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Turing Machine

Turing machines are one of the most popular models of computation.

They are proposed by Alan Turing (a British mathematician).
▸ The renowned ACM Turing Award is named after him.

A Turing machine is a quadruple M = (K ,Σ, δ, s) where
▸ K is a finite set of states;
▸ Σ is a finite set of symbols (also called an alphabet);

☀ ⊔ ∈ Σ: the blank symbol
☀ ⊳∈ Σ: the first symbol

▸ δ is a transition function
☀ δ ∶ K ×Σ→ (K ∪ {halt, yes,no}) ×Σ × {←,→,−}.
☀ Since δ is a function, M is deterministic.
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Computation in Turing Machines

A Turing machine has a tape.
▸ Initially, a finite input x = a1a2⋯an ∈ (Σ − {⊔})∗ following the symbol ⊳

is on the tape.
▸ ⊳ a1a2⋯an ⊔ ⊔⋯

There is a cursor pointing to a current symbol on the tape
▸ Initially, the cursor points to ⊳.
▸ ⊳a1a2⋯an ⊔ ⊔⋯

δ is the “program” of the machine.
▸ Assume the current state is q ∈ K , the current symbol is σ ∈ Σ.
▸ δ(q, σ) = (p, ρ,D) represents that p is the next state, ρ is the symbol

replacing σ, and D ∈ {←,→,−} is the cursor direction.
▸ We assume the ⊳ is never overwritten.

☀ That is, for all q and p, δ(q,⊳) = (p, ρ,∆) implies ρ =⊳ and D =→.
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Configurations

A configuration characterizes the complete description of the current
computation.

A configuration (q,w ,u) of a Turing machine consists of a state q,
and two strings w and u.

▸ q is the current state of the Turing machine.
▸ w is the string to the left of the cursor and the current symbol.
▸ u is the string to the right of the cursor (possibly empty).

The initial configuration on input x is therefore (s,⊳, x).

Moreover, we write (q,w ,u) MÐ→ (q′,w ′,u′) if (q,w ,u) changes to
(q′,w ′,u′) by one step in M. There are three cases:

▸ δ(q, σ) = (p, ρ,←), then (q, xσ, y) MÐ→ (p, x , ρy);

▸ δ(q, σ) = (p, ρ,→), then (q, xσ, τy) MÐ→ (p, xρτ, y);

▸ δ(q, σ) = (p, ρ,−), then (q, xσ, y) MÐ→ (p, xρ, y).
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Halting and Acceptance

The computation in a Turing machine cannot continue only when it
reaches the three states: halt, yes, and no.

▸ If this happens, we say the Turing machine halts.
▸ Of course, a Turing machine may not halt.

If the state yes is reached, we say the machine accepts the input
(write M(x) = yes).

If the state no is reached, we say the machine rejects the input (write
M(x) = no).

If the state halt is reached, we define the output of the Turing
machine to be the content y of the tape when it halts (write
M(x) = y).

If the Turing machine does not halt, we write M(x) =↗.
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Recursive Languages

Let L ⊆ (Σ ∖ {⊔})∗ be a language.

Let M be a Turing machine such that for any x ∈ (Σ ∖ {⊔})∗,
▸ x ∈ L, then M(x) = yes;
▸ x /∈ L, then M(x) = no.

Then we say M decides L.

If L is decided by some Turing machine, we say L is recursive.

In other words,
▸ M always halts on any input; and
▸ M decides whether the input is in the language or not.
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Recursively Enumerable Languages

Let L ⊆ (Σ ∖ {⊔})∗ be a language.

Let M be a Turing machine such that for any x ∈ (Σ ∖ {⊔})∗,
▸ x ∈ L, then M(x) = yes;
▸ x /∈ L, then M(x) =↗.

Then we say M accepts L.

If L is accepted by some Turing machine, we say L is recursively
enumerable.

Note that,
▸ M may not halt.
▸ The input is in the language when when it halts.

Practically, this is not very useful.
▸ We do not know how long we need to wait.
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Nondeterministic Turing Machines

Similar to finite automata, we can consider nondeterministic Turing
machines.

A nondeterministic Turing machine is a quadruple N = (K ,Σ,∆, s)
where K is a finite set of states, Σ is a finite set of symbols, and
s ∈ K is its initial state. Moreover,

▸ ∆ ⊆ (K ×Σ) × [(K ∪ {halt, yes,no}) ×Σ × {←,→,−}] is its transition
relation.

Similarly, we can define (q,w ,u) NÐ→ (q′,w ′,u′).
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Acceptance

Let N be a nondeterministic Turing machine.

Let L ⊆ (Σ ∖ {⊔})∗ be a language.

We say N decides L if for any x ∈ Σ∗

x ∈ L if and only if (s,⊳, x) NÐ→
∗
(yes,w ,u) for some w ,u.

Since N is nondeterministic, there may be several halting
configurations.

▸ (s,⊳, x) NÐ→
∗
(halt,w0,u0), (s,⊳, x) NÐ→

∗
(halt,w1,u1),

(s,⊳, x) NÐ→
∗
(no,w2,u2), etc.

However, we need only one halting configuration of the form
(yes,w ,u) for x ∈ L.

▸ Conversely, all halting configurations are not of this form if x /∈ L.
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Deterministic and Nondeterministic Computation

Time

A nondeterministic Turing machine decides language L in time f (n) if
it decodes L and for any x ∈ Σ∗, (s,⊳, x)Ð→k (q,u,w), then
k ≤ f (∣x ∣).
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P and NP

Define

TIME(f (n)) = {L ∶ L can be decided by a TM in time f (n)}

NTIME(f (n)) = {L ∶ L can be decided by an NTM in time f (n)}

Let
P = ⋃

k∈N
TIME(nk) and NP = ⋃

k∈N
NTIME(nk)

We have P ⊆ NP.
▸ However, whether the inclusion is proper is still open.

In this lecture, we will consider several problems related to logic and
discuss their complexity.
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Boolean Expressions

Fix a countably infinite set of Boolean variables
X = {x0, x1, . . . , xi , . . .}.

A Boolean expression is an expression built from Boolean variables
with connectives ¬, ∨, and ∧.

A truth assignment T is a mapping from Boolean variables to truth
values false and true.

We say a truth assignment T satisfies a Boolean expression φ (write
T ⊧ φ) if φ[x0, x1,⋯, xi ,⋯↦ T (x0),T (x1),⋯,T (xi),⋯] evaluates to
true.
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SATISFIABILITY (SAT)

A Boolean expression φ is satisfiable if there is a truth assignment T
such that T ⊧ φ.

SATISFIABILITY (SAT) is the following problem:
Given a Boolean expression φ in conjunctive normal form, is it
satisfiable?

SAT can be decided in TIME(n22n) by exhaustive search.

SAT can be decided in NP:
▸ Guess a truth assignment nondeterministically;
▸ Check whether the truth assignment satisfies all clauses.
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Boolean Circuits

A Boolean circuit is a graph C = (V ,E) where V = {1, . . . ,n} are the
gates of C . Moreover

▸ C has no cycles. All edges are of the form (i , j) with i < j .
▸ All nodes have indegree ≤ 2.
▸ Each i ∈ V has a sort s(i) where

s(i) ∈ {false, true,∨,∧,¬, x0, x1, . . . ,}.
☀ If s(i) ∈ {false, true, x0, x1, . . .}, i has indegree 0 and is an input gate;
☀ If s(i) = ¬, i has indegree one;
☀ If s(i) ∈ {∨,∧}, i has indegree two.

▸ The gate n has outdegree zero and is called the output gate.

The semantics of a Boolean circuit is defined as in propositional logic.
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CIRCUIT VALUE

∧

∨ ∨

∧ ¬

falsetrue false

CIRCUIT VALUE is the following problem:
Given a Boolean circuit C without variable gates, does C evaluate to
true?

CIRCUIT VALUE is in P.
▸ Simply evaluate the gate values in numerical order.
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Space Complexity

A k-tape Turing machine with input and output is a Turing machine
M with k tapes. Moreover,

▸ M never writes on tape 1 (its read-only input);
▸ M never reads on tape k (its write-only output);
▸ The other k − 2 tapes are working tapes.

A configuration of k-tape Turing machine with input and output is a
2k + 1-tuple (q,w1,u1, . . . ,wk ,uk).

▸ The initial configuration on input x is (s,⊳, x ,⊳, ε, . . . ,⊳, ε).

On input x , if (s,⊳, x ,⊳, ε, . . . ,⊳, ε) MÐ→
∗
(H,w1,u1, . . . ,wk ,uk) where

H ∈ {halt, yes,no}, we say the space required by M on input x is

∑k−1
i=2 ∣wiui ∣.
▸ Note that the space on input and output tapes does not count.
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SPACE(f (n)) and NSPACE(f (n))

Define

SPACE(f (n)) = { L ∶ L can be decided by a TM with input
and output within space bound f (n) } .

NSPACE(f(n)) is defined similarly.

Define
L = SPACE(log n).

NL = NSPACE(log n).

PSPACE = ⋃
k∈N

SPACE(nk)

NPSPACE = ⋃
k∈N

NSPACE(nk)
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“Complements” of Complexity Classes

Let L ⊆ Σ∗ be a language.

The complement of L, write L, is as follows.

x ∈ L iff x /∈ L.

For any complexity class C, define

coC = {L ∶ L ∈ C}.
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Complements of Complexity Classes

For any deterministic complexity class C, we have coC = C.
▸ Let L ∈ C. There is a TM M deciding L within the resource bound of C.

Construct a TM M ′ by switch the yes and no states of M. We have
x ∈ L iff M(x) = yes iff M ′(x) = no. Thus M ′ decides L within the
resource bound of C.

Consider L = {φ ∶ φ is an unsatisfiable Boolean expression }.

Thus L = {φ ∶ φ is a satisfiable Boolean expression }.
▸ Strictly speaking, L = {φ ∶ φ is not a Boolean expression or φ is

satisfiable }. But this is a convenient convention.

Since L ∈ NP, we have L ∈ coNP.
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NP and coNP

SAT = {φ ∶ φ is a satisfiable Boolean expression }.
▸ φ ∈ SAT if there is a truth assignment that satisfies φ.

UNSAT = {φ ∶ φ is an unsatisfiable Boolean expression }.
▸ φ ∈ UNSAT if there is no truth assignment that satisfies φ.
▸ φ ∈ UNSAT if all truth assignments do not satisfy φ.
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Fallacies Q & A

Q: Is P ⊆ coNP?

A: Yes.
▸ Let L ∈ P. Clearly, L ∈ P ⊆ NP. Thus L ∈ coNP.

Q: Is Σ∗ ∖NP = coNP?

A: No.
▸ Both NP and coNP are classes of languages (that is, each one is a set

of sets of strings). It does not make sense to consider Σ∗ ∖NP or
Σ∗ ∖ coNP.

Q: Is 2Σ∗ ∖NP = coNP?

A: No.
▸ P ⊆ NP ∩ coNP.
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Relation between Complexity Classes

Since any Turing machine with input and output is a nondeterministic
Turing machine with input and output, it is easy to see the following
statements:

▸ TIME(f (n)) ⊆ NTIME(f (n));
▸ SPACE(f (n)) ⊆ NSPACE(f (n)).

Moreover, a Turing machine can use at most f (n) space in time
f (n). Therefore,

▸ TIME(f (n)) ⊆ SPACE(f (n));
▸ NTIME(f (n)) ⊆ NSPACE(f (n)).

Can we establish more relation between these classes?
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Nondeterministic Time and Deterministic Space

Theorem

For any “reasonable” non-decreasing function f (n), we have
NTIME(f (n)) ⊆ SPACE(f (n)).

Proof.

Let L ∈ NTIME(f (n)) and M a NTM decide L in time f (n). On input of
size n, a TM M ′ works as follows:

1 for each sequence of nondeterministic choices of M

2 M ′ simulates M with time f (n)
3 if M accepts, M ′ accepts

4 if M does not accept, M ′ erases working tapes

Each sequence of nondeterministic choices of M has length f (n).
Moreover, the simulation of M uses at most f (n) space. Hence M is a
TM deciding L in space f (n).
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Reachability Method

Theorem

For any “reasonable” non-decreasing function f (n), we have
NSPACE(f (n)) ⊆ TIME(c log n+f (n)).

Proof.

Let L ∈ NSPACE(f (n)) and M a k-tape NTM with input and output
decide L in space f (n). A configuration of M is of the form
(q,w1,u1, . . . ,wk ,uk). Moreover, M does not overwrite the input. A
configuration can be represented by (q, i ,w2,u2, . . . ,wk ,uk) where i is the
index of the cursor on input. Thus there are at most ∣K ∣ × n × ∣Σ∣(2k−2)f (n)

configurations.
Define the configuration graph of M on input x G(M, x) to be the graph
with configurations of M as its nodes. (C0,C1) is an edge in G(M, x) if

C0
MÐ→ C1. Thus x ∈ L iff there is a path from (s,⊳, x ,⊳, ε⋯,⊳, ε) to some

(yes,w1,u1, . . . ,wk ,uk).
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Reachability Method

Proof.

Since there is a polynomial-time deterministic algorithm for graph
reachability, we can decide if x ∈ L in time polynomial in the size of the
configuration graph. Thus L ∈ TIME(c log n+f (n)).

To be precise, let us describe how the reachability algorithm is used.

We do not need the adjacency matrix of the configuration graph.
▸ It uses too much space unnecessarily.

Instead, we check whether there is an edge from C0 to C1 by
simulating M.

In other words, entries in the adjacency matrix are computed when
needed.

▸ This is called an on-the-fly algorithm.
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Comparing Complexity Classes

Theorem

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NSPACE.

We know in fact that L ⊊ PSPACE.

However, we do not know which of the inclusion is proper.
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Nondeterminism in Space Complexity

For time complexity, we do not know if nondeterminism does increase
the expressive power of Turing machines.

▸ Otherwise, we would have known P ⊊ NP or not.

For space complexity, we know a little bit more.
▸ Intuitively, nondeterministic computation does not need more space

because space can be reused.
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Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.

Let G = (V ,E) with ∣V ∣ = n. For x , y ∈ V and i ∈ N, define that
PATH(x , y , i) holds if there is a path of length ≤ 2i from x to y . Clearly, x
reaches y in G if PATH(x , y , ⌈log n⌉) holds. We will construct a TM M
that decides PATH(x , y , i).
M decides PATH(x , y ,0) by looking up the adjacency matrix of G .
For i ≥ 1, M does the following recursively:

1 for all nodes z

2 if PATH(x , z , i − 1) holds then

3 if PATH(z , y , i − 1) holds then go to yes
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Savitch’s Theorem

Proof.

More precisely, when M is checking z . It puts the tuple (x , z , i − 1) on its
working tape (line 2). If PATH(x , z , i − 1) does not hold, M erases the
tuple (x , z , i − 1) and tries the next node. If PATH(x , z , i − 1) holds, M
erases the tuple (x , z , i − 1), puts the new tuple (z , y , i − 1) on its working
tape. If PATH(z , y , i − 1) does not hold, M erases the tuple (z , y , i − 1)
and tries the next node. Otherwise, M goes to the yes state.
Observe that at most ⌈log n⌉ tuples on the working tape. Each tuple uses
3⌈log n⌉ cells. Hence M uses at most O(log2 n) space.

Of course, the algorithm is highly inefficient in terms of time.
▸ Each recursive call will try all nodes regardlessly.

On the other hand, it is very efficient in terms of space
▸ DFS, for instance, may use O(n) space.
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NSPACE = SPACE

Theorem

For any “reasonable” nondecreasing f (n) ≥ log n,
NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.

Let L be a language and M an NTM decide L in space f (n). Moreover,
x ∈ L if the initial configuration of M can reach an accepting configuration
of M in its configuration graph. Recall that the configuration graph of M
has O(c log n+f (n)) = O(c f (n)) nodes (since f (n) ≥ log n). Thus there is a
TM M ′ deciding the reachability problem within space
O(log2(c f (n))) = O(f 2(n)).

In other words, nondeterminism does not increase the power of TM in
terms of space complexity.
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CoNSPACE

For any deterministic complexity class C, we have shown coC = C.

For nondeterministic complexity classes, it is not clear at all.
▸ Recall NP and coNP.

However, we will show that NSPACE = coNSPACE.
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Immerman-Szelepscényi Theorem I

Theorem

Given a graph G and a node x, the number of nodes reachable from x in
G can be computed by an NTM within space log n.

Proof.

Let S(k) = {y ∶ x Ð→≤k y}. We compute ∣S(1)∣, ∣S(2)∣, . . . , ∣S(n − 1)∣
iteratively. Clearly ∣S(n − 1)∣ is what we want. We design an
nondeterministic algorithm using four functions. The Main function is:

1 ∣S(0)∣ ∶= 1

2 for k = 1,2, . . . ,n − 1 do ∣S(k)∣ ∶= Count (∣S(k − 1)∣)
Observe that only ∣S(k − 1)∣ is needed to compute ∣S(k)∣.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 33 / 67

Immerman-Szelepscényi Theorem II

Proof.

To compute ∣S(k)∣ from C , we check how many nodes u are in S(k) by
invoking InS (k ,u,C). The Count (C) function is:

1 ` ∶= 0

2 for u ∈ V do if InS (k ,u,C) then ` ∶= ` + 1

The InS (k ,u,C) function is: (cf the next slide)

1 m ∶= 0; reply ∶= false

2 for v ∈ V do

3 if GuessInS (k − 1, v) then

4 m ∶= m + 1

5 if (v ,u) ∈ E then reply ∶= true

6 if m < C then “give up” else return reply
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Immerman-Szelepscényi Theorem III

Proof.

For each node v , we nondeterministically check if v ∈ S(k − 1) (GuessInS
(k − 1, v)). If so, the counter m is incremented by 1. Futhermore, if v can
reach u in one step, set reply to true.
After checking all nodes nondeterministically, we will check if we have
correctly collect all nodes in S(k − 1) by comparing the counter m with C .
If so, return the variable reply.
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Immerman-Szelepscényi Theorem IV

Proof.

To verify v ∈ S(j) nondeterministically, it suffices to guess a path of length
j . The function GuessInS (j , v) is:

1 w0 ∶= x

2 for p = 1, . . . , j do

3 guess wp ∈ V and check (wp−1,wp) ∈ E (if not, “give up”)

4 if wj = v then return true else “give up.”

Observe that only the variables k ,C , `,u,m, v ,p,wp,wp−1 need be
recorded. Since the number of nodes is n, log n space is needed.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 36 / 67



NSPACE = coNSPACE

Theorem

For any “reasonable” nondecreasing function f (n) ≥ log n,
NSPACE(f (n)) = coNSPACE(f (n)).

Proof.

Suppose L ∈ NSPACE(f (n)) and an NTM M decide L in space f (n). We
construct an NTM M that decides L in space f (n). On input x , M runs
the nondeterministic algorithm in the previous theorem on the
configuration graph of M. If at any time, M discovers that M reaches an
accepting configuration, M halts and rejects x . If ∣S(n − 1)∣ is computed
and no accepting configuration is found, M accepts x .
Since the configuration graph of M has c log ∣x ∣+f (∣x ∣) nodes, M uses at most
O(f (n)) space if f (n) ≥ log n.
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Reduction

A language L0 is reducible to L1 if there is a function R ∶ Σ∗ → Σ∗

computable by a Turing machine in space O(log n) such that for all
input x ,

x ∈ L0 if and only if R(x) ∈ L1.

R is called a reduction from L0 to L1.

If R is a reduction computed by a Turing machine M, then for all
input x , M halts after a polynomial number of steps.

▸ Since M is deterministic, its configurations cannot repeat.
☀ Otherwise, M will not halt.

▸ There are at most O(nc log n) configurations.
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Solving Problems by Reductions

Assume there is a Turing machine M1 to decide L1.
▸ That is, on input x

☀ M1 goes to yes if x ∈ L1;
☀ M1 goes to no if x /∈ L1.

Further, assume L0 is reducible to L1 by R.

There is a Turing machine M0 that decides L0.
1 On input x , M0 first computes R(x);
2 M0 invokes M1 on input R(x). There are two cases:

☀ If M1 goes to yes, M0 goes to yes;
☀ If M1 goes to no, M0 goes to no.

If there is a reduction from L0 to L1 and L1 is solved, then we can
solve L0 as well.

▸ Informally, L1 is harder than L0.
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Completeness

Let C be a complexity class (such as P,NP,L, etc).

A language L in C is called C-complete if any language L′ ∈ C can be
reduced to L.

Informally, L is C − complete means that it is hardest to solve in C.
▸ Since any language in C is reducible to L, solving L means solving any

language in C.

But how can we prove a langauge is C-complete?
▸ There are infinitely many languages in C. It is impossible to write down

a reduction for each of them.
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Table Method

⊳ 0s 1 1 0 ⊔
⊳ 0 1q0 1 0 ⊔
⊳ 0 1 1q0 0 ⊔
⊳ 0 1 1 0q0 ⊔
⊳ 0 1 1q1 ⊔ ⊔
⊳ 0 1q1 1 ⊔ ⊔
⊳ no 1 1 ⊔ ⊔

Consider a TM M = (K ,Σ, δ, s) deciding language L within time nk .

Its computation on input x can be seen as a ∣x ∣k × ∣x ∣k computation
table.

▸ Its rows are time steps 0 to ∣x ∣k − 1.
▸ Its columns are contents of the tape.

Moreover, let us write σq to represent that the cursor is pointing at a
symbol σ with state q.
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Convention in Table Method

To simplify our presentation, we adopt the following conventions.
▸ M has only one tape;
▸ M halts on any input x in ∣x ∣k − 2 steps;
▸ The computation table has enough ⊔’s to its right;
▸ M starts with cursor at the first symbol of x ;
▸ M never visits the leftmost ⊳;
▸ M halts with its cursor at the second position and exactly at step ∣x ∣k .

☀ You should check that these conventions are not at all restrictive.

Let’s use T (x) to represent the computation table on input x .
▸ Tij(x) represent the (i , j)-entry of T (x).

By convention, we have
▸ T0j(x) = the j-th symbol of the input x
▸ Ti0(x) =⊳ for 0 ≤ i < ∣x ∣k
▸ Ti,∣x ∣k−1(x) = ⊔ for 0 ≤ i < ∣x ∣k .
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CIRCUIT VALUE is P-Complete I

Theorem

CIRCUIT VALUE is P-Complete.

Proof.

We know CIRCUIT VALUE is in P. It remains to show that any L ∈ P,
there is a reduction R from L to CIRCUIT VALUE.
Let M be a TM deciding L in time nk . Consider the computation table
T (x) of M on input x . Observe that Tij(x) only depends on Ti−1,j−1(x),
Ti−1,j , and Ti−1,j+1. If the cursor is not at Ti−1,j−1,Ti−1,j ,Ti−1,j+1,
Ti ,j = Ti−1,j . If the cursor is at one of Ti−1,j−1,Ti−1,j ,Ti−1,j+1, Ti ,j may be
updated. To determine Ti ,j , it suffices to look at Ti−1,j−1,Ti−1,j ,Ti−1,j+1!

Ti−1,j−1 Ti−1,j Ti−1,j+1

Ti ,j−1 Ti ,j Ti ,j+1
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CIRCUIT VALUE is P-Complete II

Proof.

Let Γ be the set of symbols appearing on T (x). Encode each symbol γ ∈ Γ
by a bit vector (s1, . . . , s⌈log ∣Γ∣⌉). We thus have a table of binary entries

Sij` where 0 ≤ i , j ≤ ∣x ∣k − 1 and 1 ≤ ` ≤ ⌈log ∣Γ∣⌉. Moreover, we know Sij` is
determined by Si−1,j−1,`′ ,Si−1,j ,`′ ,Si−1,j+1,`′ . That is, there are Boolean
functions F1,F2, . . . ,F⌈log ∣Γ∣⌉ such that

Sij` = F`(Si−1,j−1,1, . . . ,Si−1,j−1,⌈log ∣Γ∣⌉,Si−1,j ,1, . . . ,Si−1,j+1,⌈log ∣Γ∣⌉).

Observe that F` are determined by M, regardless of x . Moreover, we can
think of each Fi as a circuit. Thus we have a circuit C with 3⌈log ∣Γ∣⌉
inputs (for Ti−1,j−1,Ti−1,j ,Ti−1,j+1) and ⌈log ∣Γ∣⌉ outputs (for Ti ,j).
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CIRCUIT VALUE is P-Complete III

Proof.

C0,0 C0,1 ⋯ C0,∣x ∣k−1

C1,0 C1,1 ⋯ C1,∣x ∣k−1

⋮
C∣x ∣k−1,0 C∣x ∣k−1,1 ⋯ C∣x ∣k−1,∣x ∣k−1

Our reduction R(x) consists of (∣x ∣k − 1)(∣x ∣k − 1) copies of C . The inputs
of R(x) are the encoding of the initial configuration. The output of R(x)
is to check if C∣x ∣k−1,1 encodes the state “yes.”
Note that the circuit C is determined by M (and hence not by the input
x). The computation of R needs to count up to ∣x ∣k only. Hence the
reduction can be performed in O(log ∣x ∣) space.
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Cook’s Theorem

Theorem

SAT is NP-complete.

Proof.

Let L ∈ NP and M an NTM deciding L in time nk . Without loss of
generality, we assume each step of M is nondeterministic. Moreover, there
are exactly two choices in each nondeterministic step.
As in table method, we construct a circuit (and hence a Boolean
expression) for the computation table of M. Now the entry Ti ,j is
determined by Ti−1,j−1,Ti−1,j ,Ti−1,j+1 and the choice ci−1. Thus, the
circuit C has 3⌈log ∣Γ∣⌉ + 1 inputs. M accepts x iff there is a truth
assignment to c0, c1, . . . , c∣x ∣k−1 such that C∣x ∣k−1,1 encodes yes.
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Graph-Theoretic Problems

Let G be a set of finite graphs (called a graph-theoretic property).

The computational problem related to G is: given a graph G , to
decide whether G ∈ G.

It is not hard to encode any input G as a string in Σ∗.
▸ For instance, we can represent the adjacency matrix of G by a string.

A graph-theoretic problem G corresponds to a language L.
▸ G ∈ G iff encoding(G) ∈ L.

Consider a set G expressible in existential second-order logic.
▸ That is, there is an existential second-order logic sentence
∃P0∃P1⋯∃P`φ such that

G = {G ∶ G ⊧ ∃P0∃P1⋯∃P`φ}.
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Deciding Graph-Theoretic Properties I

Theorem

Let ∃P0∃P1⋯∃P`φ be an existential second-order sentence. Given a graph
G as an input, checking G ⊧ ∃P0∃P1⋯∃P`φ is in NP.

Proof.

Assume Pi has arity ri . Given G = (V ,E) with ∣V ∣ = n, an NTM can guess
relations PM

i ⊆ V ri for i = 0, . . . , `. Note that the time for guessing PM
i is

at most nri .
After guessing PM

i ’s, we have a first-order logic formula φ with relations
P0,P1, . . . ,P`. We now show how to decide (G ,PM

0 , . . . ,PM
` ) ⊧ φ in

polynomial time.
We prove by induction on φ.

If φ is atomic, we can check it by examining the adjacency matrix or
PM

i .
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Deciding Graph-Theoretic Properties II

Proof.

If φ = ¬ψ, there is a polynomial time algorithm for ψ by inductive
hypothesis. We can decide ¬ψ by exchanging the yes and no states.

If φ = ψ0 ∨ ψ1, there are polynomial time algorithms M0 and M1 for
ψ0 and ψ1 respectively. We decide ψ0 ∨ ψ1 by executing M0 and then
M1 (if necessary).

φ = ψ0 ∧ ψ1 is similar.

If φ = ∀xψ, there is a polynomial time algorithm M for ψ. We
construct a new model H that assigns x to v and check H ⊧ ψ by M.
If the answer is “yes” for all v ∈ V , we return “yes;” otherwise we
return “no.” Since M is polynomial in n and there are n iterations,
this case can be performed in polynomial time.
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Characterizing Graph-Theoretic Properties

Let Ψ be an existential second-order sentence.

Clearly, Ψ determines a graph-theoretic property.
▸ GΨ = {G ∶ G ⊧ Ψ}.

We have shown that deciding G ∈ GΨ is in NP for any input graph G .

Now consider a graph-theoretic property G that can be decided in NP.

Is there an existential second-order sentence Ψ such that G = Gψ?

If so, we can prove a graph-theoretic property is in NP by writing an
existential second-order logic formula!

▸ We thus say that the fragment of existential second-order logic
characterizes graph-theoretic properties in NP.
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Fagin’s Theorem I

Theorem

The class of all graph-theoretic properties expressible in existential
second-order logic is equal to NP.
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Fagin’s Theorem II

Proof.

Let G be a graph property in NP. Hence there is an NTM M deciding
whether G ∈ G in time nk for some k . We will construct a formula
∃P0⋯∃P`φ such that G ⊧ ∃P0⋯∃P`φ iff G ∈ G. Consider

e(m) = ∃x0∃x1⋯∃xm−1⋀0≤i<j<m ¬(xi = xj)
succ = ∀x∃x ′¬(x = x ′) ∧ S(x , x ′)

unique = ∀x∀y∀y ′(S(x , y) ∧ S(x , y ′)→ y = y ′)
linear = ∀x∀y(S(x , y)→ ¬S(y , x))

ΦS = e(n) ∧ ¬e(n + 1) ∧ succ ∧ unique ∧ linear

Observe that S is isomorphic to {(0,1), (1,2), . . . , (n − 2,n − 1)}.
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Fagin’s Theorem III

Proof.

Define ζ(x) = ∀y¬S(y , x) (“x = 0”) and η(x) = ∀y¬S(x , y) (“x = n − 1”).
Let 0 ≤ x1, x2, . . . , xk < n. Write (x1, x2, . . . , xk) as x⃗ . Observe that any
number between 0 and nk − 1 is represented by an x⃗ . We define Sk(x⃗ , y⃗)
to represent y⃗ is the successor of x⃗ :

S1(x1, y1) = S(x1, y1)
Sj(x1, . . . , xj , y1, . . . , yj) = [S(xj , yj) ∧ (x1 = y1) ∧⋯(xj−1 = yj−1)]∨

[η(xj) ∧ ζ(yj) ∧ Sj−1(x1, . . . , xj−1, y1, . . . , yj−1)]

In the inductive definition, Sj(x⃗ , y⃗) represents y⃗ = x⃗ + 1 with ∣x⃗ ∣ = ∣y⃗ ∣. We
have y⃗ = x⃗ + 1 iff (x1 and y1 are MSB’s)

yj = xj + 1 and ∀i < j(yi = xj); or

xj = n − 1, yj = 0, and (y1, . . . , yj−1) = (x1, . . . , xj−1) + 1.
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Fagin’s Theorem IV

Proof.

Consider the computation table T (G) of M. For each symbol σ ∈ Γ (Γ is
the set of symbols on T (G)), the relation Tσ(x⃗ , y⃗) means that the
(x⃗ , y⃗)-entry of T (G) is σ. Moreover, C0(x⃗) means that the 0-th
nondeterministic choice is made at the step x⃗ . Similarly for C1(x⃗). The
existential second order sentence is of the form:

∃S∃Tσ1∃TΣ2⋯∃Tσ`
∃C0∃C1∀x⃗∀x⃗ ′∀y⃗∀y⃗ ′∀y⃗ ′′(ΦS ∧ΦT ∧Φ∆ ∧ΦC ∧Φyes).

ΦS is the formula specifying the successor relation S . We now define the
remaining subformulae.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 54 / 67

Fagin’s Theorem V

Proof.

In addition to the conventions used in Table Method, we further assume
that the adjacency matrix is spread in the input: we put nk−2 − 1 ⊔’s
between two consecutive entries.

⊳ 0s ⊔ ⋯ ⊔ 1 ⊔ ⋯ ⊔ 0 ⊔ ⋯ ⊔
⊳ 0 ⊔q ⋯ ⊔ 1 ⊔ ⋯ ⊔ 0 ⊔ ⋯ ⊔

⋮
⊳ yes ⊔ ⋯ ⊔ ⊔ ⊔ ⋯ ⊔ ⊔ ⊔ ⋯ ⊔
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Fagin’s Theorem VI

Proof.

ΦT specifies the boundary of computation table T (G).

When x⃗ = 0
▸ If y2 = ⋯ = yk = 0, Ti(x⃗ , y⃗) iff G(y1, y2) = i for i = 0,1;
▸ Otherwise, T⊔(x⃗ , y⃗).

When y⃗ = 0, T⊳(x⃗ , y⃗);

When y⃗ = nk − 1, T⊔(x⃗ , y⃗).
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Fagin’s Theorem VII

Proof.

Φ∆ specifies transition relations of M on T (G). Recall

Ti−1,j−1 = α Ti−1,j = β Ti−1,j+1 = γ
Ti ,j−1 Ti ,j = σ Ti ,j+1

Let c be the nondeterministic choice made at step i − 1. For each
(Ti−1,j−1,Ti−1,j ,Ti−1,j+1, c ,Ti ,j), we add the following conjunct to Φ∆:

[Sk(x⃗ ′, x⃗) ∧ Sk(y⃗ ′, y⃗) ∧ Sk(y⃗ , y⃗ ′′)∧
Tα(x⃗ ′, y⃗ ′) ∧Tβ(x⃗ ′, y⃗) ∧Tγ(x⃗ ′, y⃗ ′′) ∧ Cc(x⃗ ′)]→ Tσ(x⃗ , y⃗).
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Fagin’s Theorem VIII

Proof.

ΦC specifies the nondeterministic choice at any step.

(C0(x⃗) ∨ C1(x⃗)) ∧ (¬C0(x⃗) ∨ ¬C1(x⃗)).

Finally Φyes specifies the accepting configuration.

x⃗ = nk − 1 ∧ y⃗ = 1→ Tyes(x⃗ , y⃗).

It should be clear that G ∈ G iff G satisfies the existential second order
sentence constructed above.

Spreading the adjacency matrix of the input allows us to have a
simple encoding.

▸ Otherwise, we have to define y⃗ ≤ n2.

The formula Sk(x⃗ , y⃗) is defined by S(xi , yi). Each instance of
Sk(x⃗ , y⃗) is a new copy.
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Fagin’s Theorem IX

▸ For instance, there are three copies in Φ∆.

Observe that the constructed formula is not in the monadic second
order logic.

▸ For instance, ΦS and Φ∆ define binary relations S and Tσ.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 59 / 67

Quantified Boolean Formula

As we have seen, logic and complexity are closely related.
▸ SATISFIABILITY is NP-complete (Cook’s theorem).
▸ Existential second-order logic characterizes NP (Fagin’s theorem).

There is yet another connection between logic and complexity.

The quantified Boolean formula (QBF) problem is the following:
Given a Boolean expression φ in conjunctive normal form with
variables x1, x1, . . . , xn, decide

∃x1∀x2∃x3⋯Qnxnφ?
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QBF and SATISFIABILITY

SATISFIABILITY is in fact a subclass of QBF.
▸ Let φ(x1, x2, . . . , xn) be a Boolean expression in conjunctive normal

form with variables x1, . . . , xn.
▸ φ(x1, x2, . . . , xn) is satisfiable iff ∃x1∀y1∃x2∀y2⋯∃xnφ(x1, . . . , xn).

Since this is a reduction, QBF is NP-hard.
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QBF is PSPACE-Complete I

Theorem

QBF is PSPACE-complete.

Proof.

Consider any quantified Boolean formula ∃x1∀x2∃x3⋯Qnxnφ. Given any
truth assignment to x1, . . . , xn, we can evaluate φ in O(n) space.
Moreover, O(n) space is needed to record each assignment. Hence QBF is
in PSPACE.
Suppose L is a language decided by an NTM M in polynomial space. Thus
there are at most 2nk

configurations of M on input ∣x ∣ = n. We thus
encode each configuration of M on input x by a bit vector of length nk .
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QBF is PSPACE-Complete II

Proof.

Let A = {a1, . . . , ank} and B = {b1, . . . ,bnk} be sets of Boolean variables.
We will construct a quaitified Boolean formula ψi with free variables in
A ∪B such that ψi(A,B) is satisfied by ν iff

(ν(a1), . . . , ν(ank )) MÐ→
∗
(ν(b1), . . . , ν(bnk )) in 2i steps.

For i = 0, ψ0(A,B) states that

aj = bj for all j ; or

configuration B follows from A in one step.

ψ0(A,B) can be written in disjunctive normal form with O(nk) disjuncts,
and each disjunct contains O(nk) literals. That is, ψ0(A,B) is in fact in
disjunctive normal form.
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QBF is PSPACE-Complete III

Proof.

Inductively, assume we have ψi(A,B). Define

ψi+1(A,B) = ∃Z∀X∀Y [((X = A∧Y = Z)∨(X = Z ∧Y = B))→ ψi(X ,Y )]

where each of X ,Y ,Z has fresh nk variables.
However, ψi+1 is not in the form required by QBF. It is not in prenex
normal form. But this is easy to fix. Note that

P → ∃Z∀X∀Y [R(X ,Y ,Z)] ≡ ∃Z∀X∀Y [P → R(X ,Y ,Z)].

We can easily transform ψi+1 into its prenex normal form.
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QBF is PSPACE-Complete IV

Proof.

The other problem is that

((X = A ∧Y = Z) ∨ (X = Z ∧Y = B))→ ψi(X ,Y )

is not in conjunctive normal form.
Note that the disjunctive normal form is easy to compute. Recall that ψ0

is in disjunctive normal form. Assume ψi is in disjunctive normal form. Our
goal is to compute the disjunctive normal form of the following formula:

((X ≠ A ∨Y ≠ Z) ∧ (X ≠ Z ∨Y ≠ B)) ∨ ψi(X ,Y )
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QBF is PSPACE-Complete V

Proof.

Observe that (X ≠ A) ∧ (X ≠ Z) is equivalent to the following formula:

⋁
1≤i ,j≤nk

(xi ∧ ¬ai ∧ xj ∧ ¬zj) ∨ ⋁
1≤i ,j≤nk

(¬xi ∧ ai ∧ xj ∧ ¬zj) ∨

⋁
1≤i ,j≤nk

(xi ∧ ¬ai ∧ ¬xj ∧ zj) ∨ ⋁
1≤i ,j≤nk

(¬xi ∧ ai ∧ ¬xj ∧ zj)

The disjunctive normal form consists of ψi and 16n2k disjuncts.
We thus have a reduction from any problem in PSPACE to the version of
QBF in disjunctive normal form. But this version is precisely the
complement of QBF. Hence we have a reduction from any problem in
coPSPACE to QBF. Since coPSPACE = PSPACE
(Immerman-Szelepscényi Theorem), our reduction is in fact from any
problem in PSPACE to QBF.
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QBF is PSPACE-Complete VI

If ψi+1 were defined to be ∃Z [ψi(A,Z) ∧ ψ(Z ,B)], the size of the
formula is doubled. The reduction could not be performed in
polynomial time.

▸ That is why we “reuse” the formula ψi .
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