1

1.

Functional Programming
Practicals

Shin-Cheng Mu

Functions

Define a function even :: Int — Bool that determines whether the input is an even number. You may
use the following functions:

mod :: Int — Int — Int
(==) :: Int — Int — Bool .

(Types of the functions written above are not in their most general form.)

Solution:
even :: Int — Bool
evenn = n ‘mod 2==0 .

. Define a function that computes the area of a circle with given radius r (using 22/7 as an approximation

to 7). The return type of the function might be Double.

Solution:

area :: Double — Double
area v = 1 X1 x (22/7)

Type in the definition of smaller into your working file. Then try the following:
(a) In GHC4, type :t smaller to see the type of smaller.
(b)
(¢) In your working file, define a new function st3 = smaller 3.
(d) Find out the type of st3 in GHCi. Try st3 4, st3 1. Explain the results you see.

Try applying it to some arguments, e.g. smaller 3 4, smaller 3 1.

. Type in the definition of square in your working file.

(a) Define a function quad :: Int — Int such that quad z computes z*.

(b) Type in this definition into your working file. Describe, in words, what this function does.

twice 2 (a—a) = (a—a)

twice fx =f (f x) .

(¢c) Define quad using twice.

5. Replace the previous twice with this definition:

twice ::(a—a) = (a — a)

twice f =f-f .

(a) Does quad still behave the same?

(b) Explain in words what this operator (-) does.
6. Let the following identifiers have type:

:: Int — Char

;2 Int — Char — Int

2 (Char — Int) — Int — Int
: Int

: Int

:: Char

o 8 TQ

Which of the following expressions are type correct?

(g-flzec
gz fy
c(h-g)zy
.(h-gzx)c
.h-gzxc

S N

You may type the expressions into Haskell and see whether they type check. To define f, for example,
include the following in your working file:

f v Int — Char
f = undefined

However, it is better if you can explain why the answers are as they are.

2 Products and Sums

1. In GHCI, issue the command
let x = ((1,’a’), True)

This defines a new symbol x, with value ((1, 'a'), True).
(a) Find out the type of 2 by a GHCi command.
(b) How do you extract the 1 in 2? Type an expression ... = into GHCi such that the result is 1.

(¢) Try to extract 'a' and True from z too.

2. Define a function swap :: (a,b) — (b,a) that, as the name and type suggests, swaps the components
(a) Define swap using pattern matching: swap (z,y) =
(b) Define swap using fst and snd: swap x =

(c) Define swap using case.

Page 2

Solution:

swap (z,y) = (y,7) ;
swap x = (snd z,fst z) ;
swap x = case z of (z,y) — (y,z) .

3. Define a function half :: Int — FEither Int Int such that

e if n is even, half n returns Left & with 2 x k = n;
e if n is odd, half n returns Right k with 2 x k+ 1 =n.

You may use the function div. Find out what it does by youself.

Solution:
half :: Int — FEither Int Int

half n | even n = Left (n ‘div‘ 2)
| odd n = Right (n ‘div¢2) .

4. What are the types of the following expressions?
(a) Az — (snd x, fst x).

b) AMfz—faoa
(¢) Define:
myFEither f g x = case x of
Lefty — fy
Right z — g z .

What is the type of myEither?!
(d) AMfzy—=f(fsty)
() M zy—fst (fya)
(f) \zy— =z
(&) M ga— faz(ga)

Solution:

(a) (a;b) = (b,a).
(b) (a—>a—0b) —a—b

) (a,

) (

(¢) (a—=c¢)— (b—c)— Either a b— c.

(d) (a—=b—=c)—=b—(a,d)—c

(e) (a—=b—(c,d) >b—a—c

(f) (a—=b—a).
) (

(g) (a—=b—c)—=(a—=d) »a—c

IThere is such a function called either, which is sometimes quite convenient.

Page 3

3 Inductively Defined Functions on Lists

1. Define a function fstEven :: [Int] — Int that returns the first even number of the input list.

Solution:
fstEven i [Int] — Int
fstEven (x : zs) | even x = True

| otherwise = fstEven zs .

2. Define a function hasZero :: [Int] — Bool that returns True if and only if there is a 0 in the input list.

Solution:
hasZero i [Int] = Bool
hasZero [] = False
hasZero (0 : zs) = True
hasZero (x : xs) = hasZero zs .

3. Define a function myLast that takes a list and returns the last (rightmost) element.

(a) Let the type be myLast :: [a] — a. Define myLast.

Solution:
myLast = fal > a
myLast [x] ==z
myLast (x : xs) = myLast zs .

(b) What happens in the previous definition of the input list is empty?
(¢) Define myLast :: [a] — Maybe a, which returns Nothing if the list is empty.

Solution:
myLast i [a] = Maybe a
myLast [] = Nothing
myLast [x] = Just x
myLast (x : xs) = myLast xs .

4. Define a function pos such that pos x xs looks for x in zs and returns its position. For example,
find 'a' "abc" yields 0, and find 'a' "bac" yields 1.

(a) Let the type be pos :: Eq a = a — [a] — Int. In your definition, what happens if z is not in the
list?

Page 4

Solution:

pos 2 Eqga=a—[a] = Int
pos x (y:as) | v == =0
| otherwise = 1+ pos x xs .

(b) Let the type be pos :: Eq a = a — [a] — Maybe Int, such that pos = zs returns Nothing if z is not

in the list.
Solution:

pos : Eq a= a— [a] = Maybe Int

pos x [] = Nothing

posx (y:a8) |z ==y = Just 0

| otherwise = case pos x xs of

Just i — Just(1 + 1)
Nothing — Nothing .

5. Define myConcat :: [[a]] — [a] such that, for example myConcat [[1,2,3],[], 4], [5,6]] = [1,2,3,4,5,6].
Hint: use (4).

Solution:

myConcat 2 [[a]] = [a]
myConcat [] =[]
myConcat (zs : zss) = xsH myConcat zss .

6. Define double :: [a] — [a] such that, for example, double [1,2,3] =[1,1,2,2,3,3].

Solution:

double i
double [] =]
double (v : xs) = x: x: double xs .

7. Define interleave :: [a] — [a] — [a] such that, for example, interleave [1,2,3,4] [5,6,7) = [1,5,2,6,3,7,4].

Solution:

interleave

= [a] = [a] = [a]
interleave [] ys =
interleave (x : xs) ys =

ys
x : interleave ys s .

Page 5

8. Define splitLR :: [Fither a b] — ([a], [b]) such that, for example:

splitLR [Left 1, Left 3, Right 'a', Left 2, Right 'b'] = ([1,3,2],"ab") .

Solution:
splitLR . [Either a bl — ([a], [b])
splitLR] = ((I,1)

splitLR (x : zs) = case x of
Left y — (y : ys, 29)
Right z — (ys,z : zs)
where (ys, zs) = splitLR zs .

9. Define a function fan :: a — [a] — [[a]] such that fan x xs inserts x into the Oth, 1st...nth positions of
xs, where n is the length of zs. For example:

fan 5[1,2,3,4] =[[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1, 2,3, 4,5]]

Solution:
fan =oa— [a] = [[a]]
fan x [] = [[=]]
fanx (y:xs) = (z:y:xs): map (y:) (fan x xs)

10. Define perms :: [a] — [[a]] that returns all permutations of the input list. For example:

perms [1,2,3] = [[1,2,3],]2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] .

Solution:
perms i [a] = [[a]]
perms] = [l
perns (x: xzs) = concat (map (fan x) (perms zs)) .

11. Try to define functions inits and tails yourself, and make sure you understand them. Recall that
indts [1,2,3] = [[],[1],[1,2],[1, 2, 3]], and tails [1,2,3] =[[1,2,3],[2,3],[3],[]]-

4 Inductively Defined Functions on Natural Numbers

1. Define mul :: N — N — N such that mul m n = m X n, by induction on natural number, using addition
()

Page 6

Solution:

mul @ N—-N—->N
mul 0 n =0
mul (1+m)n = n+mul mn .

2. Define myMin :: N — N — N that returns the smaller of its two arguments. There is a built-in operator
(min) for this, but try defining it inductively on natural numbers.

Solution:
myMin © N> N->N
myMin 0 n =0
myMin m 0 =0

myMin (14+ m) (14 n) = 1+ (myMin m n) .

3. Define a function elemAt :: N — [a] — a such that elemAt n s yields the nth element of zs.2

Solution:
elemAt @ N—fa] —a
elemAt 0 (x : xs) =z

elemAt (14 n) (x : zs) = elemAt n xs .

4. Define a function insertAt :: N — a — [a] — [a] such that insertAt n x zs inserts z into zs such that
the nth element of the new list is x.

Solution:

insertAt 2 Noa—ola —a
insertAt 0 x zs x TS
insertAt (1+ n) z (y: zs) = y: insertAt n xs .

5 User-Defined Inductive Datatypes
1. Consider the type
data ETree a = Tip a | Bin (ETree a) (ETree a)

(a) How is it different from the type Tree in the lecture note?

(b) Define Define minT :: ETree Int — Int, which computes the minimal element in a tree. The
operator for binary minimum in Haskell is min :: Ord a = a — a — a.

2This function is denoted (!) in the standard library.

Page 7

2. Define minT :: Tree Int — Int, which computes the minimal element in a tree. The operator for binary
minimum in Haskell is min :: Ord a — a — a — a. And the largest Int in Haskell is denoted by
maxBound.

3. Define mapT :: (a — b) — Tree a — Tree b, which applies the functional argument to each element in a
tree.

4. Define flatten :: Tree a — [a] that traverses a tree and collects all the labels, in-order, in a list. For
example,

flatten (Node 4 (Node 2 (Node 1 Null Null)
(Node 3 Null Null))

(Node 6 (Node 5 Null Null)
(Node 7 Null Null)))

yields [1,2,3,4,5,6,7]. Hint: use (4).
5. A binary search tree is a tree of type Tree a, with Ord a, defined by:

1. Null is a binary search tree, and
2. Node z t u is a binary search tree if:

e every label in ¢t is less than z,
e every label in u is greater than z, and
e t and u are also binary search trees.

Define (assuming that ¢ is a binary search tree):

(a) memberT :: Ord a = a — Tree a — Bool, such that memberT x t determines whether x occurs in
t, and

(b) insertT :: Ord a = a — Tree a — Tree a, such that insertT z t inserts x into ¢ and still returns a
binary tree, if x does not appear in ¢, and returns ¢ if z is in .

Page 8

