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So far we know how to...

m Decide Equality Logic with Uninterpreted Functions:
(1= 2) V ~(fzp) = 25) A ..

m Decide Disjunctive Linear arithmetic:

3z, + 951, > 225 Nz, < 4xy. ..

m \What about a combined formula ?
(2, > x) A (21 T3 2 1)) N (23 2 0) A f(f(,) - f(,)) # fl3)
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We also know how to...
m Decide bit-vector equations
a[32] x b[32] = b[32] x a[32]

m But how shall we decide
f(a[32], b[1]) = f(b[32], a[1]) A a[32] = b[32]
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More combination examples:

m Combining lists, arithmetic and Uninterpreted
Functions:

(z, < 29) A (2, < 21 + car(cons(0,21))) A p(h(z,) - I(x,)) A —p(0)

m Combining Arrays and Arithmetic:

x =store(v,s,e)[j)l ANy=v[j]ANx>enx>y
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Combining theories

m Approach #1: Reduce all theories to a common logic,
If possible (e.g. Propositional Logic).
00 All un-quantified theories we saw so far are in NP.
0 We saw their direct translation to SAT (i.e. not through a
Turing-machine).
m Approach #2: Combine decision procedures of the
Individual theories.

0 How? we will learn the Nelson-Oppen method*

* Greg Nelson and Derek Oppen, simplification by cooperating decision
procedures, 1979
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Reminders: theories and signatures

m First order logic —

00 Symbols (Boolean connectives and quantifiers over variables), Syntax
(wff-s ).
0O Axioms, inference rules.

m First order theories —

O Additional axioms and symbols characterizing the theory.

O The signature X of a theory 7 holds the set of functions and predicates
of the theory.

m “First order quantifier-free theories with equality” — the
equality predicate must be part of the signature.
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The Theory-Combination problem

m Given theories 7, and 7, with signatures X, and X,
the combined theory T, & 7T,

[ has signature £, U %, and

1 the union of their axioms.
mletpheaX U, formula.

m [heproblem: Does T, &7, E¢ ?
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The problem

m The Theory-Combination problem is undecidable (even when
the individual theories are decidable).

m Under certain restrictions, It becomes decidable.

m \We will assume the following restrictions:
O 7, and 7, are decidable, quantifier-free first-order theories with equality.
O Disjoint signatures (other than equality): £, NZ, =0

1 More restrictions to follow...

m There are extensions to the basic algorithm that we will study,
that partially overcomes each of these restrictions.
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The Nelson-Oppen method (1)

m Purification: validity-preserving transformation of
the formula after which predicates from different
theories are not mixed.

1. Replace an “alien’ sub-expression ¢ with a new auxiliary
variable a

2. Constrain the formula with a = ¢

Transform < ()
... Into < a; A
— — _/

Pure expressions, shared variables
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The Nelson-Oppen method (2)

m After purification we are left with several sets of pure
expressions Fj...F, such that:

[0 F, belongs to some ‘pure’ theory which we can decide.

1 Shared variables are allowed, 1.e. it is possible that for
some 4,j, vars(F;) Nvars(F;) # 0.

O ¢ is satisfiable <» F; A ... A F, Is satisfiable
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The Nelson-Oppen method™ (3)

1. Purify ¢ into F A ... N F.
2. If Ji. F, is unsatisfiable, return "unsatisfiable’ .

3. If Ji,5. F; implies an equality not implied by F;, add
It to F; and goto step 2.

4. Return "satisfiable’.

*So far only for ‘non-convex’theories — to be explained
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Example (1)

(z, < 29) A (2, < (21 + car(cons(0,21)))) A p(hl(z,) — I(z,)) A —p(0)

m Purification:
(z, < 3p) A (z, < 2y + @ )A play) A —plas) A

a,= car(cons(a., z;)) N

a, =a ,—ay A
a,= h(z,) A
a, = h(z,) A
a,=0
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Example (1), cont’d

Arithmetic EUF Lists
xr, < x, a,= h(z,) a,= car(cons(a.,,))
x, <xy+a, a, = h(z,)
a, =a 3 Ay p(a2)
a, =0 —p(a,)
a, = a, a, = a, a, = a.
xr. =, T, =, T, =X, a
a,=a, a,=a, a,=a,
a,=a, a,=a, a,=a,
False
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Example(2)

(T 2 21) A (21— 3 2 25) A (23 2 0) A f(f(2) - f,)) # flxs)

m Purification:
(2, 2 @) N (21— 23 > x5) A (23 2> 0) A flag) # flzs) A
a;=a,— az N\
a, = flz,) A
a, = ()
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Example (2) — cont’d

Arithmetic EUF
Ty = T f@) # f(zs)
X1— Ty = Xy a, = f(z,)
r32>0 a, = f(x,)
a; = a,— Gz
x3=0 T3 =
T, =T, T1= %
ay, = agq ap = a3
ay = ay =

False

acicinn

racadirae
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Wait, 1t’s not so simple...

m Consider: ¢g:1<zAz<2Ap) A-pl)A-p2)

re/,

Arithmetic over Z

Uninterpreted

predicates
1<z« p(z)
r <2 —p(1)
—p(2)

m Neither theories imply an equality, and both are

satisfiable.
m But ¢ Is unsatisfiable!

Decision Procedures

An algorithmic point of view




"

Some theories have it, some don’t

m Definition: A theory 71s convex if for all
conjunctions ¢ it holds that

o — Vi x=y forsomen>1«
¢ — x, =y, forsome: e {l..n}

where z,,y, are some 7 variables.

m Convex: Linear Arithmetic over R, EUF

m Non-convex: Almost anything else...
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Convexity: examples

m Linear arithmetic over R IS convex
¢: z, <1 A x>0 implies an infinite disjunction of equalities,

o, <1ANzx;>1 2 =1 Implies a singleton
v, <1 ANx, >2 Implies everything

o

o

m Linear arithmetic over Z is not convex
0:1<z, Ny <2
Although ¢ — (r, =1V 2z, =2)
Itis notthecasethat ¢ -z, =1V d—>x,=2
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So why Is convexity important ?

m Recall: &1 <zAz<2Ap) A-pl)A-p@2)

reZ

Arithmetic over Z

Uninterpreted

predicates
1<z« p(z)
r <2 —p(1)
—p(2)

m Neither theories imply an equality, and both are

satisfiable.
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So why 18 convexity important ? (cont’d)
mBultil <xzAz<2Iimplythedisjunctionz=1vz=2

m Since the theory Is non-convex we cannot propagate
either z=1 or z=2.

m \We can only propagate the disjunction itself.
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So why 1s convexity important ? (cont’d)

m Propagate the disjunction and perform case-splitting.

Arithmetic over Z Uninterpreted
predicates

1 < x p(z)

<2 —p(1) A —p(2)

r=1Vzx=2 r=1Vx=2 Split!

(Y Nx=1|() Nx=2
False False
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So why 1s convexity important? (cont’d)

m Conclusion: when the theory Is non-convex, we must
case-split.

m This adds a splitting step in Nelson-Oppen.

m As aresult:
1 Convex theories: Polynomial
1 Non-Convex theories: Exponential
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The (full) Nelson-Oppen method

1. Purify ¢ into ¢: F AN F.
2. If di. F} is unsatisfiable, return "unsatisfiable’ .

3. If 3i,j. F; implies an equality not implied by F;, add it to F’,
and goto step 2.

4. & F,— (z=yV..Vo,=y) butVj F, » z =y,
apply recursivelyto ’Az =y, ... ,0’N\ T,= y,.
[f any of them i1s satisfiable, return ‘satisfiable’. Otherwise
return ‘unsatisfiable’.

5. Return “satisfiable’.
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Correctness 1s hard to prove...

m [heorem: N.O. returns unsatisfiable if and only if its input
formula ¢ i1s unsatisfiable.

m  We will prove this theorem for the case of combining two
convex theories. The generalization is not hard. The proof is
based on [NO79].
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Correctness 1s hard to prove...

m (=) N.O. returns ‘unsatisfiable’ — ¢ Is unsatisfiable.
(That’s the simple side)

[
[

[

O 0O 0O 000

Assume ¢ Is satisfiable and let a be a satisfying assignment of ¢.
Let A ={a,,...,a,} be the purification (auxiliary) variables.

Claim: there exists an assignment to the A variables such that o
extended with this assignment satisfies F' A F,.

Let o’ be this extended assignment.

For each equality eq added in line 3, 3i. F;, — eq.
Since o’ F F; then also o’F eq.

Hence forall j € {1,2}, o’ F F; A eq.

Thus, N.O. does not return unsat in this case.

In other words, if N.O. returns unsat, then ¢ is unsat.
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Proof (<)

m (€)IfN.O. returns ‘satisfiable’, ¢ Is satisfiable.
(This will require several definition and lemmas)

m Dfn: Aresidue of a formula ¢, denoted Res(9), is the
strongest Equality Logic formula implied by ¢.

Res(z= f(a) A y = f(b)) Sa=b— x=y
Res(z<y A y< x) IsT=y

m Lemma 1. For any formula F; there exists a formula Res(F)
(we will skip the proof of this Lemma)
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Proof (<)

m Recall: the Logical symbols of a formula are those shared by all
first-order theories. We consider '=* as a logical symbol. The
Non-logical symbols are theory-specific.

m Dfn: The parameters of a formula ¢, denoted param(¢), are the
non-logical symbols in ¢.
m Craig’s Interpolation Lemma: If A and B are formulas such

that A — B, then there exists a formula H suchthat A — H
and H — B, and param(H) C param(A) N param(B).
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Proof (<)

m Lemma 2: If F}and F, are formulas with disjoint signatures,
Res(F; A F},) <+ (Res(F}) A Res(Fy)).
m Proof: (=)
1 F; — Res(F}y), F, — Res(F}),
0 Fy N F, — Res(F)) A Res(F})
1 Res(Fy A F,) — Res(Fy) A Res(E,) /I'*

* The consequence (RHS) is Equality Logic, hence it is implied by the

residue of the Antecedent (LHS).
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Proof of Lemma 2 (€)

()m F; N F,— Res(F; A F,)
(2) 0 F — (F, - Res(Fy; A F)))
m There exists an interpolant H such that

B (F,— H)AN(H— (F,— Res(F;, N F,)))
Can be rewritten as

4 (Res(Fy) — H) A (H — (F, — Res(Fy A E)))
because H is an Equality Logic formula, and hence
everything implied by F, is also implied by Res(F}).
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Proof of Lemma 2 (€)

4y m (Res(Fy) — H) AN (H — (F, — Res(F} A F))))
m Since Res(F} A F)) Is also an Equality Logic formula:
) (Res(F) — H) A (H— (Res(F,) — Res(F; A F)))
which implies
6) (Res(Fy) — (Res(F,) — Res(F; A F3)))
and hence
(7) (Res(Fy;) A Res(F,)) — Res(F; A F)

m g.e.d (Lemma 2):
Res(F)) A Res(F,) <+ Res(F; A F))
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Lemma 3

m Lemma 3:

O Let F; and F}, be satisfiable Equality Logic formulas s.t.
m V=vars(F;) Uvars(F,).
mVeyeV, (Fy = x=y A\ F,— x=y)or (F; » z=y N\ F, » x=y)

00 Then, F; A F, is satisfiable.

m Proof: Let
0 S = the set of all equalities implied by both F; and F,
00 T = the rest of the possible equalities in V.
1o =anassignments.t. Veg € S. o Eeq,Veq e T . o ¥ eq
O Claim: akE F, A F,

Decision Procedures
An algorithmic point of view



" N

Proof of Lemma 3

m Falsely assume that o # F}

m T[hen, (F;— vquTeq)

O (Can it be, alternatively, that F, implies a negation of one of the
equalities in S ? no, because it implies Ay, . s€Q

m If Tisempty, F, Is false (contradiction)

m |fdeqeT F|,—eq,theneqe S
(contradiction)

m  Otherwise, F} IS non-convex (contradiction)
m g.e.d(Lemma 3)
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Proof (<)

m Now suppose N.O. returns SAT although F, A F, Is
unsatisfiable.

m Res(F, A F,) = false
m Hence, by Lemma 2, Res(F,) A Res(F,) = false
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Proof (<)

® On the other hand, in step 4, where we return ‘Satisfiable’, we
know that

O F; and F, are separately satisfiable
O F and F, imply exactly the same equalities.

1 Thus, Res(F7) and Res(F3) are satisfiable and imply the
same equalities.

m Hence, according to Lemma 3, Res(F}) A Res(F>) is also
satisfiable, i.e. Res(F7) A Res(F}) = false (contradiction).

s Q.E.D(N.O)
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More problems...

m Definition: A Z-theory T1s Stably-infinite if for every

quantifier-free Z-formula ¢
¢ Is satisfiable <
¢ can be satisfied by an interpretation with an infinite

domain.

m Specifically, this means that no theory with a finite
domain is stably infinite.
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Problem: non-stably infinite theories

m Consider a theory 7;: m And a theory 7,:
O X, Afunction f, O X,: A function g,
00 Axioms that only allow 0 Domain: N

solutions with 2 distinct values.

Recall that the combined theory 7; & 7, has the union of the axioms.
Hence the solution to any formula ¢ € 7, & 7, cannot have more than 2 distinct

values.
So this formula is unsatisfiable;
0: flz)# flw) N g(z)#g(z) N g(z,)# g(z,)
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Problem: non-stably infinite theories

o: flz,)# flx,) N glz)#g(x) N glx,)# g(z,)

Ti T,

flz,) # f(z,) g(z,) # g(x.)
g9(z,) # g(x.)

No equalities to propagate: Satisfiable !
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Solution to non-stable infinite theories

m Nelson-Oppen method cannot be used.

m Recently a solution to this problem was suggested by Tinelli &
Zarba [TZ05]

0O Assuming all combined theories are stably-finite (in particular, it has a
small model property), it computes, if possible, the upper bound on the
minimal satisfying assignment, and propagates this information
between the theories.
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