Turing Machine

Elementary Complexity Theory	 Turing machines are one of the most popular models of computation. They are proposed by Alan Turing (a British mathematician). The renowned ACM Turing Award is named after him.
Bow-Yaw Wang	• A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ where
Institute of Information Science Academia Sinica, Taiwan July 2, 2009	 K is a finite set of states; Σ is a finite set of symbols (also called an alphabet); ★ □ ∈ Σ: the blank symbol ★ ▷∈ Σ: the first symbol δ is a transition function
	★ $\delta : K \times \Sigma \rightarrow (K \cup \{halt, yes, no\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$ ★ Since δ is a function, M is deterministic.
Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 1 / 67	Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 3 / 67
Outline	Computation in Turing Machines
1 Turing Machines	• A Turing machine has a tape.
2 Complexity Classes	 Initially, a finite input x = a₁a₂···a_n ∈ (Σ − {⊔})* following the symbol ▷ is on the tape. ▷ a₁a₂···a_n ⊔ ⊔···
3 Space Complexity	• There is a cursor pointing to a current symbol on the tape
4 Reduction and Complete Problems	▶ Initially, the cursor points to ▷. ▶ $\underline{\triangleright}a_1a_2\cdots a_n \sqcup \sqcup \cdots$
5 Time Complexity	 δ is the "program" of the machine. Assume the current state is q ∈ K, the current symbol is σ ∈ Σ.
6 Existential Second Order Logic	 δ(q, σ) = (p, ρ, D) represents that p is the next state, ρ is the symbol replacing σ, and D ∈ {←, →, -} is the cursor direction. We assume the ▷ is never overwritten.
🕐 Quantified Boolean Formula	★ That is, for all q and p, $\delta(q, \triangleright) = (p, \rho, \Delta)$ implies $\rho = \triangleright$ and $D = \rightarrow$.

Configurations

- A configuration characterizes the complete description of the current computation.
- A configuration (q, w, u) of a Turing machine consists of a state q, and two strings w and u.
 - q is the current state of the Turing machine.
 - w is the string to the left of the cursor and the current symbol.
 - + u is the string to the right of the cursor (possibly empty).
- The initial configuration on input x is therefore (s, \triangleright, x) .
- Moreover, we write $(q, w, u) \xrightarrow{M} (q', w', u')$ if (q, w, u) changes to (q', w', u') by one step in M. There are three cases:
 - ► $\delta(q, \sigma) = (p, \rho, \leftarrow)$, then $(q, x\sigma, y) \xrightarrow{M} (p, x, \rho y)$;
 - → $\delta(q, \sigma) = (p, \rho, \rightarrow)$, then $(q, x\sigma, \tau y) \xrightarrow{M} (p, x\rho\tau, y)$;
 - $\delta(q,\sigma) = (p,\rho,-)$, then $(q,x\sigma,y) \xrightarrow{M} (p,x\rho,y)$

July 2, 2009 5 / 67

Halting and Acceptance

- The computation in a Turing machine cannot continue only when it reaches the three states: *halt, yes,* and *no.*
 - If this happens, we say the Turing machine halts.
 - ${\scriptstyle \bullet}\,$ Of course, a Turing machine may not halt.
- If the state yes is reached, we say the machine accepts the input (write M(x) = yes).
- If the state *no* is reached, we say the machine rejects the input (write M(x) = no).
- If the state *halt* is reached, we define the output of the Turing machine to be the content y of the tape when it halts (write M(x) = y).
- If the Turing machine does not halt, we write $M(x) = \mathbb{Z}$.

Recursive Languages

- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- Let M be a Turing machine such that for any $x \in (\Sigma \setminus \{\sqcup\})^*$,
 - $x \in L$, then M(x) = yes;
 - $x \notin L$, then M(x) = no.
- Then we say *M* decides *L*.
- If L is decided by some Turing machine, we say L is recursive.
- In other words,
 - ► *M* always halts on any input; and
 - $\, \cdot \, M$ decides whether the input is in the language or not.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 7 / 67

Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- Let *M* be a Turing machine such that for any $x \in (\Sigma \setminus \{\sqcup\})^*$,
 - $x \in L$, then M(x) = yes;
 - $x \notin L$, then $M(x) = \mathbb{Z}$.
- Then we say *M* accepts *L*.
- If *L* is accepted by some Turing machine, we say *L* is recursively enumerable.
- Note that,
 - ► *M* may not halt.
 - ${\scriptstyle \blacktriangleright}$ The input is in the language when when it halts.
- Practically, this is not very useful.
 - ${\scriptstyle \blacktriangleright}\,$ We do not know how long we need to wait.

Nondeterministic Turing Machines

- Similar to finite automata, we can consider nondeterministic Turing machines.
- A nondeterministic Turing machine is a quadruple $N = (K, \Sigma, \Delta, s)$ where K is a finite set of states, Σ is a finite set of symbols, and $s \in K$ is its initial state. Moreover,
 - Δ ⊆ (K × Σ) × [(K ∪ {halt, yes, no}) × Σ × {←, →, −}] is its transition relation.
- Similarly, we can define $(q, w, u) \xrightarrow{N} (q', w', u')$.

Deterministic and Nondeterministic Computation

 A nondeterministic Turing machine decides language L in time f(n) if it decodes L and for any x ∈ Σ*, (s, ▷, x) →^k (q, u, w), then k ≤ f(|x|).

Elementary Complexity Th

Bow-Yaw Wang (Academia Sinica)	Elementary Complexity Theory	July 2, 2009

Acceptance

- Let N be a nondeterministic Turing machine.
- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- We say N decides L if for any $x \in \Sigma^*$

$$x \in L$$
 if and only if $(s, \triangleright, x) \xrightarrow{N^*} (yes, w, u)$ for some w, u .

- Since *N* is nondeterministic, there may be several halting configurations.
 - ► $(s, \triangleright, x) \xrightarrow{N}^{*} (halt, w_0, u_0), (s, \triangleright, x) \xrightarrow{N}^{*} (halt, w_1, u_1),$ $(s, \triangleright, x) \xrightarrow{N}^{*} (no, w_2, u_2),$ etc.
- However, we need only one halting configuration of the form (yes, w, u) for x ∈ L.
 - ▶ Conversely, *all* halting configurations are not of this form if $x \notin L$.

$\mathsf{P} \text{ and } \mathsf{N}\mathsf{P}$

Bow-Yaw Wang (Acade

Define

TIME $(f(n)) = \{L : L \text{ can be decided by a TM in time } f(n)\}$

NTIME $(f(n)) = \{L : L \text{ can be decided by an NTM in time } f(n)\}$

• Let

$$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathbf{TIME}(n^k) \text{ and } \mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathbf{NTIME}(n^k)$$

- We have $\mathbf{P} \subseteq \mathbf{NP}$.
 - However, whether the inclusion is proper is still open.
- In this lecture, we will consider several problems related to logic and discuss their complexity.

9 / 67

July 2, 2009

Boolean Expressions

- Fix a countably infinite set of Boolean variables X = {x₀, x₁,..., x_i,...}.
- A Boolean expression is an expression built from Boolean variables with connectives $\neg, \lor,$ and $\land.$
- A truth assignment *T* is a mapping from Boolean variables to truth values **false** and **true**.
- We say a truth assignment T satisfies a Boolean expression φ (write T ⊨ φ) if φ[x₀, x₁, ..., x_i, ... ↦ T(x₀), T(x₁), ..., T(x_i), ...] evaluates to true.

- A Boolean circuit is a graph C = (V, E) where $V = \{1, ..., n\}$ are the gates of C. Moreover
 - ▶ *C* has no cycles. All edges are of the form (i, j) with i < j.
 - All nodes have indegree ≤ 2 .
 - Each $i \in V$ has a sort s(i) where
 - $s(i) \in \{$ **false**, **true**, \lor , \land , \neg , $x_0, x_1, \ldots, \}$.
 - ★ If $s(i) \in \{$ false, true, $x_0, x_1, ... \}$, *i* has indegree 0 and is an input gate;
 - ★ If $s(i) = \neg$, *i* has indegree one;
 - ★ If $s(i) \in \{\lor, \land\}$, *i* has indegree two.
 - ▶ The gate *n* has outdegree zero and is called the output gate.
- The semantics of a Boolean circuit is defined as in propositional logic.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 13 / 67 Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 15 / 67

SATISFIABILITY (SAT)

- A Boolean expression φ is satisfiable if there is a truth assignment T such that T ⊨ φ.
- SATISFIABILITY (SAT) is the following problem:
 Given a Boolean expression φ in conjunctive normal form, is it satisfiable?
- SAT can be decided in **TIME** (n^22^n) by exhaustive search.
- SAT can be decided in NP:
 - Guess a truth assignment nondeterministically;
 - Check whether the truth assignment satisfies all clauses.

CIRCUIT VALUE

- CIRCUIT VALUE is the following problem: Given a Boolean circuit *C* without variable gates, does *C* evaluate to **true**?
- CIRCUIT VALUE is in **P**.
 - Simply evaluate the gate values in numerical order.

Space Complexity

- A *k*-tape Turing machine with input and output is a Turing machine *M* with *k* tapes. Moreover,
 - M never writes on tape 1 (its read-only input);
 - M never reads on tape k (its write-only output);
 - The other k 2 tapes are working tapes.
- A configuration of k-tape Turing machine with input and output is a 2k + 1-tuple $(q, w_1, u_1, \dots, w_k, u_k)$.
 - The initial configuration on input x is $(s, \triangleright, x, \triangleright, \epsilon, \dots, \triangleright, \epsilon)$.
- On input x, if $(s, \triangleright, x, \triangleright, \epsilon, \dots, \triangleright, \epsilon) \xrightarrow{M}^{*} (H, w_1, u_1, \dots, w_k, u_k)$ where $H \in \{halt, yes, no\}$, we say the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
 - $\, {\scriptstyle \bullet \,}$ Note that the space on input and output tapes does not count.

- Let $L \subseteq \Sigma^*$ be a language.
- The complement of L, write \overline{L} , is as follows.

 $x \in \overline{L}$ iff $x \notin L$.

 \bullet For any complexity class $\mathcal C,$ define

 $\mathbf{co}\mathcal{C} = \{\overline{L} : L \in \mathcal{C}\}.$

g (Academia Sinica) Eleme

ory

July 2, 2009

17 / 67

SPACE(f(n)) and **NSPACE**(f(n))

• Define

SPACE $(f(n)) = \left\{ L: \begin{array}{l} L \text{ can be decided by a TM with input} \\ \text{and output within space bound } f(n) \end{array} \right\}.$

• **NSPACE**(f(n)) is defined similarly.

• Define

$$L = SPACE(\log n).$$
$$NL = NSPACE(\log n).$$
$$PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^{k})$$
$$NPSPACE = \bigcup_{k \in \mathbb{N}} NSPACE(n^{k})$$

Complements of Complexity Classes

- For any deterministic complexity class C, we have $\mathbf{co}C = C$.
 - Let L ∈ C. There is a TM M deciding L within the resource bound of C. Construct a TM M' by switch the yes and no states of M. We have x ∈ L iff M(x) = yes iff M'(x) = no. Thus M' decides L within the resource bound of C.
- Consider $L = \{\phi : \phi \text{ is an unsatisfiable Boolean expression } \}$.
- Thus $\overline{L} = \{\phi : \phi \text{ is a satisfiable Boolean expression } \}.$
 - Strictly speaking, *L* = {φ : φ is not a Boolean expression or φ is satisfiable }. But this is a convenient convention.
- Since $\overline{L} \in \mathbf{NP}$, we have $L \in \mathbf{coNP}$.

July 2, 2009

- UNSAT = { $\phi : \phi$ is an unsatisfiable Boolean expression }.
 - $\phi \in UNSAT$ if there is no truth assignment that satisfies ϕ .
 - ▶ $\phi \in UNSAT$ if all truth assignments do not satisfy ϕ .

July 2, 2009

Fallacies Q & A

- Q: Is $\mathbf{P} \subseteq \mathbf{coNP}$?
- A: Yes.
 - ▶ Let $L \in \mathbf{P}$. Clearly, $\overline{L} \in \mathbf{P} \subseteq \mathbf{NP}$. Thus $L \in \mathbf{coNP}$.
- Q: Is $\Sigma^* \times NP = coNP$?
- A: No.
 - ▶ Both NP and coNP are classes of languages (that is, each one is a set of sets of strings). It does not make sense to consider $\Sigma^* \setminus NP$ or $\Sigma^* \setminus coNP$.
- Q: Is $2^{\Sigma^*} \setminus NP = coNP$?
- A: No.
 - ► $\mathbf{P} \subseteq \mathbf{NP} \cap \mathbf{coNP}$.

Relation between Complexity Classes

- Since any Turing machine with input and output is a nondeterministic Turing machine with input and output, it is easy to see the following statements:
 - **TIME** $(f(n)) \subseteq$ **NTIME**(f(n));
 - **SPACE** $(f(n)) \subseteq$ **NSPACE**(f(n)).
- Moreover, a Turing machine can use at most f(n) space in time f(n). Therefore,
 - **TIME** $(f(n)) \subseteq$ **SPACE**(f(n));
 - $NTIME(f(n)) \subseteq NSPACE(f(n)).$
- Can we establish more relation between these classes?

Bow-Yaw Wang (Academia Sin

July 2, 2009 23 / 67

Nondeterministic Time and Deterministic Space

Theorem

For any "reasonable" non-decreasing function f(n), we have $NTIME(f(n)) \subseteq SPACE(f(n))$.

Proof.

Let $L \in \mathbf{NTIME}(f(n))$ and M a NTM decide L in time f(n). On input of size n, a TM M' works as follows:

- for each sequence of nondeterministic choices of M
- 2 M' simulates M with time f(n)
- \bigcirc if *M* accepts, *M'* accepts
- if M does not accept, M' erases working tapes

Each sequence of nondeterministic choices of M has length f(n). Moreover, the simulation of M uses at most f(n) space. Hence M is a TM deciding L in space f(n).

Reachability Method

Theorem

For any "reasonable" non-decreasing function f(n), we have **NSPACE** $(f(n)) \subseteq \text{TIME}(c^{\log n+f(n)})$.

Proof.

Let $L \in NSPACE(f(n))$ and M a k-tape NTM with input and output decide L in space f(n). A configuration of M is of the form $(q, w_1, u_1, \ldots, w_k, u_k)$. Moreover, M does not overwrite the input. A configuration can be represented by $(q, i, w_2, u_2, \ldots, w_k, u_k)$ where i is the index of the cursor on input. Thus there are at most $|K| \times n \times |\Sigma|^{(2k-2)f(n)}$ configurations.

Define the configuration graph of M on input $x \ G(M, x)$ to be the graph with configurations of M as its nodes. (C_0, C_1) is an edge in G(M, x) if

 $C_0 \xrightarrow{M} C_1$. Thus $x \in L$ iff there is a path from $(s, \triangleright, x, \triangleright, \epsilon \dots, \triangleright, \epsilon)$ to some $(yes, w_1, u_1, \dots, w_k, u_k)$.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009

25 / 6

Reachability Method

Proof.

Since there is a polynomial-time deterministic algorithm for graph reachability, we can decide if $x \in L$ in time polynomial in the size of the configuration graph. Thus $L \in \text{TIME}(c^{\log n + f(n)})$.

- To be precise, let us describe how the reachability algorithm is used.
- $\bullet\,$ We do not need the adjacency matrix of the configuration graph.
 - It uses too much space unnecessarily.
- Instead, we check whether there is an edge from C_0 to C_1 by simulating M.
- In other words, entries in the adjacency matrix are computed when needed.
 - This is called an on-the-fly algorithm.

Comparing Complexity Classes

Theorem

$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NSPACE.$

- We know in fact that $L \subsetneq PSPACE$.
- However, we do not know which of the inclusion is proper.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 27 / 67

Nondeterminism in Space Complexity

- For time complexity, we do not know if nondeterminism does increase the expressive power of Turing machines.
 - \blacktriangleright Otherwise, we would have known $P \varsubsetneq NP$ or not.
- For space complexity, we know a little bit more.
 - Intuitively, nondeterministic computation does not need more space because space can be reused.

Savitch's Theorem

Theorem

 $REACHABILITY \in \mathbf{SPACE}(\log^2 n).$

Proof.

Let G = (V, E) with |V| = n. For $x, y \in V$ and $i \in \mathbb{N}$, define that PATH(x, y, i) holds if there is a path of length $\leq 2^i$ from x to y. Clearly, x reaches y in G if $PATH(x, y, \lceil \log n \rceil)$ holds. We will construct a TM M that decides PATH(x, y, i). M decides PATH(x, y, 0) by looking up the adjacency matrix of G. For $i \geq 1$, M does the following recursively: ① for all nodes z

- (a) if PATH(x, z, i-1) holds then
- (a) if PATH(z, y, i-1) holds then go to yes

Bow-Yaw Wang (Academia Sinica)

lexity Theory July 2, 2009

Savitch's Theorem

Proof.

More precisely, when *M* is checking *z*. It puts the tuple (x, z, i - 1) on its working tape (line 2). If PATH(x, z, i - 1) does not hold, *M* erases the tuple (x, z, i - 1) and tries the next node. If PATH(x, z, i - 1) holds, *M* erases the tuple (x, z, i - 1), puts the new tuple (z, y, i - 1) on its working tape. If PATH(z, y, i - 1) does not hold, *M* erases the tuple (z, y, i - 1) and tries the next node. Otherwise, *M* goes to the *yes* state. Observe that at most $\lceil \log n \rceil$ tuples on the working tape. Each tuple uses $3\lceil \log n \rceil$ cells. Hence *M* uses at most $O(\log^2 n)$ space.

- Of course, the algorithm is highly inefficient in terms of time.
 - ► Each recursive call will try all nodes regardlessly.
- $\bullet\,$ On the other hand, it is very efficient in terms of space
 - DFS, for instance, may use O(n) space.

NSPACE = SPACE

Theorem

```
For any "reasonable" nondecreasing f(n) \ge \log n,

NSPACE(f(n)) \subseteq SPACE(f^2(n)).
```

Proof.

Let *L* be a language and *M* an NTM decide *L* in space f(n). Moreover, $x \in L$ if the initial configuration of *M* can reach an accepting configuration of *M* in its configuration graph. Recall that the configuration graph of *M* has $O(c^{\log n+f(n)}) = O(c^{f(n)})$ nodes (since $f(n) \ge \log n$). Thus there is a TM *M'* deciding the reachability problem within space $O(\log^2(c^{f(n)})) = O(f^2(n))$.

- In other words, nondeterminism does not increase the power of TM in terms of space complexity.
- Bow-Yaw Wang (Academia Sinica)

July 2, 2009 31 / 67

CoNSPACE

- For any deterministic complexity class C, we have shown $\mathbf{co}C = C$.
- For nondeterministic complexity classes, it is not clear at all.
 - Recall NP and coNP.
- However, we will show that NSPACE = coNSPACE.

Theorem

Given a graph G and a node x, the number of nodes reachable from x in G can be computed by an NTM within space log n.

Proof.

Let $S(k) = \{y : x \longrightarrow \forall k \ y\}$. We compute $|S(1)|, |S(2)|, \dots, |S(n-1)|$ iteratively. Clearly |S(n-1)| is what we want. We design an nondeterministic algorithm using four functions. The Main function is:

1 |S(0)| := 1

Ø for k = 1, 2, ..., n - 1 do |S(k)| := Count (|S(k - 1)|)

Observe that only |S(k-1)| is needed to compute |S(k)|.

Immerman-Szelepscényi Theorem III

Proof.

For each node v, we nondeterministically check if $v \in S(k-1)$ (GuessInS (k-1, v)). If so, the counter m is incremented by 1. Futhermore, if v can reach u in one step, set reply to true. After checking all nodes nondeterministically, we will check if we have correctly collect all nodes in S(k-1) by comparing the counter m with C. If so, return the variable reply.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 35 / 6

80w-Yaw Wang (Academia Sinica)

July 2, 2009

Immerman-Szelepscényi Theorem II

Proof. To compute |S(k)| from *C*, we check how many nodes *u* are in S(k) by invoking InS (k, u, C). The Count (C) function is: **1** $\ell := 0$ **2** for $u \in V$ do if InS (k, u, C) then $\ell := \ell + 1$ The InS (k, u, C) function is: (cf the next slide) **2** m := 0; reply := false **2** for $v \in V$ do **3** if GuessInS (k - 1, v) then **4** m := m + 1 **5** if $(v, u) \in E$ then reply := true **6** if m < C then "give up" else return reply

Immerman-Szelepscényi Theorem IV

Proof.

To verify $v \in S(j)$ nondeterministically, it suffices to guess a path of length j. The function GuessInS (j, v) is:

- **1** $w_0 := x$
- **2** for p = 1, ..., j do
- guess $w_p \in V$ and check $(w_{p-1}, w_p) \in E$ (if not, "give up")
- if $w_j = v$ then return true else "give up."

Observe that only the variables $k, C, \ell, u, m, v, p, w_p, w_{p-1}$ need be recorded. Since the number of nodes is n, log n space is needed.

33 / 67

NSPACE = coNSPACE

Theorem

For any "reasonable" nondecreasing function $f(n) \ge \log n$, **NSPACE**(f(n)) =**coNSPACE**(f(n)).

Proof.

Suppose $L \in NSPACE(f(n))$ and an NTM M decide L in space f(n). We construct an NTM \overline{M} that decides \overline{L} in space f(n). On input x, \overline{M} runs the nondeterministic algorithm in the previous theorem on the configuration graph of M. If at any time, \overline{M} discovers that M reaches an accepting configuration, \overline{M} halts and rejects x. If |S(n-1)| is computed and no accepting configuration is found, \overline{M} accepts x.

Since the configuration graph of M has $c^{\log |x|+f(|x|)}$ nodes, \overline{M} uses at most O(f(n)) space if $f(n) \ge \log n$.

```
Bow-Yaw Wang (Academia Sinica)
```

July 2, 2009

37 / 67

Reduction

A language L₀ is reducible to L₁ if there is a function R : Σ^{*} → Σ^{*} computable by a Turing machine in space O(log n) such that for all input x,

$x \in L_0$ if and only if $R(x) \in L_1$.

- R is called a reduction from L_0 to L_1 .
- If *R* is a reduction computed by a Turing machine *M*, then for all input *x*, *M* halts after a polynomial number of steps.
 - \blacktriangleright Since M is deterministic, its configurations cannot repeat.
 - \star Otherwise, *M* will not halt.
 - There are at most $O(nc^{\log n})$ configurations.

- Assume there is a Turing machine M_1 to decide L_1 .
 - That is, on input x
 - ★ M_1 goes to yes if $x \in L_1$;
 - ★ M_1 goes to *no* if $x \notin L_1$.
- Further, assume L_0 is reducible to L_1 by R.
- There is a Turing machine M_0 that decides L_0 .
 - On input x, M_0 first computes R(x);
 - **2** M_0 invokes M_1 on input R(x). There are two cases:
 - ★ If M_1 goes to yes, M_0 goes to yes;
 - ★ If M_1 goes to no, M_0 goes to no.
- If there is a reduction from L_0 to L_1 and L_1 is solved, then we can solve L_0 as well.
 - Informally, L_1 is harder than L_0 .

Bow-Yaw Wang (Academia Sini

Elementary Complexity T

July 2, 2009 39 / 67

Completeness

- $\bullet~$ Let ${\mathcal C}$ be a complexity class (such as ${\textbf P}, {\textbf N}{\textbf P}, {\textbf L},$ etc).
- A language L in C is called C-complete if any language $L' \in C$ can be reduced to L.
- Informally, L is C *complete* means that it is *hardest* to solve in C.
 - Since any language in C is reducible to L, solving L means solving any language in C.
- $\bullet\,$ But how can we prove a langauge is $\mathcal C\text{-complete}?$
 - ▹ There are infinitely many languages in C. It is impossible to write down a reduction for each of them.

\triangleright	0 <i>s</i>	1	1	0	\Box
\triangleright	0	1_{q_0}	1	0	\Box
\triangleright	0	1	1_{q_0}	0	\Box
\triangleright	0	1	1	0_{q_0}	\Box
\triangleright	0	1	1_{q_1}		\Box
\triangleright	0	1_{q_1}	1	\Box	\Box
\triangleright	no	1	1	\Box	\Box

- Consider a TM $M = (K, \Sigma, \delta, s)$ deciding language L within time n^k .
- Its computation on input x can be seen as a $|x|^k \times |x|^k$ computation table.
 - Its rows are time steps 0 to $|x|^k 1$.
 - Its columns are contents of the tape.
- Moreover, let us write σ_q to represent that the cursor is pointing at a symbol σ with state q.

July 2, 2009

41 / 67

Convention in Table Method

- To simplify our presentation, we adopt the following conventions.
 - M has only one tape;
 - *M* halts on any input x in $|x|^k 2$ steps;
 - ${\scriptstyle \bullet}\,$ The computation table has enough \sqcup 's to its right;
 - M starts with cursor at the first symbol of x;
 - *M* never visits the leftmost \triangleright ;
 - *M* halts with its cursor at the second position and exactly at step $|x|^k$.
 - \bigstar You should check that these conventions are not at all restrictive.
- Let's use T(x) to represent the computation table on input x.
 - $T_{ij}(x)$ represent the (i, j)-entry of T(x).
- By convention, we have
 - $T_{0j}(x)$ = the *j*-th symbol of the input x
 - $T_{i0}(x) \Rightarrow \text{ for } 0 \leq i < |x|^k$
 - $T_{i,|x|^k-1}(x) = \sqcup$ for $0 \le i < |x|^k$.

CIRCUIT VALUE is **P**-Complete I

Theorem CIRCUIT VALUE is **P**-Complete.

Proof.

We know CIRCUIT VALUE is in **P**. It remains to show that any $L \in \mathbf{P}$, there is a reduction R from L to CIRCUIT VALUE. Let M be a TM deciding L in time n^k . Consider the computation table T(x) of M on input x. Observe that $T_{ij}(x)$ only depends on $T_{i-1,j-1}(x)$, $T_{i-1,j}$, and $T_{i-1,j+1}$. If the cursor is not at $T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}, T_{i,j} = T_{i-1,j}$. If the cursor is at one of $T_{i-1,j-1}, T_{i-1,j-1}, T_{i-1,j+1}, T_{i,j}$ may be updated. To determine $T_{i,j}$, it suffices to look at $T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}$!

$T_{i-1,j-1}$	$T_{i-1,j}$	$T_{i-1,j+1}$
$T_{i,j-1}$	$T_{i,j}$	$T_{i,j+1}$

ow-Yaw Wang (Academia Sinica

July 2, 2009 43 / 67

CIRCUIT VALUE is **P**-Complete II

Proof.

Let Γ be the set of symbols appearing on T(x). Encode each symbol $\gamma \in \Gamma$ by a bit vector $(s_1, \ldots, s_{\lceil \log |\Gamma| \rceil})$. We thus have a table of binary entries $S_{ij\ell}$ where $0 \le i, j \le |x|^k - 1$ and $1 \le \ell \le \lceil \log |\Gamma| \rceil$. Moreover, we know $S_{ij\ell}$ is determined by $S_{i-1,j-1,\ell'}, S_{i-1,j,\ell'}, S_{i-1,j+1,\ell'}$. That is, there are Boolean functions $F_1, F_2, \ldots, F_{\lceil \log |\Gamma| \rceil}$ such that

$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1},\ldots,S_{i-1,j-1,\lceil \log |\Gamma| \rceil},S_{i-1,j,1},\ldots,S_{i-1,j+1,\lceil \log |\Gamma| \rceil}).$$

Observe that F_{ℓ} are determined by M, regardless of x. Moreover, we can think of each F_i as a circuit. Thus we have a circuit C with $3\lceil \log |\Gamma| \rceil$ inputs (for $T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}$) and $\lceil \log |\Gamma| \rceil$ outputs (for $T_{i,j}$).

CIRCUIT VALUE is **P**-Complete III

Proof.					
	<i>C</i> _{0,0}	<i>C</i> _{0,1}		$C_{0, x ^{k}-1}$	
	$C_{1,0}$	$\overline{C_{1,1}}$		$\overline{C_{1, x ^k-1}}$	
			÷		
	$C_{ x ^{k}-1,0}$	$C_{ x ^{k}-1,1}$		$C_{ x ^k-1, x ^k-1}$	

Our reduction R(x) consists of $(|x|^k - 1)(|x|^k - 1)$ copies of C. The inputs of R(x) are the encoding of the initial configuration. The output of R(x)is to check if $C_{|x|^k-1,1}$ encodes the state "yes." Note that the circuit C is determined by M (and hence not by the input x). The computation of R needs to count up to $|x|^k$ only. Hence the reduction can be performed in $O(\log |x|)$ space.

reduction can be performed in O(log |x|) space

Bow-Yaw Wang (Academia Sinica)

July 2, 2009

Cook's Theorem

Theorem *SAT is* **NP**-complete.

Proof.

Let $L \in \mathbf{NP}$ and M an NTM deciding L in time n^k . Without loss of generality, we assume each step of M is nondeterministic. Moreover, there are exactly two choices in each nondeterministic step. As in table method, we construct a circuit (and hence a Boolean expression) for the computation table of M. Now the entry $T_{i,j}$ is determined by $T_{i-1,j-1}, T_{i-1,j+1}$ and the choice c_{i-1} . Thus, the circuit C has $3\lceil \log |\Gamma| \rceil + 1$ inputs. M accepts x iff there is a truth assignment to $c_0, c_1, \ldots, c_{|x|^k-1}$ such that $C_{|x|^k-1,1}$ encodes yes.

Graph-Theoretic Problems

- Let \mathcal{G} be a set of finite graphs (called a graph-theoretic property).
- The computational problem related to \mathcal{G} is: given a graph G, to decide whether $G \in \mathcal{G}$.
- It is not hard to encode any input G as a string in $\Sigma^{\ast}.$
 - $\,\,$ For instance, we can represent the adjacency matrix of G by a string.
- \bullet A graph-theoretic problem ${\cal G}$ corresponds to a language L.

• $G \in \mathcal{G}$ iff $encoding(G) \in L$.

- \bullet Consider a set ${\mathcal G}$ expressible in existential second-order logic.
 - ▶ That is, there is an existential second-order logic sentence $\exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ such that

 $\mathcal{G} = \{ G : G \vDash \exists P_0 \exists P_1 \cdots \exists P_\ell \phi \}.$

Bow-Yaw Wang (Academia S

kitv Theory

July 2, 2009 47 / 67

Deciding Graph-Theoretic Properties I

Theorem

Let $\exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ be an existential second-order sentence. Given a graph G as an input, checking $G \models \exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ is in **NP**.

Proof.

Assume P_i has arity r_i . Given G = (V, E) with |V| = n, an NTM can guess relations $P_i^M \subseteq V^{r_i}$ for $i = 0, ..., \ell$. Note that the time for guessing P_i^M is at most n^{r_i} .

After guessing P_i^{M} 's, we have a first-order logic formula ϕ with relations P_0, P_1, \ldots, P_ℓ . We now show how to decide $(G, P_0^M, \ldots, P_\ell^M) \models \phi$ in polynomial time.

We prove by induction on ϕ .

• If ϕ is atomic, we can check it by examining the adjacency matrix or P_i^M .

Deciding Graph-Theoretic Properties II

Proof.

- If φ = ¬ψ, there is a polynomial time algorithm for ψ by inductive hypothesis. We can decide ¬ψ by exchanging the yes and no states.
- If $\phi = \psi_0 \lor \psi_1$, there are polynomial time algorithms M_0 and M_1 for ψ_0 and ψ_1 respectively. We decide $\psi_0 \lor \psi_1$ by executing M_0 and then M_1 (if necessary).
- $\phi = \psi_0 \wedge \psi_1$ is similar.
- If φ = ∀xψ, there is a polynomial time algorithm M for ψ. We construct a new model H that assigns x to v and check H ⊨ ψ by M. If the answer is "yes" for all v ∈ V, we return "yes;" otherwise we return "no." Since M is polynomial in n and there are n iterations, this case can be performed in polynomial time.

Bow-Yaw Wang (Academia Sinica)

/ Theory

Characterizing Graph-Theoretic Properties

- \bullet Let Ψ be an existential second-order sentence.
- Clearly, Ψ determines a graph-theoretic property.

 *G*_Ψ = {G : G ⊨ Ψ}.
- We have shown that deciding $G \in \mathcal{G}_{\Psi}$ is in **NP** for any input graph G.
- \bullet Now consider a graph-theoretic property ${\cal G}$ that can be decided in ${\bf NP}.$
- Is there an existential second-order sentence Ψ such that \mathcal{G} = $\mathcal{G}_{\psi}?$
- If so, we can prove a graph-theoretic property is in **NP** by writing an existential second-order logic formula!
 - We thus say that the fragment of existential second-order logic characterizes graph-theoretic properties in NP.

Fagin's Theorem I

Theorem

The class of all graph-theoretic properties expressible in existential second-order logic is equal to **NP**.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 51 / 67

Fagin's Theorem II

Proof.

Let \mathcal{G} be a graph property in **NP**. Hence there is an NTM M deciding whether $G \in \mathcal{G}$ in time n^k for some k. We will construct a formula $\exists P_0 \cdots \exists P_{\ell} \phi$ such that $G \models \exists P_0 \cdots \exists P_{\ell} \phi$ iff $G \in \mathcal{G}$. Consider

<i>e</i> (<i>m</i>)	=	$\exists x_0 \exists x_1 \cdots \exists x_{m-1} \wedge_{0 \le i < j < m} \neg (x_i = x_j)$
SUCC	=	$\forall x \exists x' \neg (x = x') \land S(x, x')$
unique	=	$\forall x \forall y \forall y' (S(x,y) \land S(x,y') \rightarrow y = y')$
linear	=	$\forall x \forall y (S(x, y) \to \neg S(y, x))$
Φ_S	=	$e(n) \land \neg e(n+1) \land succ \land unique \land linear$

Observe that *S* is isomorphic to $\{(0,1), (1,2), ..., (n-2, n-1)\}$.

49 / 67

July 2, 2009

Fagin's Theorem III

Proof.

Define $\zeta(x) = \forall y \neg S(y, x)$ ("x = 0") and $\eta(x) = \forall y \neg S(x, y)$ ("x = n - 1"). Let $0 \le x_1, x_2, \ldots, x_k < n$. Write (x_1, x_2, \ldots, x_k) as \vec{x} . Observe that any number between 0 and $n^k - 1$ is represented by an \vec{x} . We define $S_k(\vec{x}, \vec{y})$ to represent \vec{y} is the successor of \vec{x} :

$$S_1(x_1, y_1) = S(x_1, y_1)$$

$$S_j(x_1, \dots, x_j, y_1, \dots, y_j) = [S(x_j, y_j) \land (x_1 = y_1) \land \dots (x_{j-1} = y_{j-1})] \lor$$

$$[\eta(x_j) \land \zeta(y_j) \land S_{j-1}(x_1, \dots, x_{j-1}, y_1, \dots, y_{j-1})]$$

In the inductive definition, $S_j(\vec{x}, \vec{y})$ represents $\vec{y} = \vec{x} + 1$ with $|\vec{x}| = |\vec{y}|$. We have $\vec{y} = \vec{x} + 1$ iff $(x_1 \text{ and } y_1 \text{ are MSB's})$

• $y_j = x_j + 1$ and $\forall i < j(y_i = x_j)$; or

• $x_j = n - 1$, $y_j = 0$, and $(y_1, \dots, y_{j-1}) = (x_1, \dots, x_{j-1}) + 1$.

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 53 / 6

Fagin's Theorem IV

Proof.

Consider the computation table T(G) of M. For each symbol $\sigma \in \Gamma$ (Γ is the set of symbols on T(G)), the relation $T_{\sigma}(\vec{x}, \vec{y})$ means that the (\vec{x}, \vec{y}) -entry of T(G) is σ . Moreover, $C_0(\vec{x})$ means that the 0-th nondeterministic choice is made at the step \vec{x} . Similarly for $C_1(\vec{x})$. The existential second order sentence is of the form:

 $\exists S \exists T_{\sigma_1} \exists T_{\Sigma_2} \cdots \exists T_{\sigma_\ell} \exists C_0 \exists C_1 \forall \vec{x} \forall \vec{x}' \forall \vec{y} \forall \vec{y}' \forall \vec{y}'' (\Phi_S \land \Phi_T \land \Phi_\Delta \land \Phi_C \land \Phi_{yes}).$

 Φ_S is the formula specifying the successor relation S. We now define the remaining subformulae.

Fagin's Theorem V

Proof.

In addition to the conventions used in Table Method, we further assume that the adjacency matrix is spread in the input: we put $n^{k-2} - 1 \sqcup$'s between two consecutive entries.

Bow-Yaw Wang (Academia Sinica

July 2, 2009 55 / 67

Fagin's Theorem VI

Proof. Φ_T specifies the boundary of computation table T(G). • When $\vec{x} = 0$ • If $y_2 = \cdots = y_k = 0$, $T_i(\vec{x}, \vec{y})$ iff $G(y_1, y_2) = i$ for i = 0, 1; • Otherwise, $T_{\sqcup}(\vec{x}, \vec{y})$. • When $\vec{y} = 0$, $T_{\triangleright}(\vec{x}, \vec{y})$; • When $\vec{y} = n^k - 1$, $T_{\sqcup}(\vec{x}, \vec{y})$.

Fagin's Theorem VII

 Φ_{Δ} specifies transition relations of *M* on *T*(*G*). Recall

$T_{i-1,j-1} = \alpha$	$T_{i-1,j} = \beta$	$T_{i-1,j+1} = \gamma$
$T_{i,j-1}$	$T_{i,j} = \sigma$	$T_{i,j+1}$

Let *c* be the nondeterministic choice made at step i - 1. For each $(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}, c, T_{i,j})$, we add the following conjunct to Φ_{Δ} :

 $\begin{bmatrix} S_k(\vec{x}',\vec{x}) \land S_k(\vec{y}',\vec{y}) \land S_k(\vec{y},\vec{y}'') \land \\ T_\alpha(\vec{x}',\vec{y'}) \land T_\beta(\vec{x}',\vec{y}) \land T_\gamma(\vec{x}',\vec{y}'') \land C_c(\vec{x}') \end{bmatrix} \to T_\sigma(\vec{x},\vec{y}).$

Fagin's Theorem IX

• For instance, there are three copies in Φ_{Δ} .

- Observe that the constructed formula is not in the monadic second order logic.
 - ▶ For instance, Φ_S and Φ_Δ define binary relations S and T_σ .

Bow-Yaw Wang (Academia Sinica)

July 2, 2009 57 / 67

Fagin's Theorem VIII

Proof.

 Φ_C specifies the nondeterministic choice at any step.

 $(C_0(\vec{x}) \vee C_1(\vec{x})) \land (\neg C_0(\vec{x}) \vee \neg C_1(\vec{x})).$

Finally Φ_{yes} specifies the accepting configuration.

$$\vec{x} = n^k - 1 \wedge \vec{y} = 1 \rightarrow T_{yes}(\vec{x}, \vec{y}).$$

It should be clear that $G \in \mathcal{G}$ iff G satisfies the existential second order sentence constructed above.

- Spreading the adjacency matrix of the input allows us to have a simple encoding.
 - Otherwise, we have to define $\vec{y} \le n^2$.
- The formula $S_k(\vec{x}, \vec{y})$ is defined by $S(x_i, y_i)$. Each instance of $S_k(\vec{x}, \vec{y})$ is a new copy.

July 2, 2009 58 / 67

July 2, 2009

59 / 67

Quantified Boolean Formula

- As we have seen, logic and complexity are closely related.
 - ► SATISFIABILITY is **NP**-complete (Cook's theorem).
 - Existential second-order logic characterizes NP (Fagin's theorem).
- There is yet another connection between logic and complexity.
- The quantified Boolean formula (QBF) problem is the following: Given a Boolean expression ϕ in conjunctive normal form with variables x_1, x_1, \ldots, x_n , decide

 $\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \phi$?

QBF and SATISFIABILITY

• SATISFIABILITY is in fact a subclass of QBF.

- Let $\phi(x_1, x_2, ..., x_n)$ be a Boolean expression in conjunctive normal form with variables $x_1, ..., x_n$.
- $\phi(x_1, x_2, \dots, x_n)$ is satisfiable iff $\exists x_1 \forall y_1 \exists x_2 \forall y_2 \dots \exists x_n \phi(x_1, \dots, x_n)$.
- Since this is a reduction, QBF is NP-hard.

QBF is **PSPACE**-Complete II

Proof.

Let $A = \{a_1, \ldots, a_{n^k}\}$ and $B = \{b_1, \ldots, b_{n^k}\}$ be sets of Boolean variables. We will construct a quaitified Boolean formula ψ_i with free variables in $A \cup B$ such that $\psi_i(A, B)$ is satisfied by ν iff

 $(\nu(a_1), \ldots, \nu(a_{n^k})) \xrightarrow{M}^* (\nu(b_1), \ldots, \nu(b_{n^k}))$ in 2^i steps. For $i = 0, \psi_0(A, B)$ states that

• $a_j = b_j$ for all j; or

• configuration B follows from A in one step.

 $\psi_0(A, B)$ can be written in disjunctive normal form with $O(n^k)$ disjuncts, and each disjunct contains $O(n^k)$ literals. That is, $\psi_0(A, B)$ is in fact in disjunctive normal form.

ow-Yaw Wang (Academia Sinica)

July 2, 2009

QBF is **PSPACE**-Complete I

Theorem *QBF is* **PSPACE**-*complete.*

Proof.

Consider any quantified Boolean formula $\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \phi$. Given any truth assignment to x_1, \ldots, x_n , we can evaluate ϕ in O(n) space.

Moreover, O(n) space is needed to record each assignment. Hence QBF is in **PSPACE**.

Suppose *L* is a language decided by an NTM *M* in polynomial space. Thus there are at most 2^{n^k} configurations of *M* on input |x| = n. We thus encode each configuration of *M* on input *x* by a bit vector of length n^k .

QBF is **PSPACE**-Complete III

Proof.

Inductively, assume we have $\psi_i(A, B)$. Define

 $\psi_{i+1}(A,B) = \exists Z \forall X \forall Y [((X = A \land Y = Z) \lor (X = Z \land Y = B)) \rightarrow \psi_i(X,Y)]$

where each of X, Y, Z has fresh n^k variables. However, ψ_{i+1} is not in the form required by QBF. It is not in prenex normal form. But this is easy to fix. Note that

 $P \to \exists Z \forall X \forall Y [R(X, Y, Z)] \equiv \exists Z \forall X \forall Y [P \to R(X, Y, Z)].$

We can easily transform ψ_{i+1} into its prenex normal form.

61 / 67

July 2, 2009

QBF is **PSPACE**-Complete IV

QBF is **PSPACE**-Complete VI

Proof.

The other problem is that

$$((X = A \land Y = Z) \lor (X = Z \land Y = B)) \to \psi_i(X, Y)$$

is not in conjunctive normal form.

Note that the disjunctive normal form is easy to compute. Recall that ψ_0 is in disjunctive normal form. Assume ψ_i is in disjunctive normal form. Our goal is to compute the disjunctive normal form of the following formula:

$$((X \neq A \lor Y \neq Z) \land (X \neq Z \lor Y \neq B)) \lor \psi_i(X, Y)$$

- If ψ_{i+1} were defined to be ∃Z[ψ_i(A, Z) ∧ ψ(Z, B)], the size of the formula is doubled. The reduction could not be performed in polynomial time.
 - That is why we "reuse" the formula ψ_i .

Bow-Yaw Wang (Academia Sinica)

July 2, 2009

65 / 67

Bow-Yaw Wang (Academia Sinica)

entary Complexity Theory

July 2, 2009 67 / 67

QBF is **PSPACE**-Complete V

