Bow-Yaw Wang (Academia Sinica)

Elementary Complexity Theory

Bow-Yaw Wang

Institute of Information Science
Academia Sinica, Taiwan

July 2, 2009

Elementary Complexity Theory

Outline

@ Turing Machines

© Complexity Classes

© Space Complexity

@ Reduction and Complete Problems
© Time Complexity

@ Existential Second Order Logic

@ Quantified Boolean Formula

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory

Turing Machine

@ Turing machines are one of the most popular models of computation.
@ They are proposed by Alan Turing (a British mathematician).

» The renowned ACM Turing Award is named after him.
@ A Turing machine is a quadruple M = (K, %, 4, s) where

» K is a finite set of states;

» X is a finite set of symbols (also called an alphabet);

% UeX: the blank symbol
* e X: the first symbol

» ¢ is a transition function
* §:KxX — (Ku{halt,yes,no}) x X x {«,—,-}.
% Since 0 is a function, M is deterministic.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 3 /67

Computation in Turing Machines

@ A Turing machine has a tape.
» Initially, a finite input x = ajap---a, € (X — {u})* following the symbol >
is on the tape.
> D giap--a, WU

@ There is a cursor pointing to a current symbol on the tape
> Initially, the cursor points to ».
» Ealaz...anuu...

@ 0 is the “program” of the machine.

» Assume the current state is g € K, the current symbol is o € ¥.

» d(q,0) = (p,p, D) represents that p is the next state, p is the symbol
replacing o, and D € {«<,—, -} is the cursor direction.

» We assume the > is never overwritten.

% That is, for all g and p, 6(g,>) = (p, p,A) implies p => and D =—.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 4 /67

Configurations

A configuration characterizes the complete description of the current
computation.

A configuration (g, w, u) of a Turing machine consists of a state g,
and two strings w and wu.

» q is the current state of the Turing machine.
» w is the string to the left of the cursor and the current symbol.
» u is the string to the right of the cursor (possibly empty).

@ The initial configuration on input x is therefore (s>, x).

. M :
@ Moreover, we write (g, w,u) — (¢',w’, u") if (g, w, u) changes to
(¢',w’,u") by one step in M. There are three cases:

M
» 0(q,0) = (p,p,<), then (q,x0,y) — (p,x, py);
M
» 8(q,0) = (p,p,~), then (q,x0,7y) — (P, xpT,y);
M
» 5(q,0) = (p,p,~), then (g,xa,y) — (p,xp,y).

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 5/ 67

Halting and Acceptance

@ The computation in a Turing machine cannot continue only when it
reaches the three states: halt, yes, and no.

» If this happens, we say the Turing machine halts.
» Of course, a Turing machine may not halt.
o If the state yes is reached, we say the machine accepts the input
(write M(x) = yes).
o If the state no is reached, we say the machine rejects the input (write
M(x) = no).
o If the state halt is reached, we define the output of the Turing
machine to be the content y of the tape when it halts (write
M(x) = y).
@ If the Turing machine does not halt, we write M(x) = 7.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 6 /67

Recursive Languages

Let Lc (X~ {u})* be a language.

Let M be a Turing machine such that for any x € (X \ {u})*,
» x €L, then M(x) = yes;
» x ¢ L, then M(x) = no.

Then we say M decides L.

If L is decided by some Turing machine, we say L is recursive.
In other words,

» M always halts on any input; and
» M decides whether the input is in the language or not.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 7 /67

Recursively Enumerable Languages

Let Lc (X~ {u})* be a language.
@ Let M be a Turing machine such that for any x € (X~ {u})*,

» x €L, then M(x) = yes;
» x ¢ L, then M(x)=r.

Then we say M accepts L.

o If L is accepted by some Turing machine, we say L is recursively
enumerable.
Note that,

» M may not halt.
» The input is in the language when when it halts.

Practically, this is not very useful.
» We do not know how long we need to wait.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 8 /67

Nondeterministic Turing Machines

@ Similar to finite automata, we can consider nondeterministic Turing

machines.
@ A nondeterministic Turing machine is a quadruple N = (K, X, A,s)
where K is a finite set of states, ¥ is a finite set of symbols, and
s € K is its initial state. Moreover,
» Ac(KxX)x[(Ku{halt,yes,no}) x ¥ x {«,—>,—}] is its transition
relation.

e Similarly, we can define (g, w, u) N, (¢, w',u").

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 9 /67

Acceptance

Let N be a nondeterministic Turing machine.
Let L< (X~ {u})* be a language.
We say N decides L if for any x € ©*

. . N
x € L if and only if (s,>,x) — (yes, w, u) for some w, u.
@ Since N is nondeterministic, there may be several halting
configurations.
N ¥ N ¥
» (s,>,x) — (halt,wo, up), (s,>,x) — (halt,wy, uy),
N *
(s,>,x) — (no,ws, 1p), etc.
@ However, we need only one halting configuration of the form

(ves,w,u) for x € L.
» Conversely, all halting configurations are not of this form if x ¢ L.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 10 / 67

Deterministic and Nondeterministic Computation

Time O

@ A nondeterministic Turing machine decides language L in time f(n) if
it decodes L and for any x € ¥*, (s,>,x) —* (g, u, w), then
k < f(|x|).

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 11 / 67

P and NP

@ Define
TIME(f(n)) ={L: L can be decided by a TM in time f(n)}

NTIME(f(n)) ={L: L can be decided by an NTM in time f(n)}

o Let
P = |J TIME(n*) and NP = | NTIME(n*)
keN keN

@ We have P c NP.

» However, whether the inclusion is proper is still open.

@ In this lecture, we will consider several problems related to logic and
discuss their complexity.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 12 / 67

Boolean Expressions

@ Fix a countably infinite set of Boolean variables
X = {X0s X1y -+ s Xiy oo}

@ A Boolean expression is an expression built from Boolean variables
with connectives -, v, and A.

@ A truth assignment T is a mapping from Boolean variables to truth
values false and true.

@ We say a truth assignment T satisfies a Boolean expression ¢ (write
T = @) if ¢[x0, X1, X, T(x0), T(x1),+, T(x;),---] evaluates to
true.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 13 / 67

SATISFIABILITY (SAT)

@ A Boolean expression ¢ is satisfiable if there is a truth assignment T
such that T & ¢.

SATISFIABILITY (SAT) is the following problem:

Given a Boolean expression ¢ in conjunctive normal form, is it
satisfiable?

SAT can be decided in TIME(n?2") by exhaustive search.

@ SAT can be decided in NP:

» Guess a truth assignment nondeterministically;
» Check whether the truth assignment satisfies all clauses.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 14 / 67

Boolean Circuits

@ A Boolean circuit is a graph C = (V,E) where V ={1,...,n} are the
gates of C. Moreover

» C has no cycles. All edges are of the form (i,j) with i <.

» All nodes have indegree < 2.

» Each j € V has a sort s(i) where

s(7) € {false, true, v, A, =, x0, X1, .-, }.

% If s(i) € {false, true, xo, x1, ...}, i has indegree 0 and is an input gate;
% If s(i) = -, i has indegree one;
* If s(i) € {v,A}, i has indegree two.

» The gate n has outdegree zero and is called the output gate.

@ The semantics of a Boolean circuit is defined as in propositional logic.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 15 / 67

CIRCUIT VALUE

\%

>

true

false

false

o CIRCUIT VALUE is the following problem:
Given a Boolean circuit C without variable gates, does C evaluate to

true?

e CIRCUIT VALUE is in P.

» Simply evaluate the gate values in numerical order.

Bow-Yaw Wang (Academia Sinica)

Elementary Complexity Theory

July 2, 2009

16 / 67

Space Complexity

@ A k-tape Turing machine with input and output is a Turing machine
M with k tapes. Moreover,
» M never writes on tape 1 (its read-only input);
» M never reads on tape k (its write-only output);
» The other k — 2 tapes are working tapes.

@ A configuration of k-tape Turing machine with input and output is a

2k + 1-tuple (q,wa, u1, ..., Wk, ug).
» The initial configuration on input x is (s,>, x,>,€,...,>,€).
. . M ¥
e On input x, if (s,>,x,>,€,...,>,¢) — (H,wy,u1,..., wk, ug) where
H e {halt, yes, no}, we say the space required by M on input x is
k-1
Xis |wiujl.

» Note that the space on input and output tapes does not count.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 17 / 67

SPACE(f(n)) and NSPACE(f(n))

@ Define

SPACE(f(n)) ={ L L can be decided by a TM with input }

and output within space bound f(n)

o NSPACE(f(n)) is defined similarly.

@ Define
L = SPACE(log n).

NL = NSPACE(log n).

PSPACE = | J SPACE(n¥)
keN

NPSPACE = |_J NSPACE(n*)
keN

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 18 / 67

“Complements” of Complexity Classes

@ Let LCX” be a language.
@ The complement of L, write L, is as follows.

xeLiff x¢L.
@ For any complexity class C, define

coC={L:LeC}.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 19 / 67

Complements of Complexity Classes

For any deterministic complexity class C, we have coC =C.

» Let LeC. Thereisa TM M deciding L within the resource bound of C.
Construct a TM M’ by switch the yes and no states of M. We have
x € L iff M(x) = yes iff M'(x) = no. Thus M’ decides L within the
resource bound of C.

e Consider L ={¢: ¢ is an unsatisfiable Boolean expression }.

Thus L= {¢: ¢ is a satisfiable Boolean expression }.

» Strictly speaking, L = {¢: ¢ is not a Boolean expression or ¢ is
satisfiable }. But this is a convenient convention.

@ Since L € NP, we have L € coNP.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 20 / 67

NP and coNP

A (A

o SAT ={¢: ¢ is a satisfiable Boolean expression }.
» ¢ € SAT if there is a truth assignment that satisfies ¢.
o UNSAT ={¢: ¢ is an unsatisfiable Boolean expression }.

» ¢ € UNSAT if there is no truth assignment that satisfies ¢.
» ¢ € UNSAT if all truth assignments do not satisfy ¢.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 21 / 67

Fallacies Q & A

@ Q: Is PccoNP?
@ A: Yes.
» Let L e P. Clearly, LeP cNP. Thus L € coNP.
@ Q:Is X"~ NP =coNP?
o A: No.

» Both NP and coNP are classes of languages (that is, each one is a set
of sets of strings). It does not make sense to consider ¥* \ NP or

>* N coNP.
e Q:Is 2" < NP = coNP?
o A: No.

» PC NP ncoNP.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 22 / 67

Relation between Complexity Classes

@ Since any Turing machine with input and output is a nondeterministic

Turing machine with input and output, it is easy to see the following
statements:

» TIME(f(n)) c NTIME(f(n));
» SPACE(f(n)) € NSPACE(f(n)).

@ Moreover, a Turing machine can use at most f(n) space in time
f(n). Therefore,

» TIME(f(n)) c SPACE(f(n));
» NTIME(f(n)) < NSPACE(f(n)).

@ Can we establish more relation between these classes?

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 23 / 67

Nondeterministic Time and Deterministic Space

Theorem

For any “reasonable” non-decreasing function f(n), we have
NTIME(7(n)) c SPACE(f(n)).

Proof.

Let Le NTIME(f(n)) and M a NTM decide L in time f(n). On input of
size n, a TM M’ works as follows:

@ for each sequence of nondeterministic choices of M
(2] M’ simulates M with time f(n)

o if M accepts, M’ accepts

Q if M does not accept, M’ erases working tapes

Each sequence of nondeterministic choices of M has length f(n).
Moreover, the simulation of M uses at most f(n) space. Hence M is a
TM deciding L in space f(n). O

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 24 / 67

Reachability Method

Theorem

For any “reasonable” non-decreasing function f(n), we have
NSPACE(f(n)) c TIME(c'e™f(m),

Proof.

Let L e NSPACE(f(n)) and M a k-tape NTM with input and output
decide L in space f(n). A configuration of M is of the form
(g,wi,u1,...,wk,ug). Moreover, M does not overwrite the input. A
configuration can be represented by (g, i, ws, ua, ..., wg, ux) where i is the
index of the cursor on input. Thus there are at most |K| x n x |£|(2k=2)f(n)
configurations.

Define the configuration graph of M on input x G(M, x) to be the graph
with configurations of M as its nodes. (Cp, C1) is an edge in G(M, x) if

M : .
Co — Ci. Thus x € L iff there is a path from (s,>, x,>, €+, >, €) to some
(ves,wi,ug, ..., Wi, Ug).

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 25 / 67

Reachability Method

Proof.

Since there is a polynomial-time deterministic algorithm for graph
reachability, we can decide if x € L in time polynomial in the size of the
configuration graph. Thus L € TIME(c'%8™+ (), O

@ To be precise, let us describe how the reachability algorithm is used.
@ We do not need the adjacency matrix of the configuration graph.
» It uses too much space unnecessarily.
@ Instead, we check whether there is an edge from (p to (; by
simulating M.

@ In other words, entries in the adjacency matrix are computed when
needed.

» This is called an on-the-fly algorithm.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 26 / 67

Comparing Complexity Classes

Theorem
LcNLcPc NP cPSPACE c NSPACE.

@ We know in fact that L ¢ PSPACE.

@ However, we do not know which of the inclusion is proper.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009

27 / 67

Nondeterminism in Space Complexity

@ For time complexity, we do not know if nondeterminism does increase
the expressive power of Turing machines.

» Otherwise, we would have known P ¢ NP or not.
@ For space complexity, we know a little bit more.

» Intuitively, nondeterministic computation does not need more space
because space can be reused.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 28 / 67

Savitch's Theorem

Theorem
REACHABILITY ¢ SPACE(Iog2 n).

Proof.

Let G = (V,E) with |[V|=n. For x,y € V and i € N, define that
PATH(x,y, i) holds if there is a path of length <2/ from x to y. Clearly, x
reaches y in G if PATH(x,y, [logn]) holds. We will construct a TM M
that decides PATH(x,y,1).

M decides PATH(x,y,0) by looking up the adjacency matrix of G.
For i > 1, M does the following recursively:

@ for all nodes z
(2] if PATH(x,z,i—1) holds then
o if PATH(z,y,i—1) holds then go to yes

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 29 / 67

Savitch's Theorem

Proof.

More precisely, when M is checking z. It puts the tuple (x,z,i—1) on its
working tape (line 2). If PATH(x,z,i—1) does not hold, M erases the
tuple (x,z,i—1) and tries the next node. If PATH(x,z,i—1) holds, M
erases the tuple (x,z,i—1), puts the new tuple (z,y,i—1) on its working
tape. If PATH(z,y,i—1) does not hold, M erases the tuple (z,y,i—1)
and tries the next node. Otherwise, M goes to the yes state.

Observe that at most [log n] tuples on the working tape. Each tuple uses
3[log n] cells. Hence M uses at most O(log? n) space. O

v

@ Of course, the algorithm is highly inefficient in terms of time.
» Each recursive call will try all nodes regardlessly.

@ On the other hand, it is very efficient in terms of space
» DFS, for instance, may use O(n) space.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 30 / 67

NSPACE = SPACE

Theorem

For any ‘“reasonable” nondecreasing f(n) > logn,
NSPACE(f(n)) c SPACE(f?(n)).

Proof.

Let L be a language and M an NTM decide L in space f(n). Moreover,

x € L if the initial configuration of M can reach an accepting configuration
of M in its configuration graph. Recall that the configuration graph of M
has O(c'°8™f(M) = O(cf("M) nodes (since (n) > log n). Thus there is a
TM M’ deciding the reachability problem within space

O(log2(c"(™)) = O(F3(n)). =

v

@ In other words, nondeterminism does not increase the power of TM in
terms of space complexity.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 31/ 67

CoNSPACE

@ For any deterministic complexity class C, we have shown coC =C.
@ For nondeterministic complexity classes, it is not clear at all.
> Recall NP and coNP.

@ However, we will show that NSPACE = coNSPACE.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 32 /67

Immerman-Szelepscényi Theorem |

Theorem

Given a graph G and a node x, the number of nodes reachable from x in
G can be computed by an NTM within space log n.

Proof.

Let S(k) = {y : x —=K y}. We compute |S(1),|S(2)],...,|S(n—1)|
iteratively. Clearly |S(n—1)| is what we want. We design an
nondeterministic algorithm using four functions. The Main function is:

Q |S(0)]:=1
@ for k=1,2,...,n-1do |S(k)|:= Count (|S(k-1)|)
Observe that only |S(k —1)| is needed to compute |S(k)]|.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 33 /67

Immerman-Szelepscényi Theorem ||

Proof.

To compute |S(k)| from C, we check how many nodes u are in S(k) by
invoking InS (k, u, C). The Count (C) function is:

Q /=0

@ for ue Vdoif InS (k,u,C) then £:=0+1
The InS (k, u, C) function is: (cf the next slide)

@ m:=0; reply := false

Q for veV do

(3] if GuessInS (k -1, v) then

Q m:=m+1

(5} if (v,u) € E then reply := true

Q if m< C then “give up” else return reply

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 34 / 67

Immerman-Szelepscényi Theorem Il

Proof.
For each node v, we nondeterministically check if v e S(k—1) (GuessInS
(k—-1,v)). If so, the counter m is incremented by 1. Futhermore, if v can

reach u in one step, set reply to true.
After checking all nodes nondeterministically, we will check if we have
correctly collect all nodes in S(k — 1) by comparing the counter m with C.

If so, return the variable reply.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 35/ 67

Immerman-Szelepscényi Theorem |V

Proof.

To verify v € S(j) nondeterministically, it suffices to guess a path of length

J. The function GuessInS (j,v) is:

Q wy:=x
Q forp=1,...,jdo
(5] guess wp € V and check (wp_1,wp) € E (if not, “give up")

Q if w;j = v then return true else “give up.”

Observe that only the variables k, C, ¢, u,m,v, p, wp, wp_1 need be
recorded. Since the number of nodes is n, log n space is needed.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009

36 / 67

NSPACE = coNSPACE

Theorem

For any ‘“reasonable” nondecreasing function f(n) > logn,
NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Suppose L € NSPACE(f(n)) and an NTM M decide L in space f(n). We
construct an NTM M that decides L in space f(n). On input x, M runs
the nondeterministic algorithm in the previous theorem on the
configuration graph of M. If at any time, M discovers that M reaches an
accepting configuration, M halts and rejects x. If |S(n—1)| is computed
and no accepting configuration is found, M accepts x.

Since the configuration graph of M has ¢ X+f(IX) nodes, M uses at most
O(f(n)) space if f(n) > logn. O

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 37 /67

Reduction

@ A language Lg is reducible to L; if there is a function R: £* - ¥*
computable by a Turing machine in space O(log n) such that for all
input x,

x € Lo if and only if R(x) € L;.

@ R is called a reduction from Ly to L;.

e If R is a reduction computed by a Turing machine M, then for all
input x, M halts after a polynomial number of steps.
» Since M is deterministic, its configurations cannot repeat.
%* Otherwise, M will not halt.

» There are at most O(nc'°¢") configurations.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 38 / 67

Solving Problems by Reductions

@ Assume there is a Turing machine M; to decide L;.
» That is, on input x
* M, goes to yes if x € Ly;
* M goes to no if x ¢ L.
@ Further, assume Ly is reducible to L1 by R.
@ There is a Turing machine My that decides Lg.

@ On input x, My first computes R(x);
@ My invokes M; on input R(x). There are two cases:
* If My goes to yes, My goes to yes;
* If My goes to no, My goes to no.
@ If there is a reduction from Ly to Ly and Ly is solved, then we can
solve Ly as well.
» Informally, L; is harder than Lg.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 39 / 67

Completeness

Let C be a complexity class (such as P, NP, L, etc).

A language L in C is called C-complete if any language L’ € C can be
reduced to L.

Informally, L is C — complete means that it is hardest to solve in C.
» Since any language in C is reducible to L, solving L means solving any
language in C.
@ But how can we prove a langauge is C-complete?

» There are infinitely many languages in C. It is impossible to write down
a reduction for each of them.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 40 / 67

Table Method

> 0 1 1 0 wu
> 0 1 1 0 wu
> 0 1 14 0 wu
> 0 1 1 0 U
> 0 1 1, u U
> 0 1, 1 uw U
> no 1 1 uw U

o Consider a TM M = (K, X,4,s) deciding language L within time n*.

e Its computation on input x can be seen as a |x|* x [x|¥ computation
table.
» Its rows are time steps 0 to |x|* - 1.
» Its columns are contents of the tape.

@ Moreover, let us write o4 to represent that the cursor is pointing at a
symbol o with state q.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 41 / 67

Convention in Table Method

@ To simplify our presentation, we adopt the following conventions.
» M has only one tape;
» M halts on any input x in |x|* -2 steps;
» The computation table has enough U's to its right;
» M starts with cursor at the first symbol of x;

» M never visits the leftmost >;
» M halts with its cursor at the second position and exactly at step |x|*.

% You should check that these conventions are not at all restrictive.
@ Let's use T(x) to represent the computation table on input x.
» Tij(x) represent the (/,j)-entry of T(x).
@ By convention, we have
» Toj(x) = the j-th symbol of the input x
» Tio(x) => for 0< i< |x|¥
> Tipgeer(x) =ufor 0<i < x|,

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 42 / 67

CIRCUIT VALUE is P-Complete |

Theorem
CIRCUIT VALUE is P-Complete.

Proof.

We know CIRCUIT VALUE is in P. It remains to show that any L € P,
there is a reduction R from L to CIRCUIT VALUE.

Let M be a TM deciding L in time n*. Consider the computation table
T(x) of M on input x. Observe that T;(x) only depends on T;_q j_1(x),
T,'_lJ, and Ti_1J+1. If the cursor is not at Ti—l,j—17 Ti—l,j7 Ti—l,j+1:
T;j=Ti_1j. If the cursor is at one of T;_1 1, Ti—1j, Ti—1j+1, Tij may be
updated. To determine T;;, it suffices to look at Ty 1, Ti-1, Ti—1j+1!

Tivja | Ticag | Ticajn
Tij-1 | Tij | Tijn

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 43 / 67

CIRCUIT VALUE is P-Complete Il

Proof.
Let ' be the set of symbols appearing on T(x). Encode each symbol v €T
by a bit vector (si,... 7S[|og|r|])- We thus have a table of binary entries

Sije where 0< i, j<|x|¥~1 and 1 < ¢ < [log|[|]. Moreover, we know Sjy is
determined by S;_1j_1¢,Si-1j¢,Si-1,j+1,¢- That is, there are Boolean
functions F1, Fa, ..., Fjiog|r) such that

Sije = Fe(Si-1,j-1,15 - - - » Si—1,j-1,flog T[] Si-14,1 - - - » Si—1,jo1,[log])-

Observe that F; are determined by M, regardless of x. Moreover, we can
think of each F; as a circuit. Thus we have a circuit C with 3[log|I]
inputs (for Ti_1 -1, Ti—1, Ti-1j+1) and [log|l'|] outputs (for T; ;).

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 44 / 67

CIRCUIT VALUE is P-Complete Il

Proof.
Go Cor v G
Cio Gi o Ggea
Coeo10 Cuierr 7 Ot e

Our reduction R(x) consists of (|x|* —1)(|x|¥ — 1) copies of C. The inputs
of R(x) are the encoding of the initial configuration. The output of R(x)
is to check if Cjx_; 1 encodes the state “yes.”

Note that the circuit C is determined by M (and hence not by the input
x). The computation of R needs to count up to |x|* only. Hence the
reduction can be performed in O(log|x|) space. O

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 45 / 67

Cook's Theorem

Theorem
SAT is NP-complete.

Proof.

Let L € NP and M an NTM deciding L in time n. Without loss of
generality, we assume each step of M is nondeterministic. Moreover, there
are exactly two choices in each nondeterministic step.

As in table method, we construct a circuit (and hence a Boolean
expression) for the computation table of M. Now the entry T; is
determined by T; 11, Ti—1;, Ti-1,j+1 and the choice cj_1. Thus, the
circuit C has 3[log|l|] + 1 inputs. M accepts x iff there is a truth
assignment to Co, €1, .. ., Cjqk_1 such that Cx_; ; encodes yes. Ol

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 46 / 67

Graph-Theoretic Problems

Let G be a set of finite graphs (called a graph-theoretic property).
The computational problem related to G is: given a graph G, to
decide whether G € G.
@ It is not hard to encode any input G as a string in X*.

» For instance, we can represent the adjacency matrix of G by a string.
A graph-theoretic problem G corresponds to a language L.

» G e @ iff encoding(G) € L.
Consider a set G expressible in existential second-order logic.

» That is, there is an existential second-order logic sentence
3Py3AP;---IPy¢ such that

g-= {G :GE 3P03P13Pg¢}

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 47 / 67

Deciding Graph-Theoretic Properties |

Theorem

Let APy3P1---AP,¢ be an existential second-order sentence. Given a graph
G as an input, checking G & 3Py3P1---3Py¢ is in NP.

Proof.

Assume P; has arity r;. Given G = (V, E) with |V|=n, an NTM can guess
relations P,-M c V'ifori=0,...,¢. Note that the time for guessing P,.M is
at most n"i.

After guessing P,-M’s, we have a first-order logic formula ¢ with relations
Po, P1, ..., Ps;. We now show how to decide (G,P(’)\”,...,PZM) E ¢ in
polynomial time.

We prove by induction on ¢.

@ If ¢ is atomic, we can check it by examining the adjacency matrix or
PM.
1

v

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 48 / 67

Deciding Graph-Theoretic Properties |l

Proof.

o If ¢ = —1), there is a polynomial time algorithm for ¢ by inductive
hypothesis. We can decide —1) by exchanging the yes and no states.

o If ¢ =g Vv 1, there are polynomial time algorithms My and M; for
1o and 7 respectively. We decide 1y v 1 by executing My and then
My (if necessary).

@ ¢ =1 At is similar.

o If ¢ = Vx4, there is a polynomial time algorithm M for). We
construct a new model H that assigns x to v and check H = v by M.
If the answer is “yes” for all v e V, we return “yes;" otherwise we
return “no.” Since M is polynomial in n and there are n iterations,
this case can be performed in polynomial time.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 49 / 67

Characterizing Graph-Theoretic Properties

Let W be an existential second-order sentence.

Clearly, W determines a graph-theoretic property.

» Gy={G: GV}
We have shown that deciding G € Gy is in NP for any input graph G.
Now consider a graph-theoretic property G that can be decided in NP.
Is there an existential second-order sentence W such that G = G,,7

If so, we can prove a graph-theoretic property is in NP by writing an
existential second-order logic formula!

» We thus say that the fragment of existential second-order logic
characterizes graph-theoretic properties in NP.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 50 / 67

Fagin's Theorem |

Theorem

The class of all graph-theoretic properties expressible in existential
second-order logic is equal to NP.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 51 /67

Fagin's Theorem Il

Proof.

Let G be a graph property in NP. Hence there is an NTM M deciding
whether G € G in time n* for some k. We will construct a formula
APy---3Py¢ such that G E 3Py---3P,¢ iff G € G. Consider

e(m)
succ
unique
linear
ds

Axg3xy -+ Ixm—1 Aosi<jcm ~(Xi = X;)
Vx3Ix'=(x =x") A S(x,x")
VxVyVy'(S(xy) A S(xy") =y =y')
VxVy(5(x,y) = =5(y,x))

e(n) A —e(n+1) Asucc A unique A linear

Observe that S is isomorphic to {(0,1),(1,2),...,(n-2,n-1)}.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009

52 / 67

Fagin's Theorem Il

Proof.
Define ((x) = Vy-S(y,x) (“x=0") and n(x) = Vy-S(x,y) ("x=n-1").
Let 0 < xq,x,...,%xk < n. Write (x1,x2,...,xk) as Xx. Observe that any

number between 0 and n — 1 is represented by an X. We define S (X,y)
to represent y is the successor of X:

Si(x1,y1) = S(x1,y1)
Si(xty X ¥1s -5 y) = [SOG) A (a = y1) A(X-1 = yje1) IV
[(x) AC(Yj) A Sjci(X1s s Xje1, Y15 -+ 5 Yjm1)]
In the inductive definition, S;(X,y) represents y = X + 1 with |x| = |y|. We
have y = X + 1 iff (x; and y; are MSB's)
e yj=xj+1and Vi<j(yi=xj); or

e xi=n-1,y =0 and (y1,...,yj-1) = (x1,...,Xj-1) + L.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 53 / 67

Fagin's Theorem IV

Proof.

Consider the computation table T(G) of M. For each symbol o €T (T is
the set of symbols on T(G)), the relation T,(X,y) means that the
(x,y)-entry of T(G) is 0. Moreover, Cp(X) means that the 0-th
nondeterministic choice is made at the step X. Similarly for C;(X). The
existential second order sentence is of the form:

353T,,3Ts, 3T, 3CIACYRYXVYVY'Vy" (Bs A DT A DA AP A D).

®g is the formula specifying the successor relation S. We now define the
remaining subformulae.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 54 / 67

Fagin's Theorem V

Proof.

In addition to the conventions used in Table Method, we further assume
that the adjacency matrix is spread in the input: we put n2 -1 U's
between two consecutive entries.

> 0s U u 1 u u 0 u -
> 0 ug - u 1 wu u 0 u L
> yes U uouou U u u L

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 55 / 67

Fagin's Theorem VI

Proof.
® 1 specifies the boundary of computation table T(G).
@ When x=0

If yo ==y, =0, Ti(x,y) iff G(y1,y2) =i for i=0,1;
Otherwise, T, (X,y).

@ When y =0, T.(X,y);
@ When y = n* -1, T(X,y).

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 56 / 67

Fagin's Theorem VII

Proof.

®, specifies transition relations of M on T(G). Recall

Tiyji=a| Tigj=0] Tisjs =7
Tij-1 Tij=o Tij+1

Let ¢ be the nondeterministic choice made at step / — 1. For each
(7—i—1,j—1a T,'_l’j, T,'_l’j+1, c, T,',j), we add the following conjunct to ®a:

[Sk(X, %) A Si(¥",¥) A Sk (¥, 5")A
Ta(X,y") A Ta(X, y) A Ty (X, 77) A Ce(X)] = To(X, 7).

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 57 / 67

Fagin's Theorem VIII
Proof.

® ¢ specifies the nondeterministic choice at any step.
(GCo(x) v Gi(X)) A (=Co(X) v =G (X)).
Finally ®,es specifies the accepting configuration.
X=nf-1Ay=1- Tyes(X,7).

It should be clear that G € G iff G satisfies the existential second order
sentence constructed above.]

v

@ Spreading the adjacency matrix of the input allows us to have a
simple encoding.

» Otherwise, we have to define y < n?.

@ The formula Sk(x,y) is defined by S(x;, y;). Each instance of
Sk(X,y) is a new copy.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 58 / 67

Fagin's Theorem IX

» For instance, there are three copies in ®a.

@ Observe that the constructed formula is not in the monadic second
order logic.

» For instance, ®s and ®a define binary relations S and T,.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 59 / 67

Quantified Boolean Formula

@ As we have seen, logic and complexity are closely related.

» SATISFIABILITY is NP-complete (Cook's theorem).
» Existential second-order logic characterizes NP (Fagin's theorem).

@ There is yet another connection between logic and complexity.

@ The quantified Boolean formula (QBF) problem is the following:
Given a Boolean expression ¢ in conjunctive normal form with
variables x1,x1, ..., x,, decide

Ax1Vxo3x3-+- QnXxnd?

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 60 / 67

QBF and SATISFIABILITY

@ SATISFIABILITY is in fact a subclass of QBF.

» Let ¢(x1,x2,...,X,) be a Boolean expression in conjunctive normal
form with variables xq,..., x,.
» d(x1,X0,...,X,) is satisfiable iff 3x;Vy; IxoVyn--Ixnd(x1, - - -, Xn)-

@ Since this is a reduction, QBF is NP-hard.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 61 / 67

QBF is PSPACE-Complete |

Theorem
QBF is PSPACE-complete.

Proof.
Consider any quantified Boolean formula 3x;Vxo3x3:--Qnxn. Given any
truth assignment to xi, ..., x,, we can evaluate ¢ in O(n) space.

Moreover, O(n) space is needed to record each assignment. Hence QBF is
in PSPACE.

Suppose L is a language decided by an NTM M in polynomial space. Thus
there are at most 2" configurations of M on input |x| = n. We thus
encode each configuration of M on input x by a bit vector of length n*.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 62 / 67

QBF is PSPACE-Complete Il

Proof.

Let A={a1,...,a,k} and B ={by,..., b} be sets of Boolean variables.
We will construct a quaitified Boolean formula ; with free variables in
AU B such that ¢,(A B) is satisfied by v iff

(v(a1),...,v(ax)) M, (v(by),...,v(by)) in 2/ steps.
For i =0, @DO(A B) states that

@ aj = b;j for all j; or

@ configuration B follows from A in one step.

Yo(A, B) can be written in disjunctive normal form with O(n*) disjuncts,
and each disjunct contains O(n¥) literals. That is, 1o(A, B) is in fact in
disjunctive normal form.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 63 / 67

QBF is PSPACE-Complete Il

Proof.
Inductively, assume we have ¢);(A, B). Define

Vis1(A,B) =3ZYXVYY[((X = AAY =Z)v(X =ZAY = B)) » (X, Y)]

where each of X, Y, Z has fresh n* variables.
However, 1;,1 is not in the form required by QBF. It is not in prenex
normal form. But this is easy to fix. Note that

P> 3ZYXVYY[R(X,Y,Z)]=3Z¥YXVY[P > R(X,Y,Z)].

We can easily transform ;.1 into its prenex normal form.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 64 / 67

QBF is PSPACE-Complete IV

Proof.
The other problem is that

(X=AAY=2Z)v(X=ZAY=B))>vi(X,Y)

is not in conjunctive normal form.

Note that the disjunctive normal form is easy to compute. Recall that g
is in disjunctive normal form. Assume); is in disjunctive normal form. Our
goal is to compute the disjunctive normal form of the following formula:

(X£AVY £Z)AN(X£ZVvY +B))vyi(X,Y)

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 65 / 67

QBF is PSPACE-Complete V

Proof.
Observe that (X # A) A (X # Z) is equivalent to the following formula:
V (XiA=-ajAXjA=-z)) V V. (=xiAaiAXjA=z) Vv
1<i,j<nk 1<i,j<nk
V. (XiA=ajA=XjAZj) V V(=i Aaj A=Xj A Zj)
1<i,j<nk 1<i,j<nk

The disjunctive normal form consists of v; and 16n?% disjuncts.

We thus have a reduction from any problem in PSPACE to the version of
QBEF in disjunctive normal form. But this version is precisely the
complement of QBF. Hence we have a reduction from any problem in
coPSPACE to QBF. Since coPSPACE = PSPACE
(Immerman-Szelepscényi Theorem), our reduction is in fact from any
problem in PSPACE to QBF. O

.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 66 / 67

QBF is PSPACE-Complete VI

o If 1,1 were defined to be 3Z[¢;(A,Z) A(Z, B)], the size of the
formula is doubled. The reduction could not be performed in
polynomial time.

» That is why we “reuse” the formula ;.

Bow-Yaw Wang (Academia Sinica) Elementary Complexity Theory July 2, 2009 67 / 67

	Turing Machines
	Complexity Classes
	Space Complexity
	Reduction and Complete Problems
	Time Complexity
	Existential Second Order Logic
	Quantified Boolean Formula

