, is F valid under S ?

Short Summary

* Atheory defines

— the signature 2. (the set of non-logical symbols)
and

— the interpretations that we can give them.

Theories through axioms

 The number of sentences that are necessary
for defining a theory may be large or

* |nstead, it is common to define a theory
through a set of

* The and
everything that can be inferred from them by
a sound inference system.

15

Example 1

Let) = {"="}

— An exampleis F=((x=y) A = (y=12)) — —(x=2)

We would now like to define a theory T that will
of ‘=" to equality.

We will do so with the equality axioms:

— VX. X=X (reflexivity)
— VX,y.XxX=y —>y=X (symmetry)
— VXY,Z.X=YAYy=Z—>X=1 (transitivity)

Every assighnment that satisfies these axioms also
satisfies F above.

Hence F is T-valid.

Example 2

o Let M ={<'}
* Consider the formula F = Vx dy. y < x

* Consider the theory T with axioms:
— VX,V,z.X<YAYy<zZ—>Xx<zZ (transitivity)
— VX,y. x<y —> —(y < x) (anti-symmetry)

Some Useful Theories in
Software Verification

Equality (with uninterpreted functions)

Linear arithmetic (over Q or Z)
— Peano Arithmetic, Presburgh Arithmetic

Difference logic (over Q or Z)

Finite-precision bit-vectors
— integer or floating-point
Arrays

Misc.: strings, lists, sets, ...

18

Theory of Equality and Uninterpreted Functions
(EUF)

* Signature:
— Constants and Function symbols: f, g, etc. In principle, all

“u_ng

possible symbols but “=" and those used for variables.
— Predicates symbol: “="

* equality axioms:

— VX. X=X (reflexivity)
— VX,y.X=y —>y=X (symmetry)
— VX,V,Z.X=yAy=zZ—>X=12 (transitivity)

* |n addition, we need congruence: the function symbols
map identical arguments to identical values, i.e., x =
y = f(x) = f(y)

19

Example EUF Formula

(x=y) Aly =2) A (t(x) = (z))

Transitivity:
(x=y)Aly=2)= (x=2)

Congruence:
(x=2) = (f(x) = f(z))

Equivalence Checking of Program Fragments

int funi(int y) { The formula is satisfiable iff

Intx, z; the programs are non-equivalent
Z=Y;
Yy =X z0=y0 Ayl=x0 Ax1=2z0 Aretl=sq(x1)
X=1, A
ret2 = sq(y0)
return sq(x); A
J retl = ret2

int fun2(inty) {
return sq(y);

}

int f(inty) {
int X, z;
X = myFunc(y);
X = myFunc(x);

A Small Practice:

Write a formula F such that

Formula F is satisfible <&
the assertion can be violated

z = myFunc(myFunc(y));

assert (x==z);

}

Solution:

22

First Order Peano Arithmetic

constant function predicate
° E={091,6_|_7, 6><9, 6:9
e Domain: Natural numbers
Validity is

Undecidable!

 Axioms (“semantics”):
1. Vx:—(0=x+1)
2. Vx:Vy:=(x=y) — —(x+ 1=y +1)
3. Induction

N {4' VXx:x+0=x These axioms define the
5. \V/XZ\V/y:(X+y)+1=X+(y+1)} semantics of ‘+’
{6. Vx:xx0=0

17, VxVy:xx(y+1)=xXy+x

First Order Presburger Arithmetic

constant function predicate
e 2'={0,1.+", , ="}
 Domain: Natural numbers
Validity is
Decidable!

 Axioms (“semantics”):
1. Vx:—(0=x+1)
2. Vx:Vy:=(x=y) — —(x+ 1=y +1)
3. Induction

N { 4. Vx:x+0=x These axioms define the
5. \V/XZ\V/y:(X+y)+1=X+(y+1)} semantics of ‘+’

Note that 3x v2+5x vl < 54 is a Presburger Formula

Examples in Software Verification

* Array Bound Checking:

void f() { I0=1AI1=i0+1Ai2=i1+1A... Ni8=i7+1N
int x[10]; —(0<i0<10A 0<il<10A... A 0<i8<10)
x[0]=1,; is satisfible iff

for(int i=1; i<10; i++){ the assertion may be violated
assert(0<i<10);
X[i]=x[i-1]+5;

} x>y can be translated to Juc N,: x= y+u

Theory of Arrays

 Two interpreted functions: select and store

— select(A,i) Read from array A at index i

— store(A,i,d) Write d to array A at index i
* Two main axioms:

— select(store(A,i,d), i) =d
— select(store(A,i,d), j) = select(A,j) for —(i =j)
* Extentionality axiom:

— Vi. select(A,i) = select(B,i) = (A =B)

26

Combining Theories

» Satisfiability Modulo Theories (SMT) problem is a decision

problem for logical formulae with respect to combinations of
different first order theories.

* For example: Uninterpreted Function + Linear Integer
Arithmetic

1<xAx<2 A f(x)=f(1) Af(x) =f(2)

Linear Integer Arithmetic (LIA) | Uninterpreted Functions(UF)

* How to Combine Theory Solvers?
A Classical Algorithm: The Nelson-Oppen Method.

27

What you have learned so far?

e Assertionsin C

* First Order Theories related to Verification
— Equality and Uninterpreted Functions
f(a,b)=a A f(f(a, b), b)=a
— Linear Integer Arithmetic
X+5>y-7 A3y <x Ay>0
— Arrays
Vi,j: i>j =2 select(A, i) > select(A, j) [array A is sorted]
* The SMT Problem

Quantifier-free Subset

* |n Software Verification, we will largely
restrict ourselves to formulas without
quantifiers (V, d)—mainly for efficiency
reason.

* This is called the quantifier-free fragment of
first-order logic.

What you are going to learn this week?

* Solving first order Presburgh formula over
integers and rational numbers (Today)

* An efficient procedure for quantifier-free
Presburgh formula (Wang)

* Procedure for theory for equality (Tsai)
* Nelson-Oppen SMT procedure (Yu)

