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Decision Procedures  

An algorithmic point of view 

So far we know how to… 

 Decide Equality Logic with Uninterpreted Functions: 
(x1 = x2) Ç  :(f(x2) = x3) Æ  … 

 

 Decide Disjunctive Linear arithmetic: 

 3x1 + 5x2 ¸  2x3 Æ  x2 ·  4x4… 

 

 What about a combined formula ? 
(x2 ¸  x1) Æ  (x1- x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(f(x1) - f(x2))  f(x3)  

 



Decision Procedures  

An algorithmic point of view 

We also know how to… 

 Decide bit-vector equations 

 a[32] £  b[32] = b[32] £  a[32] 

 But how shall we decide 

 f(a[32], b[1]) = f(b[32], a[1]) Æ  a[32] = b[32] 



Decision Procedures  

An algorithmic point of view 

More combination examples:  

 Combining lists, arithmetic and Uninterpreted 

Functions: 

  

 (x1 ·  x2) Æ  (x2 ·  x1 + car(cons(0,x1))) Æ  p(h(x1) – h(x2)) Æ  :p(0) 

 

 Combining Arrays and Arithmetic: 

  

 x = store(v,i,e)[j] Æ  y = v[j] Æ  x > e Æ  x > y 



Decision Procedures  

An algorithmic point of view 

Combining theories  

 Approach #1: Reduce all theories to a common logic, 

if possible (e.g. Propositional Logic). 

 All un-quantified theories we saw so far are in NP. 

We saw their direct translation to SAT (i.e. not through a 

Turing-machine). 

 Approach #2: Combine decision procedures of the 

individual theories.  

 How? we will learn the Nelson-Oppen method* 

 

* Greg Nelson and Derek Oppen, simplification by cooperating decision 

procedures, 1979  



Decision Procedures  

An algorithmic point of view 

Reminders: theories and signatures 

 First order logic –  

 Symbols (Boolean connectives and quantifiers over variables), Syntax 

(wff-s  ). 

 Axioms, inference rules.  

 First order theories –  

 Additional axioms and symbols characterizing the theory. 

 The signature  of a theory T  holds the set of functions and predicates 

of the theory. 

 “First order quantifier-free theories with equality” – the 

equality predicate must be part of the signature. 



Decision Procedures  

An algorithmic point of view 

The Theory-Combination problem 

 Given theories T1 and T2 with signatures 1 and 2, 

the combined theory T1 ©  T2  

 has signature 1 [ 2 and  

 the union of their axioms. 

 Let  be a 1 [ 2 formula. 

 The problem:   Does T1 ©  T2  ²    ? 



Decision Procedures  

An algorithmic point of view 

The problem 

 The Theory-Combination problem is undecidable (even when 

the individual theories are decidable). 

 Under certain restrictions, it becomes decidable. 

 We will assume the following restrictions:   

 T1 and T2 are decidable, quantifier-free first-order theories with equality. 

 Disjoint signatures (other than equality):   1 Å  2 = ; 

 More restrictions to follow… 

 There are extensions to the basic algorithm that we will study, 

that partially overcomes each of these restrictions.  



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method (1) 

 Purification:   validity-preserving transformation of 

the formula after which predicates from different 

theories are not mixed. 

 

1. Replace an `alien’ sub-expression  with a new auxiliary 

variable a 

2. Constrain the formula with a =  

 Transform   x1·  f(x1)    

 … into  x1·  a1 Æ   a1 = f(x1) 

Arithmetic 

Uninterpreted Functions Pure expressions, shared variables 



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method (2) 

 After purification we are left with several sets of pure 

expressions F1…Fn such that: 

 Fi belongs to some ‘pure’ theory which we can decide.  

 Shared variables are allowed, i.e. it is possible that for 

some i,j, vars(Fi) Å  vars(Fj)  ;.  

   is satisfiable $ F1 Æ  … Æ  Fn is satisfiable 



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method* (3) 

1. Purify  into F1Æ  … Æ   Fn. 

2. If 9i. Fi is unsatisfiable, return `unsatisfiable’ . 

3. If 9i,j. Fi implies an equality not implied by Fj, add 

it to Fj  and goto step 2. 

4. Return `satisfiable’. 

* So far only for ‘non-convex’ theories – to be explained 



Decision Procedures  

An algorithmic point of view 

Example (1) 

 (x1 ·  x2) Æ  (x2 ·  (x1 + car(cons(0,x1)))) Æ  p(h(x1) – h(x2)) Æ  :p(0) 

 

 Purification: 

 (x1 ·  x2) Æ  (x2 ·  x1 + a1)Æ  p(a2) Æ  :p(a5) Æ  

 a1 =  car(cons(a5, x1)) Æ  

 a2  = a 3 – a4  Æ  

 a3 =  h(x1)   Æ  

 a4 = h(x2)  Æ  

 a5 = 0  

 



Decision Procedures  

An algorithmic point of view 

Example (1), cont’d 

Arithmetic EUF Lists 

x1 ·  x2  

x2 ·  x1 + a1 

a2  = a 3 – a4 

a5 = 0 

a3 =  h(x1)  

a4 = h(x2) 

p(a2)  

:p(a5) 

a1 =  car(cons(a5,x1)) 

a1 = a5 a1 = a5 

x1 = x2 

a1 = a5 

x1 = x2 x1 = x2 

a3 = a4 a3 = a4 
a3 = a4 

a2 = a5 a2 = a5 a2 = a5 

False 



Decision Procedures  

An algorithmic point of view 

Example(2) 

 (x2 ¸  x1) Æ  (x1 – x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(f(x1) – f(x2))  f(x3) 

 

 Purification: 

 (x2 ¸  x1) Æ  (x1 – x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(a1)  f(x3) Æ  

 a1 = a2 –  a3 Æ  

 a2 = f(x1)  Æ  

 a3 = f(x2)  

 



Decision Procedures  

An algorithmic point of view 

Example (2) – cont’d 

Arithmetic EUF 

x2 ¸  x1  

x1 – x3 ¸  x2  

x3 ¸  0  

a1 =  a2 –  a3  

 

 

 

 

 

 

f(a1)  f(x3) 

a2 = f(x1)  

a3 = f(x2) 

x3 = 0 x3 = 0 

x1 = x2 
x1 = x2 

a2 = a3 a2 = a3 

a1 = 0 a1 = 0 

False 



Decision Procedures  

An algorithmic point of view 

Wait, it’s not so simple… 

 Consider: : 1 ·  x Æ  x ·  2 Æ  p(x) Æ  :p(1) Æ  :p(2 ) 

 x2Z  

 

 

 

 

 

 Neither theories imply an equality, and both are 

satisfiable. 

 But  is unsatisfiable! 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

p(x)  

:p(1)  

:p(2) 



Decision Procedures  

An algorithmic point of view 

Some theories have it, some don’t 

 Definition: A theory T is convex if for all 

conjunctions  it holds that 

 ! Ç i=1..n xi=yi for some n > 1 ,  

 ! xi = yi   for some i 2 {1..n} 

 where xi,yi are some T variables.  

 

 Convex: Linear Arithmetic over R, EUF  

 Non-convex: Almost anything else… 



Decision Procedures  

An algorithmic point of view 

Convexity: examples 

 Linear arithmetic over R is convex 

 : x1 ·  1 Æ  x1 ¸  0  implies an infinite disjunction of equalities,  

 : x1 ·  1 Æ  x1 ¸  1  ! x1 = 1  implies a singleton 

: x1 ·  1 Æ  x1 ¸  2   implies everything 

  

 

 Linear arithmetic over Z is not convex 

 : 1 ·  x1 Æ  x1 ·  2 

 Although    ! (x1 = 1 Ç  x1 =2) 

 It is not the case that   ! x1 = 1 Ç   ! x1 = 2 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ?  

 Recall: : 1  ·  x Æ  x ·  2 Æ  p(x) Æ  :p(1) Æ  :p(2) 

 x2Z  

 

 

 

 

 

 Neither theories imply an equality, and both are 

satisfiable. 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

p(x)  

:p(1)  

:p(2) 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ? (cont’d) 

 But: 1   ·  x Æ  x ·  2  imply the disjunction x = 1 Ç  x = 2 

 Since the theory is non-convex we cannot propagate 

either x=1 or x=2. 

 We can only propagate the disjunction itself. 

 

 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ? (cont’d) 

 Propagate the disjunction and perform case-splitting. 

 

 

 

 

 

 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

 

 

 

 

p(x)  

:p(1) Æ  :p(2) 

 x = 1 Ç  x = 2 x = 1 Ç  x = 2 

h¢i  Æ  x = 1 

False 

h¢i  Æ  x = 2 

False 

Split! 
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An algorithmic point of view 

So why is convexity important? (cont’d) 

 Conclusion: when the theory is non-convex, we must 

case-split. 

 This adds a splitting step in Nelson-Oppen. 

 As a result:  

 Convex theories: Polynomial  

 Non-Convex theories: Exponential  



Decision Procedures  

An algorithmic point of view 

The (full) Nelson-Oppen method  

1. Purify  into ’: F1Æ…Æ  Fn. 

2. If 9i. Fi is unsatisfiable, return `unsatisfiable’ . 

3. If 9i,j. Fi implies an equality not implied by Fj, add it to Fj  

and goto step 2. 

4. If 9i. Fi ! (x1= y1Ç…Ç  xk= yk) but 8j Fi 9 xj= yj,  

apply recursively to ’Æ  x1= y1, … ,’Æ  xk= yk.  

If any of them is satisfiable, return ‘satisfiable’. Otherwise 

return ‘unsatisfiable’. 

5. Return `satisfiable’. 



Decision Procedures  

An algorithmic point of view 

Correctness is hard to prove… 

 

 Theorem: N.O. returns unsatisfiable if and only if its input 

formula  is unsatisfiable. 

 

 We will prove this theorem for the case of combining two 

convex theories. The generalization is not hard. The proof is 

based on [NO79]. 

 



Decision Procedures  

An algorithmic point of view 

Correctness is hard to prove… 

 () N.O. returns ‘unsatisfiable’ !  is unsatisfiable.  
(That’s the simple side) 

 Assume  is satisfiable and let  be a satisfying assignment of . 

 Let A = {a1,…,an} be the purification (auxiliary) variables. 

 Claim: there exists an assignment to the A variables such that  

extended with this assignment satisfies F1Æ  F2. 

 Let ’ be this extended assignment. 

 For each equality eq added in line 3, 9i. Fi ! eq.  

 Since ’ ²  Fi then also ’²  eq.  

 Hence for all j 2 {1,2}, ’ ²  Fj Æ  eq. 

 Thus, N.O. does not return unsat in this case. 

 In other words, if N.O. returns unsat, then  is unsat. 



Decision Procedures  

An algorithmic point of view 

Proof () 

 () If N.O. returns ‘satisfiable’,  is satisfiable.  

(This will require several definition and lemmas) 

 

 Dfn:   A residue of a formula , denoted Res(), is the 

strongest Equality Logic formula implied by . 

 

Res(x= f(a) Æ   y = f(b))   is  a = b !  x = y 

Res(x·  y Æ   y·  x)  is  x = y 

 

 Lemma 1:   For any formula F, there exists a formula Res(F) 

(we will skip the proof of this Lemma) 



Decision Procedures  

An algorithmic point of view 

Proof () 

 Recall: the Logical symbols of a formula are those shared by all 

first-order theories. We consider `=‘ as a logical symbol. The 

Non-logical symbols are theory-specific. 

 

 Dfn: The parameters of a formula , denoted param(), are the 

non-logical symbols in . 

 Craig’s Interpolation Lemma:   if A and B are formulas such 

that A ! B, then there exists a formula H such that A ! H 

and H ! B, and param(H) µ  param(A) Å  param(B). 



Decision Procedures  

An algorithmic point of view 

Proof () 

 

 Lemma 2:   if F1 and F2 are formulas with disjoint signatures, 

Res(F1 Æ   F2) $ (Res(F1) Æ   Res(F2)). 

 Proof:   ( )  

  F1 ! Res(F1), F2 ! Res(F2),  

  F1 Æ   F2   ! Res(F1) Æ   Res(F2)   

  Res(F1 Æ   F2)  ! Res(F1) Æ   Res(F2)  // * 

 

* The consequence (RHS) is Equality Logic, hence it is implied by the 

residue of the Antecedent (LHS). 



Decision Procedures  

An algorithmic point of view 

Proof of Lemma 2 () 

 F1 Æ   F2 ! Res(F1 Æ   F2) 

  F1 ! (F2 ! Res(F1 Æ   F2)) 

 There exists an interpolant H such that  

(F1 !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

Can be rewritten as  

    (Res(F1) !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

because H is an Equality Logic formula, and hence 

everything implied by F1 is also implied by Res(F1).  

 

(1) 

(2) 

(3) 

(4) 

Why is H  an Equality Logic formula? because  

param(RES(F1 Æ  F2))  = {} //Equality Logic formula 

and param(F1) Å  param(F2)  = {} 



Decision Procedures  

An algorithmic point of view 

Proof of Lemma 2 () 

 (Res(F1) !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

 Since Res(F1 Æ   F2) is also an Equality Logic formula: 
(Res(F1) ! H) Æ  (H ! (Res(F2) ! Res(F1 Æ   F2))) 

which implies 
(Res(F1) ! (Res(F2) ! Res(F1 Æ   F2))) 

and hence 

(Res(F1) Æ  Res(F2)) ! Res(F1 Æ   F2) 

 

 

 q.e.d (Lemma 2):   

 Res(F1) Æ   Res(F2) $ Res(F1 Æ   F2) 

 

(5) 

(6) 

(7) 

(4) 
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An algorithmic point of view 

Lemma 3 

 Lemma 3:  

 Let F1 and F2 be satisfiable Equality Logic formulas s.t. 

 V = vars(F1) [ vars(F2).  

 8x,y 2 V,  (F1 ! x=y Æ  F2 ! x=y) or (F1 9 x=y Æ   F2 9 x=y) 

 Then, F1 Æ   F2 is satisfiable. 

 Proof:   Let  

 S  = the set of all equalities implied by both F1 and F2 

 T = the rest of the possible equalities in V.  

  = an assignment s.t. 8eq 2 S.  ²  eq, 8eq 2 T .  2 eq 

 Claim:    ²  F1 Æ   F2 
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An algorithmic point of view 

Proof of Lemma 3 

 Falsely assume that  2 F1 

 Then, (F1 ! Ç eq2 T eq)  

 (Can it be, alternatively, that F1 implies a negation of one of the 

equalities in S ? no, because it implies Æ eq 2 S eq 

 

 If T is empty, F1 is false   (contradiction) 

 If 9eq 2 T. F1 ! eq, then eq 2 S 

 (contradiction) 

 Otherwise, F1 is non-convex   (contradiction) 

 q.e.d (Lemma 3)  
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An algorithmic point of view 

Proof () 

 Now suppose N.O. returns SAT although F1 Æ  F2 is 

unsatisfiable. 

 Res(F1 Æ  F2) = false 

 Hence, by Lemma 2, Res(F1) Æ  Res(F2) = false 
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An algorithmic point of view 

Proof () 

 On the other hand, in step 4, where we return ‘Satisfiable’, we 

know that 

 F1 and F2 are separately satisfiable 

 F1 and F2 imply exactly the same equalities.  

 Thus, Res(F1) and Res(F2) are satisfiable and imply the 

same equalities. 

 Hence, according to Lemma 3, Res(F1) Æ  Res(F2) is also 

satisfiable, i.e. Res(F1) Æ  Res(F2)  false (contradiction). 

 

 Q.E.D (N.O.) 
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An algorithmic point of view 

More problems… 

 Definition: A -theory T is Stably-infinite if for every 

quantifier-free -formula   

 is satisfiable ,  

 can be satisfied by an interpretation with an infinite 

domain. 

 

 Specifically, this means that no theory with a finite 

domain is stably infinite. 
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An algorithmic point of view 

Problem: non-stably infinite theories 

 Consider a theory T1:  

  1: A function f,  

 Axioms that only allow 

solutions with 2 distinct values. 

 And a theory T2: 

 2: A function  g, 

 Domain: N 

So this formula is unsatisfiable: 

 

:  f(x1)  f(x2)  Æ   g(x1)  g(x3)  Æ   g(x2)  g(x3) 

Recall that the combined theory T1 ©  T2 has the union of the axioms.  

Hence the solution to any formula  2 T1 ©  T2 cannot have more than 2 distinct  

values. 
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An algorithmic point of view 

Problem: non-stably infinite theories 

:  f(x1)  f(x2)  Æ   g(x1)  g(x3)  Æ   g(x2)  g(x3) 

T1 T2 

f(x1)  f(x2) 

 

g(x1)  g(x3) 

g(x2)  g(x3) 

 

No equalities to propagate: Satisfiable ! 
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An algorithmic point of view 

Solution to non-stable infinite theories 

 Nelson-Oppen method cannot be used. 

 Recently a solution to this problem was suggested by Tinelli & 

Zarba [TZ05] 

 Assuming all combined theories are stably-finite (in particular, it has a 

small model property), it computes, if possible, the upper bound on the 

minimal satisfying assignment, and propagates this information 

between the theories. 


