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Finite Automata

A finite automaton is a 5-tuple (Q,Σ, δ,q0,F ) where
▸ Q is a finite set of states;
▸ Σ is a finite input alphabet;
▸ δ ⊆ Q ×Σ ×Q is a transition relation;
▸ q0 ∈ Q is the initial state;
▸ F ⊆ Q is a set of accepting states.

If the transition relation is in fact a function from Q ×Σ to Q, it is a
deterministic finite automaton (DFA). Otherwise, it is a
non-deterministic finite automaton (NFA).
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Example
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Figure: NFA M0

M0 = (Q,Σ, δ,q0,F ) where
▸ Q = {q0,q1};
▸ Σ = {0,1};
▸ δ = {(q0,0,q0), (q0,1,q0), (q0,1,q1), (q1,1,q1)};
▸ F = {q1}.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 4 / 75



Input Sequences and Runs

Let M = (Q,Σ, δ,q0,F ) be an NFA.

An input sequence α = a1a2⋯an is a finite sequence of symbols over
the alphabet Σ.

▸ The finite sequence without any symbol is denoted by ε.

A run ρ = q0q1⋯qn+1 on an input sequence α = a1a2⋯an is a sequence
of states such that

for all 0 ≤ i < n, (qi , ai+1,qi+1) ∈ δ.

A run ρ = q0q1⋯qn+1 of M over α = a1a2⋯an is accepting if qn+1 ∈ F .

An input sequence α is accepted by M if there is an accepting run ρ
of M over α.
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Example (cont’d)

0,1

1
q1q0

1

Figure: NFA M0

For the input sequence 0000, there is only one run q0q0q0q0q0.
▸ 0000 is not accepted by M0.

For the input sequence 0011, there are three possible runs:
▸ q0q0q0q0q0, q0q0q0q0q1, and q0q0q0q1q1.
▸ the dark green ones are accepting.
▸ 0011 is accepted by M0.
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Languages

Given an alphabet Σ, a language is a set of input sequences over Σ.

Let M = (Q,Σ, δ,q0,F ) be an NFA. Define

L(M) = {α ∶ α is an input sequence accepted by M}.

L(M) is the language accepted (or recognized) by M.

Thus,
L(M0) = {1,01,11,001,011,111, . . .}

= {α ∶ the last symbol of α is 1}.
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Expressive Power

Let M be a DFA. Since a DFA is also an NFA, the language L(M) is
accepted by an NFA as well.

Let N be an NFA. We will prove that L(N) can be accepted by a
DFA.

In other words, nondeterminism does not recognize more languages.
For finite automata, it suffces to consider deterministic fintie
automata.
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Subset Construction

Theorem

Let L be a language accepted by an NFA. Then there is a DFA M such
that L(M) = L.

Proof.

Let N = (Q,Σ, δ,q0,F ) be an NFA and L(N) = L.
Consider M = (2Q ,Σ, δ′,{q0},F

′) where

δ′(X , a) = ⋃
x∈X

δ(x , a);

F ′ = {X ⊆ Q ∶ X ∩ F ≠ ∅}.

We can show that L(N) = L(M) by induction on the length of input
sequences.
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Example

X0

0

X1

1

X01

0 1 1

Figure: DFA M1

Let us find a DFA M1 such that L(M1) = L(M0).

M1 = (Q
′,Σ, δ′,{q0},F

′) where

▸ Q ′ = {X∅,X0,X1,X01} where
X∅ X0 X1 X01

∅ {q0} {q1} {q0,q1}
▸ δ′ = {(X0,0,X0), (X0,1,X01), (X1,1,X1), (X01,0,X0), (X01,1,X01)};
▸ F ′ = {X1,X01}.
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Operations on Languages

Let Σ be a finite alphabet, and L, L0, L1 be languages over Σ.

The concatenation of L0 and L1 (denoted by L0L1) is defined by

L0L1 = {αβ ∶ α ∈ L0, β ∈ L1}.

Define L0 = {ε} and Li = LLi−1 for i ≥ 1.

The Kleene closure (or just closure) of L (denoted by L∗) is defined by

L∗ =
∞
⋃
i=0

Li .

The positive closure of L (denoted by L+) is defined by

L+ =
∞
⋃
i=1

Li .
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Regular Expressions

Let Σ be an alphabet. The regular expressions over Σ are defined as
follows.

1 ∅ is a regular expression denoting the empty set;
2 ε is a regular expression denoting the set {ε};
3 For each a ∈ Σ, a is a regular expression denoting the set {a};
4 If r and s are regular expressions denoting the sets R and S

respectively, then r + s, rs, and r∗ are regular expressions denoting
R ∪ S , RS , and R∗ respectively.
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Example

0,1

1
q1q0

1

Figure: NFA M0

Let Σ = {0,1}. L0 = {ε,00} and L1 = {1,111}.
▸ L0L1 = {1,111,001,00111};
▸ L+0 = {ε,00,0000, . . .} = {02i ∶ i ≥ 0};
▸ L∗1 = {ε,1,11,111, . . .} = {1i ∶ i ≥ 0}.

Also note that L0 ⊆ Σ∗ and L1 ⊆ Σ∗.
▸ Thus, a language is a subset of Σ∗.

We have L(M0) = (0 + 1)∗1+
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NFA with ε-Transitions

0

ε
q1q0

1

Figure: NFA M2

Since ε /∈ Σ, we do not allow, for example, (p, ε,q) in the transition
relation of finite automata.

A transition with ε as its input symbol is called an ε-transition.
▸ Intuitively, it represents that the finite automaton can move to another

state without consuming any input symbol.

Consider the NFA M2. We have L(M2) = 0∗1∗.
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Regular Expressions to NFA with ε-Transitions

Theorem

Let r be a regular expression. There is an NFA with ε-transition that
accepts the language denoted by r .

Proof.

We prove by induction on the r . For the basis, see the following.

r = ε r = ∅ r = a

q0 qfq0 qfq0

a

For the inductive step, first consider r = st. We use

q0fq0 q1fq1

ε
M0 M1

(assuming a single acceptance state q0f )
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Regular Expressions to NFA with ε-Transitions (cont’d)

Proof (cont’d).

For r = s + t, we use

q0 q0f

q1 q1fM1

q2 q2fM2

ε
ε

ε

ε

Finally, for r = s∗, we use

q1q0 q0fq1fM1

ε

ε

ε ε
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NFA with ε-Transitions to DFA

0

ε
q1q0

1 0

1
q1q0

1

Figure: NFA M2 to M3 without ε-transition

It is actually not difficult to see that ε-transitions can be removed.
▸ The idea is to simulate ε-transitions by consuming input symbols.

We will not give a proof but only consider an example.

In general, removing ε-transitions will result in an NFA.

We can futher transform an NFA to a DFA.
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DFA to Regular Expressions

Theorem

Let D be a DFA. There is a regular expression denoting L(D).

Proof.

Let D = ({q1, . . . ,qn},Σ, δ,q1,F ) be a DFA. Define

R0
ij = {

{a ∶ (qi , a,qj) ∈ δ} if i ≠ j
{a ∶ (qi , a,qj) ∈ δ} ∪ {ε} if i = j

Rk
ij = Rk−1

ik (R
k−1
kk )

∗Rk−1
kj ∪ Rk−1

ij

Intuitively, Rk
ij represents the inputs that cause D to go from qi to qj

without passing through a state higher than qk . It is not hard to see that
Rk

ij can be denoted by regular expressions.
The result follows by observing that L(D) = ⋃qj∈F Rn

1j .
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Example

q1

0

1

q2

0 1

Figure: DFA M4

k = 0 k = 1 k = 2

Rk
11 0 0+

Rk
12 1 0∗1 0∗1(0∗1)∗0∗1 + 0∗1 = (0 + 1)∗1

Rk
21 0 0+

Rk
22 1 0∗1
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Regular Languages

The class R of regular langauges consists of langauges accepted by
deterministic finite automata.

R = {L(D) ∶ D is a DFA }

Since each NFA can be transformed to a DFA, we have

R = {L(M) ∶ M is an NFA }

Since each regular expression can be transformed to an NFA, we have

R = {L(e) ∶ e is a regular expression }
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Closure Properties

For any L0,L1 ∈R, there are regular expressions r0 and r1 denoting L0

and L1 respectively.

Moreover, the regular expression r0 + r1 denotes L0 ∪ L1 and is
accepted by an NFA.

Thus L0 ∪ L1 ∈R for any L0,L1 ∈R.

Similarly, we can prove that
▸ L0L1 ∈R for any L0,L1 ∈R, and
▸ L∗ ∈R for any L ∈R.
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Closure Properties (cont’d)

Theorem

For any L ∈R, Σ∗ ∖ L ∈R.

Proof.

Let D = (Q,Σ, δ,q0,F ) be a DFA and L = L(D). Then
D ′ = (Q,Σ, δ,q0,Q ∖ F ) accepts the language Σ∗ ∖ L.

Theorem

For any L0,L1 ∈R, L0 ∩ L1 ∈R.

Proof.

Observe that L0 ∩ L1 = Σ∗ ∖ ((Σ∗ ∖ L0) ∪ (Σ
∗ ∖ L1)).
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ω-Automata

We would like to generalize inputs to finite automata.

Instead of finite input sequences, let us consider an infinite input
sequence α = a1a2⋯an⋯ over Σ.

Let M = (Q,Σ, δ,q0,F ) be a finite automaton.

As before, define a run ρ = q0q1⋯qn⋯ on α to be an infinite sequence
of states such that

for all i ≥ 0, (qi , ai+1,qi+1) ∈ δ.

What is an accepting run then?
▸ Problem: there is no “final” state in an infinite run.
▸ We cannot reuse the old definition.
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Büchi Acceptance

Let ρ = q0q1⋯qn⋯ be an infinite run.

Define

Inf(ρ) = {q ∈ Q ∶ q occurs infinitely many times in ρ}.

An infinite run ρ of M = (Q,Σ, δ,q0,F ) over α is accepting if
Inf(ρ) ∩ F ≠ ∅.

▸ This is called Büchi acceptance

An infinite input sequence α is accepted by M if there is an accepting
infinite run ρ of M over α.

Finally, define

Lω(M) = {α ∶ α is an infinite input sequence accepted by M}.
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Example

0,1

1
q1q0

1

Figure: NFA M0

Let us reconsider M0.

Lω(M0) = {α ∶ α has only finitely many 0’s}.
▸ If there are infintiely many 0’s, M0 has to stay in q0. It cannot pass q1

infinitely many times.

We will write the expression (0 + 1)∗1ω to denote L(M0).
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Nondeterminism

For finite automata over finite input sequences, we know
nondeterminism does not give us more expressive power.

However, nondeterministic finite automata with Büchi acceptance
over infinite input sequences can recognize more languages than
deterministic ones.

Theorem

(0 + 1)∗1ω cannot be accepted by any DFA with Büchi acceptance.

Proof.

Suppose D = (Q,Σ, δ,q0,F ) is a DFA and L(D) = (0 + 1)∗1ω. Consider
1ω. There is n0 such that 1n0 causes D to reach an accepting state. Now
consider 1n001ω. There is n1 such that 1n001n1 causes D to reach an
accepting state. We can therefore construct 1n001n101n20⋯ to cause D to
pass through F infinitely many times. A contradiction.
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Remark

0,1

1
q1q0

1

Figure: NFA M0

The proof does not work for NFA.

Consider again the NFA M0.

1 causes M0 to reach q1. 101 causes M0 to reach q1, etc. There is no
problem.

However, 101 passes q1 only once. Similarly, 10101, 1010101, . . . pass
q1 only once.

Because M0 is nondeterministic, infinite runs may not be the “limit”
of their finite prefixes.
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The Class of Regular ω-Languages

Define

Rω = {Lω(M) ∶ M is an NFA with Büchi acceptance }.

Rω is called the class of regular ω-languages.

Under Büchi acceptance, nondeterminism increases the expressive
power. We have

{Lω(D) ∶ D is a DFA with Büchi acceptance } ⊊Rω.

In addition to Büchi acceptance, we will discuss three different
acceptances.
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Muller Acceptance

q1

0

1

q2

0 1

Figure: DFA M5

Let M = (Q,Σ, δ,q0,F) be a finite automaton with F ⊆ 2Q .

An infinite run ρ over an input sequence α on M is accepting if
Inf(ρ) ∈ F .

▸ This is called Muller acceptance.

Consider the DFA M5 with F = {{q2}}.

With Muller acceptance, we have Lω(M5) = (0 + 1)∗1ω.
▸ Note that M5 is deterministic
▸ Also note that (01)ω is not accepted with Muller acceptance.
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Rabin Acceptance

q1

0

1

q2

0 1

Figure: DFA M5

Let M = (Q,Σ, δ,q0,Ω) be a finite automaton with
Ω = {(E0,F0), . . . , (Ek ,Fk)} and Ei ,Fi ⊆ Q.

An infinite run ρ over an input sequence α on M is accepting if

∃(E ,F ) ∈ Ω such that Inf(ρ) ∩ E = ∅ and Inf(ρ) ∩ F ≠ ∅.

Consider the DFA M5 with Ω = {({q1},{q2})}.

With Rabin acceptance, we have Lω(M5) = (0 + 1)∗1ω.
▸ Inf(ρ) ∩ {q1} = ∅ forbids 0 to occur infinitely many times.
▸ Inf(ρ) ∩ {q2} ≠ ∅ forces 1 to occur infinitely many times.
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Streett Acceptance

q1

0

1

q2

0 1

Figure: DFA M5

Let M = (Q,Σ, δ,q0,Ω) be a finite automaton with
Ω = {(E0,F0), . . . , (Ek ,Fk)} and Ei ,Fi ⊆ Q.

An infinite run ρ over an input sequence α on M is accepting if

∀(E ,F ) ∈ Ω, Inf(ρ) ∩ E ≠ ∅ or Inf(ρ) ∩ F = ∅.

Observe that Rabin acceptance and Streett acceptance are
complementary.
Consider the DFA M5 with Ω = {({q2},{q1,q2}), (∅,{q1})}.

▸ ({q2},{q1,q2}) forces 1 to occur infinitely many times.
▸ (∅,{q1}) forbids 0 to occur infinitely many times.
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Expressive Power

An important question in ω-automata theory is to compare the
expressive power of various acceptances.

We have shown that non-deterministic Büchi acceptance is strictly
more expressive than deterministic Büchi acceptance.

What is the relation between non-deterministic Büchi acceptance and
non-deterministic Muller acceptance

▸ Similarly, what about non-deterministic Rabin acceptance and
non-deterministic Streett acceptance?

What is the relation between deterministic Büchi acceptance and
deterministic Muller acceptance

▸ And between deterministic Rabin acceptnace and deterministic Streett
acceptance?

We will address these questions shortly.
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Expressive Power (Overview)

DMA DRA DSA

NBA NMA

NRA

NSA

D: Deterministic, N: Nondeterministic
B: Büchi, M: Muller, R: Rabin, S: Streett
A: Automata
X → Y: X can be translated to Y

(The graph here only covers translations in this lecture and hence is not
complete.)
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Büchi to Muller Acceptance

Lemma

Let B = (Q,Σ, δ,q0,F ) be a finite automaton with Büchi acceptance.
Define M = (Q,Σ, δ,q,F) with F = {G ⊆ Q ∶ G ∩ F ≠ ∅}. Then
Lω(B) = Lω(M).

Proof.

Let α be an input sequence and ρ an infinite run over α on B. α ∈ Lω(B)
iff Inf(ρ) ∩ F ≠ ∅ iff Inf(ρ) ∈ F iff α ∈ Lω(M).
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Example

0,1

1
q1q0

1

Figure: NFA M0

The finite automaton M = ({q0,q1},{0,1}, δ,q0,F) with Muller
acceptance where

▸ δ = {(q0,0,q0), (q0,1,q0), (q0,1,q1), (q1,1,q1)};
▸ F = {{q1},{q0,q1}}

accepts the same ω-language.
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Muller to Büchi Acceptance

Lemma

Let M = (Q,Σ, δ,q0,F) be a finite automaton with Muller acceptance.
There is a finite automaton B = (Q ′,Σ, δ′,q0,F ) with Büchi acceptance
such that Lω(B) = Lω(M).

Proof.

The idea is to “guess” a set G ∈ F and check whether all states in G are
visited infinitely many times.
For each G ∈ F , we define QG = {qG ∶ q ∈ G}. Moreover, we use a set to
record which states in G have been visited. Define
Q ′ = Q ∪⋃G∈F(QG × 2G).

δ′ = δ ∪ {(p, a, (qG ,∅)) ∶ (p, a,q) ∈ δ}∪
{((pG ,R), a, (qG ,R ∪ {p})) ∶ (p, a,q) ∈ δ,R ≠ G}∪
{((pG ,G), a, (qG ,∅)) ∶ (p, a,q) ∈ δ}.

F = {(qG ,∅) ∶ qG ∈ QG ,G ∈ F}.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 36 / 75



Example

0,1

1
q1q0

1

(q1,) (q1,{q1} )0, 1
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11
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1q0 q1

0 1

11

10, 1

1

(q1,{q0})
1

1

( { }) ( { })0 1

1
1

1

(q0,)

(q0,{q0}) (q1,{q0,q1})
0, 1

11

0, 1

(q0 )

(q1,{q1}) (q1, )

1

1

1

(q1,{q1}) (q1,)

Figure: NFA M7

Consider M = ({q0,q1},{0,1}, δ,q0,F) where
δ = {(q0,0,q0), (q0,1,q0), (q0,1,q1), (q1,1,q1)} and
F = {{q0,q1},{q1}}.
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Rabin and Streett to Muller Acceptance

Lemma

Let R = (Q,Σ, δ,q0,Ω) be a finite automaton with Rabin acceptance.
Define M = (Q,Σ, δ,q0,F) with Muller acceptance where

F = {G ⊆ Q ∶ ∃(E ,F ) ∈ Ω.G ∩ E = ∅ ∧G ∩ F ≠ ∅}.

Then Lω(R) = Lω(M).

Lemma

Let S = (Q,Σ, δ,q0,Ω) be a finite automaton with Streett acceptance.
Define M = (Q,Σ, δ,q0,F) with Muller acceptance where

F = {G ⊆ Q ∶ ∀(E ,F ) ∈ Ω.G ∩ E ≠ ∅ ∨G ∩ F = ∅}.

Then Lω(S) = Lω(M).

These two follow from the definition immediately.
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Example

q1

0

1

q2

0 1

Figure: DFA M5

Consider the finite automaton R = ({q1,q2},{0,1}, δ,q1,Ω) with
Rabin acceptance where

▸ δ = {(q1,0,q1), (q1,1,q2), (q2,0,q1), (q2,1,q2)}
▸ Ω = {{q1},{q2}}.

The finite automaton M = ({q1,q2},{0,1}, δ,q1,{{q2}}) with Muller
acceptance accepts the same ω-language.
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Büchi to Rabin and Street Acceptance

Lemma

Let B = (Q,Σ, δ,q0,F ) be a finite automaton with Büchi acceptance.
Define R = (Q,Σ, δ,q0,Ω) with Rabin acceptance where Ω = {(∅,F )}.
Then Lω(B) = Lω(R).

Lemma

Let B = (Q,Σ, δ,q0,F ) be a finite automaton with Büchi acceptance.
Define S = (Q,Σ, δ,q0,Ω) with Rabin acceptance where Ω = {(F ,Q)}.
Then Lω(B) = Lω(S).

These two also follow by definition immediately.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 40 / 75



Example

0,1

1
q1q0

1

Figure: NFA M0

Consider the finite automaton M0 = ({q0,q1},{0,1}, δ,q0,{q1}) with
Büchi acceptance where

▸ δ = {(q0,0,q0), (q0,1,q0), (q0,1,q1), (q1,1,q1)}.

The finite automaton R = ({q0,q1},{0,1}, δ,q0,{(∅,{q1})}) with
Rabin acceptance recognizes the same ω-language.
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Expressive Power

We have the following transformaion:
▸ Büchi to Muller acceptance
▸ Muller to Büchi acceptance
▸ Rabin and Streett to Muller acceptance
▸ Büchi to Rabin and Streett acceptance

Therefore,

Lemma

The following classes of ω-languages are equivalent:

1 {Lω(M) ∶ M is an NFA with Büchi acceptance };

2 {Lω(M) ∶ M is an NFA with Muller acceptance };

3 {Lω(M) ∶ M is an NFA with Rabin acceptance };

4 {Lω(M) ∶ M is an NFA with Streett acceptance }.
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Deterministic Muller to Rabin Acceptance

Lemma

Let M = (Q,Σ, δ,q0,F) be a DFA with Muller acceptance. Assume
Q = {1,2, . . . , k} and q0 = 1. Consider R = (Q ′,Σ, δ′,q′0,Ω) with Rabin
acceptance where

Q ′ = {w ∈ (Q ∪ {♮})
∗ ∶ ∀q ∈ Q ∪ {♮},q occurs in w exactly once. }.

q′0 = ♮ k⋯1.

δ′(m1⋯mr ♮mr+1⋯mk , a) = m1⋯ms−1 ♮ms+1⋯mkms if δ(mk , a) = ms .

Ω = {(E0,F0), . . . , (Ek ,Fk)} with
▸ Ei = {u ♮ v ∶ ∣u∣ < i}
▸ Fi = {u ♮ v ∶ ∣u∣ < i} ∪ {u ♮ v ∶ ∣u∣ = i and {m ∈ Q ∶ m occurs in v} ∈ F}.

We have Lω(M) = Lω(R).
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Deterministic Muller to Rabin Acceptance

Proof (sketch).

Let us consider a run ρ of M with Inf(ρ) = J = {m1, . . . ,mj}. In the
corresponding run on R, states in Q ∖ J will eventually move before ♮.
Hence, R will finally visits states of the form u ♮ v where u contains all
states in Q ∖ J. Therefore, ∣u∣ ≥ ∣Q ∖ J ∣ and ∣v ∣ ≤ ∣J ∣ = j eventually. Since J
are visited infinitely often, we have ∣v ∣ = ∣J ∣ = j infinitely often. Moreover,
the states in v when ∣v ∣ = j are precisely the set J.
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Example

q1

0

1

q2

0 1

0 0

1

1

1 0
0

1q1 ♮q2 ♮q2q1 ♮q1q2 q2 ♮q1

Figure: DFA M8

Consider M5 = ({q1,q2},{0,1}, δ,q1,{{q2}}) with Muller acceptance
where

▸ δ = {(q1,0,q1), (q1,1,q2), (q2,0,q1), (q2,1,q2)}.

The DFA M8 = (Q,{0,1}, δ
′,{(E0,F0), (E1,F1), (E2,F2)}) with

Rabin acceptance where
▸ Q = {♮q1q2, ♮q2q1,q1 ♮q2,q2 ♮q1}
▸ (E0,F0) = (∅,∅)
▸ (E1,F1) = ({♮q1q2, ♮q2q1},{♮q1q2, ♮q2q1,q1 ♮q2})
▸ (E2,F2) = (Q,Q)

recognizes the same language.
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Deterministic Rabin to Muller Acceptance

Lemma

Let R = (Q,Σ, δ,q0,Ω) be a DFA with Rabin acceptance. Define
M = (Q,Σ, δ,q0,F) with Muller acceptance where

F = {G ⊆ Q ∶ ∃(E ,F ) ∈ Ω.G ∩ E = ∅ ∧G ∩ F ≠ ∅}.

Then Lω(R) = Lω(M).

This is the same construction for the non-deterministic case.
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Deterministic Rabin to Streett Acceptance

Lemma

Let D = (Q,Σ, δ,q0,Ω) be a DFA with Rabin acceptance. Consider
E = (Q,Σ, δ,q0,Ω) as a DFA with Streett acceptance. Then
Lω(D) = Σω ∖ Lω(E).

Proof.

Rabin acceptance and Streett acceptance are complementary.

Lemma

Let M = (Q,Σ, δ,q0,F) be a DFA with Muller acceptance. Define
M ′ = (Q,Σ, δ,q0,2

Q ∖F). Then Lω(M) = Σω ∖ Lω(M
′).

Proof.

By definition.
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Deterministic Rabin to Streett Acceptance

Lemma

Let R be a DFA with Rabin acceptance. There is a DFA S with Streett
acceptance such that Lω(R) = Lω(S).

Proof.

We construct a DFA M with Muller acceptance such that
Lω(M) = Lω(R). Build M ′ with Muller acceptance such that
Lω(M

′) = ΣωLω(M). Then we construct a DFA R ′ with Rabin acceptance
such that Lω(R

′) = Lω(M
′). Then S = R ′ with Street acceptance is what

we want. We have the following equation:
Lω(S) with Streett acceptance

= Σω ∖ Lω(R
′) with Rabin acceptance

= Σω ∖ Lω(M
′) with Muller acceptance

= Σω ∖ (Σω ∖ Lω(M)) with Muller acceptance
= Lω(M) with Muller acceptance
= Lω(R) with Rabin acceptance.
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Example

q1

0

1

q2

0 1

Figure: Rabin to Muller Acceptance

Consider the DFA R = ({q1,q2},{0,1}, δ,q0,Ω) with Rabin
acceptance where

▸ δ = {(q1,0,q1), (q1,1,q2), (q2,0,q1), (q2,1,q2)}
▸ Ω = {({q1},{q2})}

The DFA M = ({q1,q2},{0,1}, δ,q1,{{q2}}) with Muller acceptance
recognizes the same language.
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Example

q1

0

1

q2

0 1

Figure: Muller Complementation

Consider the DFA M = ({q1,q2},{0,1}, δ,q1,{{q2}}) with Muller
acceptance where

▸ δ = {(q1,0,q1), (q1,1,q2), (q2,0,q1), (q2,1,q2)}

The DFA M ′ = ({q1,q2},{0,1}, δ,q1,{∅,{q1},{q1,q2}}) with Muller
acceptance recognizes Σω ∖ Lω(M).
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Example

q1

0

1

q2

0 1

0 0

1

1

1 0
0

1q1 ♮q2 ♮q2q1 ♮q1q2 q2 ♮q1

Figure: Muller to Rabin Acceptance

Consider the DFA M ′ = ({q1,q2},{0,1}, δ,q1,{∅,{q1},{q1,q2}})

with Muller acceptance where
▸ δ = {(q1,0,q1), (q1,1,q2), (q2,0,q1), (q2,1,q2)}

The DFA R ′ = (Q,{0,1}, δ′,{(E0,F0), (E1,F1, (E2,F2), (E3,F3))})

with Rabin acceptance where
▸ Q = {♮q1q2, ♮q2q1,q1 ♮q2,q2 ♮q1}
▸ (E0,F0) = (∅,{♮q1q2, ♮q2q1})
▸ (E1,F1) = ({♮q1q2, ♮q2q1},{♮q1q2, ♮q2q1,q2 ♮q1})
▸ (E2,F2) = (E3,F3) = (Q,Q)

recognizes Lω(M
′).
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Example

0 0

1

1

1 0
0

1q1 ♮q2 ♮q2q1 ♮q1q2 q2 ♮q1

Figure: Rabin Complementation

Consider the DFA
R ′ = (Q,{0,1}, δ′,{(E0,F0), (E1,F1), (E2,F2), (E3,F3)}) with Rabin
acceptance where

▸ Q = {♮q1q2, ♮q2q1,q1 ♮q2,q2 ♮q1}
▸ (E0,F0) = (∅,{♮q1q2, ♮q2q1})
▸ (E1,F1) = ({♮q1q2, ♮q2q1},{♮q1q2, ♮q2q1,q2 ♮q1})
▸ (E2,F2) = (E3,F3) = (Q,Q)

The DFA S = (Q,{0,1}, δ′,{(E0,F0), (E1,F1), (E2,F2), (E3,F3)})

with Streett acceptance recognizes Σω ∖ Lω(R
′).
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Expressive Power

In summary, we have shown Muller, Rabin, and Streett acceptaces are
equivalent for deterministic finite automata.

Theorem

The following classes of ω-languages are equivalent:

1 {Lω(D) ∶ D is a DFA with Muller acceptance };

2 {Lω(D) ∶ D is a DFA with Rabin acceptance };

3 {Lω(D) ∶ D is a DFA with Streett acceptance }.

Corollary

The following classes are closed under union, intersection, and
complementation:

1 {Lω(D) ∶ D is a DFA with Muller acceptance };

2 {Lω(D) ∶ D is a DFA with Rabin acceptance };

3 {Lω(D) ∶ D is a DFA with Streett acceptance }.
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Relating Nondeterministic and Deterministic Classes

We have shown that Büchi, Muller, Rabin, Streett acceptances are
equivalent for nondeterministic finite automata

We also know that Muller, Rabin, Streett acceptances are equivalent
for deterministic finite automata

Are these two classes of ω-languages equivalent?
▸ YES!

We can in fact compute the complement of NFA with Büchi
acceptance

▸ Transform NFA with Büchi acceptance to DFA with, say, Muller
acceptance

▸ Find the complement of the DFA with Muller acceptance
▸ Transform DFA with Muller acceptance to NFA with Büchi acceptance

In Prof. Tsay’s lecture, a construction for complementation will be
given. (Have fun!)
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Second-Order Logic

Second-order logic (SO) is an extension of first-order logic.

It allows relational variables X ,Y ,Z , . . ..

Terms in second-order logic includes
▸ All terms in first-order logic; and
▸ Xt1⋯tn where X is an n-ary relational variable and t1, . . . , tn are terms.

Well-formed formulae in second-order logic includes
▸ All well-formed formulae in first-order logic; and
▸ ∃Xφ where X is a relational variable and φ a formula.
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Monadic Second-Order Logic: Syntax

A 1-ary relational symbol is called monadic.

Monadic second-order logic (MSO) is a subclass of second-order logic
where all relational variables are monadic.

The syntax of monadic second-order logic over vocabulary σ
(MSO[σ]) is as follows.

▸ If X ,Y ∈ σ are monadic, X ⊆ Y is in MSO[σ];
▸ If R,Y1,Y2, . . . ,Yk are in MSO[σ] and R has arity k, then RY1Y2⋯Yk

is in MSO[σ];
▸ If φ and ψ are in MSO[σ], so are ¬φ and φ ∨ ψ;
▸ If φ is in MSO[σ ∪ {X}] and X is monadic, then ∃Xφ is in MSO[σ].
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Monadic Second-Order Logic: Semantics

The satisfication relation ⊧ is defined as follows. Let U be a model
over the vocabulary σ.

▸ U ⊧ X ⊆ Y if X U ⊆ Y U;
▸ U ⊧ RY1⋯Yk if RU ∩ (Y U

1 ×⋯ ×Y U
k ) ≠ ∅;

▸ U ⊧ ¬φ is not U ⊧ φ;
▸ U ⊧ φ ∨ ψ if U ⊧ φ or U ⊧ ψ;
▸ U ⊧ ∃Xφ if there is an extension model B of U over σ ∪ {X} such that

B ⊧ φ.

Semantically, a monadic symbol represents a set of objects

Where is the first-order quantification?
▸ ∃xφ is not in MSO[σ]!
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Abbreviations

We use the following abbreviations:

φ ∧ ψ for ¬(¬φ ∨ ¬ψ)
φ→ ψ for ¬φ ∨ ψ
∀Xφ for ¬∃X¬φ
X = ∅ for ∀YX ⊆ Y
sing(x) for ¬x = ∅ ∧ ∀X (X ⊆ x → (x ⊆ X ∨X = ∅))

x ∈ P for sing(x) ∧ x ⊆ P
P = Q for P ⊆ Q ∧Q ⊆ P
∃x ∈ Pφ for ∃x(x ∈ P ∧ φ)
∀x ∈ Pφ for ∀x(x ∈ P → φ).

Note that sing(x) means that x is a singleton set
▸ x is a 1-ary relation and o ∈ x for exactly one object o
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Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO) has the same syntax as
MSO. Its semantics however is slightly different:

▸ U ⊧W ∃Xφ if there is an extension model B over σ ∪ {X} such that
B ⊧w φ and X B is finite.

In other words, the second-order quantification in WMSO is over
finite sets.

▸ On the other hand, we can quantify arbitrary sets in MSO.
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Infinite Inputs as Structures

Let Σ be a finite alphabet.

Consider the structure I = (Z+,SI, (PI
a )a∈Σ) where

▸ SI = {(n,n + 1) ∶ n ∈ Z+};
▸ PI

a ⊆ Z+ for all a ∈ Σ.

Intuitively, each positive integer represents a position in an input
sequence.

A position in the set PI
a means that the symbol a appears in the

position

We can represent an infinite input with such a structure.
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Example

Let Σ = {0,1}.

The input sequence 0ω corresponds to
I0 = (Z+,SI0 ,PI0

0 = Z+,PI0
1 = ∅).

The input sequence (01)ω corresponds to
I1 = (Z+,SI1 ,PI1

0 = {2k + 1 ∶ k ∈ N},PI1
1 = {2k ∶ k ∈ Z+}).
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S1S and WS1S

Monadic Second-Order Logic with One Successor (S1S) is the logic
MSO over infinite inputs.

▸ That is, the satisfication relation ⊧ is restricted to infinite inputs on the
left

Weak Monadic Second-Order Logic with One Successor (WS1S) is
the logic WMSO over infinite inputs.
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Initially Closed Sets

A set P of Z+ is initially closed if

for all x , y ∈ Z+
(y ∈ P ∧ x ≤ y → x ∈ P).

Consider the following formula:

InCl(P) = ∀x∀y((sing(x) ∧ Sxy ∧ y ∈ P)→ x ∈ P).

Then

Lemma

For any infinite input structure I, the following are equivalent:

▸ I ⊧ InCl(P);

▸ I ⊧W InCl(P);

▸ P is initially closed.
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Transitive Closure of Successor

Consider the following binary relations:

< = {(n,n +m) ∶ n,m ∈ Z+}
≤ = < ∪{(n,n) ∶ n ∈ Z+}.

We can represent these relations in (W)S1S:

x ≤ y = sing(y) ∧ ∀P((InCl(P) ∧ y ∈ P)→ x ∈ P)
x < y = x ≤ y ∧ ¬(x = y).

Thus, we are free to use x < y and x ≤ y in (W)S1S.
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Infiniteness

Let I be an infinite input structure.

Consider the following S1S formula:

Inf(P) = ∃P ′
(P ′

≠ ∅ ∧ ∀x ′ ∈ P ′
∃y ∈ P∃y ′ ∈ P ′

(x ′ < y ∧ x ′ < y ′)).

We have I ⊧ Inf(P) if P is an infinite subset of Z+.
▸ Informally, P is an infinite subset of Z+ if there are infinite

x ′0 < x ′1 < x ′2 < ⋯ such that for each i , there is a yi such that x ′i < yi .
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Logic and Finite Automata

Let α be an infinite input over Σ and Iα its infinite input structure.

We have two formalisms to define ω-languages over Σ:
▸ Lω(M) = {α ∶ α is accepted by the DFA M};
▸ Lω(φ) = {α ∶ Iα ⊧ φ,φ is an S1S formula}.

An important question (as in DFA’s and NFA’s) is to determine the
expressive power of finite automata over infinite inputs and S1S over
infinite input structures. More precisely,

▸ Given a DFA M with Muller acceptance, is there an S1S formula φ
such that Lω(M) = Lω(φ)?

▸ Given an S1S formula φ, is there a DFA M with Muller acceptance
such that Lω(φ) = Lω(M)?

We will show that finite automata and S1S formulae are equally
expressive.
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Finite Automata to S1S

Lemma

For each NFA M with Muller acceptance, there is a formula φM ∈ S1S
such that ∀α ∈ Σω,M accepts α iff Iα ⊧ φM .

Proof.

Let M = (Q,Σ, δ,q0,F). Define R = (Rq)q∈Q . Consider

φM = ∃R(Part ∧ Init ∧Trans ∧Accept).

Part formalizes that the states on the run form a partition. Let

Stateq(x) = x ∈ Rq ∧⋀q′∈Q∖{q} ¬(x ∈ Rq′)

Part = ∀x(sing(x)→ ⋁q∈Q Stateq(x)).
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Finite Automata to S1S

Proof.

Init formalizes the initial condition.

Init = ∃x(Stateq0(x) ∧ ∀y(sing(y)→ x ≤ y).

Trans expresses the transition relation.

Trans = ∀x∀x ′((sing(x) ∧ sing(x ′) ∧ Sxx ′)→
⋁(q,a,q′)∈δ(Stateq(x) ∧ x ∈ Pa ∧ Stateq′(x

′))).

Accept represents the Muller acceptance. Consider

InfOccq(P) = ∃Q(Q ⊂ P ∧Q ⊆ Rq ∧ Inf(Q))
Muller(P) = ⋁F∈F(⋀q∈F InfOccq(P) ∧⋀q/∈F ¬InfOccq(P))

Path(P) = Inf(P) ∧ InCl(P)∧
∀Q((Inf(Q) ∧ InCl(Q) ∧Q ⊆ P)→ Q = P)

Accept = ∀P(Path(P)→Muller(P))
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S1S to Finite Automata

Lemma

For each S1S formula φ, there is a DFA Mφ with Muller acceptance such
that Iα ⊧ φ iff ∀α ∈ Σω,Mφ accepts α.

Proof.

By induction on φ, we construct a DFA M over 2Σ.
For φ = Pa ⊆ Pb, define Mφ = ({q},2

Σ, δ,q,{q}) where

δ = {(q,A,q) ∶ A ⊆ Σ, and a ∈ A implies b ∈ A}.

For φ = SPaPb, define Mφ = ({q0,q1,q2},2
Σ, δ,q0,{q2}) where

δ = {(q0,A
′,q0) ∶ a /∈ A′,A′ ⊆ Σ} ∪ {(q0,A,q1) ∶ a ∈ A,A ⊆ Σ}∪

{(q1,B
′,q0) ∶ b /∈ B ′,B ′ ⊆ Σ} ∪ {(q1,B,q2) ∶ b ∈ B,B ⊆ Σ}∪

{(q2,C ,q2) ∶ C ⊆ Σ}.
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S1S to Finite Automata

Proof.

For disjunction and negation, recall that DFA’s with Muller acceptance are
closed under union and complementation. We apply these constructions in
inductive step.
For φ = ∃Paψ, assume Mψ = (Q,2Σ, δ,q0,F). Define
Mφ = (Q,2

Σ, δ′,q0,F) where

δ′ = {(q,A ∖ {a},q′) ∶ (q,A,q′) ∈ δ}.

Technically, we construct a DFA over 2Σ not Σ. This is necessary
when, for instance, φ = Pa ⊆ Pb.

Our presentation is overly simplified. We do not consider monadic
relational variables (as in X ⊆ Pa).

▸ We can extend the alphabet to have a fresh symbol for each relational
variable.
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Muller Acceptance and S1S

Thus, we have shown that nondeterministic finite automata with
Muller acceptance have the same expressive power as S1S.

Observe that the quantification over infinite subsets is needed in
Muller acceptance.

▸ Precisely, InfOccq(P) in Accept.

The proof would not go through for WS1S where only finite subsets
can be quantified.

Is WS1S strictly less expressive than S1S?
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Deterministic Muller Acceptance and WS1S

Interestingly, the answer is negative.

For deterministic finite automata with Muller acceptance, there is a
WS1S formula which recognizes the same ω-language.

Since deterministic finite automata with Muller acceptance is as
expressive as nondeterministic ones, WS1S is as expressive as S1S.

We will give a WS1S formula φM for each deterministic finite
automata M with Muller acceptance.

▸ The idea is to consider all finite prefixes of the accepting run in M.
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Deterministic Muller Acceptance to WS1S

Lemma

For each DFA M with Muller acceptance, there is a formula φM ∈ S1S
such that ∀α ∈ Σω,M accepts α iff Iα ⊧ φM .

Proof.

Let M = (Q,Σ, δ,q0,F) be a DFA with Muller acceptance. Define

Stateq(x) = x ∈ Rq ∧⋀q′∈Q∖{q} ¬(x ∈ Rq′)

Part(I ) = ∀x ∈ I (sing(x)→ ⋁q∈Q Stateq(x))
Init = ∃x(Stateq0(x) ∧ ∀y(sing(y)→ x ≤ y)

Trans(I ) = ∀x ∈ I∀x ′ ∈ I ((sing(x) ∧ sing(x ′) ∧ Sxx ′)→
⋁(q,a,q′)∈δ(Stateq(x) ∧ x ∈ Pa ∧ Stateq′(x

′)))
Occq(x) = ∃I (InCl(I ) ∧ x ∈ I∧

∃R(Part(I ) ∧ Init ∧Trans(I ) ∧ Stateq(x)))
InfOccq = ∀x(sing(x)→ ∃y(x < y ∧Occq(y)))
Accept = ⋁F∈F(⋀q∈F InfOccq ∧⋀q/∈F ¬InfOccq).
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Deterministic Muller Acceptance to WS1S

Proof.

Let φM = Accept. Then Iα ⊧ φM iff M accepts α.

0,1

1
q1q0

1

Figure: NFA M0

For DFA’s, an infinite run is the “limit” of its finite prefixes.

The formula InfOccq correctly expresses that q occurs infinite many
times in the run on DFA’s.

On the other hand, InfOccq is not correct for NFA’s.
▸ Consider M0 as a counterexample.
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