Elementary Complexity Theory

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

July 2, 2009

Outline

- Turing Machines
- 2 Complexity Classes
- Space Complexity
- Reduction and Complete Problems
- Time Complexity
- **6** Existential Second Order Logic
- Quantified Boolean Formula

Turing Machine

- Turing machines are one of the most popular models of computation.
- They are proposed by Alan Turing (a British mathematician).
 - The renowned ACM Turing Award is named after him.
- A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ where
 - K is a finite set of states;
 - \triangleright Σ is a finite set of symbols (also called an alphabet);
 - \bigstar ⊔ ∈ Σ: the blank symbol
 - \bigstar ⊳∈ Σ: the first symbol
 - δ is a transition function
 - ★ $\delta: K \times \Sigma \rightarrow (K \cup \{halt, yes, no\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$
 - \star Since δ is a function, M is deterministic.

Computation in Turing Machines

- A Turing machine has a tape.
 - ▶ Initially, a finite input $x = a_1 a_2 \cdots a_n \in (\Sigma \{\sqcup\})^*$ following the symbol ▷ is on the tape.
 - $\triangleright a_1 a_2 \cdots a_n \sqcup \sqcup \cdots$
- There is a cursor pointing to a current symbol on the tape
 - Initially, the cursor points to ▷.
 - ▶ $\underline{\triangleright}a_1a_2\cdots a_n \sqcup \sqcup \cdots$
- \bullet δ is the "program" of the machine.
 - Assume the current state is $q \in K$, the current symbol is $\sigma \in \Sigma$.
 - $\delta(q,\sigma) = (p,\rho,D)$ represents that p is the next state, ρ is the symbol replacing σ , and $D \in \{\leftarrow, \rightarrow, -\}$ is the cursor direction.
 - ▶ We assume the ▷ is never overwritten.
 - ★ That is, for all q and p, $\delta(q,\triangleright) = (p,\rho,\Delta)$ implies $\rho \Rightarrow$ and $D \Rightarrow$.

Configurations

- A configuration characterizes the complete description of the current computation.
- A configuration (q, w, u) of a Turing machine consists of a state q, and two strings w and u.
 - q is the current state of the Turing machine.
 - w is the string to the left of the cursor and the current symbol.
 - \triangleright *u* is the string to the right of the cursor (possibly empty).
- The initial configuration on input x is therefore (s, \triangleright, x) .
- Moreover, we write $(q, w, u) \xrightarrow{M} (q', w', u')$ if (q, w, u) changes to (q', w', u') by one step in M. There are three cases:
 - $\delta(q,\sigma) = (p,\rho,\leftarrow)$, then $(q,x\sigma,y) \xrightarrow{M} (p,x,\rho y)$;
 - $\delta(q,\sigma) = (p,\rho,\rightarrow)$, then $(q,x\sigma,\tau y) \xrightarrow{M} (p,x\rho\tau,y)$;
 - $\delta(q,\sigma) = (p,\rho,-)$, then $(q,x\sigma,y) \xrightarrow{M} (p,x\rho,y)$.

Halting and Acceptance

- The computation in a Turing machine cannot continue only when it reaches the three states: *halt*, *yes*, and *no*.
 - If this happens, we say the Turing machine halts.
 - Of course, a Turing machine may not halt.
- If the state yes is reached, we say the machine accepts the input (write M(x) = yes).
- If the state no is reached, we say the machine rejects the input (write M(x) = no).
- If the state *halt* is reached, we define the output of the Turing machine to be the content y of the tape when it halts (write M(x) = y).
- If the Turing machine does not halt, we write M(x) = 7.

Recursive Languages

- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- Let M be a Turing machine such that for any $x \in (\Sigma \setminus \{\sqcup\})^*$,
 - $x \in L$, then M(x) = yes;
 - $x \notin L$, then M(x) = no.
- Then we say M decides L.
- If L is decided by some Turing machine, we say L is recursive.
- In other words,
 - M always halts on any input; and
 - M decides whether the input is in the language or not.

Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- Let M be a Turing machine such that for any $x \in (\Sigma \setminus \{\sqcup\})^*$,
 - $x \in L$, then M(x) = yes;
 - $x \notin L$, then M(x) = 7.
- Then we say M accepts L.
- If L is accepted by some Turing machine, we say L is recursively enumerable.
- Note that,
 - M may not halt.
 - ▶ The input is in the language when when it halts.
- Practically, this is not very useful.
 - We do not know how long we need to wait.

Nondeterministic Turing Machines

- Similar to finite automata, we can consider nondeterministic Turing machines.
- A nondeterministic Turing machine is a quadruple $N = (K, \Sigma, \Delta, s)$ where K is a finite set of states, Σ is a finite set of symbols, and $s \in K$ is its initial state. Moreover,
 - ► $\Delta \subseteq (K \times \Sigma) \times [(K \cup \{halt, yes, no\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}]$ is its transition relation.
- Similarly, we can define $(q, w, u) \xrightarrow{N} (q', w', u')$.

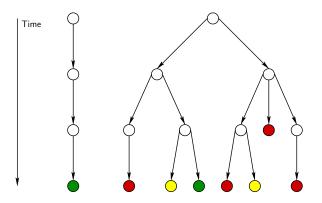
Acceptance

- Let *N* be a nondeterministic Turing machine.
- Let $L \subseteq (\Sigma \setminus \{\sqcup\})^*$ be a language.
- We say N decides L if for any $x \in \Sigma^*$

$$x \in L$$
 if and only if $(s, \triangleright, x) \stackrel{N}{\longrightarrow}^* (yes, w, u)$ for some w, u .

- Since N is nondeterministic, there may be several halting configurations.
 - $(s,\triangleright,x) \xrightarrow{N}^{*} (halt, w_0, u_0), (s,\triangleright,x) \xrightarrow{N}^{*} (halt, w_1, u_1),$ $(s,\triangleright,x) \xrightarrow{N}^{*} (no, w_2, u_2), \text{ etc.}$
- However, we need only one halting configuration of the form (yes, w, u) for $x \in L$.
 - ▶ Conversely, all halting configurations are not of this form if $x \notin L$.

Deterministic and Nondeterministic Computation



• A nondeterministic Turing machine decides language L in time f(n) if it decodes L and for any $x \in \Sigma^*$, $(s, \triangleright, x) \longrightarrow^k (q, u, w)$, then $k \le f(|x|)$.

P and NP

Define

Let

$$P = \bigcup_{k \in \mathbb{N}} TIME(n^k)$$
 and $NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k)$

- We have $P \subseteq NP$.
 - However, whether the inclusion is proper is still open.
- In this lecture, we will consider several problems related to logic and discuss their complexity.

Boolean Expressions

- Fix a countably infinite set of Boolean variables $X = \{x_0, x_1, \dots, x_i, \dots\}.$
- A Boolean expression is an expression built from Boolean variables with connectives ¬, ∨, and ∧.
- A truth assignment T is a mapping from Boolean variables to truth values false and true.
- We say a truth assignment T satisfies a Boolean expression ϕ (write $T \models \phi$) if $\phi[x_0, x_1, \cdots, x_i, \cdots \mapsto T(x_0), T(x_1), \cdots, T(x_i), \cdots]$ evaluates to **true**.

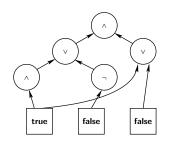
SATISFIABILITY (SAT)

- A Boolean expression ϕ is satisfiable if there is a truth assignment T such that $T \models \phi$.
- SATISFIABILITY (SAT) is the following problem: Given a Boolean expression ϕ in conjunctive normal form, is it satisfiable?
- SAT can be decided in **TIME** (n^22^n) by exhaustive search.
- SAT can be decided in NP:
 - Guess a truth assignment nondeterministically;
 - Check whether the truth assignment satisfies all clauses.

Boolean Circuits

- A Boolean circuit is a graph C = (V, E) where $V = \{1, ..., n\}$ are the gates of C. Moreover
 - C has no cycles. All edges are of the form (i,j) with i < j.
 - All nodes have indegree ≤ 2.
 - ► Each $i \in V$ has a sort s(i) where $s(i) \in \{$ false, true, \lor , \land , \lnot , x_0, x_1, \ldots , $\}$.
 - ★ If $s(i) \in \{$ false, true, $x_0, x_1, ...\}$, i has indegree 0 and is an input gate;
 - ★ If $s(i) = \neg$, i has indegree one;
 - ★ If $s(i) \in \{\lor, \land\}$, i has indegree two.
- ▶ The gate n has outdegree zero and is called the output gate.
- The semantics of a Boolean circuit is defined as in propositional logic.

CIRCUIT VALUE



- CIRCUIT VALUE is the following problem:
 Given a Boolean circuit C without variable gates, does C evaluate to true?
- CIRCUIT VALUE is in P.
 - Simply evaluate the gate values in numerical order.

Space Complexity

- A k-tape Turing machine with input and output is a Turing machine M with k tapes. Moreover,
 - M never writes on tape 1 (its read-only input);
 - M never reads on tape k (its write-only output);
 - ▶ The other k-2 tapes are working tapes.
- A configuration of k-tape Turing machine with input and output is a 2k + 1-tuple $(q, w_1, u_1, \ldots, w_k, u_k)$.
 - ▶ The initial configuration on input x is $(s, \triangleright, x, \triangleright, \epsilon, \dots, \triangleright, \epsilon)$.
- On input x, if $(s, \triangleright, x, \triangleright, \epsilon, \dots, \triangleright, \epsilon) \xrightarrow{M}^* (H, w_1, u_1, \dots, w_k, u_k)$ where $H \in \{halt, yes, no\}$, we say the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
 - Note that the space on input and output tapes does not count.

SPACE(f(n)) and NSPACE(f(n))

Define

$$SPACE(f(n)) = \left\{ L : \text{ L can be decided by a TM with input and output within space bound } f(n) \right\}.$$

- NSPACE(f(n)) is defined similarly.
- Define

L = SPACE(log
$$n$$
).
NL = NSPACE(log n).
PSPACE = $\bigcup_{k \in \mathbb{N}}$ SPACE(n^k)
NPSPACE = $\bigcup_{k \in \mathbb{N}}$ NSPACE(n^k)

"Complements" of Complexity Classes

- Let $L \subseteq \Sigma^*$ be a language.
- The complement of L, write \overline{L} , is as follows.

$$x \in \overline{L} \text{ iff } x \notin L.$$

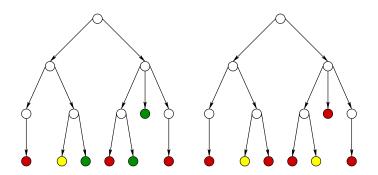
ullet For any complexity class ${\mathcal C}$, define

$$\mathbf{co}\mathcal{C} = \{\overline{L} : L \in \mathcal{C}\}.$$

Complements of Complexity Classes

- For any deterministic complexity class C, we have $\mathbf{co}C = C$.
 - Let $L \in \mathcal{C}$. There is a TM M deciding L within the resource bound of \mathcal{C} . Construct a TM M' by switch the yes and no states of M. We have $x \in L$ iff M(x) = yes iff M'(x) = no. Thus M' decides \overline{L} within the resource bound of \mathcal{C} .
- Consider $L = \{\phi : \phi \text{ is an unsatisfiable Boolean expression } \}$.
- Thus $\overline{L} = \{\phi : \phi \text{ is a satisfiable Boolean expression } \}$.
 - Strictly speaking, $\overline{L} = \{\phi: \phi \text{ is not a Boolean expression or } \phi \text{ is satisfiable } \}$. But this is a convenient convention.
- Since $\overline{L} \in \mathbf{NP}$, we have $L \in \mathbf{coNP}$.

NP and coNP



- $SAT = \{\phi : \phi \text{ is a satisfiable Boolean expression } \}.$
 - $\phi \in SAT$ if there is a truth assignment that satisfies ϕ .
- $UNSAT = \{\phi : \phi \text{ is an unsatisfiable Boolean expression } \}.$
 - $\phi \in UNSAT$ if there is no truth assignment that satisfies ϕ .
 - $\phi \in UNSAT$ if all truth assignments do not satisfy ϕ .

Fallacies Q & A

- Q: Is P ⊆ coNP?
- A: Yes.
 - Let $L \in \mathbf{P}$. Clearly, $\overline{L} \in \mathbf{P} \subseteq \mathbf{NP}$. Thus $L \in \mathbf{coNP}$.
- Q: Is $\Sigma^* \setminus NP = coNP$?
- A: No.
 - Both NP and coNP are classes of languages (that is, each one is a set of sets of strings). It does not make sense to consider Σ* \ NP or Σ* \ coNP.
- Q: Is $2^{\Sigma^*} \setminus NP = coNP$?
- A: No.
 - ▶ $P \subseteq NP \cap coNP$.

Relation between Complexity Classes

- Since any Turing machine with input and output is a nondeterministic Turing machine with input and output, it is easy to see the following statements:
 - ► TIME $(f(n)) \subseteq NTIME(f(n));$
 - ► SPACE $(f(n)) \subseteq NSPACE(f(n))$.
- Moreover, a Turing machine can use at most f(n) space in time f(n). Therefore,
 - ► TIME $(f(n)) \subseteq SPACE(f(n));$
 - ► NTIME $(f(n)) \subseteq NSPACE(f(n))$.
- Can we establish more relation between these classes?

Nondeterministic Time and Deterministic Space

Theorem

For any "reasonable" non-decreasing function f(n), we have $NTIME(f(n)) \subseteq SPACE(f(n))$.

Proof.

Let $L \in \mathbf{NTIME}(f(n))$ and M a NTM decide L in time f(n). On input of size n, a TM M' works as follows:

- $oldsymbol{0}$ for each sequence of nondeterministic choices of M
- M' simulates M with time f(n)
- \bullet if M accepts, M' accepts
- \bullet if M does not accept, M' erases working tapes

Each sequence of nondeterministic choices of M has length f(n). Moreover, the simulation of M uses at most f(n) space. Hence M is a TM deciding L in space f(n).

Reachability Method

Theorem

For any "reasonable" non-decreasing function f(n), we have $NSPACE(f(n)) \subseteq TIME(c^{\log n + f(n)})$.

Proof.

Let $L \in \mathbf{NSPACE}(f(n))$ and M a k-tape NTM with input and output decide L in space f(n). A configuration of M is of the form $(q, w_1, u_1, \ldots, w_k, u_k)$. Moreover, M does not overwrite the input. A configuration can be represented by $(q, i, w_2, u_2, \ldots, w_k, u_k)$ where i is the index of the cursor on input. Thus there are at most $|K| \times n \times |\Sigma|^{(2k-2)f(n)}$ configurations.

Define the configuration graph of M on input x G(M,x) to be the graph with configurations of M as its nodes. (C_0, C_1) is an edge in G(M,x) if $C_0 \stackrel{M}{\longrightarrow} C_1$. Thus $x \in L$ iff there is a path from $(s, \triangleright, x, \triangleright, \epsilon \cdots, \triangleright, \epsilon)$ to some $(yes, w_1, u_1, \ldots, w_k, u_k)$.

Reachability Method

Proof.

Since there is a polynomial-time deterministic algorithm for graph reachability, we can decide if $x \in L$ in time polynomial in the size of the configuration graph. Thus $L \in \mathbf{TIME}(c^{\log n + f(n)})$.

- To be precise, let us describe how the reachability algorithm is used.
- We do not need the adjacency matrix of the configuration graph.
 - It uses too much space unnecessarily.
- Instead, we check whether there is an edge from C_0 to C_1 by simulating M.
- In other words, entries in the adjacency matrix are computed when needed.
 - This is called an on-the-fly algorithm.

Comparing Complexity Classes

Theorem

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NSPACE$.

- We know in fact that L ⊊ PSPACE.
- However, we do not know which of the inclusion is proper.

Nondeterminism in Space Complexity

- For time complexity, we do not know if nondeterminism does increase the expressive power of Turing machines.
- For space complexity, we know a little bit more.
 - Intuitively, nondeterministic computation does not need more space because space can be reused.

Savitch's Theorem

Theorem

 $REACHABILITY \in SPACE(\log^2 n)$.

Proof.

Let G = (V, E) with |V| = n. For $x, y \in V$ and $i \in \mathbb{N}$, define that PATH(x, y, i) holds if there is a path of length $\leq 2^i$ from x to y. Clearly, x reaches y in G if $PATH(x, y, \lceil \log n \rceil)$ holds. We will construct a TM M that decides PATH(x, y, i).

M decides PATH(x, y, 0) by looking up the adjacency matrix of G. For $i \ge 1$, M does the following recursively:

- lacktriangledown for all nodes z
- if PATH(x, z, i-1) holds then
- if PATH(z, y, i-1) holds then go to yes

Savitch's Theorem

Proof.

More precisely, when M is checking z. It puts the tuple (x,z,i-1) on its working tape (line 2). If PATH(x,z,i-1) does not hold, M erases the tuple (x,z,i-1) and tries the next node. If PATH(x,z,i-1) holds, M erases the tuple (x,z,i-1), puts the new tuple (z,y,i-1) on its working tape. If PATH(z,y,i-1) does not hold, M erases the tuple (z,y,i-1) and tries the next node. Otherwise, M goes to the yes state. Observe that at most $\lceil \log n \rceil$ tuples on the working tape. Each tuple uses $3\lceil \log n \rceil$ cells. Hence M uses at most $O(\log^2 n)$ space.

- Of course, the algorithm is highly inefficient in terms of time.
 - Each recursive call will try all nodes regardlessly.
- On the other hand, it is very efficient in terms of space
 - ▶ DFS, for instance, may use O(n) space.

NSPACE = SPACE

Theorem

For any "reasonable" nondecreasing $f(n) \ge \log n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$.

Proof.

Let L be a language and M an NTM decide L in space f(n). Moreover, $x \in L$ if the initial configuration of M can reach an accepting configuration of M in its configuration graph. Recall that the configuration graph of M has $O(c^{\log n + f(n)}) = O(c^{f(n)})$ nodes (since $f(n) \ge \log n$). Thus there is a TM M' deciding the reachability problem within space $O(\log^2(c^{f(n)})) = O(f^2(n))$.

• In other words, nondeterminism does not increase the power of TM in terms of space complexity.

CoNSPACE

- For any deterministic complexity class C, we have shown $\mathbf{co}C = C$.
- For nondeterministic complexity classes, it is not clear at all.
 - Recall NP and coNP.
- However, we will show that **NSPACE** = **coNSPACE**.

Immerman-Szelepscényi Theorem I

Theorem

Given a graph G and a node x, the number of nodes reachable from x in G can be computed by an NTM within space $\log n$.

Proof.

Let $S(k) = \{y : x \longrightarrow^{\leq k} y\}$. We compute $|S(1)|, |S(2)|, \dots, |S(n-1)|$ iteratively. Clearly |S(n-1)| is what we want. We design an nondeterministic algorithm using four functions. The Main function is:

- |S(0)| := 1
- ② for k = 1, 2, ..., n-1 do |S(k)| := Count (|S(k-1)|)

Observe that only |S(k-1)| is needed to compute |S(k)|.

Immerman-Szelepscényi Theorem II

Proof.

To compute |S(k)| from C, we check how many nodes u are in S(k) by invoking InS (k, u, C). The Count (C) function is:

- **1** $\ell := 0$
- ② for $u \in V$ do if InS (k, u, C) then $\ell := \ell + 1$

The InS (k, u, C) function is: (cf the next slide)

- 0 m := 0; reply := false
- 2 for $v \in V$ do
- if GuessInS (k-1, v) then
- $\mathbf{0} \qquad m \coloneqq m + 1$
- if $(v, u) \in E$ then reply := true
- if m < C then "give up" else return reply

Immerman-Szelepscényi Theorem III

Proof.

For each node v, we nondeterministically check if $v \in S(k-1)$ (GuessInS (k-1,v)). If so, the counter m is incremented by 1. Futhermore, if v can reach u in one step, set reply to true.

After checking all nodes nondeterministically, we will check if we have correctly collect all nodes in S(k-1) by comparing the counter m with C. If so, return the variable reply.

Immerman-Szelepscényi Theorem IV

Proof.

To verify $v \in S(j)$ nondeterministically, it suffices to guess a path of length j. The function GuessInS (j, v) is:

- **1** $w_0 := x$
- ② for p = 1, ..., j do
- guess $w_p \in V$ and check $(w_{p-1}, w_p) \in E$ (if not, "give up")
- if $w_j = v$ then return true else "give up."

Observe that only the variables k, C, ℓ , u, m, v, p, w_p , w_{p-1} need be recorded. Since the number of nodes is n, $\log n$ space is needed.

NSPACE = coNSPACE

Theorem

For any "reasonable" nondecreasing function $f(n) \ge \log n$,

NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Suppose $L \in \mathbf{NSPACE}(f(n))$ and an NTM M decide L in space f(n). We construct an NTM \overline{M} that decides \overline{L} in space f(n). On input x, \overline{M} runs the nondeterministic algorithm in the previous theorem on the configuration graph of M. If at any time, \overline{M} discovers that M reaches an accepting configuration, \overline{M} halts and rejects x. If |S(n-1)| is computed and no accepting configuration is found, \overline{M} accepts x. Since the configuration graph of M has $c^{\log |x|+f(|x|)}$ nodes, \overline{M} uses at most O(f(n)) space if $f(n) \ge \log n$.

Reduction

• A language L_0 is reducible to L_1 if there is a function $R: \Sigma^* \to \Sigma^*$ computable by a Turing machine in space $O(\log n)$ such that for all input x,

$$x \in L_0$$
 if and only if $R(x) \in L_1$.

- R is called a reduction from L_0 to L_1 .
- If R is a reduction computed by a Turing machine M, then for all input x, M halts after a polynomial number of steps.
 - ► Since *M* is deterministic, its configurations cannot repeat.
 - ★ Otherwise, M will not halt.
 - ▶ There are at most $O(nc^{\log n})$ configurations.

Solving Problems by Reductions

- Assume there is a Turing machine M_1 to decide L_1 .
 - That is, on input x
 - ★ M_1 goes to yes if $x \in L_1$;
 - ★ M_1 goes to no if $x \notin L_1$.
- Further, assume L_0 is reducible to L_1 by R.
- There is a Turing machine M_0 that decides L_0 .
 - **1** On input x, M_0 first computes R(x);
 - ② M_0 invokes M_1 on input R(x). There are two cases:
 - ★ If M₁ goes to yes, M₀ goes to yes;
 - ★ If M_1 goes to no, M_0 goes to no.
- If there is a reduction from L_0 to L_1 and L_1 is solved, then we can solve L_0 as well.
 - ▶ Informally, L_1 is harder than L_0 .

Completeness

- Let C be a complexity class (such as P, NP, L, etc).
- A language L in C is called C-complete if any language $L' \in C$ can be reduced to L.
- Informally, L is C complete means that it is hardest to solve in C.
 - Since any language in C is reducible to L, solving L means solving any language in C.
- But how can we prove a language is C-complete?
 - There are infinitely many languages in C. It is impossible to write down a reduction for each of them.

Table Method

- Consider a TM $M = (K, \Sigma, \delta, s)$ deciding language L within time n^k .
- Its computation on input x can be seen as a $|x|^k \times |x|^k$ computation table.
 - Its rows are time steps 0 to $|x|^k 1$.
 - Its columns are contents of the tape.
- Moreover, let us write σ_q to represent that the cursor is pointing at a symbol σ with state q.

Convention in Table Method

- To simplify our presentation, we adopt the following conventions.
 - M has only one tape;
 - M halts on any input x in $|x|^k 2$ steps;
 - The computation table has enough □'s to its right;
 - M starts with cursor at the first symbol of x;
 - ► *M* never visits the leftmost ▷;
 - *M* halts with its cursor at the second position and exactly at step $|x|^k$.
 - ★ You should check that these conventions are not at all restrictive.
- Let's use T(x) to represent the computation table on input x.
 - $T_{ij}(x)$ represent the (i,j)-entry of T(x).
- By convention, we have
 - ► $T_{0j}(x)$ = the *j*-th symbol of the input x
 - $T_{i0}(x) \Rightarrow \text{ for } 0 \leq i < |x|^k$
 - ► $T_{i,|x|^k-1}(x) = \sqcup \text{ for } 0 \le i < |x|^k$.

CIRCUIT VALUE is P-Complete I

Theorem

CIRCUIT VALUE is P-Complete.

Proof.

We know CIRCUIT VALUE is in **P**. It remains to show that any $L \in \mathbf{P}$, there is a reduction R from L to CIRCUIT VALUE. Let M be a TM deciding L in time n^k . Consider the computation table T(x) of M on input x. Observe that $T_{ij}(x)$ only depends on $T_{i-1,j-1}(x)$,

T(x) of W of input x. Observe that $T_{ij}(x)$ only depends on $T_{i-1,j-1}(x)$, $T_{i-1,j}$, and $T_{i-1,j+1}$. If the cursor is not at $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$, $T_{i,j} = T_{i-1,j}$. If the cursor is at one of $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$, $T_{i,j}$ may be updated. To determine $T_{i,j}$, it suffices to look at $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$!

$T_{i-1,j-1}$	$T_{i-1,j}$	$T_{i-1,j+1}$
$T_{i,j-1}$	$T_{i,j}$	$T_{i,j+1}$

CIRCUIT VALUE is P-Complete II

Proof.

Let Γ be the set of symbols appearing on T(x). Encode each symbol $\gamma \in \Gamma$ by a bit vector $(s_1,\ldots,s_{\lceil\log|\Gamma|\rceil})$. We thus have a table of binary entries $S_{ij\ell}$ where $0 \le i,j \le |x|^k-1$ and $1 \le \ell \le \lceil\log|\Gamma|\rceil$. Moreover, we know $S_{ij\ell}$ is determined by $S_{i-1,j-1,\ell'}, S_{i-1,j,\ell'}, S_{i-1,j+1,\ell'}$. That is, there are Boolean functions $F_1, F_2, \ldots, F_{\lceil\log|\Gamma|\rceil}$ such that

$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1},\ldots,S_{i-1,j-1,\lceil \log |\Gamma| \rceil},S_{i-1,j,1},\ldots,S_{i-1,j+1,\lceil \log |\Gamma| \rceil}).$$

Observe that F_{ℓ} are determined by M, regardless of x. Moreover, we can think of each F_i as a circuit. Thus we have a circuit C with $3\lceil \log |\Gamma| \rceil$ inputs (for $T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}$) and $\lceil \log |\Gamma| \rceil$ outputs (for $T_{i,j}$).

CIRCUIT VALUE is P-Complete III

Proof.

Our reduction R(x) consists of $(|x|^k-1)(|x|^k-1)$ copies of C. The inputs of R(x) are the encoding of the initial configuration. The output of R(x) is to check if $C_{|x|^k-1,1}$ encodes the state "yes."

Note that the circuit C is determined by M (and hence not by the input x). The computation of R needs to count up to $|x|^k$ only. Hence the reduction can be performed in $O(\log |x|)$ space.

Cook's Theorem

Theorem

SAT is **NP**-complete.

Proof.

Let $L \in \mathbf{NP}$ and M an NTM deciding L in time n^k . Without loss of generality, we assume each step of M is nondeterministic. Moreover, there are exactly two choices in each nondeterministic step.

As in table method, we construct a circuit (and hence a Boolean expression) for the computation table of M. Now the entry $T_{i,j}$ is determined by $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$ and the choice c_{i-1} . Thus, the circuit C has $3\lceil \log |\Gamma| \rceil + 1$ inputs. M accepts x iff there is a truth assignment to $c_0, c_1, \ldots, c_{|x|^k-1}$ such that $C_{|x|^k-1,1}$ encodes yes.

Graph-Theoretic Problems

- Let G be a set of finite graphs (called a graph-theoretic property).
- The computational problem related to \mathcal{G} is: given a graph G, to decide whether $G \in \mathcal{G}$.
- It is not hard to encode any input G as a string in Σ^* .
 - \triangleright For instance, we can represent the adjacency matrix of G by a string.
- ullet A graph-theoretic problem ${\cal G}$ corresponds to a language L.
 - $G \in \mathcal{G}$ iff $encoding(G) \in L$.
- Consider a set \mathcal{G} expressible in existential second-order logic.
 - ▶ That is, there is an existential second-order logic sentence $\exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ such that

$$\mathcal{G} = \{G : G \vDash \exists P_0 \exists P_1 \cdots \exists P_\ell \phi\}.$$

Deciding Graph-Theoretic Properties I

Theorem

Let $\exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ be an existential second-order sentence. Given a graph G as an input, checking $G \models \exists P_0 \exists P_1 \cdots \exists P_\ell \phi$ is in **NP**.

Proof.

Assume P_i has arity r_i . Given G = (V, E) with |V| = n, an NTM can guess relations $P_i^M \subseteq V^{r_i}$ for $i = 0, ..., \ell$. Note that the time for guessing P_i^M is at most n^{r_i} .

After guessing $P_i^{M'}$ s, we have a first-order logic formula ϕ with relations P_0, P_1, \ldots, P_ℓ . We now show how to decide $(G, P_0^M, \ldots, P_\ell^M) \models \phi$ in polynomial time.

We prove by induction on ϕ .

• If ϕ is atomic, we can check it by examining the adjacency matrix or P_i^M .

Deciding Graph-Theoretic Properties II

Proof.

- If $\phi = \neg \psi$, there is a polynomial time algorithm for ψ by inductive hypothesis. We can decide $\neg \psi$ by exchanging the *yes* and *no* states.
- If $\phi = \psi_0 \lor \psi_1$, there are polynomial time algorithms M_0 and M_1 for ψ_0 and ψ_1 respectively. We decide $\psi_0 \lor \psi_1$ by executing M_0 and then M_1 (if necessary).
- $\phi = \psi_0 \wedge \psi_1$ is similar.
- If $\phi = \forall x \psi$, there is a polynomial time algorithm M for ψ . We construct a new model H that assigns x to v and check $H \models \psi$ by M. If the answer is "yes" for all $v \in V$, we return "yes;" otherwise we return "no." Since M is polynomial in n and there are n iterations, this case can be performed in polynomial time.

Characterizing Graph-Theoretic Properties

- Let Ψ be an existential second-order sentence.
- ullet Clearly, Ψ determines a graph-theoretic property.
 - $\mathcal{G}_{\Psi} = \{G : G \models \Psi\}.$
- We have shown that deciding $G \in \mathcal{G}_{\Psi}$ is in **NP** for any input graph G.
- ullet Now consider a graph-theoretic property ${\cal G}$ that can be decided in ${f NP}.$
- Is there an existential second-order sentence Ψ such that \mathcal{G} = \mathcal{G}_{ψ} ?
- If so, we can prove a graph-theoretic property is in NP by writing an existential second-order logic formula!
 - We thus say that the fragment of existential second-order logic characterizes graph-theoretic properties in NP.

Fagin's Theorem I

Theorem

The class of all graph-theoretic properties expressible in existential second-order logic is equal to **NP**.

Fagin's Theorem II

Proof.

Let $\mathcal G$ be a graph property in **NP**. Hence there is an NTM M deciding whether $G \in \mathcal G$ in time n^k for some k. We will construct a formula $\exists P_0 \cdots \exists P_\ell \phi$ such that $G \models \exists P_0 \cdots \exists P_\ell \phi$ iff $G \in \mathcal G$. Consider

$$e(m) = \exists x_0 \exists x_1 \cdots \exists x_{m-1} \land_{0 \le i < j < m} \neg (x_i = x_j)$$

$$succ = \forall x \exists x' \neg (x = x') \land S(x, x')$$

$$unique = \forall x \forall y \forall y' (S(x, y) \land S(x, y') \rightarrow y = y')$$

$$linear = \forall x \forall y (S(x, y) \rightarrow \neg S(y, x))$$

$$\Phi_S = e(n) \land \neg e(n+1) \land succ \land unique \land linear$$

Observe that *S* is isomorphic to $\{(0,1), (1,2), \dots, (n-2, n-1)\}.$

Fagin's Theorem III

Proof.

Define $\zeta(x) = \forall y \neg S(y,x)$ ("x = 0") and $\eta(x) = \forall y \neg S(x,y)$ ("x = n - 1"). Let $0 \le x_1, x_2, \dots, x_k < n$. Write (x_1, x_2, \dots, x_k) as \vec{x} . Observe that any number between 0 and $n^k - 1$ is represented by an \vec{x} . We define $S_k(\vec{x}, \vec{y})$ to represent \vec{y} is the successor of \vec{x} :

$$S_{1}(x_{1}, y_{1}) = S(x_{1}, y_{1})$$

$$S_{j}(x_{1}, \dots, x_{j}, y_{1}, \dots, y_{j}) = [S(x_{j}, y_{j}) \land (x_{1} = y_{1}) \land \dots (x_{j-1} = y_{j-1})] \lor [\eta(x_{j}) \land \zeta(y_{j}) \land S_{j-1}(x_{1}, \dots, x_{j-1}, y_{1}, \dots, y_{j-1})]$$

In the inductive definition, $S_j(\vec{x}, \vec{y})$ represents $\vec{y} = \vec{x} + 1$ with $|\vec{x}| = |\vec{y}|$. We have $\vec{y} = \vec{x} + 1$ iff $(x_1 \text{ and } y_1 \text{ are MSB's})$

- $y_j = x_j + 1$ and $\forall i < j(y_i = x_j)$; or
- $x_j = n 1$, $y_j = 0$, and $(y_1, \dots, y_{j-1}) = (x_1, \dots, x_{j-1}) + 1$.

◆ロ > ◆昼 > ◆ 差 > ・ 差 ・ 勿 Q (

Fagin's Theorem IV

Proof.

Consider the computation table T(G) of M. For each symbol $\sigma \in \Gamma$ (Γ is the set of symbols on T(G)), the relation $T_{\sigma}(\vec{x}, \vec{y})$ means that the (\vec{x}, \vec{y}) -entry of T(G) is σ . Moreover, $C_0(\vec{x})$ means that the 0-th nondeterministic choice is made at the step \vec{x} . Similarly for $C_1(\vec{x})$. The existential second order sentence is of the form:

$$\exists S \exists T_{\sigma_1} \exists T_{\Sigma_2} \cdots \exists T_{\sigma_\ell} \exists C_0 \exists C_1 \forall \vec{x} \forall \vec{x}' \forall \vec{y} \forall \vec{y}'' (\Phi_S \land \Phi_T \land \Phi_\Delta \land \Phi_C \land \Phi_{yes}).$$

 Φ_S is the formula specifying the successor relation S. We now define the remaining subformulae.

Fagin's Theorem V

Proof.

In addition to the conventions used in Table Method, we further assume that the adjacency matrix is spread in the input: we put $n^{k-2}-1$ \square 's between two consecutive entries.

Fagin's Theorem VI

Proof.

 Φ_T specifies the boundary of computation table T(G).

- When $\vec{x} = 0$
 - If $y_2 = \cdots = y_k = 0$, $T_i(\vec{x}, \vec{y})$ iff $G(y_1, y_2) = i$ for i = 0, 1;
 - Otherwise, $T_{\sqcup}(\vec{x}, \vec{y})$.
- When $\vec{y} = 0$, $T_{\triangleright}(\vec{x}, \vec{y})$;
- When $\vec{y} = n^k 1$, $T_{\Box}(\vec{x}, \vec{y})$.

Fagin's Theorem VII

Proof.

 Φ_{Δ} specifies transition relations of M on T(G). Recall

$T_{i-1,j-1} = \alpha$	$T_{i-1,j} = \beta$	$T_{i-1,j+1} = \gamma$
$T_{i,j-1}$	$T_{i,j} = \sigma$	$T_{i,j+1}$

Let c be the nondeterministic choice made at step i-1. For each $(T_{i-1,j-1},T_{i-1,j},T_{i-1,j+1},c,T_{i,j})$, we add the following conjunct to Φ_{Δ} :

$$\begin{split} \big[S_k(\vec{x}', \vec{x}) \wedge S_k(\vec{y}', \vec{y}) \wedge S_k(\vec{y}, \vec{y}'') \wedge \\ T_{\alpha}(\vec{x}', \vec{y}') \wedge T_{\beta}(\vec{x}', \vec{y}) \wedge T_{\gamma}(\vec{x}', \vec{y}'') \wedge C_c(\vec{x}') \big] \rightarrow T_{\sigma}(\vec{x}, \vec{y}). \end{split}$$

Fagin's Theorem VIII

Proof.

 Φ_C specifies the nondeterministic choice at any step.

$$(C_0(\vec{x}) \vee C_1(\vec{x})) \wedge (\neg C_0(\vec{x}) \vee \neg C_1(\vec{x})).$$

Finally Φ_{yes} specifies the accepting configuration.

$$\vec{x} = n^k - 1 \land \vec{y} = 1 \rightarrow T_{yes}(\vec{x}, \vec{y}).$$

It should be clear that $G \in \mathcal{G}$ iff G satisfies the existential second order sentence constructed above.

- Spreading the adjacency matrix of the input allows us to have a simple encoding.
 - ▶ Otherwise, we have to define $\vec{y} \le n^2$.
- The formula $S_k(\vec{x}, \vec{y})$ is defined by $S(x_i, y_i)$. Each instance of $S_k(\vec{x}, \vec{y})$ is a new copy.

Fagin's Theorem IX

- For instance, there are three copies in Φ_{Δ} .
- Observe that the constructed formula is not in the monadic second order logic.
 - For instance, Φ_S and Φ_Δ define binary relations S and T_σ .

Quantified Boolean Formula

- As we have seen, logic and complexity are closely related.
 - SATISFIABILITY is NP-complete (Cook's theorem).
 - Existential second-order logic characterizes NP (Fagin's theorem).
- There is yet another connection between logic and complexity.
- The quantified Boolean formula (QBF) problem is the following: Given a Boolean expression ϕ in conjunctive normal form with variables x_1, x_1, \ldots, x_n , decide

$$\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \phi$$
?

QBF and SATISFIABILITY

- SATISFIABILITY is in fact a subclass of QBF.
 - Let $\phi(x_1, x_2, ..., x_n)$ be a Boolean expression in conjunctive normal form with variables $x_1, ..., x_n$.
 - $\phi(x_1, x_2, ..., x_n)$ is satisfiable iff $\exists x_1 \forall y_1 \exists x_2 \forall y_2 ... \exists x_n \phi(x_1, ..., x_n)$.
- Since this is a reduction, QBF is **NP**-hard.

QBF is **PSPACE**-Complete I

Theorem

QBF is **PSPACE**-complete.

Proof.

Consider any quantified Boolean formula $\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \phi$. Given any truth assignment to x_1, \dots, x_n , we can evaluate ϕ in O(n) space. Moreover, O(n) space is needed to record each assignment. Hence QBF is in **PSPACE**.

Suppose L is a language decided by an NTM M in polynomial space. Thus there are at most 2^{n^k} configurations of M on input |x| = n. We thus encode each configuration of M on input x by a bit vector of length n^k .

QBF is **PSPACE**-Complete II

Proof.

Let $A = \{a_1, \dots, a_{n^k}\}$ and $B = \{b_1, \dots, b_{n^k}\}$ be sets of Boolean variables. We will construct a quaitified Boolean formula ψ_i with free variables in $A \cup B$ such that $\psi_i(A, B)$ is satisfied by ν iff

$$(\nu(a_1),\ldots,\nu(a_{n^k})) \xrightarrow{M}^* (\nu(b_1),\ldots,\nu(b_{n^k}))$$
 in 2^i steps. For $i=0,\ \psi_0(A,B)$ states that

- - $a_i = b_i$ for all j; or
 - configuration B follows from A in one step.

 $\psi_0(A,B)$ can be written in disjunctive normal form with $O(n^k)$ disjuncts, and each disjunct contains $O(n^k)$ literals. That is, $\psi_0(A, B)$ is in fact in disjunctive normal form.

QBF is **PSPACE**-Complete III

Proof.

Inductively, assume we have $\psi_i(A, B)$. Define

$$\psi_{i+1}(A,B) = \exists Z \forall X \forall Y \big[\big(\big(X = A \land Y = Z \big) \lor \big(X = Z \land Y = B \big) \big) \to \psi_i(X,Y) \big]$$

where each of X, Y, Z has fresh n^k variables.

However, ψ_{i+1} is not in the form required by QBF. It is not in prenex normal form. But this is easy to fix. Note that

$$P \to \exists Z \forall X \forall Y \big[R(X,Y,Z) \big] \equiv \exists Z \forall X \forall Y \big[P \to R(X,Y,Z) \big].$$

We can easily transform ψ_{i+1} into its prenex normal form.

QBF is **PSPACE**-Complete IV

Proof.

The other problem is that

$$((X=A \land Y=Z) \lor (X=Z \land Y=B)) \to \psi_i(X,Y)$$

is not in conjunctive normal form.

Note that the disjunctive normal form is easy to compute. Recall that ψ_0 is in disjunctive normal form. Assume ψ_i is in disjunctive normal form. Our goal is to compute the disjunctive normal form of the following formula:

$$((X \neq A \lor Y \neq Z) \land (X \neq Z \lor Y \neq B)) \lor \psi_i(X, Y)$$

QBF is **PSPACE**-Complete V

Proof.

Observe that $(X \neq A) \land (X \neq Z)$ is equivalent to the following formula:

$$\bigvee_{1 \leq i,j \leq n^k} \left(x_i \wedge \neg a_i \wedge x_j \wedge \neg z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge x_j \wedge \neg z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \vee \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge \neg x_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge a_i \wedge z_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge z_j \wedge z_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge z_j \wedge z_j \wedge z_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge z_j \wedge z_j \wedge z_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge z_j \wedge z_j \wedge z_j \wedge z_j \wedge z_j \right) \quad \bigvee_{1 \leq i,j \leq n^k} \left(\neg x_i \wedge z_j \wedge z$$

The disjunctive normal form consists of ψ_i and $16n^{2k}$ disjuncts. We thus have a reduction from any problem in **PSPACE** to the version of QBF in disjunctive normal form. But this version is precisely the complement of QBF. Hence we have a reduction from any problem in **coPSPACE** to QBF. Since **coPSPACE** = **PSPACE** (Immerman-Szelepscényi Theorem), our reduction is in fact from any problem in **PSPACE** to QBF.

QBF is **PSPACE**-Complete VI

- If ψ_{i+1} were defined to be $\exists Z[\psi_i(A,Z) \land \psi(Z,B)]$, the size of the formula is doubled. The reduction could not be performed in polynomial time.
 - ▶ That is why we "reuse" the formula ψ_i .