
Frequently Used Haskell Functions

Infix Operators
· infixr 9 function composition
∧ infixr 8 exponentiation
∗, / infixl 7 multiplication, division
div infixl 7 integral division

mod,rem infixl 7 modulus, remainder
+, − infixl 6 addition, subtraction
:, ++ infixr 5 list cons, appending
, /= infix 4 equality, inequality

<, ≤, ≥, > infix 4 comparison
&& infixr 3 logical and
|| infixr 2 logical or
$ infixr 0 function application

List Processing Basics

(:) :: a → [a]→ [a]
1 : [2, 3, 4] [1, 2, 3, 4]

(++) :: [a]→ [a]→ [a]
[1, 2, 3] ++ [4, 5, 6] [1, 2, 3, 4, 5, 6]

head :: [a]→ a
head [1, 2, 3] 1

tail :: [a]→ [a]
tail [1, 2, 3] [2, 3]

last :: [a]→ a
last [1, 2, 3] 3

init :: [a]→ [a]
init [1, 2, 3] [1, 2]

null :: [a]→ Bool
null [] True
null [1] False

length :: [a]→ Int
length [0, 1, 2] 3

(!!) :: [a]→ Int → a
[0, 1, 2, 3] !! 3 2

reverse :: [a]→ [a]
reverse [1, 2, 3] [3, 2, 1]

concat :: [[a]]→ [a]
concat [[1, 2], [3], [], [4, 5]] [1, 2, 3, 4, 5]

map :: (a → b)→ [a]→ [b]
map (1+) [1, 2, 3] [2, 3, 4]

Reducing Lists

foldr :: (a → b → b)→ b → [a]→ b
foldr (⊕) z [x1, x2, x3] x1 ⊕ (x2 ⊕ (x3 ⊕ z))

foldr1 :: (a → a → a)→ [a]→ a
foldr1 (⊕) [x1, x2, x3] x1 ⊕ (x2 ⊕ x3)

foldl :: (a → b → a)→ a → [b]→ a
foldl (⊕) z [x1, x2, x3] ((z ⊕ x1)⊕ x2)⊕ x3

foldl1 :: (a → a → a)→ [a]→ a
foldl1 (⊕) [x1, x2, x3] (x1 ⊕ x2)⊕ x3

Special Folds

and :: [Bool]→ Bool
and [True, False, True] False

or :: [Bool]→ Bool
or [True, False, True] True

any :: (a → Bool)→ [a]→ Bool
any even [1, 2, 3] True

all :: (a → Bool)→ [a]→ Bool
all even [1, 2, 3] False

sum :: Num a > [a]→ a
sum [1, 2, 3, 4] 10

product :: Num a > [a]→ a
product [1, 2, 3, 4] 24

Building Lists

scanr :: (a → b → a)→ a → [b]→ [a]
scanr (⊕) z [x1, x2, x3]
[x1 ⊕ (x2 ⊕ (x3 ⊕ z)), x2 ⊕ (x3 ⊕ z), x3 ⊕ z , z]

scanl :: (a → b → a)→ a → [b]→ [a]
scanl (⊕) z [x1, x2, x3]
[z , z ⊕ x1, (z ⊕ x1)⊕ x2, ((z ⊕ x1)⊕ x2)⊕ x3]

iterate :: (a → a)→ a → [a]
iterate (2∗) 1 [1, 2, 4, 8, 16, . . .]

repeat :: a → [a]
repeat 1 [1, 1, 1, . . .]

Sublists

take :: Int → [a]→ [a]
take 3 [0, 1, 2, 3, 4] [0, 1, 2]

drop :: Int → [a]→ [a]
drop 3 [0, 1, 2, 3, 4] [3, 4]

splitAt :: Int → [a]→ ([a], [a])
splitAt n xs = (take n xs, drop n xs)

For all n :: Integer , take n xs ++ drop n xs xs.

takeWhile :: (a → Bool)→ [a]→ [a]
takeWhile (< 3) [1, 2, 3, 4, 1, 2, 3, 4] [1, 2]

dropWhile :: (a → Bool)→ [a]→ [a]
dropWhile (< 3) [1, 2, 3, 4, 1, 3] [3, 4, 1, 3]

span :: (a → Bool)→ [a]→ ([a], [a])
span p xs = (takeWhile p xs, dropWhile p xs)

filter :: (a → Bool)→ [a]→ [a]
filter even [1, 2, 3, 4] [2, 4]

partition :: (a → Bool)→ [a]→ ([a], [a])
partition p xs = (filter p xs, filter (not · p) xs)

elem :: (Eq a)⇒ a → [a]→ Bool
elem 3 [1, 2, 3, 4] True

lookup :: (Eq a)⇒ a → [(a, b)]→ Maybe b
lookup 3 [(1, ’a’), (2, ’b’), (3, ’c’)] Just ’c’
lookup 0 [(1, ’a’), (2, ’b’), (3,′ ’c’] Nothing

Zipping

zip :: [a]→ [b]→ [(a, b)]
zip [1, 2, 3] "abc" [(1, ’a’), (2, ’b’), (3, ’c’)]

zipWith :: (a → b → c)→ [a]→ [b]→ [c]
zipWith (+) [1, 2, 3] [2, 3, 4] [3, 5, 7]

unzip :: [(a, b)]→ ([a], [b])
unzip [(1, ’a’), (2, ’b’), (3, ’c’)] ([1, 2, 3], "abc")

List Transformation

group :: Eq a ⇒ [a]→ [[a]]
group "Mississippi"

["M", "i", "ss", "i", "ss", "i", "pp", "i"]

intersperse :: a → [a]→ [a]
intersperse ’,’ "abcde" "a,b,c,d,e"

transpose :: [[a]]→ [[a]]
transpose [[1, 2, 3], [4, 5, 6]] [[1, 4], [2, 5], [3, 6]]

inits :: [a]→ [[a]]
inits [1, 2, 3] [[], [1], [1, 2], [1, 2, 3]]

tails :: [a]→ [[a]]
tails [1, 2, 3] [[1, 2, 3], [2, 3], [3], []]

