Frequently Used Haskell Functions

Infix Operators

infixr 9 function composition
A infixr 8 exponentiation
*, / infix] 7 multiplication, division
div infix] 7 integral division
mod,rem infix] 7 modulus, remainder
+, — infix] 6 addition, subtraction
L infixr 5 list cons, appending
=, /= infix 4 equality, inequality
<, <, >, > infix4 comparison
&& infixr 3 logical and
[l infixr 2 logical or
$ infixr 0 function application

List Processing Basics

(:) a — [a] — [a]
1 [2,3,4] = [1,2,3,4]

(+) =2 [a] — [a] — [q]
[1,2,3] 4 [4,5,6] = [1,2,3,4,5,6]

head :: [a] — a
head [1,2,3] == 1

tail :: [a] — [a]
tail [1,2,3] == [2, 3]

last :: [a] — a
last[1,2,3] ==

init :: [a] — [a]
init [1,2,3] == [1,2]

null :: [a] — Bool
null [] == True
null [1] == False

length :: [a] — Int
length [0,1,2] ==

(M :fa] = Int — a
[0,1,2,3] 113 == 2

reverse :: [a] — [a]
reverse [1,2,3] == [3,2, 1]

concat :: [[a]] — [a]
concat [[1,2],[3],1],[4,5]] == [1, 2, 3,4, 5]

map :: (a — b) — [a] — [b]
map (1+) [1,2,3] = [2,3,4]
Reducing Lists
fOld’f’ZZ (a—>b—)b)—>b—>[a[}_>b
foldr (®©) z [21, 22, 73] == 11 © (12 © (13 © 2))

foldrl:: (a — a—a) —[a] = a
foldrl (®) [y, 22, 23] == 1 B (22 ® 3)

foldl ::
foldl (®)

(a—b—a)—a—]—a
z [z, 20, 23] == ((z D @1) B 22) B a3

foldll :: (a — a— a) — [a] — a
foldll (®) [x1, a2, 23] == (21 D 22) D w3

Special Folds

and :: [Bool] — Bool
and [True, False, True] == False

or :: [Bool] — Bool
or [True, False, True] == True

any :: (a — Bool) — [a] — Bool
any even [1,2,3] == True

all :: (a — Bool) — [a] — Bool
all even [1,2,3] == False

sum :: Num a ==> [a] — a

sum[1,2,3,4] == 10

product :: Num a ==> [a] — a
product [1,2,3,4] == 24

Building Lists

scanr :: (a — b — a) — a — [b] — [d]
scanr (B) z [21, 1o, 23] ==
[21 ® (22 @ (73 ® 2)), 22 © (73 D 2), 23 D 2, 2]

scanl :: (a — b — a) — a — [b] — [a]
scanl (®) z [z, Ta, 23] ==
(2,2 @ 21, (2 B x1) B a2, (2B 21) B 22) B 23]

iterate :: (a — a) — a — [a]
iterate (2x) 1 == [1,2,4,8, 16, .. .]

repeat :: a — [a]
repeat 1 == [1,1,1,..]

Sublists

take :: Int — [a] — [a]
take 3[0,1,2,3,4] = [0,1,2]

drop :: Int — [a] — [a]
drop 310,1,2,3,4] == [3, 4]

splitAt :: Int — [a] — ([a], [a])
splitAt n s = (take n xs, drop n zs)

For all n :: Integer, take n xs + drop n zs == xs.

takeWhile :: (a — Bool) — [a] — [a]
take While (< 3)[1,2,3,4,1,2,3,4] == [1,2]

dropWhile :: (a — Bool) — [a] — [a]
dropWhile (< 3)[1,2,3,4,1,3] == [3,4, 1, 3]

span :: (a — Bool) — [a] — ([a], [a])
span p xs = (takeWhile p xs, drop While p xs)

filter :: (a — Bool) — [a] — [a]
filter even [1,2,3,4] == [2,4

partition :: (a — Bool) — [a] — ([a],[a])
partition p xs = (filter p xs, filter (not - p) xs)

elem :: (Eqa) = a — [a] — Bool
elem 3[1,2,3,4] == True

lookup :: (Eq a) = a — [(a,b)] — Maybe b
lookup 31[(1,°a’),(2,’b?),(3,’¢c?)] == Just ’c’
lookup 0[(1,°a’),(2,°b?), (3, ?c’] == Nothing

Zipping

zip :: [a] — [b] — [(a,)]
zip [1,2,3] "abc" == [(1,°a’),(2,b’),(3,c?)]

zipWith :: (a — b — ¢) — [a] — [b] = [¢]
2ipWith (+) [1,2,3] [2,3,4] == [3,5,7]

unzip :: [(a, b)] — ([a], [b])
unzip [(1,°a’),(2,°b?),(

List Transformation

group :: Eq a = [a] — [[a]]
group "Mississippi" ==
|:||]'\4||7 llill, ||SS||7 Ilj."7 ||ss||7 ||i||’ "pp“’ ||i||]

intersperse :: a — [a] — [a]
intersperse ’,’ "abcde" == "a,b,c,d,e"

transpose :: [[a]] — [[a]]

transpose [[L 2, 3]a [47 2, 6]] i [[17 4]a [27 5]7 [37 6]]

inits :: [a] — [[a]]
inits [1,2,3] == [[],[1], [1, 2], [1, 2, 3]]

tails :: [a] — [[a]]
tails [1, 2, 3] == Hl; 27 3]v [27 3]7 [3]7 H]

