
Flolac 2009 1

Hardware Equivalence &
Property Verification

Jie-Hong Roland Jiang

National Taiwan University

Flolac 2009 2

Outline
� Introduction

� Motivations
� Systems to be verified

� Hardware vs. software
� Verification methodologies

� Formal vs. informal verification
� Verification formalisms

� Temporal logics vs. model checking
� Properties to be verified

� Safety vs. liveness
� Computation basics

� Data structures and Boolean reasoning engines
� Equivalence checking

� Combinational and sequential EC
� Structure-based verification
� Function-based verification

� Safety property checking
� Bounded and unbounded model checking

� k-step induction
� Interpolation

Flolac 2009 3

Introduction

Flolac 2009 4

Motivations

� Costs of system failures
� Computational hardness

Flolac 2009 5

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

Flolac 2009 6

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

Flolac 2009 7

(2003/8) A programming error has been identified as the cause of the Northeast
power blackout, which affected an estimated 10 million people in Canada and 45
million people in the U.S.

Flolac 2009 8

Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is
preventing data from being sent to Earth, forcing a scheduled shuttle mission to
do repairs on the observatory to be delayed.

Flolac 2009 9

Hardness

� Verification may take 70% of
the entire design cycle of a
system

� State explosion problem
� �states is exponential in
�registers (state-holding
elements)

10 atoms80

10 transistors7

100,000 registers

10 states
30,000

Flolac 2009 10

Systems to Be Verified

� Hardware vs. software
� Finite state vs. infinite state

� Hardware systems can be modeled as finite-state
transition systems

� Software systems are often modeled as infinite-state
transition systems

Flolac 2009 11

Verification Methodologies

� Informal vs. formal
� Informal

� Incomplete
� E.g., by software simulation or hardware emulation

� Useful in finding bugs, but not in showing the
absence of bugs

� Formal
� Complete

� E.g., theorem proving, property checking, equivalence
checking

� Useful in both debugging and proving correctness

Flolac 2009 12

Verification Formalisms
� Temporal logics vs. model checking

� Temporal logics are useful specifying temporal properties
� E.g., may (branching time) vs. must (linear time)
� Not the only way of specifying properties

� Model checking is an automatic procedure checking whether a
model of a system satisfies a given specification

M |= �
“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

Flolac 2009 13

Properties to Be Verified

� Safety vs. liveness
� Safety property

� Something bad will never happen
couterexample of finite length

� Liveness property
� Something good will happen eventually or infinitely often

counterexample of infinite length

� 90% of the verification problems are checking safety
properties

� Liveness property checking can be converted to safety
property checking for finite state systems

Flolac 2009 14

IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.

Flolac 2009 15

Hardware Verification

� Design verification
� Does a design specification satisfy some properties?
� Property checking / assertion-based verification

� Implementation verification
� Does an implementation conform to the original

specification?
� Equivalence checking / (design rule checking)

� Manufacture verification
� Does a manufactured design have no defects?
� Testing

Flolac 2009 16

Computation Basics

Flolac 2009 17

Boolean Space
B = {0,1}
B2 = {0,1}�{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

Flolac 2009 18

Boolean Functions
� A Boolean function f: Bn � B over variables x1, x2, …, xn

maps each Boolean valuation (truth assignment) in Bn to
either 0 or 1
� E.g. f(x1, x2)

� The output value of f partitions Bn into two sets
onset (f=1):
� E.g. {00, 10} (i.e., with characteristic function F1 = �x2)
offset (f= 0):
� E.g. {01, 11} (i.e., with characteristic function F0 = x2)

� A literal is a Boolean variable x or its negation �x in a
Boolean formula

x1x2 f
0 0 1
0 1 0
1 0 1
1 1 0

1x

2x

0
0
1

1 x1

x2

Flolac 2009 19

Boolean Functions

� The onset of f, denoted as F1, is F1= {v � Bn |
f(v)=1}
� If F1 = Bn, f is a tautology

� The offset of f, denoted as F0, is F0= {v � Bn |
f(v)=0}
� If F0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

� Two Boolean functions f and g are equivalent if
�v� Bn. f(v) 	 g(v)

Flolac 2009 20

Boolean Functions

� There are 2n vertices in Boolean space Bn

� There are 22n
distinct n-variable Boolean

functions
� Each F1
 Bn corresponds to a distinct Boolean function

x1x2x3
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 � 1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

Flolac 2009 21

Boolean Operations

Given two Boolean functions:
f: Bn � B
g: Bn � B

� h = f � g from conjunction is defined as
H1 = F1 G1; H0 = Bn \ H1

� h = f � g from disjunction is defined as
H1 = F1 � G1; H0 = Bn \ H1

� h = �f from complement is defined as
H1 = F0; H0 = F1

Flolac 2009 22

Cofactor & Quantification
Given a Boolean function:

f : Bn � B, with input variables (x1,…,xi,…,xn)

� Positive cofactor, h = fxi , is defined as
h = f(x1,…,1,…,xn)

� Negative cofactor, h = f�xi , is defined as
h = f(x1,…,0,…,xn)

� Existential quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Universal quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Boolean difference over variable xi , h = �f/�xi , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

Flolac 2009 23

Data Structures

� Basic data structures for Boolean function
representation
� Truth tables
� Binary Decision Diagrams (BDDs)
� AND-INV graphs (AIGs)
� Conjunctive Normal Forms (CNFs)
� …

� Why bother having different data
structures?

Flolac 2009 24

Data Structures

Data-structure revolution in verification
� State graph (late 70s-80s)

� Problem size ~104 states

� BDD (late 80s-90s)
� Problem size ~1020 states
� Critical resource: memory

� SAT (late 90s-)
� GRASP, SATO, chaff, berkmin
� Problem size ~10100 (?) states
� Critical resource: CPU time

Flolac 2009 25

Data Structures – BDDs

� BDDs are graph representations of
Boolean functions
� A non-terminal node is a decision node

(multiplexer) controlled by some variable v
� It represents some Boolean function f
� Its two children represent two functions fv and fv’

� They together represent a Shannon cofactor tree
f = v fv + v� fv� (Shannon expansion)

� A terminal node is either constant “0” or “1”

Flolac 2009 26

Data Structures – BDDs

� Reduced Ordered BDDs (ROBDDs)
� Ordered:

� Variables follow the same order along all paths
xi1

< xi2
< xi3

< … < xin

� Reduced:
� Any node with two identical children is removed
� Two nodes with isomorphic BDD’s are merged

� These two rules make any node of an ROBDD
represent a distinct function and make
ROBDDs canonical representation of Boolean
functions

Flolac 2009 27

Data Structures – BDDs

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Ordered BDDs of f = x1x2+ x1x2’x3+x1’x2x3

Flolac 2009 28

Data Structures – AIGs

� AND-INV graphs (AIGs)
� vertices:

� 2-input AND gates

� edges:
� interconnects with (optional) dots representing INVs

� {AND, INV} is a functionally complete set of
Boolean operators

� Structurally isomorphic nodes can be merged

Flolac 2009 29

Data Structures – AIGs

f

g
g

f

circuit AIG

Flolac 2009 30

Data Structures – SAT

� Conjunctive Normal Form (CNF)
� Product of sums

e.g., ��= (a+b�+c)(a�+b+c)(a+b�+c�)(a+b+c)
� CNF is useful for satisfiability (SAT) checking

Flolac 2009 31

Data Structures – SAT

� Circuit-to-CNF conversion

b

a
c (�a + �b + c)(a + �c)(b + �c)

1

6

2 5
8

7

3

4

9 0

(�1 + 2 + 4)(1 + �4)(�2 + �4)
(�2 + �3 + 5)(2 + �5)(3 + �5)
(2 + �3 + 6)(�2 + �6)(3 + �6)
(�4 + �5 + 7)(4 + �7)(5 + �7)
(5 + 6 + 8)(�5 + �8)(�6 + �8)
(7 + 8 + 9)(�7 + �9)(�8 + �9)
(9)

Justify to “1”

AND

Is output always 0 ?

Conversion can be done in time linear to the circuit size!

Flolac 2009 32

Boolean Reasoning

� A Boolean function can be represented in
different forms
� E.g., BDD, AIG, CNF, …

� Boolean reasoning studies the intrinsic
characteristics of a Boolean function
� We may be interested in characteristics such as

satisfiability, validity, decomposability, etc., of a function

� There are different Boolean reasoning engines
based on different data structures
� E.g. BDD packages, AIG packages, SAT solvers

Flolac 2009 33

Boolean Function Manipulation
� Characteristic functions

� Functional representations of “sets”
� Predicates indicating whether an element is in a set

� Operations over sets (union, intersection, complement)
become Boolean operations (OR, AND, INV) over characteristic
functions

E.g.,
Let X={000,001,110,111} and Y={001,101,110}
(assume B3 is our universal set)

Their characteristic functions are
fX = x1’x2’+x1x2, fY = x1’x2+x1x2 x3’

The set X � Y has characteristic function fX � fY
The set X Y has characteristic function fX � fY

Flolac 2009 34

Equivalence Checking

Flolac 2009 35

Digital Circuits

� Combinational circuits
� Implement Boolean functions
� Have no state-holding elements (registers)

� Sequential circuits
� Implement finite state machines
� Have state-holding elements

� Combinational circuits can be considered
as single-state sequential circuits

Flolac 2009 36

Equivalence Checking

� Combinational EC
� Check if two combinational circuits are

equivalent, i.e., if they have the same input-
output behavior under all input assignments

� Sequential EC
� Check if two sequential circuits are equivalent,

i.e., if they have the same input-output
behavior under all input sequences

Flolac 2009 37

Hardness

� Hardness of verification
� Combinational EC is coNP-complete

� Sequential EC and safety property checking
are PSPACE-complete

Flolac 2009 38

Combinational EC

x 	 0

f1(x)

f2(x)

?

To check if the two circuits implementing f1 and f2 are equivalent,
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
0 function (can be formulated as SAT solving!)

Flolac 2009 39

Combinational EC

� BDD-based computation
1. Construct the ROBDDs of f1 and f2

� Variable orderings of f1 and f2 should be the same

2. Let g = f1 f2 equals constant 0 iff the two
circuits are equivalent

Flolac 2009 40

Combinational EC

� SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output
variable cannot be valuated to true under all
input assignments (i.e., unsatisfiable)

Flolac 2009 41

Combinational EC

� Pure BDD and plain SAT solving cannot
handle large CEC problems

� To be scalable, contemporary methods
highly exploit structural similarities
between two circuits to be compared
� Identify and merge cutpoints (identical internal

signals)

Flolac 2009 42

Combinational EC

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Successively merge equivalent signals from inputs to outputs
to simplify the EC problem

Cutpoints are used to
partition the miter

Flolac 2009 43

Combinational EC

� Solved in most industrial circuits (w/ multi-million
gates)
� Computational efforts scale almost linearly with the

design size
� Existence of structural similarities

� Logic transformations preserve similarities to some extent
� Hybrid engine of BDD, SAT, AIG, simulation, etc.

� Cutpoint identification

� Unsolved for arithmetic circuits
� Absence of structural similarities

� Commutativity ruins internal similarities
� Word- vs. bit-level verification

Flolac 2009 44

Finite State Machines

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)
�

�S=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

M([[X]],[[Y]],[[S]],I,�,�):

[[X]]: Input alphabet
[[Y]]: Output alphabet
[[S]]: State set

I : Initial state(s)
��: [[X]] � [[S]] � [[S]]

(next-state function or transition function)
��: [[X]] � [[S]] � ��Y]]

(output function)

Flolac 2009 45

State Transition Systems
� Transition function vs. transition relation

� Transition function:
Transition must be deterministic (there is a unique next state for any
current state and input)

� Transition relation:
Transition may be nondeterministic (there can be a several next
states for any current state and input)

� Conversion from transition functions (�1,…,�n) to a transition
relation T

When we are interested in reachability only, we may further
quantify the inputs

1
(, , ') (' (,))

n

i i
i

T x s s s x s�
�

� 	���� �� � �

1
(, ') [(' (,))]

n

i i
i

T s s x s x s��
�

� � 	�� �� � � �

Flolac 2009 46

Sequential EC
� Combinational checking for sequential equivalence is

sound, but not complete (may yield false-negative)
� Equivalent FSMs may have different state transitions and

encodings
i o

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Flolac 2009 47

Sequential EC

0=
?

y1

D
x

1�
1�M1

y2

D

2�
2�M2

Two FSMs M1 and M2 are equivalent if and only if the output
of their product machine always produces constant 0

Flolac 2009 48

Product Machine

� The product FSM M1�2 of FSMs
M1 = ([[X��, [[Y���, [[S1��, I1, ��, �1) and
M2 = ([[X��, [[Y���, [[S2��, I2, ��, �2) has
� State space [[S1�� � [[S2��
� Initial state set I1 � I2

� Input alphabet [[X��
� Output alphabet {0,1}
� Transition function �1�2 = (��, ��)
� Output function �1�2 = (�� � ���)

Flolac 2009 49

Sequential EC

� When the reachable states of the product
machine is known, SEC reduces to CEC!
� Let R be the characteristic function of the

reachable state set and , T1 and T2 be the
transition relations of M1 and M2

� M1 and M2 are equivalent iff (�1�2 � R) is
unsatisfiable
� There is no state that is both bad and reachable

� So the main computation of SEC is
reachability analysis

Flolac 2009 50

Reachability Analysis

� Given an FSM, which states are reachable
from the initial state?

Unreachable statesReachable states

Flolac 2009 51

Reachability “Onion Rings”

0

1

1

2
2

2

2

3 3

3

3

3

33

Flolac 2009 52

Symbolic Reachability Analysis

� Reachability analysis can be performed
either explicitly (over state transition
graphs) or implicitly (over transition
functions or relations)
� Implicit reachability analysis is also called

symbolic reachability analysis (often using
BDDs and more recently SAT)

� Image computation is the core
computation in symbolic reachability
analysis

Flolac 2009 53

Image Computation

� Given a mapping of one
Boolean space (input
space) into another
Boolean space (output
space)
� For a set of minterms

(care set) in the input
space
� The image is the set of

related minterms from the
output space

� For a set of minterms in
the output space
� The pre-image is the set

of related minterms in the
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko

Flolac 2009 54

Image Computation

a b c

yx
Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko

Flolac 2009 55

Symbolic Image Computation

� Img(C(x),T(x,y)) = �x [C(x) � T(x,y)]
� Image of C under T

� Implicit methods by far outperform explicit ones
� Successfully compute images with more than 2100

minterms in the input/output spaces

� Operations � and � are basic Boolean
manipulations are implemented using BDDs
� To avoid large intermediate results (during and after the

product computation), operation AND-EXIST is used,
which performs product and quantification in one pass
over the BDD

Flolac 2009 56

Next-State Computation

� What is the set P of next-states from Q?

(') ((), (, '))

.(() (, '))

P s Img Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
��� � �

Flolac 2009 57

Previous-State Computation

� What is the set P of previous-states of Q?

() (('), (, '))

'.((') (, '))

P s PreImg Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
�� �� ���

Flolac 2009 58

Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I)
{

i := 0
Ri := I
repeat

Rnew = Img(Ri, T);
i := i + 1
Ri := Ri-1� Rnew

until Ri = Ri-1

return Ri

}

Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be
reached from initial states.

The procedures can be realized using BDD package.

Flolac 2009 59

Reachability Analysis

Example

FSMs to be equivalence checked

Flolac 2009 60

Reachability Analysis

Example (cont’d) i o

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Product FSM and its state transition graph

Flolac 2009 61

Forward Reachability Analysis

Example (cont’d)

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1

Flolac 2009 62

Backward Reachability Analysis

Example (cont’d)

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1

Flolac 2009 63

Sequential EC

� Reachability analysis (product state space)
� Explicit traversal on product STG
� Implicit image computation on product FSM

� State equivalence (disjoint union state space)
� Explicit equivalence state identification on disjoint union

STG
� Implicit state partitioning on multiplexed FSM

Flolac 2009 64

State Partitioning

Example

aux

0

1

0

1

0

1

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Multiplexed FSM and the disjoint union STG

Flolac 2009 65

State Partitioning

� BDD-based functional decomposition
� Bound set variables (top): state variables
� Free set variables (bottom): others
� Cutset: free-set nodes with incoming edges

from bound-set nodes

� Paths leading to a node in the cutset form
an equivalence class of states (for an
iteration)

� Iterate functional decomposition over
composed functions

Flolac 2009 66

State Partitioning

� BDD-based functional decomposition can be
applied for state partitioning of a multiplexed
FSM

0 1

v2

v4

0

0 1

1

1 2

v2

0 1

v1 v2

v3 v4

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

0 0

00

1

11

1

Flolac 2009 67

State Partitioning

Multiple functions can be stacked using extra variables

Flolac 2009 68

State Partitioning

s0

s1t0

t2t1

t3

��

��

��

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Example (cont’d)

Flolac 2009 69

Sequential EC

� Reachability analysis vs. state partitioning
� Backward RA can be considered as state

partitioning in the product state space

Flolac 2009 70

Exploiting Similarities for SEC

� Generic SEC
� Works for checking designs with completely

different circuit structures
� Too hard due to state explosion
� Designs under checking often possess

similarities to some extent

� Desirable to reduce SEC to CEC as much
as possible
� Take advantage of structural similaritiesfor

SEC

Flolac 2009 71

Register Correspondence

� Inductive register correspondence

� Identify equivalence among registers not states
� Computation scalable to large designs

� EC based on register correspondence is complete
for circuits transformed by combinational
synthesis

(,)

Base case: () (), and

Inductive case: () ((,)),

where ()
i j

rc

rc rc

rc i j
s s rc

I s R s

R s R x s

R s s s

�

�

�

�

� 	�

� �
�� � �

�

Flolac 2009 72

Register Correspondence

Example

Result: {s1}, {s2,s3}

x
s1

1 11

s2 s3

s1= x � v1

v1

s2= ��v1v2)
s3= ��v1v2)

v2

s1=1
s2=1
s3=1

v

s1= x � v
v1

s2= �v
s3= �v

v2

Flolac 2009 73

Signal Correspondence

� Inductive signal correspondence

� Complete for retiming transformation

'

(,)

'

(,)

Base case: () (,), and

Inductive case: (,) (,),

where (,) (,) (,), and

(,) '. (, (,)) (, (,))
i j

i j

sc

sc sc

sc i j
f f sc

sc i j
f f sc

I s R x s

R x s R x s

R x s f x s f x s

R x s x f x x s f x x s� �

�

�

�

�

� 	

� � 	

�

�

� � �

� � � �

� � � � � �

� � � � � � � �

Flolac 2009 74

Safety Property Checking

Flolac 2009 75

Safety Property Checking

� Safety properties are the majority
� For finite-state transition systems, liveness

property checking can be converted to safety
property checking

� Safety property checking can be
formulated as reachability analysis

Flolac 2009 76

Model Checking

� Check if a state transition system M
satisfies a temporal property �
� E.g. M l= ��	 AG(p � AX q)
� Equivalence checking is a special case

� M : product machine
� � : every state reachable from the initial state has

output label 0 under any transitions
(a concise formula?)

Flolac 2009 77

Model Checking

� BDD-based model checking
� So-called symbolic model checking

� SAT-based model checking
� Bounded model checking (BMC)

� Checking under a pre-specified length bound

� Unbounded model checking (UMC)
� Checking without length bound

Flolac 2009 78

Symbolic Model Checking

� Safety property checking is formulated as
reachability analysis

� Reachability analysis is done by BDD-
based fixed-point computation

Flolac 2009 79

Bounded Model Checking

� Is any bad state reachable from the initial
state in k steps?
� Sound but not complete
� k is bounded from above by the number of

states (trivial bound; not useful in practice)

� Time-frame expansion
� Similar to automatic test pattern generation

(ATPG) technique in testing

Flolac 2009 80

Bounded Model Checking

I

X0 X1 X2Y0 Y1 Y2

�

�

�

�

�

�

E.g., in the context of SEC, check if the product machine can
produce output 1 in k time-frames, for k = 1, 2, …

Flolac 2009 81

Unbounded Model Checking

� Two approaches
� By temporal induction

� k-step induction

� By Craig interpolation
� Image approximation with interpolation

Flolac 2009 82

UMC with Temporal Induction

� Induction

� Incomplete whenever there is a P-state
transition to a �P-state in the unreachable
state space

Base case: () (), and
Inductive case: () (, ') (')

I s P s
P s T s s P s

�
� �

� �
� � � �

Flolac 2009 83

UMC with Temporal Induction

� k-step induction

� Still incomplete

0 0 0

0 1 0 1 1

Base case: () (, ,) (, ,), and
Inductive case: (, ,) (, ,) ()

k k k k

k k k k k

I s T s s P s s
P s s T s s P s� � �

� �

� �

� � � � �� �
� � � � �� �

Flolac 2009 84

UMC with Temporal Induction

� Simple-path criterion

� w/ simple-path criterion k-induction is
complete

� k is up-bounded by the length of the longest
simple path

� Temporal induction can be implemented
with incremental SAT solving

1

i

j k
s

� 	� js�

Flolac 2009 85

UMC with Craig Interpolation

� Over-approximated image computation
using SAT
� BMC + Craig interpolation allow us to compute

image over-approximation relative to property.
� Avoid computing exact image.
� Take advantage of SAT solvers’ strength of filtering

out irrelevant facts.

Flolac 2009 86

UMC with Craig Interpolation

� Craig interpolation
� Craig interpolation theorem [Cra57]:

If A � B = false, there exists an interpolant A' for (A,B)
such that
1. A ��A'
2. A' � B = false
3. A' refers only to common variables of A,B

E.g. A = p � q, B = �q � r, A' = q

� Recent result
� Given a resolution refutation of A �B, A' can be derived

in linear time.

Flolac 2009 87

UMC with Craig Interpolation

� Reachability analysis
� Is there a state trajectory from I to F satisfying

transition relation T ?
� Reachability fixed point:

R0 = I
Ri+1 = Ri � Img(Ri, T)
R = � Ri

� F is reachable from I iff R � F ! false

Flolac 2009 88

UMC with Craig Interpolation

� Over-approximated reachability analysis
R'0 = I
R'i+1 = R'i � Img' (R'i, T)
R' = � R'i

� Img' is an over-approximate image operation s.t.
�P. Img(P, T) � Img' (P, T)

� Img' is adequate w.r.t. F, when
if P cannot reach F, Img' (P, T) cannot reach F

� If Img' is adequate, then
F is reachable from I iff R' � F ! false

Flolac 2009 89

UMC with Craig Interpolation

P F

Img(P,T)

Reached from P Can reach F

Img’(P,T)

But how do you get an adequate Img'?
Source: McMillan’s slides

Adequate image

Flolac 2009 90

UMC with Craig Interpolation

� k-adequacy (relaxed)
� Img' is k-adequate w.r.t. F, when

if P cannot reach F, Img'(P, T) cannot reach F
within k steps

� For k > (backward) diameter, k-adequate is
equivalent to adequate.

Flolac 2009 91

UMC with Craig Interpolation

� Idea: use unfolding to enforce k-adequacy
A = P-1 � T-1

B = T0 � T1 � """�� Tk-1 � Fk

P FT T T T T T T

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)...

Img' is k-adequate!
Source: McMillan’s slides

Flolac 2009 92

UMC with Craig Interpolation

� A � A'
� Img(P, T) � Img'(P, T)

� A' � B = false
� Img'(P, T) cannot reach F in k steps

� Hence Img' is k-adequate over-approximation.
(Img' is undefined if A�B is satisfiable.)

P FT T T T T T T

A B

t=0 t=k

A' Interpolant!

Source: McMillan’s slides

Flolac 2009 93

UMC with Craig Interpolation

� Intuition
� A' tells everything the SAT solver deduced

about the image of P in proving it can't reach F
in k steps.

� Hence, A' is in some sense an abstraction of
the image relative to the property.

P FT T T T T T T

A B

t=0 t=k

A'

Flolac 2009 94

UMC with Craig Interpolation

� Overall algorithm
let k = 0
repeat

if I can reach F within k steps, answer
reachable
R = I
while Img'(T, R) � F = false

R' = Img'(T, R) � R
if R' = R answer unreachable
R = R'

increase k

Flolac 2009 95

UMC with Craig Interpolation

� Since k increases at every iteration, eventually k
> d, the diameter, in which case Img' is adequate,
and hence we terminate.

Notes:
� don't need to know when k > d in order to terminate (i.e.

unbounded model checking)
� often termination occurs with k << d
� depth bound for temporal induction is the length of the

longest simple path, which can be exponentially longer
than diameter

Flolac 2009 96

Summary

� Computation basics
� Characteristic functions and their

manipulations
� Data structures for Boolean reasoning

� Equivalence checking
� Combinational and sequential EC

� Safety property checking
� Bounded and unbounded model checking

