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Example 2: Drinker Paradox with Cut

) D0).DG) D) sy DLYF D(:).¥.D()
i "~ ¥x.D(x),D(x) - D(y) @R F D(x), D(x) — Vy.D(y)
I, " ¥x.D(x), D(x) - Vy.D(y) ) + D(x),3x.D(x) — Vy.D(y)
iy D) F¥x.D(), 3x.D(x) — y.D(y) oy PDE) F D) 5 ¥y Dh) D, 3xD()  ¥y.Dly)
ity WD) ~x-D(), 3x.D(x)  Vy-D(y) oy DG DG = 7y D) ) Vx.D(x) I 3x.D(x) = Vy.D(y)
- (Vx.D(x)) V (—Vx.D(x)), 3x.D(x) — Vy.D(y) (x.D(x)) V (-¥x.D(x)) F 3x.D(x) — Vy.D(y)

(cur)

F 3x.D(x) — Vy.D(y)
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Example 3: Drinker Paradox without Cut

D(x), D(y) = D(y), Vy.D(y)
D(x) - D(y), D(y) — Vy.D(y)
D(x) - D(y),3x.D(x) — Yy.D(y)
D(x) - Yy.D(y),3x.D(x) — Vy.D(y)
F D(x) — Vy.D(y),3x.D(x) — Vy.D(y)
F3x.D(x) — Yy.D(y)

(=R)

(3R)
(VR)
(—=R)
(3R)
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Peano Arithmetic
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Principles of Arithmetic

e arithmetic ~ calculating with natural numbers

e early logical axiomatisation given in 1889 by Giuseppe Peano
(1858-1932)

e we use slightly modernised formulation
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Why an Axiomatisation?

e Quizz Why is x4+ y =y + x?
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Why an Axiomatisation?

e Quizz Why is x4+ y =y + x?
e three possible answers:
e Don’t you have anything better to worry about?
e We can model numbers and addition in set theory, then prove
that x + y = y + x by using laws of set theory.
e We can show that it follows from some very simple axioms.
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The Peano Axioms

e signature of arithmetic: ¥4 := ({0/0,s/1,+/2, x/2},0)
o first-order theory of arithmetic: smallest set T4 containing

1.

Noas~WN

Every natural number n can be represented by a term n over X 4,

VxVy.s(x)=s(y) > x=y
Vx.—(s(x) = 0)

Vx.x+0 = x
Vx.Vy.x +s(y) =s(x+y)
Vxxx0=0

Vx.Vy.x xs(y) =(x xy)+x
for any formula ¢:

el0/x] = (Vx.p = ¢[s(x)/x]) = (Vx.)

as n applications of s to 0. For instance, 2 = s(s(0)).

24



The Standard Model of Arithmetic

Ma = (N, {[I, [I=)), where
L4 [[0]]1:‘ =0
o [s[e(n)=n+1
o [+]e(m,n)=m+n

o [X]Jg(m,n)=mxn

Standard Model
MaE Ta

M4 is not the only model of Tj4.

10/24



iff
iff
iff
iff
iff

Relations

> 5 does not contain relation symbols

we can encode s < t as dx.s + x = t, where
x € FV(s) UFV(t), because

Mp,0f=3xs+x=t

there is n € N such that M, 0[x :=n]Es+x=t

there is n € N's. t. [s + x| jty 0p=n = [tlMa,ofx:=n]

there is n € N's. t. [s|a, opc=n + [XImaope=n = [t]Maolx=n]
thereis n € Ns. t. [sJaryo + 0= [tIMmyo

[sIamae < [thrae

e s<tiss<tA-(s=t),s>tist<s,ands>tist<s
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TaEVVx0+x=x

Ty = {¥xx+4+0=x,YxVYy.x+s(y) =s(x+y),
0+0=0— (Vx.04+x =x — 0+ s(x) = s(x))
— ("x.0+x = x)}

75,04 5(x) = (0 + x),0+ x = x - 0+ 5(x) = 0+ 5(x),¥x.0 + x = x
oy TAD T () = 5(0+ )0+ x = X~ 04 5(x) = (0 + ). ¥x0 4 x = x
) Th¥y.0+s(y) =s(0+y),0+x=xt0+s(x) =s(0+x),¥x.0+ x = x
) Th0+x=xF04s(x) =50+ x),vx.0 + x = x
Th:0+x = xF 04 s(x) = s(x),¥x.0 + x = x

(sunsT)

(sunst)

":\'” T 0% x = x 0% s(x) = s(x).9x0 - x = x
oy TA0+0=0F04020vx04+x=x ) T VX0 X = x5 05 5() = s(), VX0 X = x T ¥x0 4 x = x F ¥x.0 4 x = x
o TAr0+40=0vx0+x=x T (0 + x = x = 0+ 5(x) = 5(x)) — (%0 + x = x) F ¥x0 - x = x

(=1)

TH0+0=0— (vx.0+x = x = 0+ 5(x) = s(x)) = (vx.0+ x = x) - ¥x.0 + x = x
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04+0=0,Vx0+x=x

) = 0,Vx.0 + x = x

TaEVVx0+x=x

( : Th0+5(x) =5(0+x),0+x=xF0+s(x)=0+s(x),Vx.0 +x =
SUBST

) Th0+5s(x) =s(0+x),0+x=xF0+s(x)= (0+x) Vx.0 +x =
o) THVy0+s(y) =s(0+y),0+x=xF0+s(x)=s(0+x),Vx.0 + x =

TH0+x=xF0+s(x) =s(0+x),Vx.0 + x = x
Th,0+x=xF0+s(x) =s(x),Vx.0 + x = x
THEO+x=x—0+s(x)=s(x),Vx.0 +x =x
THFVx.0+x=x—0+s(x) =s(x),¥x.0 +x =x
Ty, (¥x.0 + x = x = 04 5(x) = s(x)) — (Vx.(

(sussT)
(=R)
(VR)
(=L)

Th,0+0=0— (Vx.0+x =x = 0+ s(x) = s(x)) = (Vx.0+x = x) F Vx.0 + x = x
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TaEVVx0+x=x

0 +5(x) =5(0+x),0+x=xF0+s(x)=

Ta,0+5s(x) =s(0+x),0+x=xF0+s(x)=
TaVy.0+s(y) =s(0+y),0+x=xkF0+s(x)=
04+ x=xF04s(x) =s(0+x),V
Th,0+x=xF0+s(x) = s(x),Vx.
Tab0+x=x—0+s(x) = s(x),V
TH0+0=0F0+0=0,vx0+x = x T 0+ x = x = 04 s(x) = s(x),
TAF0+0=0Yx0+x=x =0 T (0 +x=x— 0+
TH,0+0=0— (Vx.0+x =x — 0+ s(x) = s(x)) = (Vx.0 + x =

(suBsT)
(VL)
(VL)

(suBsT)

(=R)

(VL)

(=L)
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TaEVVx0+x=x
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Gn) Th,0+x=xF0+s(x) =s(x),Vx.0 + x = x

R TaF0+x=x—0+s(x)=s(x),Vx.0 +x = x
X =x o) ThFVx.0+x=x—0+s(x) =s(x),¥x.0 + x = x T, Vx.0 +
3 Th, (¥x.0 + x = x = 04 5(x) = s(x)) = (Vx.0 + x = x) - Vx.0
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(suBsT)
(VL)
(VL)

(sussT)
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TaEVVx0+x=x

)=5(0+x),0+x =xF0+s(x) =0+ s(x),Vx.0 + x = x
)=5(0+x),0+x=xF0+s(x)=5(0+x),Vx.0+x=x
y)=s(0+y),0+x=xF0+s(x)=5s(0+x),Vx.0 + x = x
4,0+ x =xF0+s(x)=s(0+x),Vx.0 + x = x
Th0+x=xF0+s(x)=s(x),Vx.0 +x =x
Tab0+4+x=x—0+s(x)=s(x),Vx.0 + x = x
AE VX0 4+ x =x = 0+ s(x) = s(x),Vx.0 + x = x THVx0+x=xFVx.0+x=x
Th, (Vx.0+x =x = 04 5(x) =s(x)) = (Vx.0+x = x) FVx.0+x =x
x =0+ 5(x) =5(x)) = (Vx.0+x=x) FVx.0+x=x
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A Closer Look

THFEVYx04x=x— 04 s(x) =s(x),Vx.0 + x = x
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A Closer Look
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A Closer Look
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A Closer Look

T),¥y.0+s(y) =s(0+y),0+x=xF0+s(x) =5s(0+x),Vx.0+x=x

VL
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A Closer Look

T4,0+5(x)=5(04x),0+x=xF0+s(x)=5(0+x),Vx.0+x = x

T, ¥y 0+s(y) =s(0+y),0+x=xF0+s(x) =5s(0+x),Vx.04+x=x
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(suBsT)
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A Closer Look

T),0+4+5(x) =5(0+x),0+x=xF0+s(x) =0+ s(x),Vx.0 +x = x

(suBsT)
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(suBsT) A

(LR TH,04+x=xF0+s(x)=s(x),Vx.04+x=x
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(VR) TiF04+x=x—04s(x) =5(x),¥x.0 +x = x

T)FVYx04x=x— 04 s(x) =s(x),Vx.0 + x = x
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What Have We Proved?

e we have shown that T) Frk Vx.0 +x = x
e so by soundness T = Vx.0 + x = x
e also T EVx.0+x=x:
e assume M,o |= Ty
e then M, |= ¢ for every ¢ € Tx
e but T C Ta, so M,o = ¢ for every o € T,

e hence Mo =T,
e by the above, this means M, o = Vx.0 + x = x

14 /24



Proving Commutativity

e this is just the first step towards proving
TaEVXVYyx+y=y+x

e the whole proof can be done in sequent calculus, but it is very
long and tedious

e many other laws about + and x can be proved as well

15 /24



Beyond Addition and Multiplication

T contains no axioms for exponentiation
we could add them, yielding T,

e Vx.x% = 5(0)

o Vx.Vy.xSU) = x¥ x x

but we do not need to do that:

Expressing Exponentiation in Ty,

For every formula ¢ using exponentiation, we can
find a formula ¢’ not using exponentiation such

that TP |= ¢ iff Ta = ¢/

in fact, we can express any computable function in Ty

16
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Limits of First-order Logic



Compactness Theorem

Compactness Theorem

A set of formulas I is satisfiable iff every finite subset of I is
satisfiable.
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Compactness Theorem

Compactness Theorem

A set of formulas I is satisfiable iff every finite subset of I is
satisfiable.

e left-to-right direction is easy:
e assume [ is satisfiable; then we have M, o such that
M, o |= forevery yeT
o let " CT; then for any 4’ € I’ we have 7/ € I, so
M,o =7 hence M,oc =T’

18 /24
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Compactness Theorem

Compactness Theorem

A set of formulas I is satisfiable iff every finite subset of I is
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Compactness Theorem

Compactness Theorem

A set of formulas I is satisfiable iff every finite subset of I is
satisfiable.

e left-to-right direction is easy:
e right-to-left direction is easy if I is finite:

e otherwise, this direction is quite hard to prove

To determine satisfiability of I', its infinite subsets are unimportant!

18 /24



Cardinality Formulas

Assume M = ¢ for any of the following formulas ¢; what does
this say about the domain D of M?

e dxJy.~(x=y)
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Assume M = ¢ for any of the following formulas ¢; what does
this say about the domain D of M?

e dxJy.~(x=y)
D has at least two elements

e IxJyJza(x=y)A(x=2z)A=(y = 2)
D has at least three elements

o VxVyVzx=yVx=zVy=z
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Cardinality Formulas
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Cardinality Formulas

Assume M = ¢ for any of the following formulas ¢; what does
this say about the domain D of M?
e dxJy.~(x=y)
D has at least two elements
e IxJyJza(x=y)A(x=2z)A=(y = 2)
D has at least three elements
o VxVyVzx=yVx=zVy=z
D has at most two elements
o (VxVy.f(x)="f(y) = x=y)A-(Vz.3x.f(x) = 2)
D is infinite

Can you write a formula ¢ such that M |= ¢ iff D is finite?

19 /24



Defining Finiteness

o M E (VxVy.f(x) = f(y) = x = y) A=(Vz.3x.f(x) = z) iff
domain is infinite:
o [f]a is injective
o [f]am is not surjective
e is it true that
M = =(VxVy.f(x) = f(y) = x = y) V (Vz.3x.f(x) = z) iff
domain is finite?
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Defining Finiteness

o M E (VxVy.f(x) = f(y) = x = y) A=(Vz.3x.f(x) = z) iff
domain is infinite:
o [f]a is injective
o [f]am is not surjective
e is it true that
M = =(IxVy.f(x) = f(y) = x =y)V (Vz.3x.f(x) = z) iff
domain is finite?

No! This formula just says that [f] is either not injective or
surjective. We can choose domain N and [f]aq(n) := n.

20 /24



Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f

21/24



Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f

o for every n € N, we can find a formula A, such that M = )\,
iff its domain has at least n elements
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Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

assume we had such a formula ¢f

M = )\, iff domain has at least n elements

let A be the set of all A\,

if M [= A then the domain of M must be infinite; so
AU {pr} is unsatisfiable
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Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f
M = )\, iff domain has at least n elements
let A be the set of all A\,
AU {pr} is unsatisfiable
consider finite subsets S¢ of AU {pr}:
o if S¢ C A, it is satisfiable
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Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f
M = )\, iff domain has at least n elements
let A be the set of all A\,
AU {grf} is unsatisfiable
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Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f
e M [= )\, iff domain has at least n elements
e let A be the set of all A\,
e AU {yr} is unsatisfiable
e consider finite subsets S¢ of AU {¢r}:
e if Sf C A, it is satisfiable
e otherwise Sr = N U {pr} for a finite N C A, and it is still
satisfiable
e so all finite subsets of AU {(pr} are satisfiable, but the set
itself is not; this contradicts the Compactness Theorem
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Surprise!

Finiteness Is Not First-order Definable

There is no first-order formula ¢ such that M = ¢ iff the
domain of M is finite.

e assume we had such a formula ¢f
e M [= )\, iff domain has at least n elements
e let A be the set of all A\,
e AU {pr} is unsatisfiable
e consider finite subsets S¢ of AU {¢r}:
e if Sf C A, it is satisfiable
e otherwise Sr = N U {pr} for a finite N C A, and it is still
satisfiable
e so all finite subsets of AU {(pr} are satisfiable, but the set
itself is not; this contradicts the Compactness Theorem
e hence such a ¢ cannot exist

21 /24
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e assume our signature contains binary relation symbols r, s

e can you find a formula ¢* such that M | ¢ iff [s] ¢ is the
reflexive transitive closure of [r]a?



Reflexive Transitive Closure

e assume our signature contains binary relation symbols r, s

e can you find a formula ¢* such that M | ¢ iff [s] ¢ is the
reflexive transitive closure of [r]a?

e no!
[ ]

assume we had such a ¢*

define, for every n € N, a formula r,(x, y) with free variables x
and y such that M, o |= r,y(x, y) iff o(y) is reachable from
o(x) through n iterations of [r]

for example, r3(x,y) := 3z1.3z2.r(x, z1) A r(z1,22) A r(z2,y)
define, for every n € N, a formula §, := s(x, y) A =ra(x, y)

let A be set of all these formulas

then A U {(*} is unsatisfiable, but every finite subset is
satisfiable

contradiction: ¢* cannot exist!



Fixpoints

one might think that the following formula should do the trick:

©" i=xVy.s(x,y) < x =y V (Iz.r(x,z) As(z,y))
but consider the structure M = (N, ([]r, [[=)) with
[rlr :={(n,n) | n€ N} and [s]g :=Nx N
then M = ¢*, but [s]r is not the reflexive transitive closure
of [[r]]R
roughly, the reflexive transitive closure of r is the least
fixpoint of the function

F(s) ={(x,y) | x=yV3z.r(x,z) Ns(z,y)}

but ¢* only ensures that s is some fixpoint of F
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Conclusion

first-order logic is enough to formalise arithmetic
large parts of mathematics can be done in first-order logic

sequent calculus is a sound and complete deductive system for
first-order logic

for analysis, however, we need second-order logic

in second-order logic we can quantify over propositions, so we
can write the induction axiom as a single formula:

VP.P(0) — (Vx.P(x) — P(s(x))) — (¥x.P(x))

but there are no complete deductive systems for second-order
logic (Godel's Incompleteness Theorem)
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