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Finite Automata

@ A finite automaton is a 5-tuple (Q, X, 9, go, F) where
» @ is a finite set of states;
» ¥ is a finite input alphabet;
» §C Q x X x Q@ is a transition relation;
» qo € Q is the initial state;
» Fc Qis a set of accepting states.
@ If the transition relation is in fact a function from @ x X to @, it is a
deterministic finite automaton (DFA). Otherwise, it is a
non-deterministic finite automaton (NFA).
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Example

Figure: NFA My

o My = (sz75a q07F) where

» Q={q0,q1};

» X ={0,1};

g 5={(qovo»CIO),(CIO,LCIO)a(QO,1,Q1)7(¢71,1,¢71)};
» F={q}.
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Input Sequences and Runs

o Let M=(Q,%,0,q0, F) be an NFA.

@ An input sequence « = ajap---a, is a finite sequence of symbols over
the alphabet .

» The finite sequence without any symbol is denoted by e.

@ A run p=qoqgi---gGn+1 ON an input sequence « = ajap---a, IS a sequence
of states such that

for all 0 <i < n,(qj,ai+1,qi+1) €90.

@ Arun p=qoQq1--gn+1 of M over a = ajap---a, is accepting if gni1 € F.

@ An input sequence « is accepted by M if there is an accepting run p
of M over a.
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Example (cont'd)

Figure: NFA My

@ For the input sequence 0000, there is only one run goqogoqgoqo-
» 0000 is not accepted by M.
@ For the input sequence 0011, there are three possible runs:

> goGoqodoqo, GoGododoqr, and GodoGoqiqs.
» the dark green ones are accepting.

» 0011 is accepted by M.
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Languages

Given an alphabet X, a language is a set of input sequences over ¥.
Let M = (Q,X,d,qo, F) be an NFA. Define

L(M) ={a: «is an input sequence accepted by M}.

L(M) is the language accepted (or recognized) by M.
Thus,

L(Mo) {1,01,11,001,011,111,...}

{a: the last symbol of o is 1}.
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Expressive Power

@ Let M be a DFA. Since a DFA is also an NFA, the language L(M) is
accepted by an NFA as well.

@ Let N be an NFA. We will prove that L(/N) can be accepted by a
DFA.

@ In other words, nondeterminism does not recognize more languages.
For finite automata, it suffces to consider deterministic fintie
automata.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 8 /75



Subset Construction

Theorem

Let L be a language accepted by an NFA. Then there is a DFA M such
that L(M) = L.

Proof.

Let N=(Q,X,d,qo, F) be an NFA and L(N) = L.
Consider M = (22,%,6", {qo}, F") where
e 0'(X,a) = U d(x,a);
xeX
o F/={XcQ:XnF=g}.
We can show that L(N) = L(M) by induction on the length of input
sequences. []
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Example

0

1—°

Figure: DFA My

@ Let us find a DFA M; such that L(My) = L(Mp).
o My =(Q,X,0",{qo}, F") where
| X0 | Xi | Xa

X
» Q' = { Xy, Xo, X1, Xo1} where =2
Q= {Xo: X0, X1, Xon} CRRCOARCIARCY,

» 0" = {(X0,0,X%p), (Xo,1, Xo01), (X1,1, X1), (Xo1,0, X0), (Xo1, 1, Xo1) };
4 F’ = {X]_,X()l}.
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Operations on Languages

o Let ¥ be a finite alphabet, and L, Ly, L1 be languages over X.
@ The concatenation of Ly and L; (denoted by LgL) is defined by

LOL1 = {Oéﬁ BOAS Lo,IB € Ll}

Define L% = {€} and L' = LL""? for i > 1.
@ The Kleene closure (or just closure) of L (denoted by L*) is defined by

L =L
i=0
@ The positive closure of L (denoted by L*) is defined by
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Regular Expressions

@ Let ¥ be an alphabet. The regular expressions over ¥ are defined as
follows.

@ o is a regular expression denoting the empty set;

@ c is a regular expression denoting the set {¢};

© For each a€ X, ais a regular expression denoting the set {a};

@ If r and s are regular expressions denoting the sets R and S
respectively, then r + s, rs, and r* are regular expressions denoting
RuUS, RS, and R* respectively.
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Example

Figure: NFA My

o Let ¥ ={0,1}. Lo={¢00} and L; ={1,111}.
» Loly ={1,111,001,00111};
» LE ={¢,00,0000,...} = {02"_ 1i>0};
» LF={e,1,11,111,.. .} = {1 :i > 0}.
@ Also note that Lo c¥~* and L; € ¥*.
» Thus, a language is a subset of ¥*.

o We have L(Mp) =(0+1)*1"
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NFA with e-Transitions

Figure: NFA M,

@ Since € ¢ X, we do not allow, for example, (p, €, q) in the transition
relation of finite automata.
@ A transition with € as its input symbol is called an e-transition.

» Intuitively, it represents that the finite automaton can move to another
state without consuming any input symbol.

o Consider the NFA M,. We have L(M,) =0*1".
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Regular Expressions to NFA with e-Transitions
Theorem

Let r be a regular expression. There is an NFA with e-transition that
accepts the language denoted by r.

Proof.

We prove by induction on the r. For the basis, see the following.

r=ce€

O Q

For the inductive step, first consider r = st. We use

© - OO -~ ©

assummg a single acceptance state Q()f)
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Regular Expressions to NFA with e-Transitions (cont'd)
Proof (cont'd).

For r = s+ t, we use

—
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NFA with e-Transitions to DFA

Figure: NFA M, to M3 without e-transition

@ It is actually not difficult to see that e-transitions can be removed.
> The idea is to simulate e-transitions by consuming input symbols.

@ We will not give a proof but only consider an example.
@ In general, removing e-transitions will result in an NFA.
@ We can futher transform an NFA to a DFA.
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DFA to Regular Expressions

Theorem
Let D be a DFA. There is a regular expression denoting L(D).

Proof.
Let D= ({q1,---,qn},%,d,q1,F) be a DFA. Define
RO = {a:(ql‘,a,qj)eé} ifis)
/ {al(qi,a,qj)eé}u{q ifi=]
R = Ry R R

Intuitively, R,-’j- represents the inputs that cause D to go from g; to g;
without passing through a state higher than g. It is not hard to see that
Rl-j‘- can be denoted by regular expressions.

The result follows by observing that L(D) = Ug;cr Ry} O

v
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Example

0
1

0 1

Figure: DFA M,

k=0 k=1 k=2

RET 0 0

RS | 1 01 071(0*1)*0*1+0*1=(0+1)*1
Rk | © 0*

RS 1 071
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Regular Languages

@ The class R of regular langauges consists of langauges accepted by
deterministic finite automata.

R={L(D):DisaDFA}
@ Since each NFA can be transformed to a DFA, we have
R ={L(M):Mis an NFA }
@ Since each regular expression can be transformed to an NFA, we have

R ={L(e) : e is a regular expression }
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Closure Properties

For any Lo, L1 € R, there are regular expressions ry and r; denoting Lg
and L respectively.

@ Moreover, the regular expression ry + r; denotes Lo u Ly and is
accepted by an NFA.

Thus Lo U L1 € R for any Lo, L1 eR.

Similarly, we can prove that

» LoL; € R for any Lg,L; € R, and
» L*eR forany LeR.
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Closure Properties (cont'd)

Theorem
Forany Le R, X"\ LeR.

Proof.
Let D= (Q,X,d,qo0,F) be a DFA and L= L(D). Then

D'=(Q,X,d,qo, @~ F) accepts the language X* \ L. O

Theorem

For any Lo,Ll eR, LoﬂLl eR. )
Proof.

Observe that Lon Ly =X* N ((Z* N Lo) u (X* N Ly)). O
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w-Automata

We would like to generalize inputs to finite automata.

Instead of finite input sequences, let us consider an infinite input
sequence o = aiap---ap -+ Over X.

Let M =(Q, X, 4, qo, F) be a finite automaton.

As before, define a run p = qog1---qn--- on « to be an infinite sequence
of states such that

for all i >0, (qi,ai+1,9i+1) €0.

What is an accepting run then?

» Problem: there is no “final” state in an infinite run.
» We cannot reuse the old definition.
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Biichi Acceptance

@ Let p=qoqi1---qn--- be an infinite run.
@ Define

Inf(p) = {q € Q: g occurs infinitely many times in p}.

@ An infinite run p of M = (Q,X,d, qo, F) over « is accepting if
Inf(p) N F + @.
» This is called Biichi acceptance

@ An infinite input sequence « is accepted by M if there is an accepting
infinite run p of M over «.

o Finally, define

L,(M) ={a:«is an infinite input sequence accepted by M}.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 24 / 75



Example

Figure: NFA My

@ Let us reconsider M.
o L,(Mp) ={a:« has only finitely many 0's}.
» If there are infintiely many Q’s, My has to stay in qo. It cannot pass g;
infinitely many times.
o We will write the expression (0 +1)*1* to denote L(Myp).
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Nondeterminism

@ For finite automata over finite input sequences, we know
nondeterminism does not give us more expressive power.

@ However, nondeterministic finite automata with Biichi acceptance
over infinite input sequences can recognize more languages than
deterministic ones.

Theorem
(0+1)*1% cannot be accepted by any DFA with Biichi acceptance.

Proof.

Suppose D = (Q,X,d,qo, F) is a DFA and L(D) = (0+1)*1¥. Consider
1¥. There is ng such that 1™ causes D to reach an accepting state. Now
consider 101%. There is n; such that 1™01™ causes D to reach an
accepting state. We can therefore construct 1™01™01"20--- to cause D to
pass through F infinitely many times. A contradiction. [

v
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Remark

Figure: NFA M,

The proof does not work for NFA.
Consider again the NFA M.

@ 1 causes My to reach g;. 101 causes My to reach g1, etc. There is no
problem.
@ However, 101 passes g1 only once. Similarly, 10101, 1010101, ... pass

g1 only once.

Because Mj is nondeterministic, infinite runs may not be the “limit”
of their finite prefixes.
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The Class of Regular w-Languages

o Define
R, ={Ly(M): M is an NFA with Biichi acceptance }.

@ R, is called the class of regular w-languages.

@ Under Biichi acceptance, nondeterminism increases the expressive
power. We have

{L,(D): D is a DFA with Biichi acceptance } ¢ R,,.

@ In addition to Biichi acceptance, we will discuss three different
acceptances.
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Muller Acceptance

Figure: DFA M5

o Let M=(Q,%,8,qo,F) be a finite automaton with F ¢ 29.
@ An infinite run p over an input sequence o on M is accepting if
Inf(p) € F.
» This is called Muller acceptance.
o Consider the DFA Ms with F = {{g2}}.
e With Muller acceptance, we have L,(Ms) = (0+1)*1%.

» Note that Mj is deterministic
» Also note that (01)“ is not accepted with Muller acceptance.
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Rabin Acceptance

Figure: DFA Ms

o Let M=(Q,%,0,q0,Q) be a finite automaton with
Q:{(EO’F0)7"'7(E/<7F/<)} and EiaFig Q
@ An infinite run p over an input sequence o on M is accepting if

3(E, F) € Q such that Inf(p) n E =@ and Inf(p) n F + @.

o Consider the DFA Ms with Q = {({q1},{q2})}

e With Rabin acceptance, we have L,(Ms) = (0+1)*1%.
» Inf(p) n{qg1} = @ forbids 0 to occur infinitely many times.
» Inf(p) Nn{g2} # @ forces 1 to occur infinitely many times.
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Streett Acceptance

Figure: DFA Ms

Let M =(Q,X,0,qo,Q) be a finite automaton with
Q= {(Eo, Fo), ceey (Ek, Fk)} and E,'7 F; c Q.
@ An infinite run p over an input sequence o on M is accepting if

V(E,F)eQ,Inf(p)nE =@ orInf(p)nF=a.

Observe that Rabin acceptance and Streett acceptance are
complementary.
Consider the DFA Ms with Q = {({g2},{91,92}), (2, {aq1})}
» ({g2},{q1,g2}) forces 1 to occur infinitely many times.
» (@, {q1}) forbids 0 to occur infinitely many times.
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Expressive Power

@ An important question in w-automata theory is to compare the
expressive power of various acceptances.

@ We have shown that non-deterministic Biichi acceptance is strictly
more expressive than deterministic Biichi acceptance.

@ What is the relation between non-deterministic Biichi acceptance and
non-deterministic Muller acceptance

» Similarly, what about non-deterministic Rabin acceptance and
non-deterministic Streett acceptance?

@ What is the relation between deterministic Biichi acceptance and
deterministic Muller acceptance

» And between deterministic Rabin acceptnace and deterministic Streett
acceptance?

© We will address these questions shortly.
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Expressive Power (Overview)

DMA «<— DRA +— DSA

//’ NRA

NBA «— NMA

\(\) NSA

D: Deterministic, N: Nondeterministic

B: Biichi, M: Muller, R: Rabin, S: Streett
A: Automata

X = Y: X can be translated to Y

(The graph here only covers translations in this lecture and hence is not

complete.)
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Biichi to Muller Acceptance

Lemma

Let B=(Q,%,0,qo, F) be a finite automaton with Biichi acceptance.
Define M = (Q,%,9,q,F) with F={Gc Q:GnF +a@}. Then
L,(B) = L,(M).

Proof.
Let o be an input sequence and p an infinite run over aw on B. ave L, (B)
iff Inf(p) N F # @ iff Inf(p) € F iff o € L, (M). O

v
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Example

Figure: NFA My

@ The finite automaton M = ({qo, q1},{0,1},0, o, F) with Muller
acceptance where

» 0=1{(90,0,40),(q0,1,90),(q0,1,91),(q1,1,G1)};
» F={{a} {qa}}

accepts the same w-language.
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Muller to Buchi Acceptance
Lemma

Let M=(Q,X,0,q0,F) be a finite automaton with Muller acceptance.
There is a finite automaton B = (Q',X,¢’, qo, F) with Biichi acceptance
such that L,(B) = L,(M).

Proof.

The idea is to “guess’ a set G € F and check whether all states in G are
visited infinitely many times.

For each G € F, we define Qg = {qgg : g € G}. Moreover, we use a set to
record which states in G have been visited. Define

Q' = QUUger(Qc x 2°).

8'=6u{(p,a (q6,2)): (p,a,q) € d}u
{((p,R),a,(q6,Ru{p})):(p,a,q) €6, R* G}u
{((pg,G),a,(q6,9)): (p,a,q) €I}

F={(q6,9):q6 € Qs,G € F}.

1
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Example

0,1

Figure: NFA M;

o Consider M = ({qo, a1}, {0,1},4, qo, F) where

6 =1(90,0,90),(90,1,90),(q0,1,91),(q1,1,q1)} and
F={{qo, a1}, {a1}}.
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Rabin and Streett to Muller Acceptance

Lemma

Let R=(Q,X,d,q0,) be a finite automaton with Rabin acceptance.
Define M = (Q, %, 6, qo, F) with Muller acceptance where

F={GcQR:IE,F)eQ.GnE=3AGnF =3}

Then Ly(R) = L,(M).

Lemma

Let S=(Q,%,0,q0,Q2) be a finite automaton with Streett acceptance.
Define M = (Q, %, 9, qo, F) with Muller acceptance where

F={GcQ:Y(E,F)eQGnE+&VvGnF=g}.

Then L,(S) = L,(M).

@ These two follow from the definition immediately.
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Example

0
35
OO
Figure: DFA My

e Consider the finite automaton R = ({q1,92},{0,1},4, g1,Q) with
Rabin acceptance where

» 0=1{(q1,0,q1),(q1,1,92),(92,0,q1), (92,1, 92) }
» Q={{aq1},{®}}.

@ The finite automaton M = ({q1,¢2},{0,1},9, g1, {{g2}}) with Muller
acceptance accepts the same w-language.
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Bichi to Rabin and Street Acceptance

Lemma

Let B=(Q,X,0,qo, F) be a finite automaton with Biichi acceptance.
Define R = (Q, X, 6, qo, ) with Rabin acceptance where Q = {(2, F)}.
Then L,(B) =L,(R).

Lemma

Let B=(Q,%,0,qo, F) be a finite automaton with Biichi acceptance.
Define S = (Q, X, 0, qo, Q) with Rabin acceptance where Q = {(F,Q)}.
Then L,(B) = L,(S).

@ These two also follow by definition immediately.
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Example

Figure: NFA M,

e Consider the finite automaton My = ({qo, ¢1},{0,1}, 4, g0, {g1}) with
Biichi acceptance where

» 0= {(q0507 q0)7 (q07 1a q0)7 (q07 17 q1)7 (q17 17 ql)}

@ The finite automaton R = ({q07 Q1}> {07 1}767 qo, {(®7 {ql})}) with
Rabin acceptance recognizes the same w-language.
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Expressive Power

@ We have the following transformaion:

» Biichi to Muller acceptance
» Muller to Biichi acceptance
» Rabin and Streett to Muller acceptance
» Biichi to Rabin and Streett acceptance

@ Therefore,

Lemma

The following classes of w-languages are equivalent:
Q {L,(M): M is an NFA with Biichi acceptance },
Q@ {L,(M):M is an NFA with Muller acceptance };
@ {L,(M):M is an NFA with Rabin acceptance };
Q {L,(M): M is an NFA with Streett acceptance }.
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Deterministic Muller to Rabin Acceptance

Lemma

Let M =(Q,X%,d,q0,F) be a DFA with Muller acceptance. Assume
Q={1,2,...,k} and qo = 1. Consider R =(Q',X,¢’, g}, Q) with Rabin
acceptance where
o Q' ={we(Qu{y})*:VYqge Qu{y},q occurs in w exactly once. }.
® gj=hk-1.
© 0'(my-mplfy Mpp1---My, @) = My---Mg_1 ff Msi1---myms if 6(my, a) = ms.
o 0= {(Eo, Fo), ceey (Ek, Fk)} with
Ei={upv:|ul<i}
Fi={upv:|ul<i}u{upv:|ul=iand {meQ:m occursinv}eF}.

We have L,(M) = L,(R).
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Deterministic Muller to Rabin Acceptance

Proof (sketch).

Let us consider a run p of M with Inf(p) = J = {mq,...,m;}. In the
corresponding run on R, states in Q \ J will eventually move before .
Hence, R will finally visits states of the form u} v where u contains all
states in Q \ J. Therefore, |u| > |Q ~ J| and |v| <|J| = j eventually. Since J
are visited infinitely often, we have |v| = |J| = j infinitely often. Moreover,
the states in v when |v| = are precisely the set J. O

v
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Example

Figure: DFA Mg

o Consider Ms = ({q1,92},{0,1},9, g1, {{g2}}) with Muller acceptance
where
g 6 = {(Q1a07Q1)7 (q171aq2)a (q2a07q1)7 (q27 ]-a qQ)}
o The DFA Mg = (Q, {0, ].}, 5’, {(Eo, Fo), (El, Fl), (EQ, Fz)}) with
Rabin acceptance where
» Q=1{h9192,1 9291, G111 92,92 b g1}
» (Eo, Fo) = (2,9)
» (B, F) = ({9192, 592091}, {9192, 5 9291, 91 1 g2 })
> (B2, F2) =(Q, Q)

recognizes the same language.
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Deterministic Rabin to Muller Acceptance

Lemma

Let R=(Q,%,4,qo0,Q2) be a DFA with Rabin acceptance. Define
M= (Q,%,d,qo,F) with Muller acceptance where

F={GcQR:3I(E,F)eQ.GnE=3AGnF +a}.
Then L,(R) = L,(M).

@ This is the same construction for the non-deterministic case.
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Deterministic Rabin to Streett Acceptance

Lemma

Let D = (Q,X,d,qo,) be a DFA with Rabin acceptance. Consider
E=(Q,X,d,q0,2) as a DFA with Streett acceptance. Then
L,(D) = T¥ Ly, (E).

Proof.

Rabin acceptance and Streett acceptance are complementary. Ol
Lemma

Let M= (Q,X,0,q0,F) be a DFA with Muller acceptance. Define

M =(Q,X,8,q0,2° N\ F). Then L,(M) =X~ L,(M).

Proof.

By definition. Ol
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Deterministic Rabin to Streett Acceptance

Lemma
Let R be a DFA with Rabin acceptance. There is a DFA S with Streett
acceptance such that L,(R) = L,(S).

Proof.
We construct a DFA M with Muller acceptance such that
L,(M) = L,(R). Build M" with Muller acceptance such that
L,(M")=%“L,(M). Then we construct a DFA R’ with Rabin acceptance
such that L,(R") = L,(M"). Then S = R" with Street acceptance is what
we want. We have the following equation:
L,(S) with Streett acceptance

= XY\ L,(R") with Rabin acceptance

= X*~ L,(M") with Muller acceptance
YN (EY N L, (M)) with Muller acceptance
L,(M) with Muller acceptance
= L,(R) with Rabin acceptance.
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Example

Figure: Rabin to Muller Acceptance

o Consider the DFA R = ({q1,92},{0,1},0, go,2) with Rabin
acceptance where

» 0=1{(q1,0,q1),(q1,1,92),(92,0,q1), (92,1, 92) }
» Q={({aq1},{®})}

@ The DFA M = ({g1,92},{0,1},6, g1, {{qg2}}) with Muller acceptance
recognizes the same language.
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Example

Figure: Muller Complementation

o Consider the DFA M = ({q1,42},{0,1},6,q1,{{g2}}) with Muller
acceptance where

» 0= {(q1707 ql)? (ql, 17 q2)7 (q270, ql)v (q27 17 q2)}

e The DFA M’ = ({q1,¢2},{0,1},8,q1,{2,{q1},{q1, 92} }) with Muller
acceptance recognizes X \ L,,(M).
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Example

Figure: Muller to Rabin Acceptance

o Consider the DFA M’ = ({qla q2}a {07 1}7 5a qi, {Qv {q1}7 {CIL Q2}})
with Muller acceptance where
» 0= {(quo,CIl), (q1,17q2)7 (q270,q1)7 (q27 17 q2)}
o The DFA R' = (Qa {07 1}76,7 {(E07 FO): (Elv F1, (E27 F2)7 (E37 F3))})
with Rabin acceptance where
» Q=1{19192,19291,91 4 G2, G2 {1 91 }
» (Eo, Fo) = (@,{1 9192, 1 92q1})
» (E1, A1) = ({19192, h 9201}, {01 9192, b 9291, G2 91 })
" (E27F2) = (E37F3) = (Qy Q)
recognizes L, (M’).

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 51/ 75



Example

Figure: Rabin Complementation

@ Consider the DFA
R’ = (Q, {0, 1},5’, {(Eo, Fo), (El, Fl), (EQ, FQ), (E3, F3)}) With Rabin
acceptance where
» Q={49162,0 G291, 91 h G2, G2 g1 }
» (Eo, Fo) = (2, {9192, 1 9291 })
» (B, A1) = ({h 9192, b 9201}, {1 9192, 11 9291, G2 [y g1 })
» (B2, F2) = (E3,F3)=(Q,Q)
@ The DFA S = (Q7 {07 1}75,7 {(EOa F0)7 (Ela F1)7 (E27 FQ)? (E37 F3)})
with Streett acceptance recognizes X \ L, (R’).
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Expressive Power

@ In summary, we have shown Muller, Rabin, and Streett acceptaces are
equivalent for deterministic finite automata.
Theorem
The following classes of w-languages are equivalent:
Q {L.(D):D is a DFA with Muller acceptance };
@ {L.(D):D is a DFA with Rabin acceptance };
@ {L.(D):D is a DFA with Streett acceptance }.

Corollary

The following classes are closed under union, intersection, and
complementation:

Q@ {L.(D):D is a DFA with Muller acceptance };
@ {L.(D):D is a DFA with Rabin acceptance };
@ {L,(D): D is a DFA with Streett acceptance }.

v
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Relating Nondeterministic and Deterministic Classes

@ We have shown that Biichi, Muller, Rabin, Streett acceptances are
equivalent for nondeterministic finite automata

@ We also know that Muller, Rabin, Streett acceptances are equivalent
for deterministic finite automata
@ Are these two classes of w-languages equivalent?
» YES!
@ We can in fact compute the complement of NFA with Biichi
acceptance
» Transform NFA with Biichi acceptance to DFA with, say, Muller
acceptance
» Find the complement of the DFA with Muller acceptance
» Transform DFA with Muller acceptance to NFA with Biichi acceptance
@ In Prof. Tsay's lecture, a construction for complementation will be
given. (Have fun!)
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Second-Order Logic

@ Second-order logic (SO) is an extension of first-order logic.
o It allows relational variables X, Y, Z,....

@ Terms in second-order logic includes

» All terms in first-order logic; and
» Xty---t, where X is an n-ary relational variable and ty,..., t, are terms.

@ Well-formed formulae in second-order logic includes

» All well-formed formulae in first-order logic; and
» 3X¢ where X is a relational variable and ¢ a formula.
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Monadic Second-Order Logic: Syntax

@ A l-ary relational symbol is called monadic.

e Monadic second-order logic (MSO) is a subclass of second-order logic
where all relational variables are monadic.

@ The syntax of monadic second-order logic over vocabulary o
(MSO|[c]) is as follows.

» If X, Y €0 are monadic, X € Y is in MSO|[o];

» If R, Y1, Ya,..., Y are in MSO[o] and R has arity k, then RY; Y- Yk
is in MSO[o];

» If ¢ and 1 are in MSOJo], so are —=¢ and ¢ v ¥;

» If ¢ is in MSO[o u {X}] and X is monadic, then 3X¢ is in MSO[o].
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Monadic Second-Order Logic: Semantics

@ The satisfication relation E is defined as follows. Let 4 be a model
over the vocabulary o.
» UEXCYif XYy,
» UE Rylyk if Ru n (Ylu X e X Yl‘z‘l) * &,
» 3= - is not LU E ¢;
»UEOVY IfUE @ or ke,
» L= 3X if there is an extension model B of 4l over o U {X} such that
B E= .

@ Semantically, a monadic symbol represents a set of objects

@ Where is the first-order quantification?
» 3x¢ is not in MSO[o]!
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Abbreviations

@ We use the following abbreviations:

O AP for
¢ — Y for
VX¢ for
X=0@ for
sing(x) for
xeP for
P=Q for
dx e P¢ for
Vxe Py for

(= v )

-V

-3X-¢

VYXcY
Xx=@AVX(X<Sx—>(xcXVvX=0))
sing(x) Axc P

PcQArQcP

Ix(x e PA @)

Vx(x € P — ¢).

@ Note that sing(x) means that x is a singleton set
» x is a l-ary relation and o € x for exactly one object o
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Weak Monadic Second-Order Logic

e Weak Monadic Second-Order Logic (WMSO) has the same syntax as
MSQO. Its semantics however is slightly different:
» ey 3X ¢ if there is an extension model B over o U {X} such that
B, ¢ and XT is finite.

@ In other words, the second-order quantification in WMSO is over
finite sets.

» On the other hand, we can quantify arbitrary sets in MSO.
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Infinite Inputs as Structures

Let X be a finite alphabet.
Consider the structure 3 = (Z*, 57, (P3J) .5 ) where
» S7={(n,n+1):neZ*};
» P7cZ* forall ae X
Intuitively, each positive integer represents a position in an input
sequence.

A position in the set Pg means that the symbol a appears in the
position

@ We can represent an infinite input with such a structure.
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Example

o Let ¥ ={0,1}.
@ The input sequence 0% corresponds to
Jo=(2*,5%, P =2+, P)° = @).
@ The input sequence (01)“ corresponds to
J1=(Z*,SM, Pt = {2k + 1: ke N}, Pt = {2k : k e Z*}).
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S1S and WS1S

e Monadic Second-Order Logic with One Successor (S1S) is the logic

MSO over infinite inputs.
» That is, the satisfication relation k& is restricted to infinite inputs on the

left
e Weak Monadic Second-Order Logic with One Successor (WS1S) is
the logic WMSO over infinite inputs.
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Initially Closed Sets

@ A set P of Z" is initially closed if
forall x,y e Z*(ye PAx<y —» x € P).
@ Consider the following formula:
InCI(P) = VxVy((sing(x) ASxy Ay € P) - x € P).

@ Then

Lemma

For any infinite input structure J, the following are equivalent:
3 & InCI(P);
3w InCI(P);

P is initially closed.
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Transitive Closure of Successor

o Consider the following binary relations:

<
<

{(n,n+m):n,meZ*}
<u{(n,n):neZ"}.

@ We can represent these relations in (W)S1S:

x<y = sing(y) AVP((InCI(P)AyeP)—>xeP)
x<y = x<yn-(x=y).

@ Thus, we are free to use x <y and x <y in (W)S1S.
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Infiniteness

@ Let J be an infinite input structure.

o Consider the following S1S formula:
Inf(P) =3P (P' + 3 AVX' € P'3y e PAy e P'(x' <y ax' < y")).

e We have J E Inf(P) if P is an infinite subset of Z*.

» Informally, P is an infinite subset of Z* if there are infinite
X4 < X] < x5 <--- such that for each i, there is a y; such that x! < y;.
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Logic and Finite Automata

@ Let « be an infinite input over ¥ and J, its infinite input structure.
@ We have two formalisms to define w-languages over ¥:

» L,(M)={a:«ais accepted by the DFA M};

» Ly(¢p) ={a:Ts = ¢, ¢ is an S1S formula}.

@ An important question (as in DFA’s and NFA's) is to determine the
expressive power of finite automata over infinite inputs and S1S over
infinite input structures. More precisely,

» Given a DFA M with Muller acceptance, is there an S1S formula ¢
such that L,(M) =L,(¢)?

» Given an S1S formula ¢, is there a DFA M with Muller acceptance
such that L,(¢) = L,(M)?

@ We will show that finite automata and S1S formulae are equally
expressive.
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Finite Automata to S1S

Lemma

For each NFA M with Muller acceptance, there is a formula ¢y € S1S
such that Ya € X%, M accepts « ifF Jo E O

Proof.
Let M = (Q,%,4,qo,F). Define R =(Ry)qeq. Consider

ém = IR(Part A Init A Trans A Accept).

Part formalizes that the states on the run form a partition. Let

Stateg(x) = x€RgA Agequiq) ~(x€Ry)
Part = Vx(sing(x) = Vgeq Stateq(x)).
y
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Finite Automata to S1S
Proof.

Init formalizes the initial condition.
Init = 3x(Stateg, (x) A Vy(sing(y) - x < y).
Trans expresses the transition relation.

Trans = VxVx'((sing(x) Asing(x’) A Sxx") —
\/(q’a,q,)eé(Stateq(X) A x € Py AStateg (x'))).

Accept represents the Muller acceptance. Consider

InfOccq(P) = 3FQ(RcPAQCSR;AINf(Q))
Muller(P) = Vrer(Ager InfOccq(P) A Ager —InfOccq(P))
Path(P) = Inf(P) A InCI(P)A

VR((INf(RQ) AInCI(Q)AQc P) - Q=P)
Accept = VP(Path(P) - Muller(P))

1
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S1S to Finite Automata

Lemma

For each S1$ formula ¢, there is a DFA My with Muller acceptance such
that Jo E ¢ iff Vo€ X, My, accepts .

Proof.

By induction on ¢, we construct a DFA M over 2.
For ¢ = P, C Py, define My = ({q},2%,4,q,{q}) where

0={(g,A,q): AcX, and ac A implies be A}.
For ¢ = SP, Py, define My, = ({qo, g1, qg},2z,5, qo,{q2}) where

§ = {(QO,A’,QO)13¢A,,AIQZ}U{(C]0,A,C]1)IQEA,A(_:Z}U
{(ql,B,,qo):b¢B,,B,gZ}U{(q1,B,QQ):bEB,BEZ}U
{(q27 C7q2) :Cc Z}

v
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S1S to Finite Automata
Proof.

For disjunction and negation, recall that DFA's with Muller acceptance are
closed under union and complementation. We apply these constructions in
inductive step.

For ¢ = 3P,1), assume My, = (Q,2%,6, qo, F). Define

My = (Q,2%,8', go, F) where

' ={(q,A~{a},q"): (q,A,q) € 3}.

@ Technically, we construct a DFA over 2% not X. This is necessary
when, for instance, ¢ = P, € Py,

@ Our presentation is overly simplified. We do not consider monadic
relational variables (as in X ¢ P,).

» We can extend the alphabet to have a fresh symbol for each relational
variable.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 70 / 75



Muller Acceptance and S1S

@ Thus, we have shown that nondeterministic finite automata with
Muller acceptance have the same expressive power as S1S.

@ Observe that the quantification over infinite subsets is needed in
Muller acceptance.

» Precisely, InfOccq(P) in Accept.

@ The proof would not go through for WS1S where only finite subsets
can be quantified.

o Is WSIS strictly less expressive than S1S7
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Deterministic Muller Acceptance and WS1S

@ Interestingly, the answer is negative.

@ For deterministic finite automata with Muller acceptance, there is a
WS1S formula which recognizes the same w-language.

@ Since deterministic finite automata with Muller acceptance is as
expressive as nondeterministic ones, WSI1S is as expressive as S1S.

o We will give a WS1S formula ¢y for each deterministic finite
automata M with Muller acceptance.
» The idea is to consider all finite prefixes of the accepting run in M.
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Deterministic Muller Acceptance to WS1S

Lemma

For each DFA M with Muller acceptance, there is a formula ¢y € S1S
such that Vo e 2%, M accepts o iff T & dpy.

Proof.
Let M =(Q,X,0,qo,F) be a DFA with Muller acceptance. Define

Stateg(x) = x€RgAAgrequiq) ~(x€Ry)
Part(/) = Vxel(sing(x) = Vqeq Stateg(x))
Init = 3Jx(Stateq,(x) A Vy(sing(y) > x<y)
Trans(/) = VxelVx el((sing(x) Asing(x") A Sxx") —
V(q,a,q')es (Stateqg(x) A x € P, A Stateqr(x')))
Occq(x) = 3(InCl(I)Axeln
JR(Part(/) A Init A Trans(/) A State,(x)))
InfOccqs = Vx(sing(x) - dy(x <y AOccq(y)))
Accept = Vper(Ager InfOccg A NatF =InfOccq).
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Deterministic Muller Acceptance to WS1S

Proof.
Let ¢p = Accept. Then T, = ¢y iff M accepts a. DJ

Figure: NFA M,

@ For DFA’s, an infinite run is the “limit” of its finite prefixes.
@ The formula InfOccq correctly expresses that g occurs infinite many
times in the run on DFA's.
@ On the other hand, InfOccq is not correct for NFA's.
» Consider My as a counterexample.
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