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Introduction
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Motivations

� Costs of system failures
� Computational hardness
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(1995/1) Intel announces a pre-tax charge of 475 million dollars against 
earnings, ostensibly the total cost associated with replacement of the 
flawed processors. 
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(1996/6) The European Ariane5 rocket 
explodes 40 s into its maiden flight due to 
a software bug. 
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(2003/8) A programming error has been identified as the cause of the Northeast 
power blackout, which affected an estimated 10 million people in Canada and 45 
million people in the U.S. 
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Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is 
preventing data from being sent to Earth, forcing a scheduled shuttle mission to 
do repairs on the observatory to be delayed.
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Hardness

� Verification may take 70% of 
the entire design cycle of a 
system

� State explosion problem
� �states is exponential in 
�registers (state-holding 
elements)

10     atoms80

10   transistors7

100,000 registers

10           states
30,000
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Systems to Be Verified

� Hardware vs. software
� Finite state vs. infinite state

� Hardware systems can be modeled as finite-state 
transition systems

� Software systems are often modeled as infinite-state 
transition systems
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Verification Methodologies

� Informal vs. formal
� Informal

� Incomplete
� E.g., by software simulation or hardware emulation

� Useful in finding bugs, but not in showing the 
absence of bugs

� Formal
� Complete

� E.g., theorem proving, property checking, equivalence 
checking

� Useful in both debugging and proving correctness
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Verification Formalisms
� Temporal logics vs. model checking

� Temporal logics are useful specifying temporal properties
� E.g., may (branching time) vs. must (linear time)
� Not the only way of specifying properties

� Model checking is an automatic procedure checking whether a 
model of a system satisfies a given specification

M |= �
“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Properties to Be Verified

� Safety vs. liveness
� Safety property

� Something bad will never happen 
couterexample of finite length

� Liveness property
� Something good will happen eventually or infinitely often

counterexample of infinite length

� 90% of the verification problems are checking safety 
properties

� Liveness property checking can be converted to safety 
property checking for finite state systems
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IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.
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Hardware Verification

� Design verification
� Does a design specification satisfy some properties?
� Property checking / assertion-based verification

� Implementation verification
� Does an implementation conform to the original 

specification?
� Equivalence checking / (design rule checking)

� Manufacture verification
� Does a manufactured design have no defects?
� Testing

Flolac 2009 16

Computation Basics
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Boolean Space
B = {0,1}
B2 = {0,1}�{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4
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Boolean Functions
� A Boolean function f: Bn � B over variables x1, x2, …, xn

maps each Boolean valuation (truth assignment) in Bn to
either 0 or 1
� E.g. f(x1, x2)

� The output value of f partitions Bn into two sets
onset (f=1):
� E.g. {00, 10}  (i.e., with characteristic function F1 = �x2 )
offset (f= 0): 
� E.g. {01, 11} (i.e., with characteristic function F0 = x2 )

� A literal is a Boolean variable x or its negation �x in a 
Boolean formula

x1x2 f
0  0    1
0  1    0
1  0    1
1  1    0

1x

2x

0
0
1

1 x1

x2
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Boolean Functions

� The onset of f, denoted as F1, is F1= {v � Bn |
f(v)=1}
� If F1 = Bn, f is a tautology

� The offset of f, denoted as F0, is F0= {v � Bn |
f(v)=0}
� If F0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

� Two Boolean functions f and g are equivalent if
�v� Bn. f(v) 	 g(v)
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Boolean Functions

� There are 2n vertices in Boolean space Bn

� There are 22n
distinct n-variable Boolean 

functions
� Each F1 
 Bn corresponds to a distinct Boolean function

x1x2x3
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0 � 1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations

Given two Boolean functions:
f:  Bn � B
g: Bn � B

� h = f � g from conjunction is defined as
H1 = F1 
 G1; H0 = Bn \ H1

� h = f � g from disjunction is defined as
H1 = F1 � G1; H0 = Bn \ H1

� h = �f from complement is defined as
H1 = F0; H0 = F1
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Cofactor & Quantification
Given a Boolean function:

f :  Bn � B, with input variables (x1,…,xi,…,xn)

� Positive cofactor, h = fxi , is defined as
h = f(x1,…,1,…,xn)

� Negative cofactor, h = f�xi , is defined as
h = f(x1,…,0,…,xn)

� Existential quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Universal quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Boolean difference over variable xi , h = �f/�xi , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)
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Data Structures

� Basic data structures for Boolean function 
representation
� Truth tables
� Binary Decision Diagrams (BDDs)
� AND-INV graphs (AIGs)
� Conjunctive Normal Forms (CNFs)
� …

� Why bother having different data 
structures?
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Data Structures

Data-structure revolution in verification
� State graph (late 70s-80s)

� Problem size ~104 states

� BDD (late 80s-90s)
� Problem size ~1020 states
� Critical resource: memory

� SAT (late 90s-)
� GRASP, SATO, chaff, berkmin
� Problem size ~10100 (?) states
� Critical resource: CPU time
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Data Structures – BDDs

� BDDs are graph representations of 
Boolean functions
� A non-terminal node is a decision node 

(multiplexer) controlled by some variable v
� It represents some Boolean function f
� Its two children represent two functions fv and fv’

� They together represent a Shannon cofactor tree
f = v fv + v� fv� (Shannon expansion)

� A terminal node is either constant “0” or “1”
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Data Structures – BDDs

� Reduced Ordered BDDs (ROBDDs)
� Ordered:

� Variables follow the same order along all paths
xi1

< xi2
< xi3

< … < xin

� Reduced:
� Any node with two identical children is removed
� Two nodes with isomorphic BDD’s are merged

� These two rules make any node of an ROBDD 
represent a distinct function and make 
ROBDDs canonical representation of Boolean 
functions
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Data Structures – BDDs

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Ordered BDDs of f = x1x2+ x1x2’x3+x1’x2x3
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Data Structures – AIGs

� AND-INV graphs (AIGs)
� vertices:

� 2-input AND gates 

� edges:
� interconnects with (optional) dots representing INVs

� {AND, INV} is a functionally complete set of 
Boolean operators

� Structurally isomorphic nodes can be merged
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Data Structures – AIGs

f

g
g

f

circuit AIG
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Data Structures – SAT

� Conjunctive Normal Form (CNF)
� Product of sums

e.g., ��= (a+b�+c)(a�+b+c)(a+b�+c�)(a+b+c)
� CNF is useful for satisfiability (SAT) checking
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Data Structures – SAT

� Circuit-to-CNF conversion

b

a
c (�a + �b + c)(a + �c)(b + �c)

1

6

2 5
8

7

3

4

9 0

(�1 + 2 + 4)(1 + �4)(�2 + �4)
(�2 + �3 + 5)(2 + �5)(3 + �5)
(2 + �3 + 6)(�2 + �6)(3 + �6)
(�4 + �5 + 7)(4 + �7)(5 + �7)
(5 + 6 + 8)(�5 + �8)(�6 + �8)
(7 + 8 + 9)(�7 + �9)(�8 + �9)
(9)

Justify to “1”

AND

Is output always 0 ?

Conversion can be done in time linear to the circuit size!
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Boolean Reasoning

� A Boolean function can be represented in 
different forms 
� E.g., BDD, AIG, CNF, …

� Boolean reasoning studies the intrinsic 
characteristics of a Boolean function
� We may be interested in characteristics such as 

satisfiability, validity, decomposability, etc., of a function

� There are different Boolean reasoning engines 
based on different data structures
� E.g. BDD packages, AIG packages, SAT solvers
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Boolean Function Manipulation
� Characteristic functions

� Functional representations of “sets”
� Predicates indicating whether an element is in a set

� Operations over sets (union, intersection, complement) 
become Boolean operations (OR, AND, INV) over characteristic 
functions

E.g.,
Let X={000,001,110,111} and Y={001,101,110}
(assume B3 is our universal set)

Their characteristic functions are 
fX = x1’x2’+x1x2, fY = x1’x2+x1x2 x3’

The set X � Y has characteristic function fX � fY
The set X 
 Y has characteristic function fX � fY
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Equivalence Checking
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Digital Circuits

� Combinational circuits
� Implement Boolean functions
� Have no state-holding elements (registers)

� Sequential circuits
� Implement finite state machines
� Have state-holding elements

� Combinational circuits can be considered 
as single-state sequential circuits
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Equivalence Checking

� Combinational EC
� Check if two combinational circuits are 

equivalent, i.e., if they have the same input-
output behavior under all input assignments

� Sequential EC
� Check if two sequential circuits are equivalent, 

i.e., if they have the same input-output 
behavior under all input sequences
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Hardness

� Hardness of verification
� Combinational EC is coNP-complete

� Sequential EC and safety property checking 
are PSPACE-complete
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Combinational EC 

x 	 0

f1(x)

f2(x)

?

To check if the two circuits implementing f1 and f2 are equivalent, 
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
0 function (can be formulated as SAT solving!)
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Combinational EC

� BDD-based computation
1. Construct the ROBDDs of f1 and f2

� Variable orderings of f1 and f2 should be the same

2. Let g = f1 f2 equals constant 0 iff the two 
circuits are equivalent
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Combinational EC

� SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output 
variable cannot be valuated to true under all 
input assignments (i.e., unsatisfiable)
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Combinational EC

� Pure BDD and plain SAT solving cannot 
handle large CEC problems

� To be scalable, contemporary methods 
highly exploit structural similarities
between two circuits to be compared
� Identify and merge cutpoints (identical internal 

signals)
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Combinational EC

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Successively merge equivalent signals from inputs to outputs 
to simplify the EC problem

Cutpoints are used to 
partition the miter
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Combinational EC

� Solved in most industrial circuits (w/ multi-million 
gates)
� Computational efforts scale almost linearly with the 

design size
� Existence of structural similarities

� Logic transformations preserve similarities to some extent
� Hybrid engine of BDD, SAT, AIG, simulation, etc.

� Cutpoint identification

� Unsolved for arithmetic circuits 
� Absence of structural similarities

� Commutativity ruins internal similarities
� Word- vs. bit-level verification
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Finite State Machines

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)
�

�S=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

M([[X]],[[Y]],[[S]],I,�,�):

[[X]]: Input alphabet
[[Y]]: Output alphabet
[[S]]: State set

I  : Initial state(s)
��:  [[X]] � [[S]] � [[S]]

(next-state function or transition function)
��:  [[X]] � [[S]] � ��Y]]

(output function)
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State Transition Systems
� Transition function vs. transition relation

� Transition function: 
Transition must be deterministic (there is a unique next state for any 
current state and input)

� Transition relation:
Transition may be nondeterministic (there can be a several next 
states for any current state and input)

� Conversion from transition functions (�1,…,�n) to a transition 
relation T

When we are interested in reachability only, we may further 
quantify the inputs 

1
( , , ') ( ' ( , ))

n

i i
i

T x s s s x s�
�

� 	���� �� � �

1
( , ') [ ( ' ( , ))]

n

i i
i

T s s x s x s��
�

� � 	�� �� � � �
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Sequential EC 
� Combinational checking for sequential equivalence is 

sound, but not complete (may yield false-negative)
� Equivalent FSMs may have different state transitions and 

encodings
i o

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1
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Sequential EC

0=
?

y1

D
x

1�
1�M1

y2

D

2�
2�M2

Two FSMs M1 and M2 are equivalent if and only if the output 
of their product machine always produces constant 0
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Product Machine

� The product FSM M1�2 of FSMs
M1 = ([[X��, [[Y���, [[S1��, I1, ��, �1) and 
M2 = ([[X��, [[Y���, [[S2��, I2, ��, �2) has
� State space [[S1�� � [[S2��
� Initial state set I1 � I2

� Input alphabet [[X��
� Output alphabet {0,1}
� Transition function �1�2 = (��, ��)
� Output function �1�2 = (�� � ���)
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Sequential EC

� When the reachable states of the product 
machine is known, SEC reduces to CEC!
� Let R be the characteristic function of the 

reachable state set and , T1 and T2 be the 
transition relations of M1 and M2

� M1 and M2 are equivalent iff (�1�2 � R) is 
unsatisfiable
� There is no state that is both bad and reachable

� So the main computation of SEC is 
reachability analysis
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Reachability Analysis

� Given an FSM, which states are reachable 
from the initial state?

Unreachable statesReachable states
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Reachability “Onion Rings”

0

1

1

2
2

2

2

3 3

3

3

3

33
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Symbolic Reachability Analysis

� Reachability analysis can be performed 
either explicitly (over state transition 
graphs) or implicitly (over transition 
functions or relations)
� Implicit reachability analysis is also called 

symbolic reachability analysis (often using 
BDDs and more recently SAT)

� Image computation is the core 
computation in symbolic reachability
analysis
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Image Computation

� Given a mapping of one 
Boolean space (input
space) into another 
Boolean space (output
space)
� For a set of minterms

(care set) in the input 
space
� The image is the set of 

related minterms from the 
output space

� For a set of minterms in 
the output space
� The pre-image is the set 

of related minterms in the 
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko
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Image Computation

a b c

yx
Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko
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Symbolic Image Computation

� Img(C(x),T(x,y)) = �x [C(x) � T(x,y)]
� Image of C under T

� Implicit methods by far outperform explicit ones
� Successfully compute images with more than 2100

minterms in the input/output spaces

� Operations � and � are basic Boolean 
manipulations are implemented using BDDs
� To avoid large intermediate results (during and after the 

product computation), operation AND-EXIST is used, 
which performs product and quantification in one pass 
over the BDD
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Next-State Computation

� What is the set P of next-states from Q?

( ') ( ( ), ( , '))

.( ( ) ( , '))

P s Img Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
��� � �
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Previous-State Computation

� What is the set P of previous-states of Q?

( ) ( ( '), ( , '))

'.( ( ') ( , '))

P s PreImg Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
�� �� ���
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Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I )
{

i := 0
Ri := I
repeat

Rnew = Img( Ri, T );
i := i + 1
Ri := Ri-1� Rnew

until Ri = Ri-1

return Ri

}

Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be 
reached from initial states.

The procedures can be realized using BDD package.
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Reachability Analysis

Example

FSMs to be equivalence checked
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Reachability Analysis

Example (cont’d) i o

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Product FSM and its state transition graph
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Forward Reachability Analysis

Example (cont’d)

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1
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Backward Reachability Analysis

Example (cont’d)

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1
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Sequential EC

� Reachability analysis (product state space)
� Explicit traversal on product STG
� Implicit image computation on product FSM

� State equivalence (disjoint union state space)
� Explicit equivalence state identification on disjoint union 

STG
� Implicit state partitioning on multiplexed FSM
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State Partitioning

Example

aux

0

1

0

1

0

1

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Multiplexed FSM and the disjoint union STG
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State Partitioning

� BDD-based functional decomposition
� Bound set variables (top): state variables
� Free set variables (bottom): others
� Cutset: free-set nodes with incoming edges 

from bound-set nodes

� Paths leading to a node in the cutset form 
an equivalence class of states (for an 
iteration)

� Iterate functional decomposition over 
composed functions 
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State Partitioning

� BDD-based functional decomposition can be 
applied for state partitioning of a multiplexed 
FSM

0 1

v2

v4

0

0 1

1

1 2

v2

0 1

v1 v2

v3 v4

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

0 0

00

1

11

1
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State Partitioning

Multiple functions can be stacked using extra variables
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State Partitioning

s0

s1t0

t2t1

t3

��

��

��

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Example (cont’d)
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Sequential EC

� Reachability analysis vs. state partitioning
� Backward RA can be considered as state 

partitioning in the product state space
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Exploiting Similarities for SEC

� Generic SEC
� Works for checking designs with completely 

different circuit structures
� Too hard due to state explosion
� Designs under checking often possess 

similarities to some extent

� Desirable to reduce SEC to CEC as much 
as possible
� Take advantage of structural similaritiesfor

SEC
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Register Correspondence

� Inductive register correspondence

� Identify equivalence among registers not states
� Computation scalable to large designs 

� EC based on register correspondence is complete 
for circuits transformed by combinational 
synthesis

( , )

Base case:           ( ) ( ),  and

Inductive case:    ( ) ( ( , )),

where ( )
i j

rc

rc rc

rc i j
s s rc

I s R s

R s R x s

R s s s

�

�

�

�

� 	�

� �
�� � �

�
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Register Correspondence

Example

Result: {s1}, {s2,s3}

x
s1

1 11

s2 s3

s1= x � v1

v1

s2= ��v1v2)
s3= ��v1v2)

v2

s1=1
s2=1
s3=1

v

s1= x � v
v1

s2= �v
s3= �v

v2



Flolac 2009 73

Signal Correspondence

� Inductive signal correspondence

� Complete for retiming transformation

'

( , )

'

( , )

Base case:           ( ) ( , ),  and

Inductive case:    ( , ) ( , ),

where ( , ) ( , ) ( , ), and

( , ) '. ( , ( , )) ( , ( , ))
i j

i j

sc

sc sc

sc i j
f f sc

sc i j
f f sc

I s R x s

R x s R x s

R x s f x s f x s

R x s x f x x s f x x s� �

�

�

�

�

� 	

� � 	

�

�

� � �

� � � �

� � � � � �

� � � � � � � �
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Safety Property Checking
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Safety Property Checking

� Safety properties are the majority
� For finite-state transition systems, liveness

property checking can be converted to safety 
property checking

� Safety property checking can be 
formulated as reachability analysis
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Model Checking

� Check if a state transition system M
satisfies a temporal property �
� E.g. M l= ��	 AG(p � AX q)
� Equivalence checking is a special case

� M : product machine
� � : every state reachable from the initial state has 

output label 0 under any transitions 
(a concise formula?)
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Model Checking

� BDD-based model checking
� So-called symbolic model checking

� SAT-based model checking
� Bounded model checking (BMC)

� Checking under a pre-specified length bound

� Unbounded model checking (UMC)
� Checking without length bound
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Symbolic Model Checking

� Safety property checking is formulated as 
reachability analysis

� Reachability analysis is done by BDD-
based fixed-point computation
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Bounded Model Checking

� Is any bad state reachable from the initial 
state in k steps?
� Sound but not complete
� k is bounded from above by the number of 

states (trivial bound; not useful in practice)

� Time-frame expansion
� Similar to automatic test pattern generation

(ATPG) technique in testing
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Bounded Model Checking
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E.g., in the context of SEC, check if the product machine can 
produce output 1 in k time-frames, for k = 1, 2, …
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Unbounded Model Checking

� Two approaches
� By temporal induction

� k-step induction

� By Craig interpolation
� Image approximation with interpolation
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UMC with Temporal Induction

� Induction

� Incomplete whenever there is a P-state
transition to a �P-state in the unreachable 
state space

Base case:         ( ) ( ), and
Inductive case:  ( ) ( , ') ( ')
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UMC with Temporal Induction 

� k-step induction

� Still incomplete
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Base case:         ( ) ( , , ) ( , , ), and
Inductive case:  ( , , ) ( , , ) ( )
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UMC with Temporal Induction

� Simple-path criterion

� w/ simple-path criterion k-induction is 
complete

� k is up-bounded by the length of the longest 
simple path 

� Temporal induction can be implemented 
with incremental SAT solving
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UMC with Craig Interpolation

� Over-approximated image computation 
using SAT
� BMC + Craig interpolation allow us to compute 

image over-approximation relative to property.
� Avoid computing exact image.
� Take advantage of SAT solvers’ strength of filtering 

out irrelevant facts.
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UMC with Craig Interpolation

� Craig interpolation
� Craig interpolation theorem [Cra57]:

If A � B = false, there exists an interpolant A' for (A,B) 
such that
1. A ��A' 
2. A' � B = false
3. A' refers only to common variables of A,B

E.g. A = p � q,   B = �q � r,    A' = q

� Recent result
� Given a resolution refutation of A �B, A' can be derived 

in linear time.
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UMC with Craig Interpolation

� Reachability analysis
� Is there a state trajectory from I to F satisfying

transition relation T ?
� Reachability fixed point:

R0 = I
Ri+1 = Ri � Img(Ri, T)
R = � Ri

� F is reachable from I iff R � F ! false
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UMC with Craig Interpolation

� Over-approximated reachability analysis
R'0 = I
R'i+1 = R'i � Img' (R'i, T)
R' = � R'i

� Img' is an over-approximate image operation s.t. 
�P. Img(P, T) � Img' (P, T)

� Img' is adequate w.r.t. F, when
if P cannot reach F, Img' (P, T) cannot reach F

� If Img' is adequate, then
F is reachable from I iff R' � F ! false
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UMC with Craig Interpolation

P F

Img(P,T)

Reached from P Can reach F

Img’(P,T)

But how do you get an adequate Img'?
Source: McMillan’s slides

Adequate image
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UMC with Craig Interpolation

� k-adequacy (relaxed)
� Img' is k-adequate w.r.t. F, when

if P cannot reach F, Img'(P, T) cannot reach F
within k steps

� For k > (backward) diameter, k-adequate is 
equivalent to adequate.
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UMC with Craig Interpolation

� Idea: use unfolding to enforce k-adequacy
A = P-1 � T-1

B = T0 � T1 � """�� Tk-1 � Fk

P FT T T T T T T

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)... 

Img' is k-adequate!
Source: McMillan’s slides
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UMC with Craig Interpolation

� A � A'
� Img(P, T) � Img'(P, T)

� A' � B = false
� Img'(P, T) cannot reach F in k steps

� Hence Img' is k-adequate over-approximation.
(Img' is undefined if A�B is satisfiable.)

P FT T T T T T T

A B

t=0 t=k

A' Interpolant!

Source: McMillan’s slides
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UMC with Craig Interpolation

� Intuition
� A' tells everything the SAT solver deduced 

about the image of P in proving it can't reach F
in k steps.

� Hence, A' is in some sense an abstraction of 
the image relative to the property.

P FT T T T T T T

A B

t=0 t=k

A'
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UMC with Craig Interpolation

� Overall algorithm
let k = 0
repeat

if I can reach F within k steps, answer
reachable
R = I
while Img'(T, R) � F = false

R' = Img'(T, R) � R
if R' = R answer unreachable
R = R'

increase k
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UMC with Craig Interpolation

� Since k increases at every iteration, eventually k 
> d, the diameter, in which case Img' is adequate, 
and hence we terminate.

Notes:
� don't need to know when k > d in order to terminate (i.e. 

unbounded model checking)
� often termination occurs with k << d
� depth bound for temporal induction is the length of the 

longest simple path, which can be exponentially longer 
than diameter
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Summary

� Computation basics
� Characteristic functions and their 

manipulations
� Data structures for Boolean reasoning

� Equivalence checking
� Combinational and sequential EC

� Safety property checking
� Bounded and unbounded model checking


