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Propositions

A proposition is a statement that is either true or false such as
the following:

Leslie is a teacher.
Leslie is rich.
Leslie is a pop singer.

Simplest (atomic) propositions may be combined to form
compound propositions:

Leslie is not a teacher.
Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.
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Inferences

We are given the following assumptions:

Leslie is a teacher.
Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.

We wish to conclude the following:

Leslie is not a pop singer.

The above process is an example of inference (deduction). Is it
correct?
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Symbolic Propositions

Propositions are represented by symbols, when only their truth
values are of concern.

P: Leslie is a teacher.
Q: Leslie is rich.
R: Leslie is a pop singer.

Compound propositions can then be more succinctly written.

not P: Leslie is not a teacher.
not P or not Q: Either Leslie is not a teacher or Leslie is not
rich.
R implies Q: If Leslie is a pop singer, then Leslie is rich.
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Symbolic Inferences

We are given the following assumptions:

P (Leslie is a teacher.)
not P or not Q (Either Leslie is not a teacher or Leslie is not
rich.)
R implies Q (If Leslie is a pop singer, then Leslie is rich.)

We wish to conclude the following:

not R (Leslie is not a pop singer.)

Correctness of the inference may be checked by asking:

Is (P and (not P or not Q) and (R implies Q)) implies
(not R) a tautology (valid formula)?
Or, is (A and (not A or not B) and (C implies B)) implies
(not C ) a tautology (valid formula)?
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Propositional Logic: Syntax

Vocabulary:

A countable set P of proposition symbols (variables):
P,Q,R, . . . (also called atomic propositions);
Logical connectives (operators): ¬, ∧, ∨, →, and ↔ and
sometimes the constant ⊥ (false);
Auxiliary symbols: “(”, “)”.

How to read the logical connectives.

¬ (negation): not
∧ (conjunction): and
∨ (disjunction): or
→ (implication): implies (or if . . . , then . . . )
↔ (equivalence): is equivalent to (or if and only if)
⊥ (false or bottom): false (or bottom)
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Propositional Logic: Syntax (cont.)

Propositional Formulae:

Any A ∈ P is a formula and so is ⊥ (these are the “atomic”
formula).
If A and B are formulae, then so are ¬A, (A ∧ B), (A ∨ B),
(A→ B), and (A↔ B).

A is called a subformula of ¬A, and A and B subformulae of
(A ∧ B), (A ∨ B), (A→ B), and (A↔ B).

Precedence (for avoiding excessive parentheses):

A ∧ B → C means ((A ∧ B)→ C ).
A→ B ∨ C means (A→ (B ∨ C )).
A→ B → C means (A→ (B → C )).
More about this later ...
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About Boolean Expressions

Boolean expressions are essentially propositional formulae,
though they may allow more things as atomic formulae.

Boolean expressions:

(x ∨ y ∨ z) ∧ (x ∨ y) ∧ x
(x + y + z) · (x + y) · x
(a ∨ b ∨ c) ∧ (a ∨ b) ∧ a
etc.

Propositional formula: (P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q) ∧ P
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Propositional Logic: Semantics

The meanings of propositional formulae may be conveniently
summarized by the truth table:

A B ¬A A ∧ B A ∨ B A→ B A↔ B
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

The meaning of ⊥ is always F (false).

There is an implicit inductive definition in the table. We shall try
to make this precise.
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Truth Assignment and Valuation

The semantics of propositional logic assigns a truth function to
each propositional formula.

Let BOOL be the set of truth values {T ,F}.
A truth assignment (valuation) is a function from P (the set of
proposition symbols) to BOOL.

Let PROPS be the set of all propositional formulae.

A truth assignment v may be extended to a valuation function v̂
from PROPS to BOOL as follows:
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Truth Assignment and Valuation (cont.)

v̂(⊥) = F
v̂(P) = v(P) for all P ∈ P
v̂(P) = as defined by the table below, otherwise

v̂(A) v̂(B) v̂(¬A) v̂(A ∧ B) v̂(A ∨ B) v̂(A→ B) v̂(A↔ B)

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

So, the truth value of a propositional formula is completely
determined by the truth values of its subformulae.
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Truth Assignment and Satisfaction

We say v |= A (v satisfies A) if v̂(A) = T .

So, the symbol |= denotes a binary relation, called satisfaction,
between truth assignments and propositional formulae.

v 6|= A (v falsifies A) if v̂(A) = F .
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Satisfaction

Alternatively (in a more generally applicable format), the
satisfaction relation |= may be defined as follows:

v 6|= ⊥
v |= P ⇐⇒ v(P) = T , for all P ∈ P
v |= ¬A ⇐⇒ v 6|= A (it is not the case that v |= A)
v |= A ∧ B ⇐⇒ v |= A and v |= B
v |= A ∨ B ⇐⇒ v |= A or v |= B
v |= A→ B ⇐⇒ v 6|= A or v |= B
v |= A↔ B ⇐⇒ (v |= A and v |= B)

or (v 6|= A and v 6|= B)
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Object vs. Meta Language

The language that we study is referred to as the object language.

The language that we use to study the object language is
referred to as the meta language.

For example, not, and , and or that we used to define the
satisfaction relation |= are part of the meta language.
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Satisfiability

A proposition A is satisfiable if there exists an assignment v such
that v |= A.

v(P) = F , v(Q) = T |= (P ∨ Q) ∧ (¬P ∨ ¬Q)

A proposition is unsatisfiable if no assignment satisfies it.

(¬P ∨ Q) ∧ (¬P ∨ ¬Q) ∧ P is unsatisfiable.

The problem of determining whether a given proposition is
satisfiable is called the satisfiability problem.
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Tautology and Validity

A proposition A is a tautology if every assignment satisfies A,
written as |= A.

|= A ∨ ¬A
|= (A ∧ B)→ (A ∨ B)

The problem of determining whether a given proposition is a
tautology is called the tautology problem.

A proposition is also said to be valid if it is a tautology.

So, the problem of determining whether a given proposition is
valid (a tautology) is also called the validity problem.

Note: the notion of a tautology is restricted to propositional logic. In
first-order logic, we also speak of valid formulae.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Elementary Logic FLOLAC 2011 17 / 64



Validity vs. Satisfiability

Theorem

A proposition A is valid (a tautology) if and only if ¬A is
unsatisfiable.

So, there are two ways of proving that a proposition A is a tautology:

A is satisfied by every truth assignment (or A cannot be falsified
by any truth assignment).

¬A is unsatisfiable.
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Relating the Logical Connectives

Lemma

|= (A↔ B)↔ ((A→ B) ∧ (B → A))

|= (A→ B)↔ (¬A ∨ B)

|= (A ∨ B)↔ ¬(¬A ∧ ¬B)

|= ⊥ ↔ (A ∧ ¬A)

Note: these equivalences imply that some connectives could be
dispensed with. We normally want a smaller set of connectives when
analyzing properties of the logic and a larger set when actually using
the logic.
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Normal Forms

A literal is an atomic proposition or its negation.

A propositional formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of disjunctions of literals.

(P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q) ∧ P
(P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R)

A propositional formula is in Disjunctive Normal Form (DNF) if
it is a disjunction of conjunctions of literals.

(P ∧ Q ∧ ¬R) ∨ (¬P ∧ ¬Q) ∨ P
(¬P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R)

A propositional formula is in Negation Normal Form (NNF) if
negations occur only in literals.

CNF or DNF is also NNF (but not vice versa).
(P ∧ ¬Q) ∧ (P ∨ (Q ∧ ¬R)) in NNF, but not CNF or DNF.

Every propositional formula has an equivalent formula in each of
these normal forms.
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Semantic Entailment

Consider two sets of propositions Γ and ∆.

We say that v |= Γ (v satisfies Γ) if v |= B for every B ∈ Γ;
analogously for ∆.

We say that ∆ is a semantic consequence of Γ if every
assignment that satisfies Γ also satisfies ∆, written as Γ |= ∆.

A,A→ B |= A,B
A→ B,¬B |= ¬A

We also say that Γ semantically entails ∆ when Γ |= ∆.
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Sequents

A (propositional) sequent is an expression of the form Γ ` ∆,
where Γ = A1,A2, · · · ,Am and ∆ = B1,B2, · · · ,Bn are finite
(possibly empty) sequences of (propositional) formulae.

In a sequent Γ ` ∆, Γ is called the antecedent (also context)
and ∆ the consequent.

Note: many authors prefer to write a sequent as Γ −→ ∆ or
Γ =⇒ ∆, while reserving the symbol ` for provability (deducibility) in
the proof (deduction) system under consideration.
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Sequents (cont.)

A sequent A1,A2, · · · ,Am ` B1,B2, · · · ,Bn is falsifiable if there
exists a valuation v such that
v |= (A1 ∧ A2 ∧ · · · ∧ Am) ∧ (¬B1 ∧ ¬B2 ∧ · · · ∧ ¬Bn).

A ∨ B ` B is falsifiable, as
v(A) = T , v(B) = F |= (A ∨ B) ∧ ¬B.

A sequent A1,A2, · · · ,Am ` B1,B2, · · · ,Bn is valid if, for every
valuation v , v |= A1 ∧ A2 ∧ · · · ∧ Am → B1 ∨ B2 ∨ · · · ∨ Bn.

A ` A,B is valid.
A,B ` A ∧ B is valid.

A sequent is valid if and only if it is not falsifiable.

In the following, we will use only sequents of this simpler form:
A1,A2, · · · ,Am ` C , where C is a formula.
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Inference Rules

Inference rules allow one to obtain true statements from other
true statements.

Below is an inference rule for conjunction.

Γ ` A Γ ` B
(∧I )

Γ ` A ∧ B

In an inference rule, the upper sequents (above the horizontal
line) are called the premises and the lower sequent is called the
conclusion.
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Proofs

A deduction tree is a tree where each node is labeled with a
sequent such that, for every internal (non-leaf) node,

the label of the node corresponds to the conclusion and
the labels of its children correspond to the premises

of an instance of an inference rule.

A proof tree is a deduction tree, each of whose leaves is labeled
with an axiom.

The root of a deduction or proof tree is called the conclusion.

A sequent is provable if there exists a proof tree of which it is
the conclusion.
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Detour: Another Style of Proofs

Proofs may also be carried out in a calculational style (like in
algebra); for example,

(A ∨ B)→ C
≡ { A→ B ≡ ¬A ∨ B }
¬(A ∨ B) ∨ C

≡ { de Morgan’s law }
(¬A ∧ ¬B) ∨ C

≡ { distributive law }
(¬A ∨ C ) ∧ (¬B ∨ C )

≡ { A→ B ≡ ¬A ∨ B }
(A→ C ) ∧ (B → C )

⇒ { A ∧ B ⇒ A }
(A→ C )

Here, ⇒ corresponds to semantical entailment and ≡ to mutual
semantical entailment. Both are transitive.
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Detour: Some Laws for Calculational Proofs

Equivalence is commutative and associative

A↔ B ≡ B ↔ A
A↔ (B ↔ C ) ≡ (A↔ B)↔ C

⊥ ∨ A ≡ A ∨ ⊥ ≡ A

¬A ∧ A ≡ ⊥
A→ B ≡ ¬A ∨ B

A→ ⊥ ≡ ¬A

(A ∨ B)→ C ≡ (A→ C ) ∧ (B → C )

A→ (B → C ) ≡ (A ∧ B)→ C

A→ B ≡ A↔ (A ∧ B)

A ∧ B ⇒ A
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Natural Deduction in the Sequent Form

(Ax)
Γ,A ` A

Γ ` A Γ ` B
(∧I )

Γ ` A ∧ B

Γ ` A ∧ B
(∧E1)

Γ ` A

Γ ` A ∧ B
(∧E2)

Γ ` B

Γ ` A
(∨I1)

Γ ` A ∨ B

Γ ` B
(∨I2)

Γ ` A ∨ B

Γ ` A ∨ B Γ,A ` C Γ,B ` C
(∨E )

Γ ` C
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Natural Deduction (cont.)

Γ,A ` B
(→ I )

Γ ` A→ B

Γ ` A→ B Γ ` A
(→E )

Γ ` B

Γ,A ` B ∧ ¬B
(¬I )

Γ ` ¬A

Γ ` A Γ ` ¬A
(¬E )

Γ ` B

Γ ` A
(¬¬I )

Γ ` ¬¬A

Γ ` ¬¬A
(¬¬E )

Γ ` A

These inference rules collectively are called System ND (the
propositional part).
Yih-Kuen Tsay (SVVRL @ IM.NTU) Elementary Logic FLOLAC 2011 29 / 64



A Proof in Propositional ND

Below is a partial proof of the validity of
P ∧ (¬P ∨ ¬Q) ∧ (R → Q)→ ¬R in ND,
where γ denotes P ∧ (¬P ∨ ¬Q) ∧ (R → Q).

...

γ,R ` R → Q
(Ax)

γ,R ` R
(→E )

γ,R ` Q

...

γ,R,Q ` P ∧ ¬P
(¬I )

γ,R ` ¬Q
(∧I )

γ,R ` Q ∧ ¬Q
(¬I )

P ∧ (¬P ∨ ¬Q) ∧ (R → Q) ` ¬R
(→ I )

` P ∧ (¬P ∨ ¬Q) ∧ (R → Q)→ ¬R
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Soundness and Completeness

Theorem

System ND is sound, i.e., if a sequent Γ ` C is provable in ND, then
Γ ` C is valid.

Theorem

System ND is complete, i.e., if a sequent Γ ` C is valid, then Γ ` C
is provable in ND.
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Compactness

A set Γ of propositions is satisfiable if some valuation satisfies every
proposition in Γ. For example, {A ∨ B ,¬B} is satisfiable.

Theorem

For any (possibly infinite) set Γ of propositions, if every finite
non-empty subset of Γ is satisfiable then Γ is satisfiable.

Proof hint: by contradiction and the completeness of ND.
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Consistency

A set Γ of propositions is consistent if there exists some
proposition B such that the sequent Γ ` B is not provable.

Otherwise, Γ is inconsistent; e.g., {A,¬(A ∨ B)} is inconsistent.

Lemma

For System ND, a set Γ of propositions is inconsistent if and only if
there is some proposition A such that both Γ ` A and Γ ` ¬A are
provable.

Theorem

For System ND, a set Γ of propositions is satisfiable if and only if Γ is
consistent.
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Predicates

A predicate is a “parameterized” statement that, when supplied
with actual arguments, is either true or false such as the
following:

Leslie is a teacher.
Chris is a teacher.
Leslie is a pop singer.
Chris is a pop singer.

Like propositions, simplest (atomic) predicates may be combined
to form compound predicates.
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Inferences

We are given the following assumptions:

For any person, either the person is not a teacher or the person
is not rich.
For any person, if the person is a pop singer, then the person is
rich.

We wish to conclude the following:

For any person, if the person is a teacher, then the person is not
a pop singer.
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Symbolic Predicates

Like propositions, predicates are represented by symbols.

p(x): x is a teacher.
q(x): x is rich.
r(y): y is a pop singer.

Compound predicates can be expressed:

For all x , r(x)→ q(x): For any person, if the person is a pop
singer, then the person is rich.
For all y , p(y)→ ¬r(y): For any person, if the person is a
teacher, then the person is not a pop singer.
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Symbolic Inferences

We are given the following assumptions:

For all x ,¬p(x) ∨ ¬q(x).
For all x , r(x)→ q(x).

We wish to conclude the following:

For all x , p(x)→ ¬r(x).

To check the correctness of the inference above, we ask:
Is ((for all x ,¬p(x) ∨ ¬q(x)) ∧ (for all x , r(x)→ q(x)))→
(for all x , p(x)→ ¬r(x)) valid?
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First-Order Logic: Syntax

Logical symbols:

A countable set V of variables: x , y , z , . . .;
Logical connectives (operators): ¬, ∧, ∨, →, ↔, ⊥ , ∀ (for all),
∃ (there exists);
Auxiliary symbols: “(”, “)”.

Non-logical symbols:

A countable set of function symbols with associated ranks
(arities);
A countable set of constants (which may be seen as functions
with rank 0);
A countable set of predicate symbols with associated ranks
(arities);

We refer to a first-order language as Language L, where L is the
set of non-logical symbols (e.g., {+, 0, 1, <}). The set L is
usually referred to as the signature of the first-order language.
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First-Order Logic: Syntax (cont.)

Terms:

Every constant and every variable is a term.
If t1, t2, · · · , tk are terms and f is a k-ary function symbol
(k > 0), then f (t1, t2, · · · , tk) is a term.

Atomic formulae:

Every predicate symbol of 0-arity is an atomic formula and so is
⊥.
If t1, t2, · · · , tk are terms and p is a k-ary predicate symbol
(k > 0), then p(t1, t2, · · · , tk) is an atomic formula.

For example, consider Language {+, 0, 1, <}.
0, x , x + 1, x + (x + 1), etc. are terms.
0 < 1, x < (x + 1), etc. are atomic formulae.
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First-Order Logic: Syntax (cont.)

Formulae:

Every atomic formula is a formula.
If A and B are formulae, then so are ¬A, (A ∧ B), (A ∨ B),
(A→ B), and (A↔ B).
If x is a variable and A is a formula, then so are ∀xA and ∃xA.

First-order logic with equality includes equality (=) as an
additional logical symbol, which behaves like a predicate symbol.

Example formulae in Language {+, 0, 1, <}:
(0 < x) ∨ (x < 1)
∀x(∃y(x + y = 0))
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First-Order Logic: Syntax (cont.)

We may give the logical connectives different binding powers, or
precedences, to avoid excessive parentheses, usually in this order:

¬, {∀,∃}, {∧,∨},→,↔ .

For example, (A ∧ B)→ C becomes A ∧ B → C .

Common abbreviations:

x = y = z means x = y ∧ y = z .
p → q → r means p → (q → r). Implication associates to the
right, so do other logical symbols.
∀x , y , zA means ∀x(∀y(∀zA)).
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Free and Bound Variables

In a formula ∀xA (or ∃xA), the variable x is bound by the
quantifier ∀ (or ∃).

A free variable is one that is not bound.

The same variable may have both a free and a bound occurrence.

For example, consider
(∀x(R(x , y)→ P(x)) ∧ ∀y(¬R(x , y) ∧ ∀xP(x))).
The underlined occurrences of x and y are free, while others are
bound.

A formula is closed, also called a sentence, if it does not contain
a free variable.
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Free Variables Formally Defined

For a term t, the set FV (t) of free variables of t is defined
inductively as follows:

FV (x) = {x}, for a variable x ;

FV (c) = ∅, for a contant c ;

FV (f (t1, t2, · · · , tn)) = FV (t1) ∪ FV (t2) ∪ · · · ∪ FV (tn), for an
n-ary function f applied to n terms t1, t2, · · · , tn.
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Free Variables Formally Defined (cont.)

For a formula A, the set FV (A) of free variables of A is defined
inductively as follows:

FV (P(t1, t2, · · · , tn)) = FV (t1) ∪ FV (t2) ∪ · · · ∪ FV (tn), for an
n-ary predicate P applied to n terms t1, t2, · · · , tn;

FV (t1 = t2) = FV (t1) ∪ FV (t2);

FV (¬B) = FV (B);

FV (B ∗ C ) = FV (B) ∪ FV (C ), where ∗ ∈ {∧,∨,→,↔};
FV (⊥) = ∅;
FV (∀xB) = FV (B)− {x};
FV (∃xB) = FV (B)− {x}.
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Bound Variables Formally Defined

For a formula A, the set BV (A) of bound variables in A is defined
inductively as follows:

BV (P(t1, t2, · · · , tn)) = ∅, for an n-ary predicate P applied to n
terms t1, t2, · · · , tn;

BV (t1 = t2) = ∅;
BV (¬B) = BV (B);

BV (B ∗ C ) = BV (B) ∪ BV (C ), where ∗ ∈ {∧,∨,→,↔};
BV (⊥) = ∅;
BV (∀xB) = BV (B) ∪ {x};
BV (∃xB) = BV (B) ∪ {x}.
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Substitutions

Let t be a term and A a formula.

The result of substituting t for a free variable x in A is denoted
by A[t/x ].

Consider A = ∀x(P(x)→ Q(x , f (y))).

When t = g(y), A[t/y ] = ∀x(P(x)→ Q(x , f (g(y)))).
For any t, A[t/x ] = ∀x(P(x)→ Q(x , f (y))) = A, since there is
no free occurrence of x in A.

A substitution is admissible if no free variable of t would become
bound (be captured by a quantifier) after the substitution.

For example, when t = g(x , y), A[t/y ] is not admissible, as the
free variable x of t would become bound.
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Substitutions (cont.)

Suppose we change the bound variable x in A to z and obtain
another formula A′ = ∀z(P(z)→ Q(z , f (y))).

Intuitively, A′ and A should be equivalent (under any reasonable
semantics). (Technically, the two formulae A and A′ are said to
be α-equivalent.)

We can avoid the capture in A[g(x , y)/y ] by renaming the
bound variable x to z and the result of the substitution then
becomes A′[g(x , y)/y ] = ∀z(P(z)→ Q(z , f (g(x , y)))).

So, in principle, we can make every substitution admissible while
preserving the semantics.
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Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a variable
x , denoted s[t/x ], is defined inductively as follows:

x [t/x ] = t;

y [t/x ] = y , for a variable y that is not x ;

c[t/x ] = c , for a contant c ;

f (t1, t2, · · · , tn)[t/x ] = f (t1[t/x ], t2[t/x ], · · · , tn[t/x ]), for an
n-ary function f applied to n terms t1, t2, · · · , tn.
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Substitutions Formally Defined (cont.)

For a formula A, A[t/x ] is defined inductively as follows:

P(t1, t2, · · · , tn)[t/x ] = P(t1[t/x ], t2[t/x ], · · · , tn[t/x ]), for an
n-ary predicate P applied to n terms t1, t2, · · · , tn;

(t1 = t2)[t/x ] = (t1[t/x ] = t2[t/x ]);

(¬B)[t/x ] = ¬B[t/x ];

(B ∗ C )[t/x ] = (B[t/x ] ∗ C [t/x ]), where ∗ ∈ {∧,∨,→,↔};
⊥[t/x ] = ⊥;

(∀xB)[t/x ] = (∀xB);

(∀yB)[t/x ] = (∀yB[t/x ]), if variable y is not x ;

(∃xB)[t/x ] = (∃xB);

(∃yB)[t/x ] = (∃yB[t/x ]), if variable y is not x ;
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First-Order Structures

A first-order structure M is a pair (M , I ), where

M (a non-empty set) is the domain of the structure, and
I is the interpretation function, that assigns functions and
predicates over M to the function and predicate symbols.

An interpretation may be represented by simply listing the
functions and predicates.

For instance, (Z , {+Z , 0Z}) is a structure for the language
{+, 0}. The subscripts are omitted, as (Z , {+, 0}), when no
confusion may arise.
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Semantics of First-Order Logic

Since a formula may contain free variables, its truth value
depends on the specific values that are assigned to these
variables.

Given a first-order language and a structure M = (M , I ), an
assignment is a function from the set of variables to M .

The structure M along with an assignment s determines the
truth value of a formula A, denoted as AM[s].

For example, (x + 0 = x)(Z ,{+,0})[x := 1] evaluates to T .
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Semantics of First-Order Logic (cont.)

We say M, s |= A when AM[s] is T (true) and M, s 6|= A
otherwise.

Alternatively, |= may be defined as follows (propositional part is
as in propositional logic):
M, s |= ∀xA ⇐⇒ M, s[x := m] |= A for all m ∈ M.
M, s |= ∃xA ⇐⇒ M, s[x := m] |= A for some m ∈ M.

where s[x := m] denotes an updated assignment s ′ from s such
that s ′(y) = s(y) for y 6= x and s ′(x) = m.

For example, (Z , {+, 0}), s |= ∀x(x + 0 = x) holds, since
(Z , {+, 0}), s[x := m] |= x + 0 = x for all m ∈ Z .
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Satisfiability and Validity

A formula A is satisfiable in M if there is an assignment s such
that M, s |= A.

A formula A is valid in M, denoted M |= A, if M, s |= A for
every assignment s.

For instance, ∀x(x + 0 = x) is valid in (Z , {+, 0}).

M is called a model of A if A is valid in M.

A formula A is valid if it is valid in every structure, denoted |= A.
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Relating the Quantifiers

Lemma

|= ¬∀xA↔ ∃x¬A

|= ¬∃xA↔ ∀x¬A

|= ∀xA↔ ¬∃x¬A

|= ∃xA↔ ¬∀x¬A

Note: These equivalences show that, with the help of negation, either
quantifier can be expressed by the other.
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Quantifier Rules of Natural Deduction

Γ ` A[y/x ]
(∀I )

Γ ` ∀xA

Γ ` ∀xA
(∀E )

Γ ` A[t/x ]

Γ ` A[t/x ]
(∃I )

Γ ` ∃xA

Γ ` ∃xA Γ,A[y/x ] ` B
(∃E )

Γ ` B

In the rules above, we assume that all substitutions are admissible
and y does not occur free in Γ or A.
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A Proof in First-Order ND

Below is a partial proof of the validity of
∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x))→ ∀x(p(x)→ ¬r(x)) in ND,
where γ denotes ∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x)).

...

γ, p(y), r(y) ` r(y)→ q(y)
(Ax)

γ, p(y), r(y) ` r(y)
(→E )

γ, p(y), r(y) ` q(y)
...

(∧I )
∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x)), p(y), r(y) ` q(y) ∧ ¬q(y)

(¬I )
∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x)), p(y) ` ¬r(y)

(→ I )
∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x)) ` p(y)→ ¬r(y)

(∀I )
∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x)) ` ∀x(p(x)→ ¬r(x))

(→ I )
` ∀x(¬p(x) ∨ ¬q(x)) ∧ ∀x(r(x)→ q(x))→ ∀x(p(x)→ ¬r(x))
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Equality Rules of Natural Deduction

Let t, t1, t2 be arbitrary terms; again, assume all substitutions are
admissible.

(= I )
Γ ` t = t

Γ ` t1 = t2 Γ ` A[t1/x ]
(= E )

Γ ` A[t2/x ]

Note: The = sign is part of the object language, not a meta symbol.
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Soundness and Completeness

Let System ND also include the quantifier rules.

Theorem

System ND is sound, i.e., if a sequent Γ ` ∆ is provable in ND, then
Γ ` ∆ is valid.

Theorem

System ND is complete, i.e., if a sequent Γ ` ∆ is valid, then Γ ` ∆
is provable in ND.

Note: assume no equality in the logic language.
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Compactness

Theorem

For any (possibly infinite) set Γ of formulae, if every finite non-empty
subset of Γ is satisfiable then Γ is satisfiable.
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Consistency

Recall that a set Γ of formulae is consistent if there exists some
formula B such that the sequent Γ ` B is not provable. Otherwise, Γ
is inconsistent.

Lemma

For System ND, a set Γ of formulae is inconsistent if and only if there
is some formula A such that both Γ ` A and Γ ` ¬A are provable.

Theorem

For System ND, a set Γ of formulae is satisfiable if and only if Γ is
consistent.
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Theory

Assume a fixed first-order language.

A set S of sentences is closed under provability if

S = {A | A is a sentence and S ` A is provable}.

A set of sentences is called a theory if it is closed under
provability.

A theory is typically represented by a smaller set of sentences,
called its axioms.
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Group as a First-Order Theory

The set of non-logical symbols is {·, e}, where · is a binary
function (operation) and e is a constant (the identity).

Axioms:

∀a, b, c(a · (b · c) = (a · b) · c) (Associativity)
∀a(a · e = e · a = a) (Identity)
∀a(∃b(a · b = b · a = e)) (Inverse)

(Z , {+, 0}) and (Q \ {0}, {×, 1}) are models of the theory.

Additional axiom for Abelian groups:

∀a, b(a · b = b · a) (Commutativity)
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Theorems

A theorem is just a statement (sentence) in a theory (a set of
sentences).

For example, the following are theorems in Group theory:

∀a∀b∀c((a · b = a · c)→ b = c).
∀a∀b∀c(((a·b = e)∧(b·a = e)∧(a·c = e)∧(c ·a = e))→ b = c),
which says that every element has a unique inverse.
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