
Boolean Satisfiability
(SAT) Algorithms

Chung-Yang (Ric) Huang
Dept. EE/GIEE, NTU

FLOLAC, 2009

2Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

3Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What is Verification?

What’s the problem?
You may have learned that modern IC designs
are ---

Extremely complex
With very high time-to-
market pressure

4Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Famous Moore’s Law

#Transistors: double/2 years double/1.5 years
Source: Intel Corp.

5Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

#Transistors in Intel’s CPUs

410,000,0002003Itanium II processor
220,000,0002002Itanium® processor
42,000,0002000Pentium 4 processor
24,000,0001999Pentium III processor
7,500,0001997Pentium II processor
3,100,0001993Pentium® processor
1,180,0001989486™ DX processor

275,0001985386™ processor
120,0001982286
29,00019788086
5,00019748080
2,50019728008
2,25019714004

TransistorsYear of Introduction

6Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Closer Look at Modern IC

Typical hair diameter: 20 ~ 180 um Multi-layer metal connection

7Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What is Verification?

What’s the problem?
You may have learned that modern IC designs
are ---

Extremely complex
With very high time-to-
market pressure

Are you sure your design is correct under all
scenarios? (Have you fixed all the bugs?)

8Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Verification: A high stake game

•7 M gates
•500K lines
of code

US ‘02 wireless
telecom revenue:
$76B (CNet)

•DoCoMo: 23 M consumers with
Java based phones.
•Mandatory recall cost: $4.2B (2001.06)

Kashai/Verisity, HLDVT 2003

9Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

And of course,
don’t forget the infamous
Pentium division bug…

10Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Pentium FDIV Bug

Pentium CPU
Shipped on 03/22/93
5V 3.3V
The name “Pentium” was mainly for better trademark
protection
Superscalar, 64-bit datapath
Better floating point calculation

3 X scalar; 5 X vector

A bug was found in floating-point division
By Prof. Thomas Nicely, Lynchburg College, Virginia,
USA, 10/30/94

11Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Improvement on Floating-Point Execution

Using SRT instead of “shift-and-subtract” algorithm
for division

Generate two quotient bits per clock cycle
A lookup table to calculate the intermediate quotients
necessary for floating-point division

1066 table entries
The FDIV bug

5 were not downloaded into the programmable logic
array (PLA lookup table)
When FPU accesses any of these 5 cells, it fetches
zero instead of +2
Less precise result!!

12Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

The Probability of the FDIV Bug....

At worst, the 4th significant digit of a decimal
number

Probability: 1/ 360 Billions
Most common: 9th and 10th digit

Probability: 1 / 9 Billions
The occurrence of the problem is highly dependent
on the input data

This result was quickly verified by other people
around the Internet, and became known as the
Pentium FDIV bug

13Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A 3-D plot of the ratio 4195835/3145727 calculated on a Pentium with FDIV bug.
The depressed triangular areas indicate where incorrect values have been

computed. The correct values all would round to 1.3338, but the returned values
are 1.3337, an error in the fifth significant digit. Byte Magazine, March 1995.

14Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Intel’s Reaction
This report stirred up a huge controversy. Intel at first denied
that the problem existed.
Later, Intel claimed that it was not serious and would not
affect most users.

However, people who could prove that they were affected
would get their processor replaced by Intel

However, although most independent estimates found the
bug to be of little importance and have negligible effect on
most users, it has caused a great public outcry.

Companies like IBM (whose "586" microprocessor competed
at that time with the Intel Pentium line) joined the
condemnation.

Finally, Intel was forced to offer to replace all flawed Pentium
processors, at huge potential cost to the company

However, it turned out that only a small fraction of Pentium
owners actually bothered to get their chips replaced
Intel's stock price actually rose the day they finally
acknowledged

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

15Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Aftermath...

Intel hired 1000+ PhDs for strategic CAD research,
especially in the design verification area
However, there were still several bugs found in
later Pentium chips

e.g. CMPXCHG8B instruction, Dan-0411, Pentium
FO bugs, etc

Where’s the problem?
Why is it so difficult?

Let’s first review a little bit about the typical design
process…

16Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What is Design Verification?

To verify the correctness of your design

for (i = 0; i < d; i= i+2) {
if (y > 3) p = p * 3;
else q = q + r;

}

always @(posedge clk) begin
if (rst==1'b1) cnt <= sv;
else if (cnt==2'b00) cnt <= 2'b01;
else if (cnt==2'b01) cnt <= 2'b10;
else if (cnt==2'b10) cnt <= 2'b11;
else cnt <= sv;

end

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

Bugs may exist anywhere in the design...
Find as many design bugs as possible !!

17Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How do you

verify
your design

?

18Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Yes, most people verify their designs
by simulation and debug by

examining the output responses

19Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Simulation-Based Verification

Design Under
Verification

(DUV)

Golden
Reference Model

Input P
attern

(S
tim

ulus)

O
utput

R
esponse

E
xpected

R
esponse

Testbench

Compare Results

20Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Let’s do some math

Suppose a circuit has 100 inputs (this is
considered tiny in modern design)

Total number of input combinations
= 2100 = 1030 = 1024M = 1.6 mole Mega
Requires (in the worse case) 1024M test
patterns to exhaust all the input scenarios
Let alone the sequential combinations
For an 1 MIPs simulator

runtime = 1024 seconds = 3 * 1016 years

21Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Like Finding a Bug in an Ocean…

22Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What is worse, when design gets bigger…

Simulation runs much slower (exponential complexity)…
e.g. Time to boot VxWorks

1 million instructions, assume 2 million cycles
Today’s verification choices:

50M cps: 40 msec Actual system HW
5M cps: 400 msec Logic emulator 1 (QT Mercury)
500K cps: 4 sec Cycle-based gate accelerator 1 (QT CoBALT)
50K cps: 40 sec Hybrid emulator/simulator 2 (Axis)
5K cps: 7 min Event-driven gate accelerator 2 (Ikos NSIM)
50 cps: 11 hr CPU and logic in HDL simulator 3 (VCS)

1: assumes CPU chip 2: assumes RTL CPU 3: assumes HDL CPU
About VxWorks (http://www.faqs.org/faqs/vxworks-faq/part1/)

source: Kurt Keutzer, UCB

23Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Then why is simulation still
the mainstream approach

in verification?

How can it be useful?

24Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Simulation is useful because…

1. In early design cycle, most bugs are easy to find
Like something contaminates the ocean…

2. Use “design intent” to guide the testbench
Guided test pattern generation
Real-life stimulus

3. Make the DUV smaller
Lower level of hierarchy
Higher-level of abstraction
Design constraint

4. And ??

25Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

And of course,
simulation approach is

easier to learn, simpler to use,

so it is the most popular.

26Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

But corner-case bugs are still
very tough…

Can we do better?
(Speed up the simulation?)

27Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Using hardware to speed up simulation

1. Emulation
Map the design into FPGA
100x - 10000x Speedup; but very expensive

2. Hardware Accelators
Compared to emulation

lower at cost, but sacrificed in speed
3. Rapid Prototyping

Prototyping modules
FPGA for IP cores
Software
Debugging interfaces

28Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Other than using hardware to
speed up the simulation…

Let’s look at the difference between
design verification

and
manufacturing testing...

29Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Verification vs. Testing

Unlike testing, verification does not have the
observability problem

Chip outputsAny signal in the
design

Observation
points

Test equipments
(HW)

Simulator,
debugger (tools)

Environment

Chip (HW)Design (SW)Objective

TestingVerification

30Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Observability Problem

Bugs are detected at the observation points
like POs and registers

0

1

0010

assertion
Output

assert always (count < 16);

source: Harry Foster

31Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Observability Problem --- Solved

Insert “assertions” in the middle of the circuit,
and flag the simulator whenever the violation
occurs

Increase the observability of the bugs

The difference between
hardware and software simulations

But, how to describe assertions?
Assertion specification languages?

32Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Complex or Simple Assertions?
With the very high expressiveness of some
assertion languges, we can describe very complex
design properties by using assertion specification
languages

However, this may scare off many users...
Another bigger problem: how do you know you
write the correct property?

What if the property you wrote is wrong?

Assertions should be simple!!
The main purpose should be finding bugs
Most assertions needed in the design are very
simple assertions

33Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

The Fact

More than 90% of properties written for hardware
verification are simply “safety (invariance) ”
properties

e.g. assert_never(readEn && writeEn);
e.g. assert_next(req, ack);
Easier to write
Higher proof completion percentage
Enough to detect bugs

How to quickly prove all of them is the key issue

34Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

module assert_never (clk, reset_
input clk, reset_n, test_expr;
parameter severity_level = 0;
parameter msg="ASSERT NEVER VIOLATION";

// ASSERT: PRAGMA HERE
//synopsys translate_off
`ifdef ASSERT_ON

integer error_count;
initial error_count = 0;
always @(posedge clk) begin

`ifdef ASSERT_GLOBAL_RESET
if (`ASSERT_GLOBAL_RESET != 1'b0) begin

`else
if (reset_n != 0) begin // active low reset_n

`endif
if (test_expr == 1'b1) begin

error_count = error_count + 1;
`ifdef ASSERT_MAX_REPORT_ERROR

if (error_count<=`ASSERT_MAX_REPORT_ERROR)
`endif

$display("%s : severity %0d : time %0t : %m", msg, severity_level, $time);
if (severity_level == 0) $finish;

end
end

end
`endif

//synopsys translate_on

endmodule

RTL
Design

RTL
Design

Assertion
Monitor
Library

Assertion
Monitor
Library

assert_never underflow (clk, reset_n,
(q_valid==1’b1) && (q_underflow==1’b1));

ABV Example --- OVL

source: Harry Foster

35Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

ABV Example --- OVL
module assert_never (clk, reset_n,

test_expr);
input clk, reset_n, test_expr;
parameter severity_level = 0;
parameter msg="ASSERT NEVER

VIOLATION";
// ASSERT: PRAGMA HERE
//synopsys translate_off
`ifdef ASSERT_ON
integer error_count;
initial error_count = 0;
always @(posedge clk) begin
`ifdef ASSERT_GLOBAL_RESET
if (`ASSERT_GLOBAL_RESET !=

1'b0) begin
`else
if (reset_n != 0) begin

// active low reset_n
`endif

if (test_expr == 1'b1) begin
error_count = error_count + 1;
`ifdef

ASSERT_MAX_REPORT_ERROR
if (error_count <=

`ASSERT_MAX_REPORT_ERROR)
`endif

$display("%s : severity %0d :
time %0t : %m", msg,
severity_level, $time);

if (severity_level == 0) $finish;
end

end
end
`endif
//synopsys translate_on
endmodule

36Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

OVL based SVA library
assert_always
assert_always_on_edge
assert_change
assert_cycle_sequence
assert_decrement
assert_delta
assert_even_parity
assert_fifo_index
assert_frame
assert_handshake
assert_implication
assert_increment
assert_never
assert_next
assert_no_overflow
assert_no_transition

assert_no_underflow
assert_odd_parity
assert_one_cold
assert_one_hot
assert_proposition
assert_quiescent_state
assert_range
assert_time
assert_transition
assert_unchange
assert_width
assert_win_change
assert_win_unchange
assert_window
assert_zero_one_hot

37Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Any Problem? Whose Problem?

“My biggest problem about design verification is that the
time is never enough. I can only do my best to run
more simulation, but I don’t know whether it is
sufficient.”

--- Broadcom designer (similar comments from many others)

“It is very hard to write the testbenches and assertions
for the design, since I am not a designer. Ask the
designer to do it more? No way!!”

--- Sun Microsystems verification engineer (similar comments from many others)

38Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

“Where am I going to find time to
write assertions? I don’t even have
time to write comments!”

--- Conexant design engineer

39Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Think ---

If you simulate your design for 3 days and 3
nights, and you don’t find any new bug. And
the “coverage metric” says that the
coverage is 100%. What does that mean?

Is your design bug-free?
Or the quality of your testbench is NOT good?

If a miss of a bug in the HW chip may cost
you millions of dollars...

Can you sleep nice without further seeking
any “proof” for the correctness of your design?

40Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Can simulation answer these
questions?

Any alternative to
simulation/emulation?

41Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Simulation and Assertion-Based Verification

Circuit

0
1
0
1
1
0
1
1
0
0
1

01100011

01100011
-

diff ?expected
result

a
b > always (a > b)

Assertion:
expected behavior

42Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Finding Counter-Example

Circuit

a
b > always (a > b)

Assertion:
expected behavior

eventually (a <= b)
counter-example

Input sequence

43Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Formal Verification Technologies

Design Under
Verification

(DUV)

Arithmetic /
Logic Model
(Constraints)

Expected
Behavior e.g. Always (req ack)

Properties

Check consistency

req ∧ ¬ack

44Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Safety Property (Invariance)
Something GOOD should always hold;
Something BAD should never happen
Without lost of generality, an assertion property on a circuit can
be transformed into an “assert_always (atomic_proposition)”
property with some extra gates

e.g. assert_never(p) ≡ assert_always(¬p);
e.g. assert property

(@(posedge clk) req |-> ##[1:2] ack)

req

ack

clk

clk

p

assert_always (p)

DUV

45Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Proving “assert_always(p)”

In later slides, we will mostly focus on how to prove
the property “assert_always(p)”, instead of proving
a complex temporal logic formula

assert_always(p) ≡ AG (p) ≡ ¬ EF (¬p)

Either
“proving p is true for all states on the state
transition graph” or

“finding a trace that can disprove p”

46Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

“Mathematical Certainty” in Formal Verification

Space exhaustiveness
Verify all input combinations of the system

Time exhaustiveness
Verify system behavior from initial state to
time infinity

t0 t1 t2 t3 t4 t5 infinity

initial state

all input
combinations

47Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Set of Reachable States
t0 t1 t2 t3 t4 t5 t6 t7 t8

48Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Boolean State Space
Boolean space of n state variables (2n)

!(P2)

!(P1)

unreachable states

reachable states

AG (p1) ≡ false; AG (p2) ≡ true

49Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Combinational Invariance
It is worthwhile to know that some invariant
assertions are actually combinational properties

Properties should hold “no matter what the state is”
(reachable or unreachable)
e.g. Bus contention

e.g. Logic equivalence checking
Most synthesis tools perform combinational

optimization only
Just need to make sure combinationally

equivalence

data1

data2
en2

en1

Bus
• Need to assure bus won’t

have conflict signals even
at random power-on or
scan-in states

50Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Proving Combinational Invariance

No need to perform state reachability
analysis

To prove a proposition p, just construct the
fanin cone (functions) of p and prove that no
input assignment can produce “p = 0”

p

inputs

51Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

In this topic, we will use SAT engine to prove
the assertion property, or say, to prove that

the counter-example does not exist!

p = 0inputs

Finding input
assignment

circuit cone

PIs

seq
elm

Combinational
elements

p = 0

Finding input
sequence

or

52Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

53Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Boolean Satisfiability (SAT)
Fundamental problem in computer science

Given a Boolean network F: Bn B,
where B = { 0, 1 }, and

n is the number of inputs I = { x1, x2,... , xn }

Boolean Satisfiability
Finding an input assignment

A: { x1 = a1, x2 = a2,... , xn = an | ai ∈ B }

such that F = 1.

Exponential complexity...?

54Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Boolean Satisfiability Solvers
Boolean SAT solvers have been very successful
recent years in the verification area

More popular than other techniques (e.g. BDDs)
Applications

Equivalence checking, property checking, etc
Applicable even for million-gate designs
For both combinational and sequential problems

Most popular ones
miniSat, zChaff, BerkMin, Csat, Grasp, SATO,...
etc.
http://www.satcompetition.org/

55Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Complexity of SAT solver

We have learned an efficient logic
implication algorithm with watch scheme
However, the complexity for the Satisfiability
problem has been proven to be NP-
complete (S. Cook, 1971)

Given n variables, the number of decisions
can be as many as 2n...

How can SAT be useable for million-gate
designs?

56Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Think about the Human Search Process

(aka: search for ¬p)
When you search for something, you usually
seek for one clue after another ---

Containing a keyword
Asking a question
By a direction, in a room, etc

After some steps, if it is surely not there, you
will reverse or revise some of the previous
guesses/decisions and continue...

57Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Something like --- A Decision Tree

A

B

C

D

58Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What about circuit properties?

What are the “decisions”?
“Assigning input value one at a time” ?

Enumeration method: exponential complexity...
“Assigning values to internal signals” ?

Still exponential complexity...

p = 0inputs

Finding input
assignment

circuit cone

59Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Boolean Satisfiability Checking for
Properties on Circuit

p = 0

inputs

Finding input
assignment

circuit cone

Input
Boolean
space p = 0

a

a = 0a = 1

b = 0

b = 1

b

a
0

b
1

A solver to solve this
kind of problem is called
a Boolean Satisfiability

(SAT) Solver

60Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Types of Boolean Satisfiability Solvers
1. Conjunctive Normal Form (CNF) Based

Boolean function is represented as a CNF (i.e.
Product of Sum, POS format)
e.g.

To be satisfied, all the clauses should be ‘1’

2. Circuit-Based
Boolean function is represented as a circuit netlist
SAT algorithm is directly operated on the netlist

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables Literals Clauses

61Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Typical Combinational SAT Algorithm

1. bool combSat(Gate g, value v)
2. {
3. if (logicImplication(g, v) == false)
4. return false;
5. if (all signals in circuit have been implied)
6. return true;
7. pick an unassigned signal s
8. if (combSat(s, V0) == true)
9. return true;
10. backtrack(s);
11. if (combSat(s, ~V0) == true)
12. return true;
13. backtrack(s);
14. return false;
15.}

62Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Proving always(y == 1)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

combSat(y, 0)

0

0

0

3. if (logicImplication(y, 0) == false)
4. return false;
5. if (all signals in circuit have
6. been implied) return true;

y

63Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Typical Combinational SAT Algorithm

1. bool combSat(Gate g, value v)
2. {
3. if (logicImplication(g, v) == false)
4. return false;
5. if (all signals in circuit have been implied)
6. return true;
7. pick an unassigned signal s
8. if (combSat(s, V0) == true)
9. return true;
10. backtrack(s);
11. if (combSat(s, ~V0) == true)
12. return true;
13. backtrack(s);
14. return false;
15.}

64Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (y, 0)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y

combSat (g7, 0)

0

0

0

7. pick an unassigned signal g7
8. if (combSat(g7, 0) == true)
9. return true;

0

65Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (g7, 0)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

3. if (logicImplication(g7, 0) == false)
4. return false;
5. if (all signals in circuit have
6. been implied) return true;

0

66Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (g7, 0)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

7. pick an unassigned signal d
8. if (combSat(d, 1) == true)
9. return true;1

combSat (d, 1)

0

67Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (d, 1)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

1
3. if (logicImplication(d, 1) == false)
4. return false;1

0 1

0

68Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Typical Combinational SAT Algorithm

1. bool combSat(Gate g, value v)
2. {
3. if (logicImplication(g, v) == false)
4. return false;
5. if (all signals in circuit have been implied)
6. return true;
7. pick an unassigned signal s
8. if (combSat(s, V0) == true)
9. return true;
10. backtrack(s);
11. if (combSat(s, ~V0) == true)
12. return true;
13. backtrack(s);
14. return false;
15.}

69Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (d, 1)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

1
10. backtrack(d=1);
11. if (combSat(d, 0) == true)
12. return true;

1

0 1

0

70Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

combSat (d, 0)

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

0 0

1 0

0

3. if (logicImplication(d, 0) == false)
4. return false;
5. if (all signals in circuit have
6. been implied) return true;

1

0

combSat (d, 0)

71Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How many decisions did we make?

There are 12 gates and 4 inputs (24 decisions?)
The decision tree

g70

d1

c0

0 What make it so simple?

“Logic implications”

72Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Logic Implications

a

b

c

d

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

y
0

0

0

01

1

1 1

0

1 1

0 1

0

witness
target

decision

decision
implications

73Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Logic Implications

Also called “Boolean Constraint Propagation” (BCP)
Imply values to other gates in both forward and
backward directions

0

0

111

1

110

0

110

0 1

111
Forward implications Backward implications

74Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

“Omni-directional” in a netlist

1

111

0

0

1 1 0

75Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How to schedule and
evaluate these implications??

76Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Fruitless Implication Checking
Checking if a gate can be implied, but usually no
implication
For example, the all-1’s forward implication of an AND
gate

Only the last ‘1’ can trigger the forward implication
The first (n-1) checks are useless

Worse case: for n-input AND gate
Need to check (1 + 2 + …+ n) times of fanins
O(n2)

1 1 1 1

1

put to scheduleList

77Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Trying to avoid fruitless implication
checking

Use a counter to record how many ‘x’ are in the
fanins of a gate (e.g. AND gate)

Decrement by 1 when fanin is implied
Inccrement by 1 when fanin value is backtracked
When no ‘x’ fanin (x count = 0) forward implication

Although this can avoid fruitless implication checking,
but the overhead in maintaining the counts could be
an overkill…

‘x’ count could be: 5 4 3 4 5 4 5...

78Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Watched-fanin concept

In the n-input AND gate case, keep a pointer to one
of its fanin that has value ‘x’ (watched fanin)

If other fanin gets implication ‘1’ no operation
If this watched fanin gets implication ‘1’, try to find
another ‘x’ fanin to be new watched fanin

If found, update the pointer
If not found imply ‘1’ on the gate output

xx 1

79Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What’s the improvement?

Worse case O(n2) ?? No
Suppose watched fanin points to the 1st

fanin in the beginning
We always follow the same direction to find
the next ‘x’ fanin
Complexity : O(n)

x x

80Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Watched fanin vs. Watching list
Watched fanin

When one fanin gets an implication, check if
this fanin is “watched fanin”
Still need to check for every fanin implication

Watching list of watched fanin
The watched fanin (A) keeps the list of gates
it is watching (i.e. { B })

When a watched fanin gets an implication
Update the watched fanins of the gates in the

watching list (B); remove this watching list
Create the watching lists for the new watched

fanins
Don’t need to evaluate a gate (e.g. C) if it is
not in the watching list of any implied fanin
(e.g. A C)

x

A

B C

x 1

x 1

81Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Sounds good for all-1’s forward implication of an
AND gate, but what about 0 implication,
backward implication, and other types of gates?

Different watched schemes?
(Could be very complex…)

That’s why simpler data structure like CNF-
based SAT engine can be more efficient
sometimes

82Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Logic Implication for CNF-Based SAT
Refresh:

Boolean function is represented as a CNF (i.e. Product of
Sum, POS format)

Can arbitrary Boolean function be converted into CNF?
e.g. (a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)
To be satisfied, all the clauses should be ‘1’

Logic implication for CNF-based SAT is simple ---
If a literal in a clause gets an implication ‘1’

The clause is satisfied
If a literal in a clause gets an implication ‘0’

Check: how many literals in the clause have unknown value?
>= 2 : no operation
= 1 : the remaining literal will be implied ‘1’
= 0 : the clause is evaluated to ‘0’ a conflict !!

83Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Watched-Literal Algorithm
H. Zhang, SATO, CADE 97; M. Moskewicz et al, Chaff, DAC 2001

For each clause, keep 2 pointers on 2 literals that have “non-
0” values

If any watched literal gets implication ‘0’
Scan in the clause for another literal with “non-0” value
If found, update the watched literal pointer
Else, imply the other watched literal with value ‘1’

L1 + L2 + …+ L50 + L98 + L99 + L100

x 0 x
seach for ‘x’

84Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Watched-Literal Algorithm Example

Each clause stores: Each literal stores:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C2

C1

C3

C4 C2 C4 C3

c 0
• Update watched literal pointer for C4 (for example, to ‘g’)
• Erase c’s watching-clause list
• Add ‘C4’ to g’s watching-clause list
[Note] Don’t need to check ‘C1’

C4

85Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Watched-Literal Algorithm Example

Each clause: Each literal:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C2

C1

C3

C2 C4 C3

a 0
• Update watched literal pointer for C1 (only choice, to ‘d’)
• Update watched literal pointer for C2 (for example, to ‘e’)
• Erase a’s watching-clause list
• Add ‘C1’ to d’s and ‘C2’ to e’s watching-clause lists

C4

C1 C2

86Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Watched-Literal Algorithm Example

Each clause: Each literal:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C3

C2 C4 C3

b 0
• No more unknown literal for C1 : d = 1
• No more unknown literal for C3 : f = 1
[Note] No change on watched literals

C4

C1 C2

87Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Caching Effect: Reducing from O(n) to
almost O(C)

The fact
Most of the time, the decision orderings at different parts
of the decision tree are quite similar during a proof (or
even from proof to proof)
Literals in a clause get the implications
almost by the same order every time

Watched literal
point to the last implied literal
Don’t update watched literals
after backtrack. After backtracks,
no evaluations from the
other unwatched literals.

a
b

c
d

a
b

k
c

d

(L1 + L2 + L3 + L4 + L5 + L6)

88Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Logic implication can be very
efficient for CNF-based SAT by

using “watch” scheme.

Can this idea be applied to
circuit-based SAT?

89Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Difference between circuit and CNF SAT

Circuit-based SAT: gates

CNF-based SAT: clauses, variables, literals
n+1 clauses

(a1 + f ’)(a2 + f ’)...(an + f ’)
(a1’ + a2’ + ... + an’ + f)

1 variable (f)
2 literals (f, f ’)

a1
a2
an

f

90Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Converting a Circuit to a CNF

Circuit_to_CNF(Circuit c)
Assign one variable to each gate in the circuit,
including PIs
For each gate in the circuit, generate the clauses
for the characteristic function of this gate
Conjunct all the clauses in step 2, return the CNF

Write_CNF(gate g)
Enumerate all the forward implications of this gate
For each implication, generate a clause by the
rule: p q ≡ (p’ + q)

91Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Any problem?

Remember there is only one type of implication in
CNF SAT

Logic implication can be very efficient
But implications on an AND gate

0

0 1

1 1 1 1 1 1

1

1 1 0

0

1 1 0

0

92Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Can circuit SAT do 2-watch?

Watch 2 fanins?
What’s the watch value?
How about gate output?
How about OR, NOR, NAND,.. gates?
How about XOR, MUX, ... complex gates?

0

0 1

1 1 1 1 1 1

1

1 1 0

0

1 1 0

0

93Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Closer Look

0

0 1

1 1 1 1 1 1

1

1 1 0

0

1 1 0

0

(ai + f ‘) (a0’ + a1’ + ... + an’ + f)

Different implications on circuit-based SAT
actually map to the same implication on CNF SAT

94Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Direct vs. Indirect Implications

1. Direct implication
Corresponding n 2-literal clauses in CNF SAT
Single implication source
No need to watch

0

0 1

11 1

95Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Direct Implication

1. Single source for each implication
2. Only depends on netlist structure; has

nothing to do with the proving process (e.g.
decisions, etc)

3. Should never encounter “CONFLICT”
during the proof process (assume circuit is
a DAG)

96Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Direct Implication

a
b c

_0DirImps: { b, ... }
_1DirImps: { ... } _0DirImps: { ... }

_1DirImps: { a, c, ... }

Construct a “direct implication graph” in the
preprocessing step

Apply direct implications whenever a gate is
implied to a value

_0DirImps: { b, ... }
_1DirImps: { ... }

97Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Direct vs. Indirect Implications

1. Direct implication
Corresponding n 2-literal clauses in CNF SAT
Single implication source

No need to watch
2. Indirect implication

Corresponding to the same (n+1)-literal clause
Only the last implied pin has different value

2 watches: among all fanins and the gate itself

0

0 1

11 1 11 1

1

11 0

0

11 0

0

98Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Indirect Implication (AND gate)
Select 2 pins (fanins or the gate itself) in a gate to
watch

Almost the same as CNF SAT, except that the
“watched value” depends on the gate type and I/O
For each gate, two lists of watching gates

When a gate gets a value, perform direct implication
and/or update watch for the gates on the watching list

a c

b

watching-0: { a }
watching-1: { }

watching-0: { }
watching-1: { a, b }

watching-0: { }
watching-1: { }

watched pins

99Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Watch Scheme for XOR Gate
n-input XOR gate

2n (n+1)-literal clauses
e.g. (a + b + f) (a + b + f) (a + b + f) (a + b + f)

Implication occurs only when n variables become
“known”

2-watch; watch-known

c

b

watching-0: { }
watching-1: { }
watching-known: { a }

watching-0: { }
watching-1: { b }
watching-known: { a }

watching-0: { }
watching-1: { }
watching-known: { }a

100Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Generic Watch Scheme

It can be shown that the watch scheme can
be extended to complex gates such as
MUXes, Pseudo Boolean gates, etc.
For more details, please refer to:

"QuteSAT: A Robust Circuit-based SAT
Solver for Complex Circuit Structure", DATE
2007.

101Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Applications of Logic Implication

We have learned that logic implication can
be very efficient for both CNF and circuit-
based SAT solvers

Logic implication is actually also a powerful
approach in exploring signal correlations in
the circuit

Any application?
Redundancy addition and removal

102Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Redundancy Addition and Removal (RAR)

Redundancy to a circuit
When removing or adding some signal/gate to a
circuit, the circuit functionality remains unchanged

Motivations
Removing redundancy in a circuit can gradually lead
to small area, timing, power, etc
When (deliberately) adding some redundancy to a
circuit, we may cause other part of the circuit
become redundant

Incremental circuit restructuring (rewiring)
Can be used for incremental optimization (e.g. timing,
area, etc)

103Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Redundancy in a Combinational Circuit

Redundancy in a combinational circuit
= Single stuck-at fault untestable

PIs POs

1s-a-

104Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Background: Single Stuck-at Fault Untestable

Sufficient untestable condition
The mandatory assignment
(MA) of the stuck-at fault has
conflict

Mandatory assignment of a fault
Denoted as MA(w) or MA(g), where ‘w’ or ‘g’ is the fault
location (wire or gate)
Implications of
1. Fault sensitization @ fault site
2. Fault propagation @ the side inputs of the dominators

Dominators of a fault
The gates where all the paths from the fault site to the POs
must intersect

s-a-0

0
1

1

1
0
0
1

0
0
1
1
0
1

0
1
0

Faulty circuit

1
1

1

1
0
0
1

0
0
0
1
0
1

0
1
0

Good circuit

X
s-a-1

gd PO
1

1
1

0
0

105Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Mandatory Assignment Example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-0

1

1

(1) Fault sensitization: g2 = 1

1
1

0

106Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Mandatory Assignment Example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-0

1
0

0

1

1
1

1

1

(2) Fault propagation: d = 0, g3 = 1, g4 = 0, f = 1

1
1

1

0

0
0

1/0
1/0

1/0

1/0

1/0

107Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

1. How do we know a wire in a combinational circuit
is redundant?

Its corresponding stuck-at fault is untestable
(s-a-1 for AND inputs; s-a-0 for OR inputs), or
MA of the fault has conflict

2. If a wire is NOT redundant, can we add an extra
wire to make this wire redundant?

Yes, but the extra wire itself must be redundant
Add a redundant wire to make the originally
irredundant wire become redundant

108Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Target: remove g6

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-1
0

0

0

0
0

0

0

11
1

1

1

g6 is testable and thus NOT redundant

0

1

x

0/1

0/1

0/1

109Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How to add an extra wire to make the s-a-1
fault @ g6 untestable?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-1
0

0

0

0
0

0

0

11
1

1

1

Adding a wire (or with inverter) from any implied gate to a dominator

1

0

0

1

x

0/1

0/1

0/1

1

10

110Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

But remember,
the added wire must be redundant!!

111Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

RAMBO: Redundancy Addition and removal
for Multi-level Boolean Optimization
[Cheng et.al. TCAD 1995]
1. Given a target wire, perform its mandatory assignments (MA)

for its corresponding s-a fault

2. For each gate gm in the set of MA,
For each dominator gd, test the fault on the added wire (gm gd)

a. If value(gm) = 0 and gd is an AND direct connection
b. If value(gm) = 1 and gd is an AND add an inverter
c. If value(gm) = 0 and gd is an OR add an inverter
d. If value(gm) = 1 and gd is an OR direct connection

3. If the fault on the added wire in 2.a ~ 2.d is untestable,
the added wire is redundant and can be an alternative wire

to remove the target wire

112Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Is (!g1 g8) redundant?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-0

0

0

0

0
0

0

0

1

1

0

0

No, (!g1 g8) is NOT redundant

1/0

1/0

X

113Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Is (g5 g9) redundant?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-1

1

0

1

0 0

0

0

1

1

1

Yes, (g5 g9) is redundant
1

0

1

X

We can remove g6 and then g7

114Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

RAMBO Algorithm Complexity

Need to perform (M * D) redundancy tests
M: number of gates in MA
D: number of dominators
Could be a BIG number

“Perturb and Simplify” (Chang, et. al. TCAD 1996)

Propose several rules to filter out impossible
candidates

115Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Filtering Out Impossible Candidate Wires
(Chang, et. al. TCAD 1996)

“Forced MAs” are the MAs ---
1. To activate the fault site
2. Obtained by setting the side inputs of

dominators to non-controlling values
3. Obtained by backward implications of 1 & 2
If wa (ns nd) is an alternative wire of wire
wt, and nd is an AND(OR) gate, then for wt
stuck-at-fault test ---

1. ns must have a MA 0(1)
2. nd must have a forced MA 1 or D (0 or D)

Still many candidates

116Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

In short, given a target wire, it is easy to add a
wire to its dominator to make this wire
redundant.

The problem is, need to make sure the added
wire is redundant. This may require a large
number of fault tests.

So, can we deliberately add something to a
circuit, and guarantee that it is redundant?

117Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How do we add “something” to a circuit and
guarantee it is redundant?

Add a wire

Add a gate

118Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Creating a Redundant Wire

e.g. Add to the input of an AND gate gd
1. Test the output s-a-0 fault of this AND gate
2. Perform MA of this fault

3. For each gate gs in the MA, there is a
corresponding redundant wire (or with inverter)
to gd

gs

X
s-a-0

1

1

1
1

Why??

gd

119Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Two-Way Redundancy Addition and
Removal (2-Way RAR) Algorithm
1. Given a target wire on gt, perform MA(gt)

Adding a wire from a gate gs in MA(gt) to any of its dominator gd
can make this target wire redundant
e.g. value(gs) = 0 AND gate gd

X
s-a-1

1
1

1

gs
0

gd

gt

120Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Way RAR Algorithm

1. Given a target wire on gt, perform MA(gt)
Adding a wire from a gate gs in MA(gt) to any of its dominator gd
can make this target wire redundant
e.g. value(gs) = 0 AND gate gd

2. Given a destination gate gd(dominator of the target wire gt),
perform MA(gd)

Any wire from a gate gs in MA(gd) to this gate gd can be
redundant
e.g. value(gs) = 1 AND gate gd

X
s-a-0

1

gs
1

gd

gt

1

121Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

RAR Example (wt: g6 g7)

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-1
0

0

0

0
0

0

0

11
1

1

1. MA of wt : g6 g7 s-a-1

122Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

RAR Example (wt: g6 g7)

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0
1

1

1

2. Try MA of gd : g9 s-a-0

1

1

1

difference alternative wire

1

123Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Way RAR Algorithm

1. Given a target wire on gt, perform MA(gt)
2. Given a destination gate gd(dominator of

the target wire gt), perform MA(gd)
3. Perform an intersection of (1) & (2)
4. Any contradiction on a gate gs, implies an

alternative wire (gs gd) for the target wire
on gt

Can be generalized for adding a gate or
adding a sub-circuit

[ref: Huang ISPD 1998]

124Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Creating a Redundant Gate (1)
Refresh “add a redundant wire”:
e.g. Add to the input of an AND gate gd
1. Test the output s-a-0 fault of this AND gate
2. Perform MA of this fault
3. For each gate gs in the MA, there is a corresponding

redundant wire (or with inverter) to gd

How about adding a redundant gate?
Test the output s-a-1 fault of an AND gate?

gs

X
s-a-01

1
1

1

gd

gs

X
s-a-1

10

gd 0

125Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Creating a Redundant Gate (2)

gs1
1

X
s-a-01

1
1

gd

gs2
1

gs

X
s-a-01

1
1

gd

gs1

gs2

How?
Can it be a Boolean network?

126Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

2-Way RAR Algorithm

Pros
No need to perform (M*D) redundancy test as in
RAMBO
Potential orders of speed-up

Cons
Only connect to dominators?
(Can we connect to fanins of dominators?)
Still need to try for each dominator
MA on target wire may NOT intersect with MA on
dominators

Or just find some trivial alternative wires (e.g.
DeMorgan Law)

Methods to deriving more MAs (e.g. Recursive learning) are
often used (but could be expensive)
How can we increase the number of MAs?

127Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A closer look at the previous
example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0
1

1

1

1

1

1

difference alternative wire

1

g9,1 g8,1

f,1

g6,1

b,1
g5,1

level-1 recursive learning

level-2 recursive
learning

128Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT-Controlled RAR (SatRAR) [Huang, ASPDAC 2009]

Problems with previous RAR techniques
RAMBO: too many redundancy tests
2-Way RAR: expensive implication technique
needed

SAT-controlled RAR
NOT just take the advantage of the advancements
from the modern SAT solvers (covered later)

Efficient BCP, conflict-driven learning, etc
A seamless integration of SAT and RAR algorithms
Extensions for general RAR

Alternative wire, gate, sub-circuit identification
Options to “control” the RAR optimization quality

129Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Single Wire Replacement Theorem in
SatRAR

Let MA(wt) and MA(gd) be the mandatory
assignments for the fault tests of the target wire wt
and its dominator gd, respectively.
Let <gs, v> belong to MA(wt) but not MA(gd), and
gs be not in the fanout cone of gd.
If we make a decision <gs, v> on top of MA(gd)
and encounter a conflict, then
(i) MA(gd) ⇒ <gs, ¬v>
(ii) (gs gd) or (gs ◦ gd) must be a valid alternative

wire for wt

130Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Single Wire Replacement in SatRAR

X s-a-0
1

1

1

MA(wt = g6) =
{ (g6, 0), (g2, 0), (d, 0), (g1, 0),
(g4, 0), (g5, 0), (g3, 1), (a, 1),
(b, 1), (f, 1) }

0

0

0

0

1

1

11
1

1

1
1

wt

decision valid alternative wire

131Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A closer look...

MA(wt) a MA(gd)

a

wt

gd

MA(wt) (g5 = 0) MA(gd) (g5 = 1)

a

conflictg5 = 0

g5 = 0

132Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SRAR-Wire vs. 2-Way RAR

Similarity
Based on the conflicting implications between MA(wt)
and MA(gd)

Difference
SAT decision (conflict-driven leanring) vs. Recursive
learning

Recursive learning:
f = 0 ⇒ d = 0 or e = 0

⇒ { a=0, b=0 } or { b=0, c=0 }
⇒ b = 0 (Cannot be recorded)

• Conflict-driven learning:
f = 0; decision b = 1 results in conflict
f = 0 ⇒ b = 0 (Recorded!!)

133Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SRAR-Wire vs. Original RAMBO (FYI)
Similarity (looks like...)

For each assignment gs in { MA(wt) - MA(gd) }... vs.
For each assignment gs in MA(wt)...

Difference
Incremental SAT vs. Independent redundancy tests

Incremental SAT in SatRAR
MA(gs) is performed on top of MA(gd)

Sharing of different MA(gdi)
Conflict-driven learning

Learning & RAR at the same time
Implication filter

Reduce #decisions
More importantly, can be extended for alternative
gate/sub-circuit replacements

134Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Single Gate Replacement Theorem in
SatRAR

Let MA(wt) and MA(gd) be the mandatory
assignments for the fault tests of the target wire wt
and its dominator gd, respectively.
Let both <gs, u> and <gt, v> belong to MA(wt), and
be not in the fanout cone of gd.
Suppose we make the decision <gs, u> after MA(gd)
and result in an implication <gt, ¬v>.
Let a gate gn = AND(<gs, u>, <gt, v>). Then
(i) MA(gd) ⇒ ¬ gn,
(ii) gn or ¬ gn, when connected to gd, must be a valid

alternative gate for wt

135Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Single Gate Replacement in SatRAR

c

g1b
d

g4

g3a
b

g7
d

f

g9 o2
0g2e

¬c

1

g6
g8

gd s-a-0

1 1
1

1

1
0

0

1
11

1

0

0

* MA(g6) = { (g6, 0), (g2, 0), (d, 0), (g1, 0),
(g4, 0), (g3, 1), (a, 1), (b, 1), (f, 1) }

MA(g9=1)

g1 = 0
g2 = 1

MA(g6) (g1, 0) ∧ (g2, 0)

MA(g9) (g1, 1) ∨ (g2, 1)

wt

decision

136Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Single Gate Replacement in SatRAR

MA(g6) (g1, 0) ∧ (g2, 0)

c

g1b
d

g4

g3a
b

g7
d

f

g9 o2
0g2e

¬c

1

g6
g8

gd s-a-0

1 1
1

1

1
0

0

1
11

1

0

0
MA(g9) (g1, 1) ∨ (g2, 1)

wt

gn alternative gate

Let gn = ¬ ((g1, 0) ∧ (g2, 0))
= (g1, 1) ∨ (g2, 1)

137Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Alternative Sub-circuit by SatRAR

MA(wt) a MA(gd)

a

wt

gd

a
b

¬c¬b c

MA(wt) a ∧ (b ∨ c) MA(gd) ¬ (a ∧ (b ∨ c))

c

¬b

138Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

139Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

CNF-Based SAT Algorithm
1. Davis, Putnam, 1960

Explicit resolution based
May explode in memory

2. Davis, Logemann, Loveland, (DLL) 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

3. Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

4. Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a
satisfying problem quickly.
Local search and hill climbing

140Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

+ f

Resolution

a + b + g + h’

Resolution of a pair of clauses with exactly ONE
incompatible variable

Two clauses are said to have distance 1

a + b + c’ + f g + h’ + c + f

Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

141Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

(a + b) (a + b’) (a’ + c) (a’ + c’)

Davis Putnam Algorithm

(a + b + c)(b + c’ + f) (b’ + e)

(a + c + e)(c’ + e + f)

(a + e + f)

(a’ + c) (a’ + c’)

(c) (c’)

()SAT

Sol: {a=1, e=1, f=1} UNSAT

(a)

Potential memory explosion problem!
Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960 (360 citations in citeseer)
Existential abstraction using resolution
Iteratively select a variable for resolution till no more variables are left.

142Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Boolean Satisfiability (SAT) Algorithm
1. Davis, Putnam, 1960

Explicit resolution based
May explode in memory

2. Davis, (Putnam), Logemann, Loveland, (D(P)LL) 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

3. Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

4. Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a
satisfying problem quickly.
Local search and hill climbing

143Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 ⇐ Decision

⇐ Decision

⇐ Decision

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

144Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1 ⇐ Forced Decision

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

145Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

Implication Graph

1

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

146Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

⇐ Backtrack
1 ⇐ Forced Decision

c
0 ⇐ Decision

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

147Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

Implication Graph

1 ⇐ Forced Decision

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

148Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

⇐ Backtrack
1 ⇐ Forced Decision

b
0 ⇐ Decision

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!

Implication Graph

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

149Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

⇐ Backtrack

1

b
0 1 ⇐ Forced Decision

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

150Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

151Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Potentially exponential complexity!!

Did you see any unnecessary
work?

152Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT Improvements

1. Conflict-driven learning
Once we encounter a conflict

Figure out the cause(s) of this conflict
and prevent to see this conflict again!!

153Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Learning

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

Conflict source

(a + c) Learned clause
Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

154Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT Improvements

2. Non-chronological backtracking
Since we get a learned clause from the
conflict analysis…

Instead of backtracking 1 decision at a
time, backtrack to the “next-to-the-last”
variable in the learned clause

155Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Non-Chronological Backtracking

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

(a + c) Learned clause

• ‘a’ is the next-to-the-last
variable in the learned clause

• Backtrack c = 0 && b = 0

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

156Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Deduced Implication from Learned Clause

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

(a + c)
c=1(a + c)

a=0
d=1

d=0
Conflict!

(a + c’ + d)

(a + c’ + d’)

Conflict source

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

157Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a) Learned clause

• Since there is only one
variable in the learned clause

No one is the next-to-the-
last variable

• Backtrack all decisions

158Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a)

a=1

b
0 ⇐ Decision

c=1

b=0

(a’ + b + c)

c=0
(a’ + b + c’)

Conflict!

Conflict source

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

159Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a) (b) Learned clause

a=1

b=1

c=1
(a’ + b’ + c)

d=1
(b’ + c’ + d)

⇐ SAT

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

160Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What does conflict learning tell us?

a

b

a’

b’

b’

cc’

dd’ d’

Decision: a = 0
Decision: b = 0
Decision: c = 0

conflict!!
Learned: (a + c)

Backtrack: c = 0, b = 0
Implied: c = 1

Decision: b = 0
conflict!!

Learned: (a)
Implied: a = 1

Decision: b = 0
conflict!!

Learned: (b)
Implied: b = 1

Implied: c = 1, d = 1
SAT!!

161Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A Closer Look at the Implication Graph
(a conceptual implementation)

Implications are grouped into different decision levels
Level 0: target imp; constants
Level 1+: decisions

Node (gate, value): implications
Incoming edge(s) of a node: implication sources (reasons)

The nodes with no incoming edges are called “root
implication nodes”
There should only be ONE root implication node for each
decieion level >= 1 (which is the decision in that level)

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0

y, 0 g10, 0 g11, 00

1

example in lecture note #5

162Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict Analysis
When we encounter a decision conflict, we
want to figure out the causes so that ---

1. Try to avoid the same conflict
2. Backtrack as many decisions as possible

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0

y, 0 g10, 0 g11, 00

1

d, 1 g2, 0 g5, 1 g6, 12 g6, 0
!!Conflict!!

163Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict Analysis

1. Try to avoid the same conflict
Starting from the conflict implications (g = 0) & (g = 1),
backward trace their implication sources
(An informal explanation) Any cut in the implication graph
defines a set of conflict causes
Add a constraint for the conflict causes to prevent the
conflict from happening again

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1

2

3

164Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Learning

Add a constraint to prevent the same conflict
1. b4 && c2 && c4’ = 0; (b4’ + c2’ + c4)
2. a && b’ && c’ = 0; (a’ + b + c)
3. b4 && a2 && b1’ && c1’ = 0; (b4’ + a2’ + b1 + c1)

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1

2

3

165Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Which constraint is the best to add?

[Zhang, et al, ICCAD 2001] Experiment
shows that “first-UIP” (1st-UIP) is the best

UIP: Unique Implication Point
In a cut that there is only one node in the last
(where conflict happens) decision level
(why UIP cut?)
Starting from the conflict gate, the first
encountered UIP is namely first UIP
The cut with only decision nodes is called the
last-UIP

• In the previous example, (2) is the last UIP, and (3)
is the first UIP

166Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

UIP for Non-chronological Backtracking

Since in UIP cut there is only one node with the last
decision level…
And we add a constraint for the UIP cut

Decision level

0

1

2

3

4

b, 1 a, 1

c, 1

d, 1

Constraint
(a && b && c && d) = 0

(a && b && c) d’

• If we backtrack to the max
decision level of { a, b, c }
1. { a, b, c } still have the

original implications
2. d can be implied with the

opposite value at the max
level above

167Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Learning

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1st-UIP Cut Learned implication
b1’ && a2 && b4 c1

c1 = 1

168Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Non-Chronological
Backtracking --- Algorithm
1. When conflict occurs, check if the conflict level ==

0 (implication level for the SAT target)
a) If yes, return unsatisfiability (Why?)
b) Else, continue to 2

2. Find the 1st-UIP cut as the conflict causes
3. Backtrack to the max decision level of the nodes

other than UIP in the cut
4. The UIP gate will be implied with the opposite

value
5. Perform the new implication
6. If conflict, go to 1, else continue for the next

decision

169Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A closer look at binary decision tree

In general, is non-chronological backtracking
safe?

May lead to SAT solution ealier
But some portion of the decision
tree may not be covered

Not a complete search anymore
May also miss some bugs

Difficult to record which branches
haven’t been searched

a

b

c

d

d

1

1

1

0

1 0

0 1

X ?

0

170Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Non-Chronological
Backtracking --- Completeness

But with conflict-driven learning, SAT search is still
guaranteed to be complete
SAT search is not a binary decision tree
anymore…

Becomes a decision stack
Conflict

Learned clause (gate)
Indicate where to backtrack
Learned implication

a

b

c

d

d

c

x

y

z

1

1

1 1

0

0

0

0

1 0

0 1 a

b

c

d

171Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict-Driven Non-Chronological
Backtracking --- Completeness

Branch-and-bound algorithm for Constraint
Satisfaction Problem (CSP) becomes a
“constraint refinement process”

Search region is gradually narrowed down

At the end, either becomes empty, or finds
the solution !!

172Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Implication graph, resolution, and learning

(1): (c2’ + g)
(2): (b4’ + c4 + g’)
(3): (a2’ + c3’ + c4’)
(4): (c1 + c3)
(5): (b1 + c1 + c2)

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

3 1245

(b4’ + c2’ + c4)
(a2’ + b4’ + c2’ + c3’)

(a2’ + b4’ + c1 + c2’)
(a2’ + b1 + b4’ + c1)

173Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What we have learned on SAT...

1. Efficient logic implication using watches
2. Conflict-driven learning for non-

chronological backtracking

More heuristic...
3. Decision ordering / Restart
4. Various learning techniques

174Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Impact of Decision Ordering

Decision ordering: the order of gates that
the corresponding decisions are made

1. Order of gates
2. Decision values

Good and bad decisions
can lead to exponential
difference
(e.g. 210 vs. 250)

(Think) Does the decision value matter?
(i.e. should we decide on ‘1’ or ‘0’ first?)

a

b

c

d

c

d

b

c

d

1

1

1

1

0

0

0
01 0

175Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Static Decision Ordering
Decision order and values are pre-computed in the
beginning and remain unchanged

1. Topological
Depth-first
Breadth-first
Guided by gate types

2. Probability-based
Controllability / Observability
Signal probability
(Weighted) Random

3. Influence-based
Literal count
#fanins / #fanouts
Influence of implications

176Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Dynamic Decision Ordering
Decision order and values are dynamically determined
based on current implication values, justification frontier, etc.

Use similar criteria as static method
But can mix different rules dynamically

Pros
May lead to better decisions
Avoid useless decisions

Cons
Overhead in computing dynamic ordering may be high
Effectiveness sometimes is hard to predict

However, experiences show that the best is:
1. Has a good initial decision ordering
2. Adaptively adjust the decision order after a certain amount

of backtracks

177Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

zChaff’s Variable State Independent
Decaying Sum (VSIDS) Decision Heuristic
(1) Each variable in each polarity has a counter,

initialized to 0.
(2) When a clause is added to the database, the

counter associated with each literal in the clause is
incremented.

(3) The (unassigned) variable and polarity with the
highest counter is chosen at each decision.

(4) Ties are broken randomly by default, although this
is configurable

(5) Periodically, all the counters are divided by a
constant.

Zhang, et al, DAC 2001

178Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Berkmin – Decision Making Heuristics
E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver”,

Proc. DATE 2002, pp. 142-149.

Identify the most recently learned clause which is
unsatisfied
Pick most active variable in this clause to branch on
Variable activities

updated during conflict analysis
decay periodically

If all learnt conflict clauses are satisfied, choose
variable using a global heuristic
Increased emphasis on “locality” of decisions

179Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

More decision heuristics...

Variable Move-To-Front (VMTF)
Clause Based Heuristic (CBH)
Resolution Based Scoring (RBS)
...

In general, there is no single decision
heuristic that works for every case.

How to adaptively move to a good decision
heuristic may be the winner...

180Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

A closer look at binary decision tree

Should the decision orderings on all branches
be the same?

a

b

c

d

c

d

b

c

d

1

1

1

1

0

0

0
01 0

a

b

c

d

d

c

x

y

z

1

1

1 1

0

0

0

0

1 0

0 1

181Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Remember when we talked about

conflict-driven learning,

we mentioned that

by adding a learned clause

we can do non-chronological backtracking,
while still achieve complete proof

How??

182Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

The Constraint Refinement Process

Search region is gradually narrowed down by the
learned constraints
Learned information is universally true

Independent of the target implication, only
related to the circuit function
The proof efforts between different properties
can be shared

Incremental SAT
Decision process can “restart” any time any where!!

Can use different decision ordering to explore
different area in the decision tree

Previous efforts will not be wasted

183Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Various Learning Techniques

Other than conflict-driven learning, there
are many other learning techniques that
can help

Derive more implications
may help find the conflict earlier

Provide information for decision ordering
1. Static learning
2. By signal correlations
3. Recursive learning
4. Success-driven learning

184Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Static Learning

Learn by contrapositive
(a b Ξ !b !a)

e.g.

a

b
a = 1 b = 1

Learned b = 0 a = 0

The question is:
which gate to learn??

Ref: “SOCRATES: A Highly Efficient Automatic Test Pattern
Generation System”, Schulz et.al, TCAD 1988

185Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Learned by Signal Correlations
A proof-based approach

Since learned information is universally true, we can
create some internal interesting properties, and use these
properties to derive some interesting learning
(by conflict analysis)

e.g. By simulation, if we find a gate ‘g’ is very likely to stuck
at some value ‘v’

Witness “g = ¬v” (should produce many conflicts)
e.g. By simulation, if two signals respond almost the same

Witness “p != q”

No matter the proof is finished or not
We can always learn something

Ref: Feng Lu, et. al, “A Circuit SAT Solver with Signal Correlation Guided Learning”, DATE 2003

186Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Recursive Learning

To justify f = 0
(a = 0) or (b = 0)
Let Sa and Sb be the set of implications
from (a = 0) and (b = 0), respectively
Let S = Sa ∩ Sb

(f = 0) implies S
A recursive process
Deep recursion could be
very expensive

f = 0

a = 0 b = 0

Ref: “HANNIBAL: an efficient tool for logic verification based on
recursive learning”, Wolfgang Kunz, ICCAD 1993

187Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict vs. Success-Driven Learning
Motivation: Traditional SAT approach finds only 1 solution, can

we find more (or all) the solutions?

How to record the solutions?
Hash table? (too expensive)

Success-driven learning
Similar to conflict learning
When we find one solution, say (v1, v2, …, vn), add a
blocking gate “v1 && v2 && … vn = 0” so that

This solution won’t be repeated
May lead to new implication
Can continue the justification process for the next solution

At the end, all the solutions are recorded as set of
blocking gates (or clauses)

188Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict vs. Success-Driven Learning

However, the number of solutions in a SAT
problem can be very huge!!

Some solutions may look alike ---
e.g. 1010011, 1100011, 0110011...

s1 s2 s3

S1 S2 S3

10
1

01
1

011

11
00

11
00

11
00

Can we predict that the sub-
solutions under the sub-search tree

are already covered?

189Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Success-Driven Learning
Ref: Shuo, et al. DATE 2003
Assume

ATPG-based technique (work on circuit)
Decisions on PIs only forward implications

Search State Equivalence
If two decisions have the same signature
The “sub-solutions” under
the sub-search space
are the same!!
No need to search

Note: they also store
the solutions in a
“free BDD”

PIs
1xxx0xxx00xx111011

implication
frontier

(a cutset)

current
decision

signature

190Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Although “learning” in general can lead to
more implications and possibly lead to
conflicts earlier (i.e. bound earlier) ---

1. It may slow down the implication process
2. It may affect the decision ordering, which

may not necessarily reduce the #decisions

191Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

What can we do to make the learning useful?

1. Use learning to find better decision ordering
zChaff uses learned information to refine the decision
ordering
BerkMin uses learned information to increase emphasis
on “locality” of decisions

2. With conflict analysis, decision can restart any time
Change to different decision ordering heuristic to
explore different areas in the input space

3. Modify the learned information
Remove least-used learned information
Simplify or synthesize the learned information
Any other idea?

192Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

193Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Recalled, the SAT algorithms we have covered so
far are good for “combinational invariance” checking.

In reality, most assertions are “sequential”

p = 0inputs

Finding input
assignment

circuit cone

PIs

seq
elm

Combinational
elements

p = 0

Finding input
sequence

or

194Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Recalled: Reachability Analysis vs.
Assertion Checking

Boolean space of n state variables (2n)
!(P2)

!(P1)

unreachable states

reachable states

AG (p1) ≡ false; AG (p2) ≡ true

195Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT-Based Verification

We know that SAT engine can work on the
“assignment problem”

Find an assignment for a set of constraints
To prove that the counter-example of an
combinational invariance does not exit

How can we apply SAT on sequential assertion
checking?

We prove that counter-example does not exist in one
timeframe, not in two timeframes, three, four, ... to
infinity?
How can we assure that ALL the reachable states
have been reached?

196Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Using Blocking Clauses for Sequential SAT

PIs POs

seq
elm

Combinational
elements

a
b

> 0
0
1
0

1
1
0

1
1
0

Suppose we are solving the property
“a > b”

1. Use SAT to get a solution on the
registers
e.g. (c0, c1, c2) = (1,1, 0)

2. Add a “blocking clause”
(c0’ + c1’ + c2) to the original CNF

Won’t get the same state again!!

3. Repeat 2 for another solution..., or
4. Apply the solution

“(c0, c1, c2) = (1, 1, 0)”
to the previous state as
“(p2, p1, p0) = (1, 1, 0)” and
continue to the search in the
previous timeframe

c0
c1
c2

p0
p1
p2

1

(c0’ + c1’ + c2)

197Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

However, in the above approach, we are
solving one state (cube) at a time.

The number of states is exponential to the
number of registers...

SAT seems inefficient...

198Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Bounded Model Checking

There’s another way of using SAT for
sequential property checking

Comb.
ckt

PO

FF

PI

!P

Comb.
ckt

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI PI

PO PO

!PPP

FF

Init S
tates

Iterative Timeframe Expansion Model
Seq SAT becomes a

combinational problem

199Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Bounded Model Checking (BMC) Algorithm
Let ‘C’ be the set of constraints on the combinational circuit

For an iterative model that unfolds the circuit for n times,
let ‘Ci’ correspond to the i-th iteration of the circuit constraint
(0 <= i <= n - 1)
Let ‘I0’ be the initial state value
Let ‘P’ be the property to prove

BMC(P) {
let k = 1;

loop:
if (SAT(I0∧C0∧...∧Ck-1∧!Pk-1))

return “Find a counter-example @ (K-1)”;
k = k + 1;
goto loop;

}

C0 C1 C2

PI

PO

!P2

I0

PI PI

PO PO

200Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

How far should we go?

What’s the limit of K?
(How many iterations do we need before
concluding the property is always true?)

Impossible to know in the above BMC
algorithm

A loose upper bound is 2N (N is the
number of registers)

201Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Application of BMC

If the property is false, BMC can find a
counter-example with the shortest length
However, if the property is true, BMC cannot
produce any conclusive result...

(BMC is best used in “bug-finding”)

202Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Extension of BMC for Unbounded Proof

BMC, combined with various techniques, can be
extended to unbounded model checking

1. K-step Induction
2. Simple-path constraint
(Covered in next topic)
3. Counter-example-based abstraction
4. Proof-based abstraction
5. Image computation by SAT

6. Over-approximated image computation using interpolation

etc...

203Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

K-induction

Induction:
SSS2000

P(s0)
∀i: P(si) ⇒ P(si+1)

∀i: P(si)

• k-step induction:

P(s0..k-1)
∀i: P(si..i+k-1) ⇒ P(si+k)

∀i: P(si)

204Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

K-induction with a SAT solver

Let:
Uk = C0 ∧ C1 ∧ ... ∧ Ck

Two formulas to check:
Base case:

I0 ∧ Uk-1 ⇒ P0...Pk-1

Induction step:
Uk ∧ P0...Pk-1 ⇒ Pk

If both are valid, then P always holds.
If not, increase k and try again.

C0 C1 C2

PI

PO

!P2

I0

PI PI

PO PO

205Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Induction SAT
for (k = 0 to infinity)

S = Uk ∧ Fk // Fk = P0 ∧... ∧ Pk-1 ∧ !Pk

T = I0 ∧ S
// induciton step
if (SAT(S) == false)

return NO_SOLUTION; // i.e. P is true
// normal proof: base case for next k
if (SAT(T) == true)

return HAS_SOLUTION; // i.e. CEX is found
if (effort exceeds limit)

return ABORT;
endfor

206Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Induction SAT

In other words, let
S(k) = Uk ∧ Fk // induction step
T(k) = I0 ∧ S // BMC step

Induction SAT...
if (S(0) == UNSAT) return UNSAT;
if (T(0) == SAT) return SAT;
if (S(1) == UNSAT) return UNSAT;
if (T(1) == SAT) return SAT;
...

207Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Does “Induction SAT” guarantee convergence?

i.e. Will we either
1. conclude no solution in induction step

or 2. find a counter-example in normal proof
with a finite number k ???

208Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Simple path assumption

Unfortunately, k-induction is not complete.
Some properties are not k-inductive for any k.

Simple path restriction:
There is a path to ¬P iff there is a simple
path to ¬P (path with no repeated states).

P P ¬P

reachable
states from I

unreachable
from I, but can

reach ¬P

209Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Induction over simple paths

Let simple(s0..k) be defined as:

∀i,j in 0..k : (i ≠ j) ⇒ si ≠ sj

k-induction over simple paths:
P(s0..k-1)

∀i: simple(s0..k) ∧ P(si..i+k-1) ⇒ P(si+k)
∀i: P(si)

Must hold for k large enough, since a simple path cannot be
unboundedly long. Length of longest simple path is called
recurrence diameter.

210Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

...with a SAT solver

For simple path restriction, let:
Sk = ∀t=0..k, t'=t+1..k: ¬ (∀v in V : vt = vt‘)

(where V is the set of state variables).
Two formulas to check:

Base case:
I0 ∧ Uk-1 ⇒ P0...Pk-1

Induction step:
Sk ∧ Uk ∧ P0...Pk-1 ⇒ Pk

If both are valid, then P always holds.
If not, increase k and try again.

211Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Is the recurrence diameter
the same as the diameter (the

distance from initial state to
any state, i.e. depth of fixed

point)??

212Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Termination

Termination condition:
k is the length of the longest simple path of the form

P* ¬P
This can be exponentially longer than the diameter.

example:
loadable mod 2N counter where P is (count ≠ 2N-1)
diameter = 1
longest simple path = 2N

Nice special cases:
P is a tautology (k=0)
P is inductive invariant (k=1)

213Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

214Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT-Based Verification
BMC

Can find the shortest counter-example if it exists
But cannot prove invariance

BMC + induction
Can prove invariance... only for cases that do not
have a sequential feedback loop

BMC + induction + simple-path constraints
Can guarantee convergence... but the overhead
induced by the constraints can be very high

What we are missing for SAT-based sequential
proof...

An efficient method to “record” reachable states
Not a natural SAT application?

215Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Symbolic model checking without BDD's

There are some algorithms to compute the
set of reachable states by SAT
Fixed point characterization
[ref: Abdulla, Bjesse and Een 2000

Williams, Biere, Clarke and Gupta 2000]
Syntactic quantifier elimination
Blocking clauses
CTL Model Checking with SAT
Need some background that is beyond the

scope of this class...

216Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

SAT-based image

May provide a good alternative when other
technique (e.g. BDD) fails.
Does not take advantage of SAT solver's ability to
filter out irrelevant facts, since exact image is
computed.

Think:
Our goal of proof is: (1) Either find “a” counter-
example, or (2) Prove that no counter-example can
be found in reachable states
Do we really need to compute the “exact” image of

the reachable states?

217Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Limitation of Formal Engine

Still bounded by exponential complexity
When design gets big, or property becomes complex,
it is very often that the formal engine cannot
conclude the proof result
We have “coverage metric” for simulation, what

about formal method?
However, property checking by formal engine is
somewhat analogous to reversely reasoning on
designer’s intent

Designer’s intent should not be too complicated for
one local module
It’s the interaction on the modules that make the
problem difficult

218Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Abstraction and Refinement

If we can confine our search/reasoning on
some boundary (e.g. local module, FF
boundary), we can simplify our proof
Abstraction

But simplifying something means something is
ignored.... the result may not be accurate
Refinement

...refined to a bigger search region

219Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Localization abstraction

Property: G (c ⇒ X c)

cp
ga

b

Model:

C = {
g = a ∧ b,
p = g ∨ c,
c' = p

}

'

free variable

C'⇒ property, C ⇒ C'
C ⇒ property

Kurshan

220Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Constraint granularity

a
b cp

g Model:

C = {
c' = (a ∧ b) ∨ c

}

Most authors use constraints at "latch" granularity...

...however, techniques we will consider can be applied at
both "gate" and "latch" granularity.

221Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Image and over-approximated image

P F

Img(P,C)

Reached from P Can reach F

Img’(P,C)

• Img Img’
• R R’

• If (R’ ∧ F == ∅) (R ∧ F == ∅)
• If (R’ ∧ F != ∅) Need to refine R’ (Img’)

222Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

But, how to use SAT to compute the
over-approximated image?

You need to understand two key
techniques ---

Unsatisfiability Core
Interpolation

223Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Remember: Resolution

a ∨ b ∨ ¬c ¬a ∨ ¬c ∨ d

b ∨ ¬c ∨ d

When a conflict occurs, the implication graph is
used to guide the resolution of clauses, so that the
same conflict will not occur again.

224Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conflict Clauses (cont.)

Conflict clauses:
Are generated by resolution
Are implied by existing clauses
Are in conflict in the current assignment
Are safely added to the clause set

Many heuristics are available for determining
when to terminate the resolution process.
(e.g. first UIP)

225Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Generating refutations
Refutation = a proof of the null clause

Also called “proof core” or “UNSAT core”
Record a DAG containing all resolution steps performed
during conflict clause generation.
When null clause is generated, we can extract a proof of
the null clause as a resolution DAG.

Original clauses

Derived clauses

Null clause

226Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Refresh:
Implication graph, resolution, and learning

(1): (c2’ + g)
(2): (b4’ + c4 + g’)
(3): (a2’ + c3’ + c4’)
(4): (c1 + c3)
(5): (b1 + c1 + c2)

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

3 1245

(b4’ + c2’ + c4)
(a2’ + b4’ + c2’ + c3’)

(a2’ + b4’ + c1 + c2’)
(a2’ + b1 + b4’ + c1)

227Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Extraction of Unsatisfiability Core

1. For each conflict, record the resolution
graph for the learned clause

2. A learned clause may depend on other
learned clause, so does its resolution
graph may build upon other’s resolution
graph

3. The root clauses for the last conflict (i.e.
conflict at decision level 0) will be the
unsatisfiability core

228Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Interpolation

If A ∧ B = false, there exists an interpolant A' for
(A,B) such that:

A ⇒ A'
A' ∧ B = false

A' refers only to common variables of A,B

Example:
A = p ∧ q, B = ¬q ∧ r, A' = q

New result
given a resolution refutation of A ∧B,

A' can be derived in linear time.

(Craig,57)

(Pudlak,Krajicek,97)

A BA’

229Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Some Definitions for Unsatisfiability Proof

Let (A,B) be a pair of clause sets and let Π be a proof of
unsatisfiability of A ∪ B

Π is a DAG (VΠ, EΠ)
Each vertex c ∈ Π in the graph corresponds to a clause
and has exactly 2 predecessors, say c1, c2

c is called the “resolvent” of c1 and c2
The resolved variable v is called the “pivot” variable

Π has exactly 1 leaf vertex which is a False (null clause)
The roots are original clauses in A ∪ B

Null clause

Π

A B

c

c1 c2

230Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Some Definitions for Unsatisfiability Proof

Let (A,B) be a pair of clause sets and let Π be a
proof of unsatisfiability of A ∪ B

Π is a DAG (VΠ, EΠ)
Each vertex c ∈ Π in the graph corresponds to a
clause and has exactly 2 predecessors, say c1, c2

c is called the “resolvent” of c1 and c2
The resolved variable v is called the “pivot” variable

Π has exactly 1 leaf vertex which is a False (null
clause)
The roots are original clauses in A ∪ B

Global/Local variable/literal
With respect to (A,B), a variable/literal is global if it
appears in both A and B
It is called local to A if it appears only in A

231Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Interpolants from Proofs
Deriving interpolant from Π

Calling itp(leaf vertex)
itp(c) { // c ∈ VΠ let p(c) be a

if c is a root, then
if c ∈ A then

itp(c) = the disjunction of the
global literals in c

else itp(c) = constant True
else, let c1, c2 be the predecessors of c

and let v be their pivot variable
if v is local to A

then itp(c) = itp(c1) ∨ itp(c2)
else itp(c) = itp(c1) ∧ itp(c2)

}

232Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Interpolants from Proofs

A = (p)(¬p∨q) B = (¬q∨r) (¬ r)

(p) (¬p∨q)

(q)

(¬q∨r)

(r)

(¬r)

()

() is not root
r is not local

True (¬r) is root,
but ∉A

(r) is not root
q is not local

(q) is not root
p is local to A True

False

(p) is root and ∈ A
but global literals = ∅

(q)

(¬p∨q) is root and ∈ A
global literals = {q}

q A’

(¬q∨r) is root,
but ∉A

itp(c) { // c ∈ VΠ let p(c) be a
if c is a root, then

if c ∈ A then
itp(c) = the disjunction of the global literals in c

else itp(c) = constant True
else, let c1, c2 be the predecessors of c

and let v be their pivot variable
if v is local to A

then itp(c) = itp(c1) ∨ itp(c2)
else p(c) = p(c1) ∧ p(c2)

}

233Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

BA

SAT to compute set of reachable states?

C0 C1 C2

PI

PO

!P2

I0

PI PI

PO PO

What is the set of reachable states here?

What are the common variables? What is the interpolant?

234Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

I

B

SAT to compute set of reachable states?

C1 C2

!P2
PI PI

PO PO

What is the set of reachable states here?

What are the common variables? What is the interpolant?

II0

R1

R1 = A(I0)
I is an over-approximated

image of I0

235Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Overapproximation

An overapproximate image op. is Img' s.t.
for all P, Img(P,C) implies Img'(P,C)

Overapprimate reachability:
R'0 = I

R'i+1 = R'i ∨ Img'(R'i,C)
R' = ∪ R'i

Img' is adequate (w.r.t.) F, when
if P cannot reach F, Img’(P,C) cannot reach F

If Img' is adequate, then
F is reachable iff R' ∧ F ≠ false

236Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

k-adequate image operator

Img' is k-adequate (w.r.t.) F, when
if P cannot reach F,

Img’(P,C) cannot reach F within k steps
Note, if k > diameter, then k-adequate is
equivalent to adequate.

237Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Adequate image

P F

Img(P,C)

Reached from P Can reach F

Img’(P,C)

But how do you get an adequate Img'?

238Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Interpolation-based image

Idea -- use unfolding to enforce k-adequacy
A = P-1 ∧ C-1

B = C0 ∧ C1 ∧ ... ∧ Ck-1 ∧ Fk

P FC C C C C C C

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)...

Img' is k-adequate!
- remember: A’ contains the
common variables of (A, B)

239Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Huh?

A ⇒ A'
Img(P,C) ⇒ Img'(P,C)

A' ∧ B = false
Img'(P,C) cannot reach F in k steps

Hence Img' is k-adequate overapprox.

P FC C C C C C C

A B

t=0 t=k

A'

But note, Img' is partial -- not defined if A∧B is sat.

240Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Intuition

A' tells everything the SAT solver deduced
about the image of P in proving it can't
reach F in k steps.
Hence, A' is in some sense an abstraction
of the image relative to the property.

P FC C C C C C C

A B

t=0 t=k

A'

241Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Reachability algorithm

let k = 0
repeat

if I can reach F within k steps, answer reachable
R = I
while Img'(R,C) ∧ F = false

R' = Img'(R,C) ∨ R
if R' = R answer unreachable
R = R'

end while
increase k

end repeat

242Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Termination

Since k increases at every iteration,
eventually k > d, the diameter, in which case
Img' is adequate, and hence we terminate.

Notes:
don't need to know when k > d in order to
terminate
often termination occurs with k << d
depth bound for earlier method (Sheeran et
al '00) is "longest simple path", which can be
exponentially longer than diameter

243Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Interpolation-based MC

Fully SAT-based.
Avoid computing exact image.
Inherits SAT solvers ability to concentrate
on facts relevant to a property.

Maintain SAT solver's advantage of filtering
out irrelevant facts.

For true properties, appears to converge for
smaller k values.

244Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Outline
Overview of Hardware Verification p3
Assertion-Based Verification p28
Boolean Satisfiability (SAT) Algorithms p53

Logic Implication and its Applications p72
DPLL Decision Procedure p139
Conflict-Driven Learning and Non-Chronological
Backtracking p152
Decision ordering / Restart p174
Various learning techniques

SAT-Based Verification p193
Bounded and Unbounded Modeling Checking p198
Interpolation Technique p214

Future Research Directionsp245

245Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Conclusion on Boolean SAT Algorithms

Traditional NP-complete problem
With several advanced techniques, modern
SAT solvers can be very efficient

Able to work on million-gate designs
Applications

SAT-based verification
Redundancy addition and removal
SAT-assisted logic optimization (e.g. using
interpolation technique)
In other fields (e.g. OR, AI,...)

246Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Future Research Directions

Word-level SAT engine
Able to handle constraints beyond Boolean

Bit-vector, integer, uninterpreted function, etc
For the future system-level designs

SAT-assisted logic optimization
Interpolation techniques
Pseudo Boolean constraint solver

247Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

Some popular SAT engines
SATO

http://www.cs.uiowa.edu/~hzhang/sato.html
GRASP

http://www.eecs.umich.edu/~faloul/Tools/satire/Grasp2.exe
zChaff

http://www.princeton.edu/~chaff/
BerkMin

http://eigold.tripod.com/BerkMin.html
CSAT

http://cadlab.ece.ucsb.edu/downloads/CSAT.htm
miniSAT

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
PBS

http://www.eecs.umich.edu/~faloul/Tools/pbs4/
Pueblo

http://www.eecs.umich.edu/~hsheini/pueblo/

248Boolean SAT Algorithms / FLOLAC 2009 Prof. Chung-Yang (Ric) Huang http://dvlab.ee.ntu.edu.tw

That’s all.
Any questions?

