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Recap: Sequent Calculus
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Example 1

¬∀x .P(x) ` ∃x .¬P(x)
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Example 2: Drinker Paradox with Cut

∀x .D(x) ` ∀x .D(x), ∃x .D(x)→ ∀y .D(y)
(¬R)

` ∀x .D(x),¬∀x .D(x),∃x .D(x)→ ∀y .D(y)
(∨R)

` (∀x .D(x)) ∨ (¬∀x .D(x)), ∃x .D(x)→ ∀y .D(y)

D(y),D(x) ` D(y)
(∀L)

∀x .D(x),D(x) ` D(y)
(∀R)

∀x .D(x),D(x) ` ∀y .D(y)
(→R)

∀x .D(x) ` D(x)→ ∀y .D(y)
(∃R)

∀x .D(x) ` ∃x .D(x)→ ∀y .D(y)

D(x) ` D(x), ∀y .D(y)
(→R)

` D(x),D(x)→ ∀y .D(y)
(∃R)

` D(x), ∃x .D(x)→ ∀y .D(y)
(∀R)

` ∀x .D(x),∃x .D(x)→ ∀y .D(y)
(¬L)

¬∀x .D(x) ` ∃x .D(x)→ ∀y .D(y)
(∨L)

(∀x .D(x)) ∨ (¬∀x .D(x)) ` ∃x .D(x)→ ∀y .D(y)
(cut)

` ∃x .D(x)→ ∀y .D(y)

4 / 24



Example 3: Drinker Paradox without Cut

D(x),D(y) ` D(y), ∀y .D(y)
(→R)

D(x) ` D(y),D(y)→ ∀y .D(y)
(∃R)

D(x) ` D(y), ∃x .D(x)→ ∀y .D(y)
(∀R)

D(x) ` ∀y .D(y),∃x .D(x)→ ∀y .D(y)
(→R)

` D(x)→ ∀y .D(y),∃x .D(x)→ ∀y .D(y)
(∃R)

` ∃x .D(x)→ ∀y .D(y)
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Peano Arithmetic

皮亞諾算術
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Principles of Arithmetic

• arithmetic ≈ calculating with natural numbers

• early logical axiomatisation given in 1889 by Giuseppe Peano
(1858–1932)

• we use slightly modernised formulation
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Why an Axiomatisation?

• Quiz: Why is x + y = y + x?

• three possible answers:
• Don’t you have anything better to worry about?
• We can model numbers and addition in set theory, then prove

that x + y = y + x by using laws of set theory.
• We can show that it follows from some very simple axioms.
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The Peano Axioms

• signature of arithmetic: ΣA := 〈{0/0, s/1,+/2,×/2}, ∅〉
• first-order theory of arithmetic: smallest set TA containing

1. ∀x .∀y .s(x)
.

= s(y)→ x
.

= y
2. ∀x .¬(s(x)

.
= 0)

3. ∀x .x + 0
.

= x
4. ∀x .∀y .x + s(y)

.
= s(x + y)

5. ∀x .x × 0
.

= 0
6. ∀x .∀y .x × s(y)

.
= (x × y) + x

7. for any formula ϕ:
ϕ[0/x ]→ (∀x .ϕ→ ϕ[s(x)/x ])→ (∀x .ϕ)

Every natural number n can be represented by a term n over ΣA,
as n applications of s to 0. For instance, 2 = s(s(0)).
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The Standard Model of Arithmetic

MA = 〈N, 〈J KF, J KR〉〉, where

• J0KF = 0

• JsKF(n) = n + 1

• J+KF(m, n) = m + n

• J×KF(m, n) = m × n

Standard Model

MA |= TA

MA is not the only model of TA.
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Relations

• ΣA does not contain relation symbols

• we can encode s ≤ t as ∃x .s + x
.

= t, where
x 6∈ FV(s) ∪ FV(t), because

MA, σ |= ∃x .s + x
.

= t
iff there is n ∈ N such that MA, σ[x := n] |= s + x

.
= t

iff there is n ∈ N s. t. Js + xKMA,σ[x :=n] = JtKMA,σ[x :=n]

iff there is n ∈ N s. t. JsKMA,σ[x :=n] + JxKMA,σ[x :=n] = JtKMA,σ[x :=n]

iff there is n ∈ N s. t. JsKMA,σ + n = JtKMA,σ

iff JsKMA,σ ≤ JtKMA,σ

• s < t is s ≤ t ∧ ¬(s
.

= t), s ≥ t is t ≤ s, and s > t is t < s
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TA |= ∀x .0 + x
.

= x

T ′A := {∀x .x + 0
.

= x ,∀x .∀y .x + s(y)
.

= s(x + y),
0 + 0

.
= 0→ (∀x .0 + x

.
= x → 0 + s(x)

.
= s(x))

→ (∀x .0 + x
.

= x)}

T ′A, 0 + 0
.

= 0 ` 0 + 0
.

= 0,∀x .0 + x
.

= x
(∀L)

T ′A ` 0 + 0
.

= 0, ∀x .0 + x
.

= x

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= 0 + s(x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(∀L)

T ′A, ∀y .0 + s(y)
.

= s(0 + y), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(∀L)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(subst)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(→R)

T ′A ` 0 + x
.

= x → 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x
(∀R)

T ′A ` ∀x .0 + x
.

= x → 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x T ′A,∀x .0 + x
.

= x ` ∀x .0 + x
.

= x
(→L)

T ′A, (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x
(→L)

T ′A, 0 + 0
.

= 0→ (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x

12 / 24



TA |= ∀x .0 + x
.

= x

T ′A, 0 + 0
.

= 0 ` 0 + 0
.

= 0, ∀x .0 + x
.

= x
(∀L)

T ′A ` 0 + 0
.

= 0,∀x .0 + x
.

= x

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= 0 + s(x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(∀L)

T ′A,∀y .0 + s(y)
.

= s(0 + y), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(∀L)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x
(→R)

T ′A ` 0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(∀R)

T ′A ` ∀x .0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x T ′A, ∀x .0 + x
.

= x ` ∀x .0 + x
.

= x
(→L)

T ′A, (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x
(→L)

T ′A, 0 + 0
.

= 0→ (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x

12 / 24



TA |= ∀x .0 + x
.

= x

T ′A, 0 + 0
.

= 0 ` 0 + 0
.

= 0, ∀x .0 + x
.

= x
(∀L)

T ′A ` 0 + 0
.

= 0,∀x .0 + x
.

= x

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= 0 + s(x), ∀x .0 + x
.

= x
(subst)

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(∀L)

T ′A,∀y .0 + s(y)
.

= s(0 + y), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(∀L)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x
(→R)

T ′A ` 0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(∀R)

T ′A ` ∀x .0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x T ′A, ∀x .0 + x
.

= x ` ∀x .0 + x
.

= x
(→L)

T ′A, (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x
(→L)

T ′A, 0 + 0
.

= 0→ (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x

12 / 24



TA |= ∀x .0 + x
.

= x

T ′A, 0 + 0
.

= 0 ` 0 + 0
.

= 0,∀x .0 + x
.

= x
(∀L)

T ′A ` 0 + 0
.

= 0, ∀x .0 + x
.

= x

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= 0 + s(x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(∀L)

T ′A,∀y .0 + s(y)
.

= s(0 + y), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(∀L)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(→R)

T ′A ` 0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(∀R)

T ′A ` ∀x .0 + x
.

= x → 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x T ′A,∀x .0 + x
.

= x ` ∀x .0 + x
.

= x
(→L)

T ′A, (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x
(→L)

T ′A, 0 + 0
.

= 0→ (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x

12 / 24



TA |= ∀x .0 + x
.

= x

T ′A, 0 + 0
.

= 0 ` 0 + 0
.

= 0, ∀x .0 + x
.

= x
(∀L)

T ′A ` 0 + 0
.

= 0,∀x .0 + x
.

= x

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= 0 + s(x), ∀x .0 + x
.

= x
(subst)

T ′A, 0 + s(x)
.

= s(0 + x), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x), ∀x .0 + x
.

= x
(∀L)

T ′A, ∀y .0 + s(y)
.

= s(0 + y), 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(∀L)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(0 + x),∀x .0 + x
.

= x
(subst)

T ′A, 0 + x
.

= x ` 0 + s(x)
.

= s(x), ∀x .0 + x
.

= x
(→R)

T ′A ` 0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x
(∀R)

T ′A ` ∀x .0 + x
.

= x → 0 + s(x)
.

= s(x),∀x .0 + x
.

= x T ′A, ∀x .0 + x
.

= x ` ∀x .0 + x
.

= x
(→L)

T ′A, (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x
(→L)

T ′A, 0 + 0
.

= 0→ (∀x .0 + x
.

= x → 0 + s(x)
.

= s(x))→ (∀x .0 + x
.

= x) ` ∀x .0 + x
.

= x

12 / 24



A Closer Look

T ′
A ` ∀x .0+ x

.
= x → 0+ s(x)

.
= s(x), ∀x .0+ x

.
= x
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What Have We Proved?

• we have shown that T ′A `LK ∀x .0 + x
.

= x

• so by soundness T ′A |= ∀x .0 + x
.

= x

• also TA |= ∀x .0 + x
.

= x :
• assume M, σ |= TA

• then M, σ |= ϕ for every ϕ ∈ TA

• but T ′A ⊆ TA, so M, σ |= ϕ for every ϕ ∈ T ′A
• hence M, σ |= T ′A
• by the above, this means M, σ |= ∀x .0 + x

.
= x
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Proving Commutativity

• this is just the first step towards proving
TA |= ∀x .∀y .x + y

.
= y + x

• the whole proof can be done in sequent calculus, but it is very
long and tedious

• many other laws about + and × can be proved as well

15 / 24



Beyond Addition and Multiplication

• TA contains no axioms for exponentiation

• we could add them, yielding T exp
A :

• ∀x .x0 .
= s(0)

• ∀x .∀y .x s(y) .= xy × x

• but we do not need to do that:

Expressing Exponentiation in TA

For every formula ϕ using exponentiation, we can
find a formula ϕ′ not using exponentiation such
that T exp

A |= ϕ iff TA |= ϕ′!

• in fact, we can express any computable function in TA
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Limits of First-order Logic
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Compactness Theorem

Compactness Theorem

A set of formulas Γ is satisfiable iff every finite subset of Γ is
satisfiable.

• left-to-right direction is easy:

• right-to-left direction is easy if Γ is finite:

• otherwise, this direction is quite hard to prove
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A set of formulas Γ is satisfiable iff every finite subset of Γ is
satisfiable.

• left-to-right direction is easy:

• right-to-left direction is easy if Γ is finite:

• otherwise, this direction is quite hard to prove

To determine satisfiability of Γ, its infinite subsets are unimportant!
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Cardinality Formulas

Assume M |= ϕ for any of the following formulas ϕ; what does
this say about the domain D of M?

• ∃x .∃y .¬(x
.

= y)
D has at least two elements

• ∃x .∃y .∃z .¬(x
.

= y) ∧ ¬(x
.

= z) ∧ ¬(y
.

= z)
D has at least three elements

• ∀x .∀y .∀z .x .
= y ∨ x

.
= z ∨ y

.
= z

D has at most two elements

• (∀x .∀y .f (x)
.

= f (y)→ x
.

= y) ∧ ¬(∀z .∃x .f (x)
.

= z)
D is infinite

Can you write a formula ϕ such that M |= ϕ iff D is finite?
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Defining Finiteness

• M |= (∀x .∀y .f (x)
.

= f (y)→ x
.

= y) ∧ ¬(∀z .∃x .f (x)
.

= z) iff
domain is infinite:

• Jf KM is injective
• Jf KM is not surjective

• is it true that
M |= ¬(∀x .∀y .f (x)

.
= f (y)→ x

.
= y) ∨ (∀z .∃x .f (x)

.
= z) iff

domain is finite?

No! This formula just says that Jf KM is either not injective or
surjective. We can choose domain N and Jf KM(n) := n.
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Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ϕ such that M |= ϕ iff the
domain of M is finite.

• assume we had such a formula ϕf

•• let Λ be the set of all λn

•• consider finite subsets Sf of Λ ∪ {ϕf }:
• if Sf ⊆ Λ, it is satisfiable
• otherwise Sf = Λ′ ∪ {ϕf } for a finite Λ′ ⊆ Λ, and it is still

satisfiable

• so all finite subsets of Λ ∪ {ϕf } are satisfiable, but the set
itself is not; this contradicts the Compactness Theorem

• hence such a ϕ cannot exist
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Reflexive Transitive Closure

• assume our signature contains binary relation symbols r , s

• can you find a formula ϕ∗ such that M |= ϕ iff JsKM is the
reflexive transitive closure of JrKM?

• no!
• assume we had such a ϕ∗

• define, for every n ∈ N, a formula rn(x , y) with free variables x
and y such that M, σ |= rn(x , y) iff σ(y) is reachable from
σ(x) through n iterations of JrKM
for example, r3(x , y) := ∃z1.∃z2.r(x , z1) ∧ r(z1, z2) ∧ r(z2, y)

• define, for every n ∈ N, a formula δn := s(x , y) ∧ ¬rn(x , y)
• let ∆ be set of all these formulas
• then ∆ ∪ {ϕ∗} is unsatisfiable, but every finite subset is

satisfiable
• contradiction: ϕ∗ cannot exist!
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Fixpoints

• one might think that the following formula should do the trick:

ϕ∗ := ∀x .∀y .s(x , y)↔ x
.

= y ∨ (∃z .r(x , z) ∧ s(z , y))

• but consider the structure M = 〈N, 〈JKF, JKR〉〉 with
JrKR := {(n, n) | n ∈ N} and JsKR := N× N

• then M |= ϕ∗, but JsKR is not the reflexive transitive closure
of JrKR

• roughly, the reflexive transitive closure of r is the least
fixpoint of the function

F (s) := {(x , y) | x .
= y ∨ ∃z .r(x , z) ∧ s(z , y)}

but ϕ∗ only ensures that s is some fixpoint of F
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Conclusion

• first-order logic is enough to formalise arithmetic

• large parts of mathematics can be done in first-order logic

• sequent calculus is a sound and complete deductive system for
first-order logic

• for analysis, however, we need second-order logic

• in second-order logic we can quantify over propositions, so we
can write the induction axiom as a single formula:

∀P.P(0)→ (∀x .P(x)→ P(s(x)))→ (∀x .P(x))

• but there are no complete deductive systems for second-order
logic (Gödel’s Incompleteness Theorem)
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