SMT and Its Application in **Software Verification**

Yu-Fang Chen
IIS, Academia Sinica

Based on the slides of Barrett, Sanjit, Kroening, Rummer, Sinha, Jhala, and Majumdar

```
int main(){
  int x;
  scanf("%d", &x);
  assert(x > 10); }
```

- Useful tool for debugging.
 - Can be used to describe pre- and post-conditions of a function.
 - A program terminates immediately, if it reaches a violated assertion.

```
[yfc@FM3 ~]$ gcc test.c
[yfc@FM3 ~]$ ./a.out
10
a.out: test.c:9: main: Assertion `x > 10' failed.
Aborted
```

```
int main(){
   int x;
   scanf("%d", &x);
   while(x<10){
       x++;
   }
   assert(x > 0);
}
```

Will this assertion be violated?

```
int main(){
    int x;
    scanf("%d", &x);
    while(x<10){
        x--;
    }
    assert(x > 0);
}
```

• Will this assertion be violated?

```
int main(){
  int x;
  scanf("%d", &x);
  while(x<4324358){
      x--;
  }
  assert(x > 4324358); }
```

Will this assertion be violated?

One more example:

```
void A(bool h, bool g) {
   h := !g;
   g=B(g,h);
   g=B(g,h);
   assert(g);
}
```

```
void B(bool a1,bool a2) {
   if (a1)
     return B(a2,a1);
   else
     return a2;
}
```

The Problem We are Going to Solve

 Given a program with assertion, we want to automatically detect if the assertion may be violated.

Part I: Logic and Program Verification

First-Order Logic: A Quick Review

- Logical Symbols
 - Propositional connectives: \lor , \land , \neg , \rightarrow , \leftrightarrow
 - Variables: v1, v2, . . .
 - Quantifiers: ∀, ∃
- Non-logical Symbols
 - Functions: +, -, *, suc, ...
 - Predicates: \leq , = , ...
 - Constant symbols: 0, 1, null, ...
- Example
 - 3*v2 + 5*v1 < 54

Why This is Relevant to Software Verification?

For example:

- Given an integer program without loop and function call.
- The assertion checking problem can be reduced to satisfibility problem of a trace formula*

```
int main(){
   int x; scanf("%d", &x);
   if(x<10) x= x -1;
   assert(x != 9);
}</pre>
```

$$(x_0 < 10 \land x_1 = x_0 - 1 \land x_1 = 9)$$

 \land
 $(x_0 \ge 10 \land x_0 = 9)$

The assertion may be violated

The first order formula is satisfible

First order logic Theories

- A first order theory T consists of
 - Variables
 - Logical symbols: $\land \lor \neg \forall \exists `('`)'$
 - Signature Σ : Constants, predicate and function symbols
 - The meanings of the signatures.

Examples

Theory T:

$$-\Sigma = \{0,1, '+', '='\}$$

- '0','1' are constant symbols
- '+' is a binary function symbol
- '=' is a binary predicate symbol
- An example of a T-formula:

$$\exists x. \ x + 0 = 1$$

Is it T-valid?

Structures

- The most common way of specifying the meaning of symbols is to specify a **structure**
- Recall that $F = \exists x. \ x + 0 = 1$
- Consider the structure S:
 - Domain: \mathcal{N}_0
 - Interpretation of the non-logical symbols :
 - '0' and '1' are mapped to 0 and 1 in \mathcal{N}_0
 - $'=' \mapsto = (equality)$
 - '+' → * (multiplication)
- Now, is F valid under S?

Short Summary

- A theory defines
 - the signature \varSigma (the set of non-logical symbols) and
 - the interpretations that we can give them.

Theories through axioms

 The number of sentences that are necessary for defining a theory may be large or infinite.

 Instead, it is common to define a theory through a set of axioms.

 The theory is defined by these axioms and everything that can be inferred from them by a sound inference system.

Example 1

- Let $\Sigma = \{'='\}$ — An example is $F=((x=y) \land \neg (y=z)) \rightarrow \neg (x=z)$
- We would now like to define a theory T that will limit the interpretation of '=' to equality.
- We will do so with the equality axioms:
 - $\forall x. \ x = x$ (reflexivity)
 $\forall x, y. \ x = y \rightarrow y = x$ (symmetry)
 $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity)
- Every assignment that satisfies these axioms also satisfies F above.
- Hence F is T-valid.

Example 2

- Let $\Sigma = \{'<'\}$
- Consider the formula $F = \forall x \exists y. y < x$
- Consider the theory T with axioms:
 - ∀x,y,z. x < y ∧ y < z → x < z (transitivity)
 - $\forall x,y. x < y \rightarrow \neg (y < x)$ (anti-symmetry)

Some Useful Theories in Software Verification

- Equality (with uninterpreted functions)
- Linear arithmetic (over Q or Z)
 - Peano Arithmetic, Presburgh Arithmetic
- Difference logic (over \mathbb{Q} or \mathbb{Z})
- Finite-precision bit-vectors
 - integer or floating-point
- Arrays
- Misc.: strings, lists, sets, ...

Theory of Equality and Uninterpreted Functions (EUF)

• Signature:

- Constants and Function symbols: f, g, etc. In principle, all possible symbols but "=" and those used for variables.
- Predicates symbol: "="
- equality axioms:

-
$$\forall x. \ x = x$$
 (reflexivity)
- $\forall x, y. \ x = y \rightarrow y = x$ (symmetry)
- $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity)

• In addition, we need *congruence*: the function symbols map identical arguments to identical values, i.e., $x = y \Rightarrow f(x) = f(y)$

Example EUF Formula

$$(x = y) \land (y = z) \land (f(x) = f(z))$$

Transitivity:

$$(x = y) \land (y = z) \Rightarrow (x = z)$$

Congruence:

$$(x = z) \Rightarrow (f(x) = f(z))$$

Equivalence Checking of Program Fragments

```
int fun1(int y) {
                      The formula is satisfiable iff
   int x, z;
                      the programs are non-equivalent
   z = y;
   y = x;
                      z0 = y0 \land y1 = x0 \land x1 = z0 \land ret1 = sq(x1)
   X = Z;
                      ret2 = sq(y0)
  return sq(x);
                      ret1 = ret2
int fun2(int y) {
   return sq(y);
```

A Small Practice:

```
int f(int y) {
  int x, z;
  x = myFunc(y);
  x = myFunc(x);
  z = myFunc(myFunc(y));

assert (x==z);
}
Write a formula F such that

Formula F is satisfible ↔
the assertion can be violated
```

Solution:

First Order Peano Arithmetic

constant function predicate
$$\Sigma = \{0,1, +', \times', ='\}$$

Domain: Natural numbers

Validity is

Undecidable!

Axioms ("semantics"):

```
1. \forall x : \neg (0 = x + 1)
```

2.
$$\forall x : \forall y : \neg(x=y) \rightarrow \neg(x+1=y+1)$$

3. Induction

$$\begin{cases}
4. & \forall x : x + 0 = x \\
5. & \forall x : \forall y : (x + y) + 1 = x + (y + 1)
\end{cases}$$
6. $\forall x : x \times 0 = 0$

 $\begin{cases} 6. & \forall x : x \times 0 = 0 \\ 7. & \forall x \forall y : x \times (y+1) = x \times y + x \end{cases}$

These axioms define the semantics of '+'

First Order Presburger Arithmetic

constant function predicate
$$\Sigma = \{0,1,'+', | , '=' \}$$

Domain: Natural numbers

Validity is

Decidable!

- Axioms ("semantics"):
 - 1. $\forall x : \neg (0 = x + 1)$
 - 2. $\forall x : \forall y : \neg(x=y) \rightarrow \neg(x+1=y+1)$
 - 3. Induction

+
$$\{ \begin{array}{ll} 4. & \forall \ x : x + 0 = x \\ 5. & \forall \ x : \forall \ y : (x + y) + 1 = x + (y + 1) \end{array} \}$$

These axioms define the semantics of '+'

Examples in Software Verification

Array Bound Checking:

Theory of Arrays

- Two interpreted functions: select and store
 - select(A,i)Read from array A at index i
 - store(A,i,d)Write d to array A at index i
- Two main axioms:
 - select(store(A,i,d), i) = d
 - select(store(A,i,d), j) = select(A,j) for \neg (i = j)
- Extentionality axiom:
 - $\forall i. select(A,i) = select(B,i) \rightarrow (A = B)$

Combining Theories

- Satisfiability Modulo Theories (SMT) problem is a decision problem for logical formulae with respect to combinations of different first order theories.
- For example: Uninterpreted Function + Linear Integer Arithmetic

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

Linear Integer Arithmetic (LIA)

Uninterpreted Functions(UF)

How to Combine Theory Solvers?
 A Classical Algorithm: The Nelson-Oppen Method.

What you have learned so far?

- Assertions in C
- First Order Theories related to Verification
 - Equality and Uninterpreted Functions $f(a,b)=a \wedge f(f(a,b),b)=a$
 - Linear Integer Arithmetic x+5>y-7 ∧ 3y < x ∧ y>0
 - Arrays
 - \forall i,j: i>j \rightarrow select(A, i) > select(A, j) [array A is sorted]
- The SMT Problem

Quantifier-free Subset

- In **Software Verification**, we will largely restrict ourselves to formulas without quantifiers (\forall, \exists) —mainly for efficiency reason.
- This is called the quantifier-free fragment of first-order logic.

What you are going to learn this week?

- Solving first order Presburgh formula over integers and rational numbers (Today)
- An efficient procedure for quantifier-free Presburgh formula (Wang)
- Procedure for theory for equality (Tsai)
- Nelson-Oppen SMT procedure (Yu)