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Introduction
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Motivations

� Costs of system failures
� Computational hardness
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(1995/1) Intel announces a pre-tax charge of 475 million dollars against 
earnings, ostensibly the total cost associated with replacement of the 
flawed processors. 

Flolac 2009 6

(1996/6) The European Ariane5 rocket 
explodes 40 s into its maiden flight due to 
a software bug. 
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(2003/8) A programming error has been identified as the cause of the Northeast 
power blackout, which affected an estimated 10 million people in Canada and 45 
million people in the U.S. 
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Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is 
preventing data from being sent to Earth, forcing a scheduled shuttle mission to 
do repairs on the observatory to be delayed.
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Hardness

� Verification may take 70% of 
the entire design cycle of a 
system

� State explosion problem
� �states is exponential in 
�registers (state-holding 
elements)

10     atoms80

10   transistors7

100,000 registers

10           states
30,000
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Systems to Be Verified

� Hardware vs. software
� Finite state vs. infinite state

� Hardware systems can be modeled as finite-state 
transition systems

� Software systems are often modeled as infinite-state 
transition systems
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Verification Methodologies

� Informal vs. formal
� Informal

� Incomplete
� E.g., by software simulation or hardware emulation

� Useful in finding bugs, but not in showing the 
absence of bugs

� Formal
� Complete

� E.g., theorem proving, property checking, equivalence 
checking

� Useful in both debugging and proving correctness
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Verification Formalisms
� Temporal logics vs. model checking

� Temporal logics are useful specifying temporal properties
� E.g., may (branching time) vs. must (linear time)
� Not the only way of specifying properties

� Model checking is an automatic procedure checking whether a 
model of a system satisfies a given specification

M |= �
“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Properties to Be Verified

� Safety vs. liveness
� Safety property

� Something bad will never happen 
couterexample of finite length

� Liveness property
� Something good will happen eventually or infinitely often

counterexample of infinite length

� 90% of the verification problems are checking safety 
properties

� Liveness property checking can be converted to safety 
property checking for finite state systems
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IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.
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Hardware Verification

� Design verification
� Does a design specification satisfy some properties?
� Property checking / assertion-based verification

� Implementation verification
� Does an implementation conform to the original 

specification?
� Equivalence checking / (design rule checking)

� Manufacture verification
� Does a manufactured design have no defects?
� Testing
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Computation Basics
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Boolean Space
B = {0,1}
B2 = {0,1}�{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4
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Boolean Functions
� A Boolean function f: Bn � B over variables x1, x2, …, xn

maps each Boolean valuation (truth assignment) in Bn to
either 0 or 1
� E.g. f(x1, x2)

� The output value of f partitions Bn into two sets
onset (f=1):
� E.g. {00, 10}  (i.e., with characteristic function F1 = �x2 )
offset (f= 0): 
� E.g. {01, 11} (i.e., with characteristic function F0 = x2 )

� A literal is a Boolean variable x or its negation �x in a 
Boolean formula

x1x2 f
0  0    1
0  1    0
1  0    1
1  1    0

1x

2x

0
0
1

1 x1

x2
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Boolean Functions

� The onset of f, denoted as F1, is F1= {v � Bn |
f(v)=1}
� If F1 = Bn, f is a tautology

� The offset of f, denoted as F0, is F0= {v � Bn |
f(v)=0}
� If F0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

� Two Boolean functions f and g are equivalent if
�v� Bn. f(v) 	 g(v)
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Boolean Functions

� There are 2n vertices in Boolean space Bn

� There are 22n
distinct n-variable Boolean 

functions
� Each F1 
 Bn corresponds to a distinct Boolean function

x1x2x3
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0 � 1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations

Given two Boolean functions:
f:  Bn � B
g: Bn � B

� h = f � g from conjunction is defined as
H1 = F1  G1; H0 = Bn \ H1

� h = f � g from disjunction is defined as
H1 = F1 � G1; H0 = Bn \ H1

� h = �f from complement is defined as
H1 = F0; H0 = F1
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Cofactor & Quantification
Given a Boolean function:

f :  Bn � B, with input variables (x1,…,xi,…,xn)

� Positive cofactor, h = fxi , is defined as
h = f(x1,…,1,…,xn)

� Negative cofactor, h = f�xi , is defined as
h = f(x1,…,0,…,xn)

� Existential quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Universal quantification over variable xi , h = �xi. f , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)

� Boolean difference over variable xi , h = �f/�xi , is defined as
h = f(x1,…,0,…,xn) � f(x1,…,1,…,xn)
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Data Structures

� Basic data structures for Boolean function 
representation
� Truth tables
� Binary Decision Diagrams (BDDs)
� AND-INV graphs (AIGs)
� Conjunctive Normal Forms (CNFs)
� …

� Why bother having different data 
structures?
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Data Structures

Data-structure revolution in verification
� State graph (late 70s-80s)

� Problem size ~104 states

� BDD (late 80s-90s)
� Problem size ~1020 states
� Critical resource: memory

� SAT (late 90s-)
� GRASP, SATO, chaff, berkmin
� Problem size ~10100 (?) states
� Critical resource: CPU time
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Data Structures – BDDs

� BDDs are graph representations of 
Boolean functions
� A non-terminal node is a decision node 

(multiplexer) controlled by some variable v
� It represents some Boolean function f
� Its two children represent two functions fv and fv’

� They together represent a Shannon cofactor tree
f = v fv + v� fv� (Shannon expansion)

� A terminal node is either constant “0” or “1”
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Data Structures – BDDs

� Reduced Ordered BDDs (ROBDDs)
� Ordered:

� Variables follow the same order along all paths
xi1

< xi2
< xi3

< … < xin

� Reduced:
� Any node with two identical children is removed
� Two nodes with isomorphic BDD’s are merged

� These two rules make any node of an ROBDD 
represent a distinct function and make 
ROBDDs canonical representation of Boolean 
functions
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Data Structures – BDDs

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Ordered BDDs of f = x1x2+ x1x2’x3+x1’x2x3
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Data Structures – AIGs

� AND-INV graphs (AIGs)
� vertices:

� 2-input AND gates 

� edges:
� interconnects with (optional) dots representing INVs

� {AND, INV} is a functionally complete set of 
Boolean operators

� Structurally isomorphic nodes can be merged
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Data Structures – AIGs

f

g
g

f

circuit AIG
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Data Structures – SAT

� Conjunctive Normal Form (CNF)
� Product of sums

e.g., ��= (a+b�+c)(a�+b+c)(a+b�+c�)(a+b+c)
� CNF is useful for satisfiability (SAT) checking
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Data Structures – SAT

� Circuit-to-CNF conversion

b

a
c (�a + �b + c)(a + �c)(b + �c)

1

6

2 5
8

7

3

4

9 0

(�1 + 2 + 4)(1 + �4)(�2 + �4)
(�2 + �3 + 5)(2 + �5)(3 + �5)
(2 + �3 + 6)(�2 + �6)(3 + �6)
(�4 + �5 + 7)(4 + �7)(5 + �7)
(5 + 6 + 8)(�5 + �8)(�6 + �8)
(7 + 8 + 9)(�7 + �9)(�8 + �9)
(9)

Justify to “1”

AND

Is output always 0 ?

Conversion can be done in time linear to the circuit size!
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Boolean Reasoning

� A Boolean function can be represented in 
different forms 
� E.g., BDD, AIG, CNF, …

� Boolean reasoning studies the intrinsic 
characteristics of a Boolean function
� We may be interested in characteristics such as 

satisfiability, validity, decomposability, etc., of a function

� There are different Boolean reasoning engines 
based on different data structures
� E.g. BDD packages, AIG packages, SAT solvers
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Boolean Function Manipulation
� Characteristic functions

� Functional representations of “sets”
� Predicates indicating whether an element is in a set

� Operations over sets (union, intersection, complement) 
become Boolean operations (OR, AND, INV) over characteristic 
functions

E.g.,
Let X={000,001,110,111} and Y={001,101,110}
(assume B3 is our universal set)

Their characteristic functions are 
fX = x1’x2’+x1x2, fY = x1’x2+x1x2 x3’

The set X � Y has characteristic function fX � fY
The set X  Y has characteristic function fX � fY
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Equivalence Checking
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Digital Circuits

� Combinational circuits
� Implement Boolean functions
� Have no state-holding elements (registers)

� Sequential circuits
� Implement finite state machines
� Have state-holding elements

� Combinational circuits can be considered 
as single-state sequential circuits
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Equivalence Checking

� Combinational EC
� Check if two combinational circuits are 

equivalent, i.e., if they have the same input-
output behavior under all input assignments

� Sequential EC
� Check if two sequential circuits are equivalent, 

i.e., if they have the same input-output 
behavior under all input sequences
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Hardness

� Hardness of verification
� Combinational EC is coNP-complete

� Sequential EC and safety property checking 
are PSPACE-complete
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Combinational EC 

x 	 0

f1(x)

f2(x)

?

To check if the two circuits implementing f1 and f2 are equivalent, 
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
0 function (can be formulated as SAT solving!)
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Combinational EC

� BDD-based computation
1. Construct the ROBDDs of f1 and f2

� Variable orderings of f1 and f2 should be the same

2. Let g = f1 f2 equals constant 0 iff the two 
circuits are equivalent
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Combinational EC

� SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output 
variable cannot be valuated to true under all 
input assignments (i.e., unsatisfiable)
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Combinational EC

� Pure BDD and plain SAT solving cannot 
handle large CEC problems

� To be scalable, contemporary methods 
highly exploit structural similarities
between two circuits to be compared
� Identify and merge cutpoints (identical internal 

signals)
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Combinational EC

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Successively merge equivalent signals from inputs to outputs 
to simplify the EC problem

Cutpoints are used to 
partition the miter
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Combinational EC

� Solved in most industrial circuits (w/ multi-million 
gates)
� Computational efforts scale almost linearly with the 

design size
� Existence of structural similarities

� Logic transformations preserve similarities to some extent
� Hybrid engine of BDD, SAT, AIG, simulation, etc.

� Cutpoint identification

� Unsolved for arithmetic circuits 
� Absence of structural similarities

� Commutativity ruins internal similarities
� Word- vs. bit-level verification
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Finite State Machines

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)
�

�S=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

M([[X]],[[Y]],[[S]],I,�,�):

[[X]]: Input alphabet
[[Y]]: Output alphabet
[[S]]: State set

I  : Initial state(s)
��:  [[X]] � [[S]] � [[S]]

(next-state function or transition function)
��:  [[X]] � [[S]] � ��Y]]

(output function)
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State Transition Systems
� Transition function vs. transition relation

� Transition function: 
Transition must be deterministic (there is a unique next state for any 
current state and input)

� Transition relation:
Transition may be nondeterministic (there can be a several next 
states for any current state and input)

� Conversion from transition functions (�1,…,�n) to a transition 
relation T

When we are interested in reachability only, we may further 
quantify the inputs 

1
( , , ') ( ' ( , ))

n

i i
i

T x s s s x s�
�

� 	���� �� � �

1
( , ') [ ( ' ( , ))]

n

i i
i

T s s x s x s��
�

� � 	�� �� � � �
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Sequential EC 
� Combinational checking for sequential equivalence is 

sound, but not complete (may yield false-negative)
� Equivalent FSMs may have different state transitions and 

encodings
i o

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1
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Sequential EC

0=
?

y1

D
x

1�
1�M1

y2

D

2�
2�M2

Two FSMs M1 and M2 are equivalent if and only if the output 
of their product machine always produces constant 0
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Product Machine

� The product FSM M1�2 of FSMs
M1 = ([[X��, [[Y���, [[S1��, I1, ��, �1) and 
M2 = ([[X��, [[Y���, [[S2��, I2, ��, �2) has
� State space [[S1�� � [[S2��
� Initial state set I1 � I2

� Input alphabet [[X��
� Output alphabet {0,1}
� Transition function �1�2 = (��, ��)
� Output function �1�2 = (�� � ���)
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Sequential EC

� When the reachable states of the product 
machine is known, SEC reduces to CEC!
� Let R be the characteristic function of the 

reachable state set and , T1 and T2 be the 
transition relations of M1 and M2

� M1 and M2 are equivalent iff (�1�2 � R) is 
unsatisfiable
� There is no state that is both bad and reachable

� So the main computation of SEC is 
reachability analysis
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Reachability Analysis

� Given an FSM, which states are reachable 
from the initial state?

Unreachable statesReachable states
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Reachability “Onion Rings”

0

1

1

2
2

2

2

3 3

3

3

3

33
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Symbolic Reachability Analysis

� Reachability analysis can be performed 
either explicitly (over state transition 
graphs) or implicitly (over transition 
functions or relations)
� Implicit reachability analysis is also called 

symbolic reachability analysis (often using 
BDDs and more recently SAT)

� Image computation is the core 
computation in symbolic reachability
analysis
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Image Computation

� Given a mapping of one 
Boolean space (input
space) into another 
Boolean space (output
space)
� For a set of minterms

(care set) in the input 
space
� The image is the set of 

related minterms from the 
output space

� For a set of minterms in 
the output space
� The pre-image is the set 

of related minterms in the 
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko
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Image Computation

a b c

yx
Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko
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Symbolic Image Computation

� Img(C(x),T(x,y)) = �x [C(x) � T(x,y)]
� Image of C under T

� Implicit methods by far outperform explicit ones
� Successfully compute images with more than 2100

minterms in the input/output spaces

� Operations � and � are basic Boolean 
manipulations are implemented using BDDs
� To avoid large intermediate results (during and after the 

product computation), operation AND-EXIST is used, 
which performs product and quantification in one pass 
over the BDD
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Next-State Computation

� What is the set P of next-states from Q?

( ') ( ( ), ( , '))

.( ( ) ( , '))

P s Img Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
��� � �



Flolac 2009 57

Previous-State Computation

� What is the set P of previous-states of Q?

( ) ( ( '), ( , '))

'.( ( ') ( , '))

P s PreImg Q s T s s

s Q s T s s
�

�

�

� � �

�� ��� �
�� �� ���
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Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I )
{

i := 0
Ri := I
repeat

Rnew = Img( Ri, T );
i := i + 1
Ri := Ri-1� Rnew

until Ri = Ri-1

return Ri

}

Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be 
reached from initial states.

The procedures can be realized using BDD package.

Flolac 2009 59

Reachability Analysis

Example

FSMs to be equivalence checked
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Reachability Analysis

Example (cont’d) i o

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Product FSM and its state transition graph
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Forward Reachability Analysis

Example (cont’d)

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1
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Backward Reachability Analysis

Example (cont’d)

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 0

0

1

2

0/0

1/0

0/0 1/0

1

1

0

30/0

1/0

0/01/0

1

0

0/1

1/1

0/1

1/1

0

1

0

2

0/1 1/1

1

3

1/10/1
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Sequential EC

� Reachability analysis (product state space)
� Explicit traversal on product STG
� Implicit image computation on product FSM

� State equivalence (disjoint union state space)
� Explicit equivalence state identification on disjoint union 

STG
� Implicit state partitioning on multiplexed FSM
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State Partitioning

Example

aux

0

1

0

1

0

1

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Multiplexed FSM and the disjoint union STG
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State Partitioning

� BDD-based functional decomposition
� Bound set variables (top): state variables
� Free set variables (bottom): others
� Cutset: free-set nodes with incoming edges 

from bound-set nodes

� Paths leading to a node in the cutset form 
an equivalence class of states (for an 
iteration)

� Iterate functional decomposition over 
composed functions 
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State Partitioning

� BDD-based functional decomposition can be 
applied for state partitioning of a multiplexed 
FSM

0 1

v2

v4

0

0 1

1

1 2

v2

0 1

v1 v2

v3 v4

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

0 0

00

1

11

1

Flolac 2009 67

State Partitioning

Multiple functions can be stacked using extra variables
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State Partitioning

s0

s1t0

t2t1

t3

��

��

��

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Example (cont’d)
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Sequential EC

� Reachability analysis vs. state partitioning
� Backward RA can be considered as state 

partitioning in the product state space
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Exploiting Similarities for SEC

� Generic SEC
� Works for checking designs with completely 

different circuit structures
� Too hard due to state explosion
� Designs under checking often possess 

similarities to some extent

� Desirable to reduce SEC to CEC as much 
as possible
� Take advantage of structural similaritiesfor

SEC
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Register Correspondence

� Inductive register correspondence

� Identify equivalence among registers not states
� Computation scalable to large designs 

� EC based on register correspondence is complete 
for circuits transformed by combinational 
synthesis

( , )

Base case:           ( ) ( ),  and

Inductive case:    ( ) ( ( , )),

where ( )
i j

rc

rc rc

rc i j
s s rc

I s R s

R s R x s

R s s s

�

�

�

�

� 	�

� �
�� � �

�
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Register Correspondence

Example

Result: {s1}, {s2,s3}

x
s1

1 11

s2 s3

s1= x � v1

v1

s2= ��v1v2)
s3= ��v1v2)

v2

s1=1
s2=1
s3=1

v

s1= x � v
v1

s2= �v
s3= �v

v2



Flolac 2009 73

Signal Correspondence

� Inductive signal correspondence

� Complete for retiming transformation

'

( , )

'

( , )

Base case:           ( ) ( , ),  and

Inductive case:    ( , ) ( , ),

where ( , ) ( , ) ( , ), and

( , ) '. ( , ( , )) ( , ( , ))
i j

i j

sc

sc sc

sc i j
f f sc

sc i j
f f sc

I s R x s

R x s R x s

R x s f x s f x s

R x s x f x x s f x x s� �

�

�

�

�

� 	

� � 	

�

�

� � �

� � � �

� � � � � �

� � � � � � � �
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Safety Property Checking
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Safety Property Checking

� Safety properties are the majority
� For finite-state transition systems, liveness

property checking can be converted to safety 
property checking

� Safety property checking can be 
formulated as reachability analysis
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Model Checking

� Check if a state transition system M
satisfies a temporal property �
� E.g. M l= ��	 AG(p � AX q)
� Equivalence checking is a special case

� M : product machine
� � : every state reachable from the initial state has 

output label 0 under any transitions 
(a concise formula?)
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Model Checking

� BDD-based model checking
� So-called symbolic model checking

� SAT-based model checking
� Bounded model checking (BMC)

� Checking under a pre-specified length bound

� Unbounded model checking (UMC)
� Checking without length bound
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Symbolic Model Checking

� Safety property checking is formulated as 
reachability analysis

� Reachability analysis is done by BDD-
based fixed-point computation
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Bounded Model Checking

� Is any bad state reachable from the initial 
state in k steps?
� Sound but not complete
� k is bounded from above by the number of 

states (trivial bound; not useful in practice)

� Time-frame expansion
� Similar to automatic test pattern generation

(ATPG) technique in testing
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Bounded Model Checking
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E.g., in the context of SEC, check if the product machine can 
produce output 1 in k time-frames, for k = 1, 2, …
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Unbounded Model Checking

� Two approaches
� By temporal induction

� k-step induction

� By Craig interpolation
� Image approximation with interpolation
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UMC with Temporal Induction

� Induction

� Incomplete whenever there is a P-state
transition to a �P-state in the unreachable 
state space

Base case:         ( ) ( ), and
Inductive case:  ( ) ( , ') ( ')

I s P s
P s T s s P s

�
� �

� �
� � � �

Flolac 2009 83

UMC with Temporal Induction 

� k-step induction

� Still incomplete
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Base case:         ( ) ( , , ) ( , , ), and
Inductive case:  ( , , ) ( , , ) ( )
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UMC with Temporal Induction

� Simple-path criterion

� w/ simple-path criterion k-induction is 
complete

� k is up-bounded by the length of the longest 
simple path 

� Temporal induction can be implemented 
with incremental SAT solving
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UMC with Craig Interpolation

� Over-approximated image computation 
using SAT
� BMC + Craig interpolation allow us to compute 

image over-approximation relative to property.
� Avoid computing exact image.
� Take advantage of SAT solvers’ strength of filtering 

out irrelevant facts.
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UMC with Craig Interpolation

� Craig interpolation
� Craig interpolation theorem [Cra57]:

If A � B = false, there exists an interpolant A' for (A,B) 
such that
1. A ��A' 
2. A' � B = false
3. A' refers only to common variables of A,B

E.g. A = p � q,   B = �q � r,    A' = q

� Recent result
� Given a resolution refutation of A �B, A' can be derived 

in linear time.
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UMC with Craig Interpolation

� Reachability analysis
� Is there a state trajectory from I to F satisfying

transition relation T ?
� Reachability fixed point:

R0 = I
Ri+1 = Ri � Img(Ri, T)
R = � Ri

� F is reachable from I iff R � F ! false
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UMC with Craig Interpolation

� Over-approximated reachability analysis
R'0 = I
R'i+1 = R'i � Img' (R'i, T)
R' = � R'i

� Img' is an over-approximate image operation s.t. 
�P. Img(P, T) � Img' (P, T)

� Img' is adequate w.r.t. F, when
if P cannot reach F, Img' (P, T) cannot reach F

� If Img' is adequate, then
F is reachable from I iff R' � F ! false
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UMC with Craig Interpolation

P F

Img(P,T)

Reached from P Can reach F

Img’(P,T)

But how do you get an adequate Img'?
Source: McMillan’s slides

Adequate image
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UMC with Craig Interpolation

� k-adequacy (relaxed)
� Img' is k-adequate w.r.t. F, when

if P cannot reach F, Img'(P, T) cannot reach F
within k steps

� For k > (backward) diameter, k-adequate is 
equivalent to adequate.
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UMC with Craig Interpolation

� Idea: use unfolding to enforce k-adequacy
A = P-1 � T-1

B = T0 � T1 � """�� Tk-1 � Fk

P FT T T T T T T

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)... 

Img' is k-adequate!
Source: McMillan’s slides
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UMC with Craig Interpolation

� A � A'
� Img(P, T) � Img'(P, T)

� A' � B = false
� Img'(P, T) cannot reach F in k steps

� Hence Img' is k-adequate over-approximation.
(Img' is undefined if A�B is satisfiable.)

P FT T T T T T T

A B

t=0 t=k

A' Interpolant!

Source: McMillan’s slides
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UMC with Craig Interpolation

� Intuition
� A' tells everything the SAT solver deduced 

about the image of P in proving it can't reach F
in k steps.

� Hence, A' is in some sense an abstraction of 
the image relative to the property.

P FT T T T T T T

A B

t=0 t=k

A'
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UMC with Craig Interpolation

� Overall algorithm
let k = 0
repeat

if I can reach F within k steps, answer
reachable
R = I
while Img'(T, R) � F = false

R' = Img'(T, R) � R
if R' = R answer unreachable
R = R'

increase k
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UMC with Craig Interpolation

� Since k increases at every iteration, eventually k 
> d, the diameter, in which case Img' is adequate, 
and hence we terminate.

Notes:
� don't need to know when k > d in order to terminate (i.e. 

unbounded model checking)
� often termination occurs with k << d
� depth bound for temporal induction is the length of the 

longest simple path, which can be exponentially longer 
than diameter
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Summary

� Computation basics
� Characteristic functions and their 

manipulations
� Data structures for Boolean reasoning

� Equivalence checking
� Combinational and sequential EC

� Safety property checking
� Bounded and unbounded model checking


