
.

Program Construction and Reasoning

Shin-Cheng Mu

Institute of Information Science, Academia Sinica, Taiwan

2010 Formosan Summer School on
Logic, Language, and Computation

June 28 – July 9, 2010

1 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

So, what is this course about?

I I am going to teach you how to write programs.

I But you program much more than I do. What about
programming could I possibly teach you?

2 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming Language Theory?

It has always been, and still is, hard to talk to people about my
research.

I “It’s called ‘programming language’.”

I “Like, making computers understand natural languages?”

I “Well, no... I mean the languages we use to communicate to
computers. We design better programming language concepts
to make programming easier.”

I “. . . surely it is the easiest to program in natural languages?”

I “Err, no. In fact we are trying to make programming more
mathematical.”

I “. . . and you call that an improvement?”

3 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Correctness?

Or I could try to explain that our concern is about “correctness.”

I “And what does that mean?”

I “That a program meets its specification.”

I (totally confused) “A program meets . . . what?”

I “Ok, I mean to ensure that a computer does what it is
supposed to do.”

I “Doesn’t a computer always do what it is instructed to do?”

4 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Correctness?

Or I could try to explain that our concern is about “correctness.”

I “And what does that mean?”

I “That a program meets its specification.”

I (totally confused) “A program meets . . . what?”

I “Ok, I mean to ensure that a computer does what it is
supposed to do.”

I “Doesn’t a computer always do what it is instructed to do?”

4 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Correctness?

Or I could try to explain that our concern is about “correctness.”

I “And what does that mean?”

I “That a program meets its specification.”

I (totally confused) “A program meets . . . what?”

I “Ok, I mean to ensure that a computer does what it is
supposed to do.”

I “Doesn’t a computer always do what it is instructed to do?”

4 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Correctness?

Or I could try to explain that our concern is about “correctness.”

I “And what does that mean?”

I “That a program meets its specification.”

I (totally confused) “A program meets . . . what?”

I “Ok, I mean to ensure that a computer does what it is
supposed to do.”

I “Doesn’t a computer always do what it is instructed to do?”

4 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7
I [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6
I [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I
−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right

5 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7
I [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6
I [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I
−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right

5 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7
I [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6
I [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I
−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right

5 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

A Simple Program Whose Proof is Not
I The specification: max { sum (i , j) | 0 ≤ i ≤ j ≤ N }, where

sum (i , j) = a[i] + a[i + 1] + . . .+ a[i].
I What we want the program to do.

I The program:

s = 0; m = 0;

for (i=0; i<=N; i++) {

s = max(0, a[j]+s);

m = max(m, s);

}

I How to do it.

I They do not look like each other at all!

I Moral: programs that appear “simple” might not be that
simple after all!

6 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming, and Programming Languages

I Correctness: that the behaviour of a program is allowed by
the specification.

I Semantics: defining “behaviours” of a program.

I Programming: to code up a correct program!

I Thus the job of a programming language is to help the
programmer to program,

I either by making it easy to check that whether a program is
correct,

I or by ensuring that programmers may only construct correct
programs, that is, disallowing the very construction of incorrect
programs!

7 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Programming, and Programming Languages

I Correctness: that the behaviour of a program is allowed by
the specification.

I Semantics: defining “behaviours” of a program.

I Programming: to code up a correct program!
I Thus the job of a programming language is to help the

programmer to program,
I either by making it easy to check that whether a program is

correct,
I or by ensuring that programmers may only construct correct

programs, that is, disallowing the very construction of incorrect
programs!

7 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Verification v.s. Derivation

I Verification: given a program, prove that it is correct with
respect to some specification.

I Derivation: start from the specification, and attempt to
construct only correct programs!

I Dijkstra: “to prove the correctness of a given program, was in
a sense putting the cart before the horse. A much more
promising approach turned out to be letting correctness proof
and program grow hand in hand: with the choice of the
structure of the correctness proof one designs a program for
which this proof is applicable.”

I What happened so far is that theoretical development of one
side benefits the other.

I We focus on verification today, and talk about derivation
tomorrow.

8 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Can you Implement Binary Search?
Given a sorted array of N numbers and a key to search for, either
locate the position where the key resides in the array, or report
that the value does not present in the array, in O(logN) time.

I You would not expect it to be a hard programming task.

I Jon Bentley, however, noted:

“I’ve assigned this problem in courses at Bell
Labs and IBM. Professional programmers had a
couple of hours to convert the above description into
a program in the language of their choice; . . . 90%
of the programmers found bugs in their programs.

. . . Knuth points out that while the first binary
search was published in 1946, the first published
binary search without bugs did not appear until
1962.”

9 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The Maximum Segment Sum Problem
The Binary Search Challenge

Give It a Try?

I Bentley: “The only way you’ll believe this is by putting down
this column right now and writing the code yourself.”

I Given: an array a[0,N) of N elements,

I that is sorted: (∀i , j : 0 ≤ i < j < N : a[i] ≤ a[j]).

I Find i such that a[i] = K , or report that K is not in the array.

10 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Introduction: On Programs Correctness
The Maximum Segment Sum Problem
The Binary Search Challenge

Program Verification using Hoare Logic
Assignments
Sequencing
Selection
Loop and loop invariants

Binary Search Revisited
The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

11 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

The Guarded Command Language
In this course we will talk about program construction using
Dijkstra’s calculus. Most of the materials are from Kaldewaij.

I A program computing the greatest common divisor:

|[con A,B : int

{0 < A ∧ 0 < B}

; var x , y : int;

x , y := A,B;
do y < x → x := x − y
[] x < y → y := y − x

od

{x = y = gcd(A,B)}

]|.

I do denotes loops with guarded bodies.

I Assertions delimited in curly brackets.

12 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

The Guarded Command Language
In this course we will talk about program construction using
Dijkstra’s calculus. Most of the materials are from Kaldewaij.

I A program computing the greatest common divisor:

|[con A,B : int {0 < A ∧ 0 < B}
; var x , y : int;

x , y := A,B;
do y < x → x := x − y
[] x < y → y := y − x

od
{x = y = gcd(A,B)}

]|.

I do denotes loops with guarded bodies.
I Assertions delimited in curly brackets.

12 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

The Hoare Triple

I The state space of a program is the states of all its variables.
I E.g. state space for the GCD program is (int × int).

I The Hoare triple {P} S {Q}, operationally, denotes that the
statement S , when executed in a state satisfying P ,
terminates in a state satisfying Q.

I Perhaps the simplest statement: {P} skip {Q} iff. P ⇒ Q.
I {X > 0 ∧ Y > 0} skip {X ≥ 0}.
I Note that the annotations need not be “exact.”

13 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

The Hoare Triple

I {P} S {true} expresses that S terminates.

I {P} S {Q} and P0 ⇒ P implies {P0}S {Q}.
I {P} S {Q} and Q ⇒ Q0 implies {P}S {Q0}.
I {P} S {Q} and {P}S {R} equivales {P} S {Q ∧ R}.
I {P} S {Q} and {R}S {Q} equivales {P ∨ R} S {Q}.

14 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Substitution

I P[E/x]: substituting free occurrences of x in P for E .

I We do so in mathematics all the time. A formal definition of
substitution, however, is rather tedious.

I For this lecture we will only appeal to “common sense”:
I E.g. (x ≤ 3)[x − 1/x] ⇔ x − 1 ≤ 3 ⇔ x ≤ 4.
I

((∃y : y ∈ N : x < y) ∧ y < x)[y + 1/y]

⇔ (∃y : y ∈ N : x < y) ∧ y + 1 < x .
I

(∃y : y ∈ N : x < y)[y/x]

⇔ (∃z : z ∈ N : y < z).

I The notation [E/x] hints at “divide by x and multiply by E .”
In the refinement calculus, substitution is closely related to
assignments, thus some also write [x := E].

15 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Substitution and Assignments

I Which is correct:

1. {P} x := E {P[E/x]}, or
2. {P[E/x]} x := E {P}?

I Answer: 2! For example:

{(x ≤ 3)[x + 1/x]} x := x + 1 {x ≤ 3}
⇔ {x + 1 ≤ 3} x := x + 1 {x ≤ 3}
⇔ {x ≤ 2} x := x + 1 {x ≤ 3}.

16 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Substitution and Assignments

I Which is correct:

1. {P} x := E {P[E/x]}, or
2. {P[E/x]} x := E {P}?

I Answer: 2! For example:

{(x ≤ 3)[x + 1/x]} x := x + 1 {x ≤ 3}
⇔ {x + 1 ≤ 3} x := x + 1 {x ≤ 3}
⇔ {x ≤ 2} x := x + 1 {x ≤ 3}.

16 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B}

⇒ {y = B ∧ x − y + y = A}

x := x − y ;

{y = B ∧ x + y = A} ⇒ {x + y − x = B ∧ x + y = A}

y := x + y ;

{y − x = B ∧ y = A}

x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B}

⇒ {y = B ∧ x − y + y = A}

x := x − y ;

{y = B ∧ x + y = A} ⇒ {x + y − x = B ∧ x + y = A}

y := x + y ;
{y − x = B ∧ y = A}
x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B}

⇒ {y = B ∧ x − y + y = A}

x := x − y ;

{y = B ∧ x + y = A} ⇒

{x + y − x = B ∧ x + y = A}
y := x + y ;
{y − x = B ∧ y = A}
x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B}

⇒ {y = B ∧ x − y + y = A}

x := x − y ;
{y = B ∧ x + y = A} ⇒ {x + y − x = B ∧ x + y = A}
y := x + y ;
{y − x = B ∧ y = A}
x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B} ⇒ {y = B ∧ x − y + y = A}
x := x − y ;
{y = B ∧ x + y = A}

⇒ {x + y − x = B ∧ x + y = A}

y := x + y ;
{y − x = B ∧ y = A}
x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Catenation

I {P} S ;T {Q} equivals that there exists R such that
{P} S {R} and {R}T {Q}.

I Verify:

|[var x , y : int;
{x = A ∧ y = B}

⇒ {y = B ∧ x − y + y = A}

x := x − y ;
{y = B ∧ x + y = A}

⇒ {x + y − x = B ∧ x + y = A}

y := x + y ;
{y − x = B ∧ y = A}
x := y − x ;
{x = B ∧ y = A}

]|.

17 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

If-Conditionals

I Selection takes the form if B0 → S0 [] . . . [] Bn → Sn fi.

I Each Bi is called a guard; Bi → Si is a guarded command.

I If none of the guards B0 . . .Bn evaluate to true, the program
aborts. Otherwise, one of the command with a true guard is
chosen non-deterministically and executed.

I To annotate an if statement:

{P}
if B0 → {P ∧ B0}S0 {Q}
[] B1 → {P ∧ B1}S1 {Q}
fi
{Q,Pf },

where Pf : P ⇒ B0 ∨ B1.

18 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

If-Conditionals

I Selection takes the form if B0 → S0 [] . . . [] Bn → Sn fi.

I Each Bi is called a guard; Bi → Si is a guarded command.

I If none of the guards B0 . . .Bn evaluate to true, the program
aborts. Otherwise, one of the command with a true guard is
chosen non-deterministically and executed.

I To annotate an if statement:

{P}
if B0 → {P ∧ B0}S0 {Q}
[] B1 → {P ∧ B1}S1 {Q}
fi
{Q,Pf },

where Pf : P ⇒ B0 ∨ B1.

18 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Binary Maximum
I Goal: to assign x ↑ y to z . By definition,

z = x ↑ y ↔ (z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z .

I Try z := x . We reason:

((z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z)[x/z]

⇔ (x = x ∨ x = y) ∧ x ≤ x ∧ y ≤ x

⇔ y ≤ x ,

which hinted at using a guarded command: y ≤ x → z := x .
I Indeed:

{true}
if y ≤ x → {y ≤ x} z := x {z = x ↑ y}
[] x ≤ y → {x ≤ y} z := y {z = x ↑ y}
fi
{z = x ↑ y}.

19 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Binary Maximum
I Goal: to assign x ↑ y to z . By definition,

z = x ↑ y ↔ (z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z .
I Try z := x . We reason:

((z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z)[x/z]

⇔ (x = x ∨ x = y) ∧ x ≤ x ∧ y ≤ x

⇔ y ≤ x ,

which hinted at using a guarded command: y ≤ x → z := x .

I Indeed:

{true}
if y ≤ x → {y ≤ x} z := x {z = x ↑ y}
[] x ≤ y → {x ≤ y} z := y {z = x ↑ y}
fi
{z = x ↑ y}.

19 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Binary Maximum
I Goal: to assign x ↑ y to z . By definition,

z = x ↑ y ↔ (z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z .
I Try z := x . We reason:

((z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z)[x/z]

⇔ (x = x ∨ x = y) ∧ x ≤ x ∧ y ≤ x

⇔ y ≤ x ,

which hinted at using a guarded command: y ≤ x → z := x .
I Indeed:

{true}
if y ≤ x → {y ≤ x} z := x {z = x ↑ y}
[] x ≤ y → {x ≤ y} z := y {z = x ↑ y}
fi
{z = x ↑ y}.

19 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

On Understanding Programs

I There are two ways to understand the program below:

if B00 → S00 [] B01 → S01 fi;
if B10 → S10 [] B11 → S11 fi;

:
if Bn0 → Sn0 [] Bn1 → Sn1 fi.

I One takes effort exponential to n; the other is linear.

I Dijkstra: “. . . if we ever want to be able to compose really
large programs reliably, we need a programming discipline
such that the intellectual effort needed to understand a
program does not grow more rapidly than in proportion to the
program length.”

20 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Loops

I Repetition takes the form do B0 → S0 [] . . . [] Bn → Sn od.

I If none of the guards B0 . . .Bn evaluate to true, the loop
terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

I To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0}S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q,Pf },

where Pf : P ∧ ¬B0 ∧ ¬B1 ⇒ Q.

I P is called the loop invariant. Every loop should be
constructed with an invariant in mind!

21 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Loops

I Repetition takes the form do B0 → S0 [] . . . [] Bn → Sn od.

I If none of the guards B0 . . .Bn evaluate to true, the loop
terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

I To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0}S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q,Pf },

where Pf : P ∧ ¬B0 ∧ ¬B1 ⇒ Q.

I P is called the loop invariant. Every loop should be
constructed with an invariant in mind!

21 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Loops

I Repetition takes the form do B0 → S0 [] . . . [] Bn → Sn od.

I If none of the guards B0 . . .Bn evaluate to true, the loop
terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

I To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0}S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q,Pf },

where Pf : P ∧ ¬B0 ∧ ¬B1 ⇒ Q.

I P is called the loop invariant. Every loop should be
constructed with an invariant in mind!

21 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0

{x = 2n ∧ n ≤ N}

;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}

x , n := x + x , n + 1

{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N

,Pf2

}
]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}

x , n := x + x , n + 1

{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N

,Pf2

}
]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}

x , n := x + x , n + 1

{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N ,Pf2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}

x , n := x + x , n + 1
{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N ,Pf2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}
x , n := x + x , n + 1
{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N ,Pf2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}
x , n := x + x , n + 1
{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N ,Pf2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]

⇔ x + x = 2n+1 ∧ n + 1 ≤ N

⇔ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

22 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Greatest Common Divisor
I Known: gcd(x , x) = x ; gcd(x , y) = gcd(y , x − y) if x > y .

I
|[con A,B : int {0 < A ∧ 0 < B};
var x , y : int;

x , y := A,B
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
;do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|
I

(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x]
↔ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

23 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Greatest Common Divisor
I Known: gcd(x , x) = x ; gcd(x , y) = gcd(y , x − y) if x > y .
I

|[con A,B : int {0 < A ∧ 0 < B};
var x , y : int;

x , y := A,B
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
;do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I
(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x]

↔ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

23 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Greatest Common Divisor
I Known: gcd(x , x) = x ; gcd(x , y) = gcd(y , x − y) if x > y .
I

|[con A,B : int {0 < A ∧ 0 < B};
var x , y : int;

x , y := A,B
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
;do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|
I

(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x]
↔ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

23 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

A Weird Equilibrium

I Consider the following program:

|[var x , y , z : int
{true

, bnd : 3× (x ↑ y ↑ z)− (x + y + z)

}
;do x < y → x := x + 1

[] y < z → y := y + 1
[] z < x → z := z + 1

od
{x = y = z}

]|.

I If it terminates at all, we do have x = y = z . But why does it
terminate?

1. bnd ≥ 0, and bnd = 0 implies none of the guards are true.
2. {x < y ∧ bnd = t} x := x + 1 {bnd < t}.

24 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

A Weird Equilibrium

I Consider the following program:

|[var x , y , z : int
{true, bnd : 3× (x ↑ y ↑ z)− (x + y + z)}
;do x < y → x := x + 1

[] y < z → y := y + 1
[] z < x → z := z + 1

od
{x = y = z}

]|.

I If it terminates at all, we do have x = y = z . But why does it
terminate?
1. bnd ≥ 0, and bnd = 0 implies none of the guards are true.
2. {x < y ∧ bnd = t} x := x + 1 {bnd < t}.

24 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Repetition

To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧ B0} S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si {P},
3. P ∧ (B1 ∨ B2) ⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si {t < C}.

25 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Repetition

To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧ B0} S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si {P},
3. P ∧ (B1 ∨ B2) ⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si {t < C}.

25 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Repetition

To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧ B0} S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si {P},

3. P ∧ (B1 ∨ B2) ⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si {t < C}.

25 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Repetition

To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧ B0} S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si {P},
3. P ∧ (B1 ∨ B2) ⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si {t < C}.

25 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Repetition

To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧ B0} S0 {P}
[] B1 → {P ∧ B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si {P},
3. P ∧ (B1 ∨ B2) ⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si {t < C}.

25 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

E.g. Linear-Time Exponentiation

I What is the bound function?

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N

, bnd : N − n

}
;do n ̸= N →

x , n := x + x , n + 1
od
{x = 2N}

]|

I x = 2n ∧ n ∧ n ̸= N ⇒ N − n ≥ 0,

I {. . . ∧ N − n = t} x , n := x + x , n − 1 {N − n < t}.

26 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

E.g. Linear-Time Exponentiation

I What is the bound function?

|[con N {0 ≤ N}; var x , n : int;

x , n := 1, 0
{x = 2n ∧ n ≤ N, bnd : N − n}
;do n ̸= N →

x , n := x + x , n + 1
od
{x = 2N}

]|

I x = 2n ∧ n ∧ n ̸= N ⇒ N − n ≥ 0,

I {. . . ∧ N − n = t} x , n := x + x , n − 1 {N − n < t}.
26 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

E.g. Greatest Common Divisor

I What is the bound function?

|[con A,B : int {0 < A ∧ 0 < B};
var x , y : int;

x , y := A,B
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)

, bnd : |x − y |

}
;do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I . . . ⇒ |x − y | ≥ 0,

I {. . . 0 < y ∧ y < x ∧ |x − y | = t} x := x − y {|x − y | < t}.

27 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

E.g. Greatest Common Divisor

I What is the bound function?

|[con A,B : int {0 < A ∧ 0 < B};
var x , y : int;

x , y := A,B
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B), bnd : |x − y |}
;do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I . . . ⇒ |x − y | ≥ 0,

I {. . . 0 < y ∧ y < x ∧ |x − y | = t} x := x − y {|x − y | < t}.
27 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

Assignments
Sequencing
Selection
Loop and loop invariants

Introduction: On Programs Correctness
The Maximum Segment Sum Problem
The Binary Search Challenge

Program Verification using Hoare Logic
Assignments
Sequencing
Selection
Loop and loop invariants

Binary Search Revisited
The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

28 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

The van Gasteren-Feijen Approach

I Van Gasteren and Feijen pointed a surprising fact: binary
search does not apply only to sorted lists!

I In fact, they believe that comparing binary search to searching
for a word in a dictionary is a major educational blunder.

I Their binary search: let Φ be a predicate on (int × int), with
some additional constraints to be given later:

|[con M,N : int {M < N ∧ Φ(M,N) . . .};
var l , r : int;
bsearch
{M ≤ l < N ∧ Φ(l , l + 1)}

]|

29 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

The Program

{M < N ∧ Φ(M,N)}
l , r := M,N
{M ≤ l < r ≤ N ∧ Φ(l , r), bnd : r − l}
;do l + 1 ̸= r →

{. . . ∧ l + 2 ≤ r}
m := (l + r)/2
{. . . ∧ l < m < r}
; if Φ(m, r) → l := m
[] Φ(l ,m) → r := m
fi

od
{M ≤ l < N ∧ Φ(l , l + 1)}

30 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Proof of Correctness
Let’s start with verifying the easier bits.

I When the loop exits:

M ≤ l < r ≤ N ∧ Φ(l , r) ∧ ¬(l + 1 ̸= r)

⇒ M ≤ l < l + 1 ≤ N ∧ Φ(l , l + 1)

⇔ M ≤ l < N ∧ Φ(l , l + 1).

I Termination: exercise.

I To verify {. . . l + 2 ≤ r}m := (l + r)/2 {. . . l < m < r}:

(l < m < r)[((l + r)/2)/m]

⇔ l < (l + r)/2 ⇐ l + 2 ≤ r .

31 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Proof of Correctness

I To verify that the loop body maintains the invariant, check
the first branch in if:

(M ≤ l < r ≤ N ∧ Φ(l , r))[m/l]

⇔ M ≤ m < r ≤ N ∧ Φ(m, r)

⇐ M ≤ l < r ≤ N ∧ Φ(l , r) ∧ l < m < r ∧ Φ(m, r).

I Similarly with the other branch.

I However, we still need to be sure that at least one of the
guards in if holds! Thus we need this property from Φ:

Φ(l , r) ∧ l < m < r ⇒ Φ(l ,m) ∨ Φ(m, r). (1)

32 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Instantiations

Some Φ that satisfies (1):

I Φ(i , j) = a[i] ̸= a[j] for some array a. Van Gasteren and
Feijen suggested using this as the example when introducing
binary search.

I Φ(i , j) = a[i] < a[j],

I Φ(i , j) = a[i]× a[j] ≤ 0,

I Φ(i , j) = a[i] ∨ a[j], etc.

33 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Searching for a Key

I To search for a key K in an ascending-sorted array a, it seems
that we could just pick:

Φ(i , j) = a[i] ≤ K < a[j],

and check whether a[i] = K after the loop.

I However, we are not sure we can establish the precondition
a[l] ≤ K < a[r]!

I For a possibly empty array a[0..N), imagine two elements
a[−1] and a[N] such that a[−1] ≤ x and x < a[N] for all x .

I Equivalently, pick:

Φ(i , j) = (i = −1 ∨ a[i] ≤ K) ∧ (K < a[j] ∨ j = N).

34 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

The Program
Recall Φ(i , j) = (i = −1 ∨ a[i] ≤ K) ∧ (K < a[j] ∨ j = N).

{0 ≥ N ∧ Φ(−1,N)}
l , r := −1,N
{−1 ≤ l < r ≤ N ∧ Φ(l , r), bnd : r − l}
;do l + 1 ̸= r →

{. . . ∧ l + 2 ≤ r}
m := (l + r)/2
; if a[m] ≤ K → l := m
[] K < a[m] → r := m
fi

od
{−1 ≤ l < N ∧ Φ(l , l + 1)}
; if l > −1 → found := a[l] = k
[] l = −1 → found := false
fi

35 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Discussions

I “Adding” elements to a?
I The invariant implies that −1 < m < N, thus a[−1] and a[N]

are never accessed.
I No actual alteration necessary.
I It also enables us to handle possibly empty arrays

I Is the program different from the usual binary search you’ve
seen?

36 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

A More Common Program
Bentley’s program can be rephrased below:

l , r := 0,N − 1; found := false;
do l ≤ r →

m := (l + r)/2;
if a[m] < K → l := m + 1
[] a[m] = K → found := true; break
[] K < a[m] → r := m − 1
fi

od.

I’d like to derive it, but
I it is harder to formally deal with break

I but Bentley also employed a semi-formal reasoning using a
loop invariant to argue for the correctness of the program;

I to relate the test a[m] < K to l := m + 1 we have to bring in
the fact that a is sorted earlier.

37 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Comparison

I The two programs do not solve exactly the same problem (e.g.
when there are multiple K s in a).

I Is the second program quicker because it assigns l and r to
m + 1 and m − 1 rather than m?

I l := m + 1 because a[m] is covered in another case;
I r := m − 1 because a range is represented differently.

I Is it quicker to perform an extra test to return early?
I When K is not in a, the test is wasted.
I Rolfe claimed that single comparison is quicker in average.
I Knuth: single comparison needs 17.5 lgN + 17 instructions,

double comparison needs 18 lgN − 16 instructions.

38 / 97

.

Introduction: On Programs Correctness
Program Verification using Hoare Logic

Binary Search Revisited

The van Gasteren-Feijen Approach
Searching in a Sorted List
Searching with Premature Return

Exercise: Unimodel Search

I Let array a[0,N), with 0 < N, be the concatenation of a
strictly increasing and a strictly decreasing array. Formally:

(∃k : 0 ≤ k < N :

(∀i : 0 < i ≤ k : a[i − 1] < a[i]) ∧
(∀j : k ≤ j < N : a[j − 1] > a[j])).

Use binary search to find the maximum element.

I What invariant to use?

39 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Correct by Construction

Dijkstra: “The only effective way to raise the confidence
level of a program significantly is to give a convincing
proof of its correctness. But one should not first make
the program and then prove its correctness, because then
the requirement of providing the proof would only
increase the poor programmer’s burden. On the contrary:
the programmer should . . . ”
“. . . [let] correctness proof and program grow hand in
hand: with the choice of the structure of the correctness
proof one designs a program for which this proof is
applicable.”

40 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Program Derivation

I Wikipedia: program derivation is the derivation of a program
from its specification, by mathematical means.

I To write a formal specification (which could be
non-executable), and then apply mathematically correct rules
in order to obtain an executable program.

I The program thus obtained is correct by construction.

41 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

42 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

But What is a Proof, Anyway?

Xavier Leroy, “How to prove it”:

Proof by example Prove the case n = 2 and suggests that it
contains most of the ideas of the general proof.

Proof by intimidation ‘Trivial’.

Proof by cumbersome notation Best done with access to at least
four alphabets and special symbols.

Proof by reference to inaccessible literature a simple corollary of a
theorem to be found in a privately circulated memoir
of the Slovenian Philological Society, 1883.

Proof by personal communication ‘Eight-dimensional colored cycle
stripping is NP-complete [Karp, personal
communication] (in the elevator).’

Proof by appeal to intuition Cloud-shaped drawings.

43 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

A semantic proof

A map of London is place on the ground of Trafalgar Square.
There is a point on the map that is directly above the point on the
ground that it represents.

Proof.
The map is directly above a part of London. Thus the entire map is

directly above the part of the area which it represents. Now, the smaller

area of the map representing Central London is also above the part of the

area which it represents. Within the area representing Central London,

Trafalgar Square is marked, and this yet smaller part of the map is

directly above the part it represents. Continuing this way, we can find

smaller and smaller areas of the map each of which is directly above the

part of the area which it represents. In the limit we reduce the area on

the map to a single point.

44 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Proof of Pythagoras’s Theorem

I B J

E

AC

L D K

a c

b

Let ABC be a triangle with

B̂AC = 90o . Let the lengths of BC ,
AC , AB be, respectively, a, b, and c .
We wish to prove that a2 = b2 + c2.
Construct a square IJKL, of side
b+ c , and a square BCDE , of side a.
Clearly, area(IJKL) = (b + c)2. But

area(IJKL) = area(BCDE)+

4× area(ABC)

= a2 + abc .

That is, (b + c)2 = a2 + 2bc ,
whence b2 + c2 = a2.

45 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Informal v.s. Formal Proofs

I To read an informal proof, we are expected to have a good
understanding of the problem domain, the meaning of the
natural language statements, and the language of
mathematics.

I A formal proof shifts some of the burdens to the “form”: the
symbols, the syntax, and rules manipulating them. “Let the
symbols do the work!”

I Our proof of the swapping program is formal:

{x = A ∧ y = B}
x := x − y ; y := x + y ; x := y − x

{x = B ∧ y = A}.

46 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

47 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I The kindergarten approach: plain simple enumeration!
I Crane 0, Tortoise 5 . . . No.
I Crane 1, Tortoise 4 . . . No.
I Crane 2, Tortoise 3 . . . No.
I Crane 3, Tortoise 2 . . . Yes!
I Crane 4, Tortoise 1 . . . No.
I Crane 5, Tortoise 0 . . . No.

47 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I Elementary school: let’s do some reasoning . . .
I If all 5 animals were cranes, there ought to be 5× 2 = 10 legs.
I However, there are in fact 14 legs. The extra 4 legs must

belong to some tortoises. There must be (14− 10)/2 = 2
tortoises.

I So there must be 5− 2 = 3 cranes.

I It generalises to larger numbers of heads and legs.

I Given a different problem, we have to come up with another
different way to solve it.

47 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I Junior high school: algebra!

x + y = 5

2x + 4y = 14.

I It’s a general approach applicable to many other problems . . .

I . . . and perhaps easier.

I However, it takes efforts to learn!

47 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Another Formal Proof

The calculational logic proofs we have seen were formal:

¬(P ↔ Q)

⇔ { unfolding ¬ }
(P ↔ Q) ↔ ⊥

⇔ { ↔ associative }
P ↔ (Q ↔ ⊥)

⇔ { folding ¬ }
P ↔ ¬Q.

Rather than relying on intuition on truth tables, we try to develop
intuition on calculational rules.

48 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

49 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Quantifications

I Let ⊕ be a commutative, associative operator with identity e,
that is,

I x ⊕ y = y ⊕ x ,
I x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z , and
I e ⊕ x = x = x ⊕ e,

and let f be a function defined on int.

I We denote f m ⊕ f (m + 1)⊕ . . .⊕ f (n − 1) by
(⊕i : m ≤ i < n : f i).

I (⊕i : n≤i<n : f i) = e.
I (⊕i : m≤i<n+1 : f i) = (⊕i : m≤i<n : f i)⊕ f n if m ≤ n.

I We will refer to this rule as to “split off n”.

50 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Quantifications in General

General form: (⊕i : R : F), where R specifies a range. We
sometimes write (⊕i : R i : F i) to emphasise that they depend on
i .

I (⊕i : false : F) = e.

I (⊕i : i = x : F i) = F x .

I (⊕i : R : F)⊕(⊕i : S : F) = (⊕i : R∨S : F)⊕(⊕i : R∧S : F).

I (⊕i : R : F)⊕ (⊕i : R : G) = (⊕i : R : F ⊕ G).

I (⊕i , j : R i ∧ S i j : F) = (⊕i : R i : (⊕j : S i j : F)),

I (i , j distinct, j does not occur free in R).

(Of which rule is range splitting a special case?)

51 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

Examples

I E.g.
I (+i : 3≤i<5 : i2) = 32 + 42 = 25.
I (+i , j : 3≤i≤j<5 : i × j) = 3× 3 + 3× 4 + 4× 4.
I (∧i : 2≤i<9 : odd i ⇒ prime i) = true.
I (↑ i : 1≤i<7 : −i2 + 5i) = 6 (when i = 2 or 3).

I As a convention,
(+i : R : F) is written (Σi : R : F),
(∧i : R : F) is written (∀i : R : F), and
(∨i : R : F) is written (∃i : R : F).

I A special rule for ↑ (or ↓) and +:

x + (↑ i : R : F i) = (↑ i : R : x + F i).

52 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Quantifier manipulation

The Number Of . . .

I Define # : Bool → {0, 1}:

false = 0
true = 1.

I “The number of” quantifier is defined by:

(#i : R i : F i) = (Σi : R i : #(F i)),

from which we may derive:
I (#i : false : F i) = 0,
I (#i : 0 ≤ i < n + 1 : F i) = (#i : 0 ≤ i < n : F i) + #(F n).

53 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

54 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Deriving Programs from Specifications

I From such a specification:

|[con declarations;
{preconditions}
prog
{postcondition}

]|

we hope to derive prog .

I We usually work backwards from the post condition.

I The techniques we are about to learn is mostly about
constructing loops and loop invariants.

55 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Conjunctive Postconditions

I When the post condition has the form P ∧ Q, one may take
one of the conjuncts as the invariant and the other as the
guard:

I {P}do ¬Q → S od {P ∧ Q}.

I E.g. consider the specficication:

|[con A,B : int; {0 ≤ A ∧ 0 ≤ B}
var q, r : int;
divmod
{q = A div B ∧ r = A mod B}

]|.

I The post condition expands to
R :: A = q × B + r ∧ 0 ≤ r ∧ r < B.

56 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

But Which Conjunct to Choose?

I q = A div B ∧ r = A mod B expands to
R : A = q × B + r ∧ 0 ≤ r ∧ r < B, which leads to a
number of possibilities:

I {0 ≤ r ∧ r < B}do A ̸= q × B + r → S od {R},
I {A = q × B + r ∧ r < B}do 0 > r → S od {R}, or
I {A = q × B + r ∧ 0 ≤ r}do r ≥ B → S od {R}, etc.

57 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;

{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}

r := r − B

{P}
od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;
{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}

r := r − B

{P}
od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;
{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}

r := r − B

{P}
od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;
{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}
r := r − B
{P}

od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;
{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}
r := r − B
{P}

od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A;
{P : A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}
q, r := q + 1, r − B
{P}

od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r]

⇔ A = q × B + r − B ∧ 0 ≤ r − B

⇔ A = (q − 1)× B + r ∧ B ≤ r .

I
P[q + 1, r − B/q, r]

⇔ A = (q + 1)× B + r − B ∧ 0 ≤ r − B

⇔ A = q × B + r ∧ B ≤ r .

58 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

59 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation

I Consider the problem:

|[con A,B : int {A ≥ 0 ∧ B ≥ 0};
var r : int;
exponentiation
{r = AB}

]|.

I There is not much we can do with a state space consisting of
only one variable.

I Replacing constants by variables may yield some possible
invariants.

I Again we have several choices: r = xB , r = Ax , r = xy , etc.

60 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation
I Use the invariant P0 : r = Ax ,

thus P0 ∧ x = B implies the
post-condition.

I Strategy: increment x in the
loop. An upper bound
P1 : x ≤ B.

I (r = Ax)[x + 1/x] ⇔ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r !

I Indeed, (r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax .

r , x := 1, 0

{r = Ax

∧ x ≤ B, bnd : B − x

}

;

do x ̸= B →

r := A× r
{r = Ax+1 ∧ x + 1 ≤ B}
; x := x + 1

od
{r = AB}

61 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation
I Use the invariant P0 : r = Ax ,

thus P0 ∧ x = B implies the
post-condition.

I Strategy: increment x in the
loop. An upper bound
P1 : x ≤ B.

I (r = Ax)[x + 1/x] ⇔ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r !

I Indeed, (r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax .

r , x := 1, 0
{r = Ax

∧ x ≤ B, bnd : B − x

}
; do x ̸= B →

r := A× r
{r = Ax+1 ∧ x + 1 ≤ B}
; x := x + 1

od
{r = AB}

61 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation
I Use the invariant P0 : r = Ax ,

thus P0 ∧ x = B implies the
post-condition.

I Strategy: increment x in the
loop. An upper bound
P1 : x ≤ B.

I (r = Ax)[x + 1/x] ⇔ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r !

I Indeed, (r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax .

r , x := 1, 0
{r = Ax ∧ x ≤ B, bnd : B − x}

; do x ̸= B →

r := A× r
{r = Ax+1 ∧ x + 1 ≤ B}

; x := x + 1
od
{r = AB}

61 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation
I Use the invariant P0 : r = Ax ,

thus P0 ∧ x = B implies the
post-condition.

I Strategy: increment x in the
loop. An upper bound
P1 : x ≤ B.

I (r = Ax)[x + 1/x] ⇔ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r !

I Indeed, (r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax .

r , x := 1, 0
{r = Ax ∧ x ≤ B, bnd : B − x}

; do x ̸= B →

r := A× r

{r = Ax+1 ∧ x + 1 ≤ B}
; x := x + 1
od
{r = AB}

61 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentiation
I Use the invariant P0 : r = Ax ,

thus P0 ∧ x = B implies the
post-condition.

I Strategy: increment x in the
loop. An upper bound
P1 : x ≤ B.

I (r = Ax)[x + 1/x] ⇔ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r !

I Indeed, (r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax .

r , x := 1, 0
{r = Ax ∧ x ≤ B, bnd : B − x}

; do x ̸= B →
r := A× r
{r = Ax+1 ∧ x + 1 ≤ B}
; x := x + 1
od
{r = AB}

61 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Constructing Loop Body in Steps
We will see this pattern often:

I we have discovered that (r = e)[x + 1/x] ⇔ r = e ⊕ e ′.
I We want to establish:

{r = e ∧ . . . }

r := r ⊕ e ′

{r = e ⊕ e ′}
; x := x + 1
{r = e}.

I It works because:

(r = e ⊕ e ′)[r ⊕ e ′/r]

⇔ r ⊕ e ′ = e ⊕ e ′

⇐ r = e.

62 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Constructing Loop Body in Steps
We will see this pattern often:

I we have discovered that (r = e)[x + 1/x] ⇔ r = e ⊕ e ′.
I We want to establish:

{r = e ∧ . . . }
r := r ⊕ e ′

{r = e ⊕ e ′}
; x := x + 1
{r = e}.

I It works because:

(r = e ⊕ e ′)[r ⊕ e ′/r]

⇔ r ⊕ e ′ = e ⊕ e ′

⇐ r = e.

62 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Constructing Loop Body in Steps
We will see this pattern often:

I we have discovered that (r = e)[x + 1/x] ⇔ r = e ⊕ e ′.
I We want to establish:

{r = e ∧ . . . }
r := r ⊕ e ′

{r = e ⊕ e ′}
; x := x + 1
{r = e}.

I It works because:

(r = e ⊕ e ′)[r ⊕ e ′/r]

⇔ r ⊕ e ′ = e ⊕ e ′

⇐ r = e.

62 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

I Another simple exercise.

I We talk about it because we need range splitting.

|[con N : int {0 ≤ N}; f : array [0..N) of int;
var x : int
sum
{x = (Σi : 0≤i<N : f [i])}

]|

63 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0

{P : x = (Σi : 0≤i<n : f [i]), bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x + f [n]; n := n + 1

{P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)

[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]), bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x + f [n]; n := n + 1

{P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)

[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]), bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x + f [n];

n := n + 1 {P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I Use N − n as bound, try incrementing n:

(x = (Σi : 0≤i<n : f [i]))[n + 1/n]
⇔ x = (Σi : 0≤i<n + 1 : f [i])

⇐ x = (Σi : 0≤i<n + 1 : f [i]) ∧ 0 ≤ n

⇔ x = (Σi : 0≤i<n : f [i]) + f [n]

∧ 0 ≤ n

.

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)

[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n, bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x + f [n];

n := n + 1 {P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I Use N − n as bound, try incrementing n:

(x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n)[n + 1/n]
⇔ x = (Σi : 0≤i<n + 1 : f [i]) ∧ 0 ≤ n + 1
⇐ x = (Σi : 0≤i<n + 1 : f [i]) ∧ 0 ≤ n
⇔ x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n.

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)

[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n, bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x + f [n];

n := n + 1 {P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)

[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n, bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N} x := x + f [n]; n := n + 1 {P} od
{x = (Σi : 0≤i<N : f [i])}

]|

I

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)[x + f [n]/x]
⇔ x + f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n
⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

64 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

65 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

No. of Pairs in an Array

|[con N : int{N ≥ 0}; a : array [0..N) of int;
var r : int;
S
{r = (#i , j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

]|.

I Replace N by n:

P0 : r = (#i , j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0),

P1 : 0 ≤ n ≤ N.

I Initialisation: n, r := 0, 0.

66 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

No. of Pairs in an Array

|[con N : int {N ≥ 0}; a : array [0..N) of int;
var r : int;
n, r := 0, 0
{P0 ∧ P1, bnd : N − n}
;do n ̸= N → . . . n := n + 1 od
{r = (#i , j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

]|.

I Replace N by n:

P0 : r = (#i , j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0),

P1 : 0 ≤ n ≤ N.

I Initialisation: n, r := 0, 0.
66 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

No. of Pairs in an Array
To reason about P0[n + 1/n], we calculate (assuming P0,
P1 : 0 ≤ n ≤ N and n ̸= N):

(#i , j : 0 ≤ i < j < n + 1 : a[i] ≤ 0 ∧ a[j] ≥ 0)

= { split off j = n }
(#i , j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0)+

(#i : 0 ≤ i < n : a[i] ≤ 0 ∧ a[n] ≥ 0)

= { P0 }
r + (#i : 0 ≤ i < n : a[i] ≤ 0 ∧ a[n] ≥ 0)

=

{
r , if a[n] < 0;

r + (#i : 0 ≤ i < n : a[i] ≤ 0), if a[n] ≥ 0.

We could compute (#i : 0 ≤ i < n : a[i] ≤ 0) in a loop. . . or can
we store it in another variable?

67 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Strengthening by Using More Variables
New plan:

|[con N : int {N ≥ 0}; a : array [0..N) of int;
var r , s : int;

n, r , s := 0, 0, 0
{P0 ∧ P1 ∧ Q, bnd : N − n}
;do n ̸= N → . . . n := n + 1 od
{r = (#i , j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

]|.

P0 : r = (#i , j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0),

P1 : 0 ≤ n ≤ N,

Q : s = (#i : 0 ≤ i < n : a[i] ≤ 0).

68 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Update the New Variable

(#i : 0 ≤ i < n : a[i] ≤ 0)[n + 1/n]

= (#i : 0 ≤ i < n + 1 : a[i] ≤ 0)

= { split off i = n (assuming 0 ≤ n) }
(#i : 0 ≤ i < n : a[i] ≤ 0) + #(a[i] ≤ 0)

= { Q }
s +#(a[i] ≤ 0)

=

{
s if a[i] > 0,

s + 1 if a[i] ≤ 0.

69 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Resulting Program

n, r , s := 0, 0, 0
{P0 ∧ P1 ∧ Q, bnd : N − n}
;do n ̸= N → {P0 ∧ P1 ∧ Q ∧ n ̸= N}

if a[n] < 0 → skip
[] a[n] ≥ 0 → r := r + s
fi
{P0[n + 1/n] ∧ P1 ∧ Q ∧ n ̸= N}
; if a[n] > 0 → skip
[] a[n] ≤ 0 → s := s + 1
fi
{(P0 ∧ P1 ∧ Q)[n + 1/n]}
; n := n + 1

od
{r = (#i , j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

70 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Resulting Program
Since P0 ∧ P1 ∧ Q ∧ n ̸= N is a common precondition for the if’s
(the second if does not use P0), they can be combined:

n, r , s := 0, 0, 0
{P0 ∧ P1 ∧ Q, bnd : N − n}
;do n ̸= N → {P0 ∧ P1 ∧ Q ∧ n ̸= N}

if a[n] < 0 → s := s + 1
[] a[n] = 0 → r , s := r + s, s + 1
[] a[n] > 0 → r := r + s
fi
{(P0 ∧ P1 ∧ Q)[n + 1/n]}
; n := n + 1

od
{r = (#i , j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

71 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

It’s Easier to Do More?

I The resulting loop computes values for two variables rather
than one. It appears that it does more work.

I However, we often find that a loop that does more is eaiser to
construct, because more has been established in the previous
iteration of the loop.

I The invariant is “stronger” because it promises more.

I It is a common phenomena: a generalised theorem is easier to
prove.

I We will see another way to generalise the invariant in the next
section.

72 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Isn’t It Getting A Bit Too Complicated?

I Quantifier and indexes manipulation tend to get very long and
tedious.

I Expect to see even longer expressions later!

I With long and complex expressions, one tend to make
mistakes.

I To certain extent, it is a restriction of the data structure we
are using. With arrays we have to manipulate the indexes.

I Is it possible to use higher-level data structures? Lists? Trees?

I Like map, filter , foldr . . . in functional programming?
I More on this issue later.

73 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) = fib n + fib (n + 1).

|[con N : int {0 ≤ N}; var x

, y

: int;
n, x := 0, 0
{P : x = fib n ∧ 0 ≤ n ≤ N

∧ y = fib (n + 1)

}
;do n ̸= N → {P ∧ n ̸= N}

x , y := y , x + y ;

n := n + 1 {P}
od
{x = fib N}]|.

I
(x = fib n ∧ 0≤n≤N)[n+1/n]

⇔ x = fib (n+1) ∧ 0≤n<N

∧ y = fib (n+2)

I (x = fib (n+1) ∧ . . .)

[y , x + y/x , y]
⇔ y = fib (n+1) ∧ . . . ∧ x + y = fib (n+2)

⇐ x = fib n ∧

74 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) = fib n + fib (n + 1).

|[con N : int {0 ≤ N}; var x

, y

: int;
n, x := 0, 0
{P : x = fib n ∧ 0 ≤ n ≤ N

∧ y = fib (n + 1)

}
;do n ̸= N → {P ∧ n ̸= N}

x , y := y , x + y ;

n := n + 1 {P}
od
{x = fib N}]|.

I
(x = fib n ∧ 0≤n≤N)[n+1/n]

⇔ x = fib (n+1) ∧ 0≤n<N

∧ y = fib (n+2)

I (x = fib (n+1) ∧ . . .)

[y , x + y/x , y]
⇔ y = fib (n+1) ∧ . . . ∧ x + y = fib (n+2)

⇐ x = fib n ∧

74 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) = fib n + fib (n + 1).

|[con N : int {0 ≤ N}; var x , y : int;
n, x , y := 0, 0, 1
{P : x = fib n ∧ 0 ≤ n ≤ N ∧ y = fib (n + 1)}
;do n ̸= N → {P ∧ n ̸= N}

x , y := y , x + y ;

n := n + 1 {P}
od
{x = fib N}]|.

I
(x = fib n ∧ 0≤n≤N ∧ y = fib (n+1))[n+1/n]

⇔ x = fib (n+1) ∧ 0≤n<N ∧ y = fib (n+2)

I (x = fib (n+1) ∧ . . . ∧ y = fib (n+2))

[y , x + y/x , y]
⇔ y = fib (n+1) ∧ . . . ∧ x + y = fib (n+2)

⇐ x = fib n ∧ . . . ∧ y = fib (n+1).

74 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) = fib n + fib (n + 1).

|[con N : int {0 ≤ N}; var x , y : int;
n, x , y := 0, 0, 1
{P : x = fib n ∧ 0 ≤ n ≤ N ∧ y = fib (n + 1)}
;do n ̸= N → {P ∧ n ̸= N} x , y := y , x + y ; n := n + 1 {P}
od
{x = fib N}]|.

I
(x = fib n ∧ 0≤n≤N ∧ y = fib (n+1))[n+1/n]

⇔ x = fib (n+1) ∧ 0≤n<N ∧ y = fib (n+2)

I (x = fib (n+1) ∧ . . . ∧ y = fib (n+2))[y , x + y/x , y]
⇔ y = fib (n+1) ∧ . . . ∧ x + y = fib (n+2)
⇐ x = fib n ∧ . . . ∧ y = fib (n+1).

74 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

75 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Tail Recursion
I A function f is tail recursive if it looks like:

f x = h x , if b x ;
f x = f (g x), if ¬(b x).

I The goal is to derive a program that computes f X for given
X . Plan:

|[con X ; var r , x ;
x := X
{f x = f X}
;do ¬(b x) → x := g x od
; r := h x
{r = f X}

]|,
provided that the loop terminates.

76 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Using Associativity

I Consider function k such that:

k x = a, if b x ;
k x = h x ⊕ k (g x), if ¬(b x).

where ⊕ is associative with identity e. Note that k is not tail
recursive.

I Goal: establish r = k X for given X .
I Trick: use an invariant r ⊕ k x = k X .

I ‘computed’⊕ ‘to be computed’ = k X .
I Strategy: keep shifting stuffs from right hand side of ⊕ to the

left, until the right is e.

77 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Constructing the Loop Body
If b x holds:

r ⊕ k x = k X

⇔ { b x }
r ⊕ a = k X .

Otherwise:

r ⊕ k x = k X

⇔ { ¬(b x) }
r ⊕ (h x ⊕ k (g x)) = k X

⇔ { ⊕ associative }
(r ⊕ h x)⊕ k (g x) = k X

⇔ (r ⊕ k x = k X)[r ⊕ h x , g x/r , x].

78 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

The Program

|[con X ; var r , x ;

r , x := e,X
{r ⊕ k x = k X}
;do ¬(b x) → r , x := r ⊕ h x , g x od
{r ⊕ a = k X}
; r := r ⊕ a
{r = k X}

]|,

if the loop terminates.

79 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Exponentation Again

I Consider again computing AB . Notice that:

x0 = 1
xy = 1× (x × x)y div 2 if even y ,

= x × xy−1 if odd y .

I How does it fit the pattern above? (Hint: k now has type
(int × int) → int.)

I To be concrete, let us look at this specialised case in more
detail.

80 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fast Exponentiation

I To achieve r = AB , choose invariant r × xy = AB :

I To construct the loop body, we reason

for the case even y :

r × xy

= { assumption: even y }
r × (x × x)ydiv2

= (r × xy)[x × x , y div 2/x , y].

and for odd y :

r × xy

= { assumption: odd y }
r × (x × xy−1)

= { × associative }
(r × x)× xy−1

= (r × xy)[r × x , y − 1/r , y].

81 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Fast Exponentiation

The resulting program:

r , x , y := 1,A,B;
{r × xy = AB ∧ 0 ≤ y , bnd = y}
do y ̸= 0 ∧ even y → x , y := x × x , y div 2
[] y ̸= 0 ∧ odd y → r , y := r × x , y − 1

od
{r × xy = AB ∧ y = 0}.

82 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

83 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Specification

|[con N : int{0 ≤ N}; f : array [0..N) of int;
var r

, n

: int;

n, r := 0, 0
{r = (↑ p, q : 0≤p≤q≤n : sum p q) ∧ 0 ≤ n ≤ N}
;do n ̸= N →

. . . ; n := n + 1
od

{r = (↑ p, q : 0≤p≤q≤N : sum p q)}
]|

I sum p q = (Σi : p≤i<q : f [i]).

I Replacing constant N by variable n, use an up-loop.

84 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Specification

|[con N : int{0 ≤ N}; f : array [0..N) of int;
var r , n : int;

n, r := 0, 0
{r = (↑ p, q : 0≤p≤q≤n : sum p q) ∧ 0 ≤ n ≤ N}
;do n ̸= N →

. . . ; n := n + 1
od
{r = (↑ p, q : 0≤p≤q≤N : sum p q)}

]|

I sum p q = (Σi : p≤i<q : f [i]).

I Replacing constant N by variable n, use an up-loop.
84 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Strengthening the Invariant
I Let P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q).

n, r

, s

:= 0, 0

, 0

;
{P0 ∧ 0 ≤ n ≤ N

∧ s = (↑ p : 0 ≤ p ≤ n : sum p n)

}
do n ̸= N− >

. . . ; n := n + 1
od
{r = (↑ p, q : 0 ≤ p ≤ q ≤ N : sum p q)}

I With assumption that 0 ≤ n + 1 ≤ N:

(↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q)[n + 1/n]
= (↑ p, q : 0 ≤ p ≤ q ≤ n + 1 : sum p q)
= (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q) ↑

(↑ p, q : 0 ≤ p ≤ n+1 : sum p (n+1)).

I Let’s introduce P1 : s = (↑ p : 0 ≤ p ≤ n : sum p n).

85 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Strengthening the Invariant
I Let P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q).

n, r , s := 0, 0, 0;
{P0 ∧ 0 ≤ n ≤ N ∧ s = (↑ p : 0 ≤ p ≤ n : sum p n)}
do n ̸= N− >

. . . ; n := n + 1
od
{r = (↑ p, q : 0 ≤ p ≤ q ≤ N : sum p q)}

I With assumption that 0 ≤ n + 1 ≤ N:

(↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q)[n + 1/n]
= (↑ p, q : 0 ≤ p ≤ q ≤ n + 1 : sum p q)
= (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q) ↑

(↑ p, q : 0 ≤ p ≤ n+1 : sum p (n+1)).

I Let’s introduce P1 : s = (↑ p : 0 ≤ p ≤ n : sum p n).
85 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Constructing the Loop Body

I Known: P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q),

I P1 : s = (↑ p : 0 ≤ p ≤ n : sum p n),

I P0[n + 1/n] : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q) ↑ (↑ p :
0 ≤ p ≤ n+1 : sum p (n+1)).

I Therefore, a possible strategy would be:

{P0 ∧ P1 ∧ 0 ≤ n ≤ N ∧ n ̸= N}
s := ?;
{P0 ∧ P1[n + 1/n] ∧ 0 ≤ n ≤ N ∧ n ̸= N}
r := r ↑ s;
{(P0 ∧ P1 ∧ 0 ≤ n ≤ N)[n + 1/n]}
n := n + 1
{P0 ∧ P1 ∧ 0 ≤ n ≤ N}

86 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Updating the Prefix Sum

Recall P1 ≡ s = (↑ p : 0 ≤ p ≤ n : sum p n).

(↑ p : 0 ≤ p ≤ n : sum p n)[n + 1/n]

= (↑ p : 0 ≤ p ≤ n+1 : sum p (n+1))

= { splitting p = n + 1 }
(↑ p : 0 ≤ p ≤ n : sum p (n+1)) ↑

sum (n+1) (n+1)

= { [n + 1, n + 1) is an empty range }
(↑ p : 0 ≤ p ≤ n : sum p (n+1)) ↑ 0

= (↑ p : 0 ≤ p ≤ n : sum p n + f [n]) ↑ 0

= ((↑ p : 0 ≤ p ≤ n : sum p n) + f [n]) ↑ 0.

Thus, {P1} s :=? {P1[n + 1/n]} is satisfied by s := (s + f [n]) ↑ 0.

87 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Derived Program

|[con N : int {0 ≤ N}; f : array [0..N) of int;
var r , s, n : int;

n, r , s := 0, 0, 0
{P0 ∧ P1 ∧ 0 ≤ n ≤ N, bnd : N − n}
;do n ̸= N →

s := (s + f [n]) ↑ 0;
r := r ↑ s;
n := n + 1

od
{r = (↑ 0 ≤ p ≤ q ≤ N : sum p q :)}

]|

I P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q).
I P1 : s = (↑ p, q : 0 ≤ p ≤ n : sum p n). 88 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What is a Proof, Anyway?
Quantifier manipulation

Loop construction
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Max. Segment Sum Solved

Where to Go from Here?

89 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What Have We Learnt?

How to program!

I Imperative program derivation by backwards reasoning.

I Key to imperative program derivation: every loop shall be
built with an invariant and a bound in mind.

I Some techniques to construct loop invariants:
I taking conjuncts as invariants;
I replacing constants by variables;
I strengthening the invariant;
I tail invariants.

Most of the materials are from Kaldewaij.

90 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What Have We Learnt?

And some more philosophical issues.

I What being formal means, and how it helps us.

I To program is to construct code that meets the specification;

I and to do so, the program must be constructed together with
its proof.

91 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Connection with other courses?

What we have learnt is axiomatic semantics.

I Denotational semantics: what a program is.

I Operational semantics: what it does.

I Axiomatic semantics: what it guaratnees.

We have not talked about Dijkstra’s weakest precondition
semantics, in which a program is seen as a predicate transformer –
a function from predicates to predicates. See Dijkstra and
Scholten.

92 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What’s Missing?

To begin with, notice the importance of purity in expressions.

I Side-effects strictly forbidden in expressions.

I {P[E/x]} x := E {P} fails if E has side effects,

I which is why some programming languages have a clear
separation of expressions and statements.

Fair enough, if you can design your own language. If you have to
verify C, you have to somehow cope with it.

93 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

What’s Missing?

I One reason making this calculus rather tedious: complex
manipulation of quantifiers and array indexes.

I To certain extent it is the limitation of data structure we are
using. To manipulate arrays, we tend to perform plenty of
operations using indexes.

I Could we use “higher-level” data structures to avoid these
messy details?

94 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Purity and Aliasing

I Aliasing could cause disasters,
I which in turn makes call-by-reference dangerous.

I Extra care must be taken when we introduce subroutines,
I which is why procedure calls were such a big issue.

I If your interests are in program derivation, you could dismiss
these problematic features. If you work on verification,
however, you have to cope with them. We may see that in
Frama-C.

95 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Functional Program Derivation

In contrast, much of functional program derivation is essentially
built on a theory of data structure.

max ◦ map sum ◦ segments

= max ◦ map sum ◦ concat ◦ map inits ◦ tails

= { map f ◦ concat = concat ◦ map (map f) }
max ◦ concat ◦ map (map sum) ◦ map inits ◦ tails

= { since max ◦ concat = max ◦ map max }
:

= max ◦ scanr zmax 0.

For an introduction, check out lectures in FLOLAC ’07 and ’08!

96 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Separation Logic

I Another way out is separation logic: a logic about heap and
stores.

I Advocated by John C. Reynolds.

I Facilitates reasoning about pointers and sharing.

I Separation between concurrent modules.

97 / 97

.

What is a Proof, Anyway?
Loop construction

Max. Segment Sum Solved
Where to Go from Here?

Where to Go from Here?

I Early issues of Science of Computer Programming have
regular columns for program derivation.

I Books and papers by Dijkstra, Gries, Back, Backhouse, etc.
I You might not actually derive programs, but knowledge learnt

here can be applied to program verification.
I Plenty of tools around for program verification basing on

pre/post-conditions. Some of them will be taught in this
summer school.

I You might never derive any more programs for the rest of your
life. But the next time you need a loop, you will know better
how to construct it and why it works.

98 / 97

	Part 1
	Introduction: On Programs Correctness
	The Maximum Segment Sum Problem
	The Binary Search Challenge

	Program Verification using Hoare Logic
	Assignments
	Sequencing
	Selection
	Loop and loop invariants

	Binary Search Revisited
	The van Gasteren-Feijen Approach
	Searching in a Sorted List
	Searching with Premature Return

	Part 2
	What is a Proof, Anyway?
	Quantifier manipulation

	Loop construction
	Taking Conjuncts as Invariants
	Replacing Constants by Variables
	Strengthening the Invariant
	Tail Invariants

	Max. Segment Sum Solved
	Where to Go from Here?

