
Logic
Part I: Classical Logic and Its Semantics

Max Schäfer

What Is Logic?

• this course is about formal logic

• investigate principles of reasoning, independently of particular language,
mindset, or philosophy

• based on a formal language, precise deductive rules

• resulting systems can be used to formalize mathematics or CS

• can also be studied in its own right

What to Expect

• what we will cover:

– classical and intuitionistic logic, propositional, first order, and second
order

– their semantics and deduction systems

– connections with programming language research

• what we will not cover:

– using logic to win arguments with your Significant Other

– role of logic in artificial intelligence

– using logic in digital hardware design, automated verification, and
much more

Principles of Classical Logic

• classical logic aims to model valid reasoning

• logical formulas represent statements that are either true or false

• proving a formula means showing that it is true

1

• sometimes this is easy √
2 6∈ Q

• sometimes it is hard

∀n.n > 2 → ¬(∃a, b, c.an + bn = cn)

• proving a formula does not “make” it true, it just demonstrates its truth

1 Propositional Logic

Propositional Logic

• deals with atomic propositions and their combinations

• e.g. consider propositions “it is raining” and “the grass is wet”

• assume “it is raining” is true and “the grass is wet” is true, then “it is
raining and the grass is wet” is true

• assume “it is raining” implies “the grass is wet”, then

– if “it is raining” is true, then “the grass is wet” is true

– if “the grass is wet” is false, then “it is raining” is false

– if “the grass is wet” is true, then “it is raining” might (but need not)
be true

• either “it is raining” is true or “it is raining” is false

Atomicity of Propositions

• we do not need to know what the propositions mean

• they could be expressed in German, for example:

– assume “es regnet” is true and “das Gras ist nass” is true, then “es
regnet and das Gras ist nass” is true

– assume “es regnet” implies “das Gras ist nass”, then

∗ if “es regnet” is true, then “das Gras ist nass” is true

∗ if “das Gras ist nass” is false, then “es regnet” is false

∗ if “das Gras ist nass” is true, then “es regnet” might be true

– either “es regnet” is true or “es regnet” is false

• observe use of and: not a proposition, but a connective

2

Language Independence

• we do not want to depend on syntax or grammar of some natural language

• to achieve this, propositions will be represented by capital letters P,Q,R, . . .

• logical connectives will be expressed by symbols like ∧, ∨, etc.

The Formal Language of Propositional Logic

• assume we have an alphabet R of propositional letters, denoted by P , Q,
R, . . .

• the set PFR of propositional formulas over R is defined inductively:

1. every propositional letter is a formula

2. the symbol ⊥ is a formula (falsity)

3. if ϕ and ψ are formulas, then so are

(a) ϕ ∧ ψ (conjunction)

(b) ϕ ∨ ψ (disjunction)

(c) ϕ→ ψ (implication)

Intuitive Meaning of Propositional Logic
formula intuitive reading is true if . . .
P P proposition P is true
⊥ false never true
P ∧Q P and Q proposition P is true, and also

proposition Q is true
P ∨Q P or Q proposition P is true, or propo-

sition Q is true, or both are true
P → Q if P then Q it is not the case that P is true

and Q is false

Defined Connectives and Syntactic Equality

• other connectives can be defined in terms of the basic ones:

– ¬ϕ := ϕ→ ⊥ (negation)
¬ϕ is true if ϕ is false

– ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) (equivalence)
ϕ↔ ψ is true if both ϕ and ψ are true, or both are false

– ⊤ := ⊥ → ⊥ (truth)
⊤ is always true

• ¬ and ↔ are not true connectives, but only abbreviations; e.g., ¬P ≡
P → ⊥ (the same formula)

• adding parentheses does not make a difference: ((P ∨Q)) ≡ P ∨Q
• however, we sometimes need parentheses to disambiguate

3

Precedence and Associativity

• precedence of connectives (lowest to highest) and associativity:

connective associativity example
↔ left P ↔ Q↔ R ≡ (P ↔ Q) ↔ R
→ right P → Q→ R ≡ P → (Q→ R)
∨ left P ∨Q ∨R ≡ (P ∨Q) ∨R
∧ left P ∧Q ∧R ≡ (P ∧Q) ∧R
¬

• example:
P ∨Q ∧ P → P ↔ ¬¬P ∨ ¬P

≡
((P ∨ (Q ∧ P)) → P) ↔ ((¬¬P) ∨ (¬P))

Example Formulas

• P → P is true, no matter if P is

same for P → (Q→ P) and P ∨ ¬P ; they are valid (tautologies)

• P ∧Q may be true or false

same for P → ¬P and P ∨ P

• P ∧ ¬P is false, no matter if P is

same for P ↔ ¬P and ⊤ → ⊥

• but what about (P → Q → R) → (P → Q) → P → R? or ((P → Q) →
P) → P? or ¬(P ∧Q) ↔ ¬P ∨ ¬Q?

Truth Value Semantics

• in general, to know whether a formula ϕ is true, we need to know whether
its propositional letters are true

• need a truth value assignment (interpretation) I : R → B, where B :=
{T, F}

• given an interpretation I, define the semantics JϕKI of a formula ϕ:

1. if ϕ is some P ∈ R, then JϕKI := I(P)

2. if ϕ is ⊥, then JϕKI := F

3. if ϕ is ϕ1 ∧ ϕ2, then

– if Jϕ1KI = T and Jϕ2KI = T, then JϕKI := T

– otherwise, JϕKI := F

4. if ϕ is ϕ1 ∨ ϕ2, then

4

– if Jϕ1KI = F and Jϕ2KI = F, then JϕKI := F

– otherwise, JϕKI := T

5. if ϕ is ϕ1 → ϕ2, then

– if Jϕ1KI = T and Jϕ2KI = F, then JϕKI := F

– otherwise, JϕKI := T

Validity and Satisfiability

• for ϕ ∈ PF and interpretation I, |=I ϕ (“I is a model for ϕ”) if JϕKI = T

• if there is some I such that |=I ϕ, ϕ is called satisfiable

• if |=I ϕ for all I, we write |= ϕ and call ϕ valid

• for a set Γ ⊆ PF, write |=I Γ to mean that |=I ϕ for every ϕ ∈ Γ

• Γ |= ϕ (“Γ semantically entails ϕ”): for every I, if |=I Γ, then |=I ϕ

Example

• example: ¬(P ∧Q) ↔ ¬P ∨ ¬Q

– let I be an interpretation

– if I(P) = F, then JP KI = F, so JP ∧ QKI = F and J¬(P ∧ Q)KI = T;
also, J¬P KI = T, hence J¬P ∨ ¬QKI = T

– if I(P) = T and I(Q) = T, then JP ∧ QKI = T, so J¬(P ∧ Q)KI = F;
also, J¬P KI = F and J¬QKI = F, hence J¬P ∨ ¬QKI = F

– if I(P) = T and I(Q) = F, then J¬(P∧Q)KI = T; also, J¬P∨¬QKI = T

For every I, J¬(P ∧Q)KI = J¬P ∨ ¬QKI , hence |= ¬(P ∧Q) ↔ ¬P ∨ ¬Q.

• note: we only considered propositional letters P and Q; others are irrele-
vant

Propositional Letters in a Formula

• define set PL(ϕ) of propositional letters that occur in a formula ϕ:

1. if ϕ is P ∈ R, then PL(ϕ) := {P}
2. if ϕ is ⊥, then PL(ϕ) := ∅
3. if ϕ is of the form ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 or ϕ1 → ϕ2, then PL(ϕ) :=

PL(ϕ1) ∪ PL(ϕ2)

Lemma 1 (Agreement). For every formula ϕ and interpretations I1, I2
such that I1(P) = I2(P) for every P ∈ PL(ϕ), we have

JϕKI1
= JϕKI2

5

Proof. Let us say that I1 and I2 agree on a set A ⊆ PL if I1(a) = I2(a)
for every a ∈ A. Thus, we assume that I1 and I2 agree on PL(ϕ), and
we want to prove that JϕKI1

= JϕKI2
. We proceed by induction on the

structure of ϕ.

1. If ϕ is P ∈ R, then PL(ϕ) = {P}, hence I1(P) = I2(P), and

JϕKI1
= I1(P) = I2(P) = JϕKI2

2. If ϕ is ⊥, then
JϕKI1

= F = JϕKI2

3. If ϕ is ϕ1 ∧ ϕ2, then PL(ϕ) = PL(ϕ1) ∪ PL(ϕ2). Since I1 and I2
agree on PL(ϕ), they also agree on PL(ϕ1) and PL(ϕ2) (which both
are subsets of PL(ϕ)). By induction hypothesis, we can thus assume
that

(∗) Jϕ1KI1
= Jϕ1KI2

and
(∗∗) Jϕ2KI1

= Jϕ2KI2
,

because both are structurally smaller than ϕ.

Now we want to determine JϕKI1
. There are two situations:

(a) Jϕ1KI1
= T = Jϕ2KI1

, hence JϕKI1
= T; but then by (∗) and (∗∗)

we also have Jϕ1KI2
= T = Jϕ2KI2

, which gives us JϕKI2
= T.

(b) either Jϕ1KI1
= F or Jϕ2KI1

= F (or both), hence JϕKI1
= F; but

then by (∗) and (∗∗) either Jϕ1KI2
= F or Jϕ2KI2

= F (or both),
so JϕKI2

= F as well.

We have thus shown that also in this case

JϕKI1
= JϕKI2

4. The cases that ϕ is ϕ1 ∨ ϕ2 or ϕ1 → ϕ2 are handled similar.

In conclusion, we have shown for every ϕ ∈ PF that

JϕKI1
= JϕKI2

for any two interpretations I1 and I2 that agree on PL(ϕ).

Truth Tabling

• for every formula ϕ, PL(ϕ) is finite, say |PL(ϕ)| = n

• every one of these n variables could be either true or false; this gives 2n

combinations

• to know whether ϕ is valid, we only need to try them all out!

6

Examples

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

F F F T T T T T

F T F T T F T T

T F F T F T T T

T T T F F F F T

P Q P → Q (P → Q) → P ((P → Q) → P) → P

F F T F T

F T T F T

T F F T T

T T T T T

Some Tautologies
To get some practice in using truth tables, you can show that

• |= P ∧Q→ R↔ P → Q→ R

• |= P ∧Q→ P , |= P ∧Q→ Q

• |= P → P ∨Q, |= Q→ P ∨Q

• |= (P ∨Q) ∧ (P → R) ∧ (Q→ R) → R

• |= P ∧ (P → Q) → Q

• |= ⊥ → P

Examples II
Truth tables can be used to find counter-examples:

P Q P → Q (P → Q) → Q ((P → Q) → Q) → P

F F T F T

F T T T F

T F F T T

T T T T T

They can be used to see whether two formulas are equivalent:

P Q P → Q ¬P → ¬Q ¬Q → ¬P

F F T T T

F T T F T

T F F T F

T T T T T

7

Equivalence

• we say that ϕ and ψ are (semantically) equivalent and write ϕ⇔ ψ if, for
any interpretation I, JϕKI = JψKI

• we have ϕ⇔ ψ iff |= ϕ↔ ψ

• we have |= ϕ iff ϕ⇔ ⊤

Note
If ϕ ≡ ψ, then obviously ϕ⇔ ψ, but not necessarily the other way around!

Lemma 2 (“⇔” is an equivalence relation). For formulas ϕ, χ, ψ, we always

have

• ϕ⇔ ϕ

• ϕ⇔ ψ iff ψ ⇔ ϕ

• if ϕ⇔ χ and χ⇔ ψ, then ϕ⇔ ψ

Important Equivalences
For propositional letters P,Q,R, we have:

1. Associativity:

• P ∧ (Q ∧R) ⇔ (P ∧Q) ∧R
• P ∨ (Q ∨R) ⇔ (P ∨Q) ∨R

2. Commutativity:

• P ∧Q⇔ Q ∧ P
• P ∨Q⇔ Q ∨ P

3. Distributivity:

• P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R)

• P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R)

4. Absorption:

• P ∧ (P ∨Q) ⇔ P

• P ∨ (P ∧Q) ⇔ P

5. Complement:

• P ∨ ¬P ⇔ ⊤
• P ∧ ¬P ⇔ ⊥

8

Substitutions

• ϕ[ψ/P]: substituting a formula ψ for all occurrences of a propositional
letter P in ϕ

• formal definition:

1. if ϕ is Q ∈ R, then

(a) if P and Q are the same, then ϕ[ψ/P] := ψ

(b) otherwise, ϕ[ψ/P] := ϕ

2. if ϕ is ⊥, then ϕ[ψ/P] := ϕ

3. if ϕ is ϕ1 ∧ ϕ2, then ϕ[ψ/P] := ϕ1[ψ/P] ∧ ϕ2[ψ/P]

4. if ϕ is ϕ1 ∨ ϕ2, then ϕ[ψ/P] := ϕ1[ψ/P] ∨ ϕ2[ψ/P]

5. if ϕ is ϕ1 → ϕ2, then ϕ[ψ/P] := ϕ1[ψ/P] → ϕ2[ψ/P]

• for example: (R ∨ ¬R)[Q→ Q/R] ≡ ((Q→ Q) ∨ ¬(Q→ Q))

Substitution Lemmas

Lemma 3 (substitution preserves equivalence). If ψ1 ⇔ ψ2, then ϕ[ψ1/P] ⇔
ϕ[ψ2/P] for any propositional letter P and formulas ϕ, ψ1, ψ2.

Corollary 4 (substitution in tautologies). If |= ϕ, then |= ϕ[ψ/P] for any

propositional letter P and formulas ϕ, ψ.

Hence the “Important Equivalences” hold for arbitrary formulas.

Algebraic Reasoning
We can use equivalences to reason about formulas (taking only the Important

Equivalences as given):

• we have
P

⇔ {by Absorption}
P ∧ (P ∨ ¬P)

⇔ {by Complement and Lemma 3}
P ∧ ⊤

• hence
P ∨ P

⇔ {see above and Lemma 3}
P ∨ (P ∧ ⊤)

⇔ {by Absorption}
P

9

Notice that we can use Lemma 3 to replace equivalent formulas inside another
formula. In the example above, we deduced that

P ∧ (P ∨ ¬P) ⇔ P ∧ ⊤

Why does this work? From the Important Equivalences, we know that P∨¬P ⇔
⊤. Now consider the formula P ∧R. We have

(P ∧R)[P ∨ ¬P/R] ≡ P ∧ (P ∨ ¬P)

and
(P ∧R)[⊤/R] ≡ P ∧ ⊤.

So we can apply Lemma 3 with P ∧ R for ϕ, P ∨ ¬P for ψ1 and ⊤ for ψ2,
and we get

P ∧ (P ∨ ¬P) ⇔ P ∧ ⊤
as claimed.

Further Equivalences
The following equivalences follow from the ones given before:

1. Idempotency:

P ∨ P ⇔ P ⇔ P ∧ P

2. Neutrality:

• P ∨ ⊥ ⇔ P

• P ∧ ⊤ ⇔ P

3. Boundedness:

• P ∨ ⊤ ⇔ ⊤
• P ∧ ⊥ ⇔ ⊥

4. Switching:

• ¬⊤ ⇔ ⊥
• ¬⊥ ⇔ ⊤

5. De Morgan’s Laws:

• ¬(P ∨Q) ⇔ ¬P ∧ ¬Q
• ¬(P ∧Q) ⇔ ¬P ∨ ¬Q

6. Involution:

¬¬P ⇔ P

10

Functionally Complete Sets

• for every propositional formula ϕ there is a formula ϕ† which only uses →
and ⊥ such that ϕ⇔ ϕ†:

1. if ϕ is P ∈ R, take ϕ† := ϕ

2. if ϕ is ⊥, take ϕ† := ϕ

3. if ϕ is ϕ1 → ϕ2, take ϕ† := ϕ†
1 → ϕ†

2

4. if ϕ is ϕ1 ∧ ϕ2, take ϕ† := ¬(ϕ†
1 → ¬ϕ†

2)

5. if ϕ is ϕ1 ∨ ϕ2, take ϕ† := ¬ϕ†
1 → ϕ†

2

for example, (P ∧ (P ∨Q))† ≡ ¬(P → ¬(¬P → Q))

• thus, {⊥,→} is a functionally complete set

• other functionally complete sets: e.g., {¬,∨}, {¬,∧}

2 First Order Logic

Motivation: First Order Logic

• in mathematics, we want to express propositions about individuals, e.g.

For every n, if n > 0 then for all m we have m+ n > m.

• in the example, the individuals are numbers, ranged over by variables n,
m

• we use constants (like 0) and functions (like +, arity 2) to construct terms

• relations (like >, arity 2) can be used to form atomic propositions about
terms

• atomic propositions are used to construct more complex propositions

• first order logic (FOL) formalizes such statements in an abstract setting

The Approach of First Order Logic (FOL)

• first order logic formalizes reasoning about statements that can refer to
individuals through individual variables

• a fixed set of function symbols acts on the individuals

• a fixed set of relation symbols expresses predicates on the individuals

• more complex statements can be formed by connectives like ∧,∨,→,¬ and
the quantifiers ∀,∃

• first order logic is sufficient to formalize great parts of mathematics, for
example arithmetic

11

The Language of FOL

• a first order signature Σ = 〈F,R〉 describes a language with

– function letters f ∈ F with arity α(f) ∈ N

– relation letters r ∈ R with arity α(r) ∈ N

• terms T(Σ,V) over Σ and a set V of individual variables are inductively
defined:

– V ⊆ T(Σ,V)

– for f ∈ F of arity n, t1, . . . , tn ∈ T(Σ,V), also f(t1, . . . , tn) ∈ T(Σ,V)

• for a 0-ary constant d, we write d() simply as d

Example
Signature Σar = 〈Far,Rar〉 of arithmetic:

• Far = {0, s,+, ·}, where α(0) = 0, α(s) = 1, α(+) = α(·) = 2

• Rar = {≈}, where α(≈) = 2

• examples for terms from T(Σar, {x, y}):
0, s(0), s(s(0)), . . . , s(x), +(s(x), y), s(+(x, y)), . . .

• but not 0(0) or +(s(0))

• +(x, y) usually written x+ y, but still +(x, y) ≡ x+ y

The Language of FOL (II)

• an atom is of the form r(t1, . . . , tn), where r ∈ R, α(r) = n, t1, . . . , tn ∈
T(Σ,V)

write just r if α(r) = 0

• set FOLΣ,V of formulas is inductively defined:

1. every atom is a formula

2. if ϕ,ψ are formulas then

(a) ϕ ∧ ψ is a formula

(b) ϕ ∨ ψ is a formula

(c) ϕ→ ψ is a formula

3. if x ∈ V and ϕ is a formula, then

(a) ∀x.ϕ is a formula (universal quantifier)

(b) ∃x.ϕ is a formula (existential quantifier)

4. ⊥ is a formula

The quantifiers ∀ and ∃ have the lowest precedence of all connectives.

12

Example
Taking Σar and V = {x, y, d, d′}, the following are atoms (again, we use infix

notation):

• x ≈ y

• x+ y ≈ y + x

• s(s(0)) · x ≈ x+ x

And here are some formulas:

• ¬(x ≈ s(x))

• (∃d.x+ d ≈ y) → (∃d′.s(x) + d′ ≈ y) ∨ s(x) ≈ y

• ∀x.x+ x ≈ x · x

Intuitive Semantics of the Quantifiers

• ∀x.ϕ should be understood as “for all values of x, ϕ holds”

• ∃x.ϕ should be understood as “there is a value of x such that ϕ holds”

• so the formula
∀x.x ≈ 0 ∨ ∃y.x ≈ s(y)

could be understood as

every x is either equal to zero, or there exists a number y such
that x is its successor

• however, this interpretation relies on an intuitive interpretation of the
function symbols s and 0 and the relation symbol ≈; it is certainly not
true for all interpretations of these symbols!

Free and Bound Variables

• an appearance of an individual variable is called bound if it is within the
scope of a quantifier, otherwise it is free

e.g. (free variables are bold):

x ≈ s(y) ∃x.x ≈ s(y) ∀y.∃x.x ≈ s(y)

• the same variable can appear both free and bound:

(∀x.R(x, z) → (∃y.S(y, x))) ∧ T (x)

• a formula is called closed when no variable occurs free in it

• the names of bound variables only serve to connect them with their quan-
tifier, one name is as good as another (details later)

13

The Set of Free Variables

• definition of the set of free variables:

1. FV(x) = {x} for x ∈ V
2. FV(f(t1, . . . , tn)) =

⋃

i∈{1,...,n} FV(ti)

3. FV(r(t1, . . . , tn)) =
⋃

i∈{1,...,n} FV(ti)

4. FV(⊥) = ∅
5. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)

6. FV(∀x.ϕ) = FV(ϕ) \ {x}
7. FV(∃x.ϕ) = FV(ϕ) \ {x}

For example:

• FV(x) = {x}, FV(0) = ∅, FV(s(0)) = ∅

• FV(x ≈ 0 ∨ x ≈ s(y)) = {x, y}

• FV(x ≈ 0 ∨ (∃y.x ≈ s(y))) = {x}

• FV(∀x.x ≈ 0 ∨ (∃y.x ≈ s(y))) = ∅

Substitution in Terms and Formulas

• the operation of substituting a term t for a variable x in a term s (written
s[t/x]) is defined as follows:

1. y[t/x] =

{

t if x ≡ y,

y otherwise

2. (f(t1, . . . , tn))[t/x] = f(t1[t/x], . . . , tn[t/x])

• on formulas, the definition is

1. (r(t1, . . . , tn))[t/x] = r(t1[t/x], . . . , tn[t/x])

2. ⊥[t/x] = ⊥
3. (ϕ ◦ ψ)[t/x] = (ϕ[t/x]) ◦ (ψ[t/x]), for ◦ ∈ {∧,∨,→}

4. (Qy.ϕ)[t/x] =

{

Qy.ϕ if x ≡ y,

Qy.(ϕ[t/x]) if x 6≡ y, y 6∈ FV(t)
, Q ∈ {∀,∃}

Note that substitution on formulas is not always defined!

14

Example

• x[s(0)/x] ≡ s(0), y[s(0)/x] ≡ y

• (x ≈ 0 ∨ x ≈ s(y))[s(0)/x] ≡ s(0) ≈ 0 ∨ s(0) ≈ s(y)

• (x ≈ 0 ∨ (∃y.x ≈ s(y)))[s(0)/x] ≡ s(0) ≈ 0 ∨ (∃y.s(0) ≈ s(y))

• (x ≈ 0 ∨ x ≈ s(y))[s(y)/x] ≡ s(y) ≈ 0 ∨ s(y) ≈ s(y)

• (x ≈ 0 ∨ (∃y.x ≈ s(y)))[s(y)/x] is not defined

• (∀x.x ≈ 0 ∨ (∃y.x ≈ s(y)))[s(0)/x] ≡ (∀x.x ≈ 0 ∨ (∃y.x ≈ s(y)))

Substitution Lemmas (II)

Lemma 5 (trivial substitution). For any formula ϕ and variable x, ϕ[x/x] ≡ ϕ.

Proof. We first prove an auxiliary result: For any term t and variable x,

(∗) t[x/x] ≡ t

This is proved by induction on the structure of t.

1. If t is a variable, it is either equal to x or it is not. In the former case:

t[x/x] ≡ x[x/x] ≡ x ≡ t

In the latter case:
t[x/x] ≡ t

So the statement holds in either case.

2. If t is of the form f(t1, . . . , tn) for a function symbol f of arity n ∈ N and
terms t1, . . . , tn, we can assume that ti[x/x] ≡ ti for all i ∈ {1, . . . , n}.
But then

t[x/x] ≡ (f(t1, . . . , tn))[x/x] ≡ f(t1[x/x], . . . , tn[x/x]) ≡ f(t1, . . . , tn) ≡ t

Note that this result also holds in the case of n = 0.

This proves (∗). Now we prove the main result: For any formula ϕ and
variable x,

(∗∗) ϕ[x/x] ≡ ϕ

This is also proved by induction, this time on the structure of ϕ.

1. If ϕ is of the form r(t1, . . . , tm) for a relation symbol r of arity m ∈ N and
terms t1, . . . , tm, we know by (∗) that tj [x/x] ≡ tj for all j ∈ {1, . . . ,m}.
But then

ϕ[x/x] ≡ (r(t1, . . . , tn))[x/x] ≡ r(t1[x/x], . . . , tn[x/x]) ≡ r(t1, . . . , tn) ≡ ϕ

Again, this result also holds for m = 0.

15

2. If ϕ is ⊥, the result is immediate.

3. If ϕ is of the form ϕ1◦ϕ2 for ◦ ∈ {∧,∨,→}, we can assume that ϕ1[x/x] ≡
ϕ1 and ϕ2[x/x] ≡ ϕ2, since both ϕ1 and ϕ2 are structurally smaller than
ϕ. That means

ϕ[x/x] ≡ (ϕ1 ◦ ϕ2)[x/x] ≡ ϕ1[x/x] ◦ ϕ2[x/x] ≡ ϕ1 ◦ ϕ2 ≡ ϕ

4. If ϕ is of the form ∀y.ϕ′, we distinguish between two cases:

• if x ≡ y, then

ϕ[x/x] ≡ (∀x.ϕ′)[x/x] ≡ ∀x.ϕ′ ≡ ϕ

• otherwise x 6≡ y, hence y 6∈ {x} = FV(x), so

ϕ[x/x] ≡ (∀y.ϕ′)[x/x] ≡ ∀y.ϕ′[x/x] ≡ ∀y.ϕ′ ≡ ϕ

where we again can assume that ϕ′[x/x] ≡ ϕ′ by induction hypothesis

5. The case that ϕ is of the form ∃y.ϕ′ is handled in the same manner.

In conclusion, we have proved (∗) by induction.

Lemma 6 (substitution of variable that does not occur free). For any formula

ϕ, variable x 6∈ FV(ϕ), and term t, ϕ[t/x] ≡ ϕ, if the result of this substitution

is defined at all.

Alpha Equivalence

• for a quantifier Q ∈ {∀,∃}, Qx.ϕ alpha reduces to Qy.ϕ′ if ϕ′ ≡ ϕ[y/x]

• ϕ is called alpha equivalent to ψ (written ϕ ≡α ψ), if ψ results from ϕ by
any number of alpha reductions on subformulas of ϕ

• Examples:

– (∀x.R(x, x)) ≡α (∀y.R(y, y))

– (∀x.∃x.S(x)) ≡α (∀y.∃x.S(x)) ≡α (∀y.∃z.S(z))

– (∀x.∃y.T (x, y)) 6≡α (∀x.∃x.T (x, x))

Notice that alpha reduction never changes the names of free variables.

16

Renaming Away

• we do not distinguish between alpha equivalent formulas

• hence, we can use alpha reduction to rename problematic bound variables
such that substitution is always defined

• example:
(x ≈ 0 ∨ ∃y.x ≈ s(y))[s(y)/x]

is not defined, but

x ≈ 0 ∨ ∃y.x ≈ s(y) ≡α x ≈ 0 ∨ ∃z.x ≈ s(z)

thus we can define

(x ≈ 0 ∨ ∃y.x ≈ s(y))[s(y)/x] := (x ≈ 0 ∨ ∃z.x ≈ s(z))[s(y)/x]
≡ s(y) ≈ 0 ∨ ∃z.s(y) ≈ s(z)

Motivation: Semantics of FOL

• like in propositional logic, in FOL we do not care what functions or rela-
tions the symbols in Σ stand for

• thus, we do not know if ∀x.x ≈ 0 is true

• but some sentences are intuitively true, e.g.

(∀x.∀y.R(x, y) → R(y, x)) → R(a, b) → R(b, a)

• how do we evaluate, e.g., ∀x.¬R(x, x)?

– we need to know what x can stand for, and for which of these values
R is true

– then we would like to evaluate ¬R(x, x), where x is bound to any of
its possible values

• thus, we need to consider not only the interpretation of the function and
relation symbols, but also variable bindings

Semantics: Structures, Interpretations and Assignments

• a (first order) structure M = 〈D, I〉 for a signature Σ consists of

– a non-empty set D, the domain

– an interpretation I = 〈J KF, J KR〉 such that

∗ for every f ∈ F with α(f) = n, JfKF : Dn → D

∗ for every r ∈ R with α(r) = n, JrKR : Dn → B
• a variable assignment on I is a function σ : V → D

We write σ[x := t] for the assignment

y 7→
{

t if x ≡ y

σ(y) otherwise

17

Semantics: Interpreting Terms and Formulas

• interpretation of terms over M and σ:

– JxKM,σ = σ(x)

– Jf(t1, . . . , tn)KM,σ = JfKF(Jt1KM,σ, . . . , JtnKM,σ)

• interpretation of formulas:

– Jr(t1, . . . , tn)KM,σ = JrKR(Jt1KM,σ, . . . , JtnKM,σ)

– J⊥KM,σ, Jϕ ∧ ψKM,σ, etc.: as before

– J∀x.ϕKM,σ =

{

T if, for all d ∈ D, JϕKM,σ[x:=d] = T,

F otherwise

– J∃x.ϕKM,σ =

{

T if there is d ∈ D with JϕKM,σ[x:=d] = T,

F otherwise

Example
A structure M = 〈N, 〈J KF, J KR〉〉 for Σar

• J0KF = 0

• JsKF(n) = n+ 1

• J+KF(m,n) = m+ n

• J·KF(m,n) = m · n

• J≈KR(m,n) =

{

T if m = n

F otherwise

Consider σ = {x 7→ 0, y 7→ 1}, then

• JxKM,σ = 0, Jy + yKM,σ = 2, Js(s(0))KM,σ = 2, Jy ≈ s(s(0))KM,σ = T

• J⊥KM,σ = F, J¬(x ≈ y)KM,σ = T

• J∃d.y ≈ x+ dKM,σ = T

• J∃x.∀y.¬(x ≈ y) ∧ (∃d.x ≈ y + d)KM,σ = F

Satisfiability and Validity

• |=M,σ ϕ: JϕKM,σ = T

• |=M ϕ (“M is a model for ϕ”): |=M,σ ϕ for any σ

• |= ϕ (“ϕ is valid”): |=M ϕ for any structure M

18

• Γ |= ϕ: any M and σ such that JγKM,σ = T for every γ ∈ Γ also gives
JϕKM,σ = T

• analogously, ϕ⇔ ψ means that JϕKM,σ = JψKM,σ for any M and σ

Example: |= ∃x.D(x) → (∀y.D(y)) (“Drinker Paradox”)

Proof. Take the signature ΣD = 〈∅, {D}〉 with α(D) = 1 and the set VD = {x, y}
of variables; the Drinker Paradox is clearly a formula in FOLΣD,VD

.
Now assume we are given an arbitrary structure M = 〈X, 〈J KF, J KR〉〉 and

a variable assignment σ : VD → X. By our definition of semantics, X is a
non-empty set; pick an element x0 ∈ X.

Observe that JDKR is a function from X to B, i.e. D(x) is either T or F for
every x ∈ X. We now distinguish two cases:

• If JDKR(x) is T for all x ∈ X, then

JD(y)KM,σ[x:=x0][y:=x] = T

for all x ∈ X, hence
J∀y.D(y)KM,σ[x:=x0] = T

Certainly also
JD(x)KM,σ[x:=x0] = T

and thus
JD(x) → (∀y.D(y))KM,σ[x:=x0] = T

This shows that

J∃x.D(x) → (∀y.D(y))KM,σ = T.

• Otherwise, JDKR(x1) is F for some x1, hence

JD(x)KM,σ[x:=x1] = F

But then,
JD(x) → (∀y.D(y))KM,σ[x:=x1] = T

and consequently

J∃x.D(x) → (∀y.D(y))KM,σ = T.

In conclusion, we have shown that |=M,σ ∃x.D(x) → (∀y.D(y)) for arbitrary
M and σ, thus establishing

|= ∃x.D(x) → (∀y.D(y)).

Caution: This is not the same as 6|= (∃x.D(x)) → (∀y.D(y))!

19

Basic Results
From now on, we fix some signature Σ and a set V of variables.

Lemma 7 (agreement lemma). Let M be a structure for Σ, ϕ a formula, and

σ, σ′ variable assignments such that σ(x) = σ′(x) for all x ∈ FV(ϕ). Then

|=M,σ ϕ iff |=M,σ′ ϕ.

Corollary 8. The interpretation of a closed formula is independent of variable

assignments.

Lemma 9 (alpha equivalent formulas are semantically equivalent). Alpha equiv-

alent formulas evaluate to the same truth value.

Some Equivalences of FOL

• (∀x.ϕ) ⇔ ¬(∃x.¬ϕ)

• (∀x.ϕ ∧ ψ) ⇔ (∀x.ϕ) ∧ (∀x.ψ)

• (∃x.ϕ ∨ ψ) ⇔ (∃x.ϕ) ∨ (∃x.ψ)

• (∀x.∀y.ϕ) ⇔ (∀y.∀x.ϕ)

• (∃x.∃y.ϕ) ⇔ (∃y.∃x.ϕ)

• (∃x.∀y.ϕ) → (∀y.∃x.ϕ), but not vice versa

Truth Tables for FOL?

• for ϕ ∈ PF, we can always find out whether |= ϕ by drawing a truth table

• how about ϕ ∈ FOL?

– we need to consider all possible structures

– in particular, all possible domains, all possible functions over them

– but domains could be infinite...

• unfortunate truth:

Theorem 10 (Undecidability of First Order Logic). Given an arbitrary

first order formula ϕ, it is undecidable whether |= ϕ.

20

Index

FV(ϕ), 14
PF, see language of Propositional Logic
PL(ϕ), 5

Arity, 12
Atom, 12

Conjunction, 3
Connectives, 2

defined, 3
precedence and associativity of, 4

Disjunction, 3
Drinker Paradox, 19

Entailment
semantic, 5, 18

Equivalence
Alpha, 16
connective, 3
semantic, 8

First Order Logic, 11
language of, 12
semantics of, 17
signature, 12
structure, 17
undecidability of, 20

FOL, see First Order Logic

Implication, 3
Important Equivalences, 8
Interpretation, 4

Model, 5, 18

Negation, 3

Propositional Letter, 3
Propositional Logic, 3

intuitive meaning of, 3
language of, 3

Quantifier
Existential, 12

Universal, 12

Satisfiability, 5, 18
Signature, see First Order Logic signa-

ture
Substitution

for a propositional letter, 9
for individual variables, 14

Tautology, see Validity
Truth

connective, 3
Truth Tables, 6
Truth Value Assignment, see Truth Value

Semantics
Truth Value Semantics, 4

Validity, 5, 18
Variables

free and bound, 13
individual, 12

21

Logic
Part II: Intuitionistic Logic and Natural Deduction

Max Schäfer

Principles of Intuitionistic Logic

• classical logic is non-constructive: the proof of the Drinker Paradox does
not tell us who the drinker is (and if they drink)

• it relies on a notion of truth that is somewhat disconnected from the
formulas of the logic

• intuitionistic logic emphasizes provability, examines ways to construct
proofs of formulas

• proofs of complex formulas are always formulated in terms of proofs of
their parts

• we are not interested in whether formulas are true

1 Intuitionistic Propositional Logic

The Brouwer-Heyting-Kolmogorov Interpretation

• formulas of intuitionistic propositional logic are the same as in the classical
case

• their meaning is explained in terms of their proofs (not in terms of truth):

– a proof of ϕ ∧ ψ is a proof of ϕ together with a proof of ψ

– a proof of ϕ ∨ ψ is a proof of ϕ or a proof of ψ

– a proof of ϕ→ ψ is a procedure that can be seen to produce a proof
of ψ from a proof of ϕ

– there is no proof of ⊥

Examples
For three propositional letters P,Q,R we can prove

• P → P

Given a proof u of P , we can produce a proof of P , namely u itself. This
process is a proof of P → P .

1

• P ∧Q→ P

Assume we have a proof v of P ∧Q. Then we can extract from it a proof
of P , since it must contain both a proof of P and a proof of Q. So we
have a procedure for constructing a proof of P from a proof of P ∧Q; this
is a proof of P ∧Q→ P .

• P → (P ∨Q)

• P → (Q→ P)

• (P → (Q→ R)) → (P → Q) → (P → R)

Comparison with Classical Propositional Logic
Comparison of “a formula is true” and “a formula has a proof”:

• in CL, to show that ϕ ∨ ψ is true, we can

1. assume that ϕ is false

2. then show that ψ is true

in the second step, we can use the fact that ϕ is false

• in IL, to give a proof of ϕ ∨ ψ, we must

1. either give a proof of ϕ (no matter whether ψ has one)

2. or give a proof of ψ (no matter whether ϕ has one)

For other connectives, the difference is not so marked.

Comparison: Example

• in CL, ϕ is true if ¬ϕ is false and vice versa

• in IL, if ¬ϕ has a proof then there can be no proof of ϕ and vice versa:

Assume we have a proof u of ¬ϕ. Because ¬ϕ ≡ ϕ → ⊥ this means that
u is a procedure that produces a proof of ⊥ given a proof of ϕ. But there
is no proof of ⊥, hence there can be no proof of ϕ.

Assume that we have a proof v of ϕ. Then there can be no proof of ¬ϕ.
For assume that we had a proof w of ¬ϕ; then w could produce a proof
of ⊥ from v. But this is impossible.

Comparison: Further Examples

• ϕ ∨ ¬ϕ is true in CL; for assume ϕ is false, then ¬ϕ is true

• ϕ ∨ ¬ϕ does not seem provable in IL

• in CL, if ¬¬ϕ is true then so is ϕ; hence ¬¬ϕ→ ϕ is a classical tautology

2

• in IL, there does not seem to be a way to get a proof of ϕ from a proof of
¬¬ϕ

• in CL, ⊥ is never true; in IL, ⊥ never has a proof

• in CL, ⊥ → ϕ is true for any ϕ

• in IL, ⊥ → ϕ is vacuously provable for any ϕ (ex falso quodlibet, EFQ)

Excursus: Why EFQ?

• in many fields of mathematics, there are contradictory propositions from
which anything is derivable

• for example, if 1 = 0 were true, then

– 2 = 1 + 1 = 0 + 0 = 0, 3 = 1 + 1 + 1 = 0,. . .

– hence: for all n ∈ N, n = 0

– but also: for all r ∈ R, r = r · 1 = r · 0 = 0

Thus, any equality between numbers holds, all functions are equal!

• in intuitionistic logic, ⊥ abstractly represents such a proposition

Formalization: First Step

• we want to formalize the process of forming a proof, in particular a good
way to handle assumptions (e.g., naming them)

• a diagrammatic derivation set out in tree-shape shows how the proof of a
complex formula depends on simpler proofs

• in the course of a derivation, assumptions can temporarily be made and
later discharged (see examples involving implication)

Example
Here is an informal proof of P ∧Q→ Q ∧ P :

1. Assume we have a proof of P ∧Q.

2. This proof contains of a proof of P .

3. It also contains a proof of Q.

4. So if we take the proof of Q and put it together with the proof of P , we
obtain a proof of Q ∧ P .

5. We have shown how to construct a proof of Q∧ P from a proof of P ∧Q.
This constitutes a proof of P ∧Q→ Q ∧ P .

3

The Example in Natural Deduction

[u : P ∧Q]

Q

[u : P ∧Q]

P

Q ∧ P

P ∧Q→ Q ∧ P

• the derivation is a tree with assumptions at the leaves

• assumptions are labeled (here with “u”)

• the levels correspond to the steps of the informal proof

• derivation steps may discharge assumptions (as in the final step)

• discharged assumptions are enclosed in brackets

The Calculus NJ of Natural Deduction (Propositional Part)

• the assumption rule: assumptions can be added to the current node at
any time

x : ϕ

• for the connectives, there are introduction and elimination rules

– the introduction rules specify how to construct proofs

– the elimination rules specify how to extract the information contained
in a proof

The Rules for Conjunction
Conjunction Introduction:

ϕ ψ
(∧I)

ϕ ∧ ψ

ϕ and ψ are premises, ϕ ∧ ψ is the conclusion

Conjunction Elimination:

ϕ ∧ ψ
(∧El) ϕ

ϕ ∧ ψ
(∧Er)

ψ

4

Example

u : P ∧ (Q ∧R)
(∧El)

P

u : P ∧ (Q ∧R)
(∧Er)

Q ∧R
(∧El)

Q
(∧I)

P ∧Q

u : P ∧ (Q ∧R)
(∧Er)

Q ∧R
(∧Er)

R
(∧I)

(P ∧Q) ∧R

Usually, it is easier to find derivations bottom-up starting from the conclusion.

The Rules for Disjunction
Disjunction Introduction:

ϕ
(∨Il)

ϕ ∨ ψ

ψ
(∨Ir)

ϕ ∨ ψ

Disjunction Elimination:

ϕ ∨ ψ

[v : ϕ]

...
ϑ

[w : ψ]

...
ϑ

(∨Ev,w)
ϑ

All open assumptions from the left subderivation are also open in the
two right subderivations.

Example

u : P ∨Q

[v : P]
(∨Ir)

Q ∨ P

[w : Q]
(∨Il)

Q ∨ P
(∨Ev,w)

Q ∨ P

In the same manner, we can prove (P ∨Q)∨R from the assumption P ∨(Q∨R).

The Rules for Implication
Implication Introduction:

[x : ϕ]

...
ψ

(→Ix)
ϕ→ ψ

Implication Elimination (modus ponens, MP):

ϕ→ ψ ϕ
(→E)

ψ

5

Examples

[u : P]
(→Iu)

P → P

[w : Q]

[v : P]
(→Iw)

Q→ P
(→Iv)

P → Q→ P

The Rules for Falsity
Falsity Introduction:

there is no introduction rule for falsity

Falsity Elimination (EFQ):

⊥
(⊥E) ϕ

Example:

[u : ⊥]
(⊥E)

P
(→Iu)

⊥ → P

Further Examples

[u : P → Q] [v : P]
(→E)

Q [w : ¬Q]
(→E)

⊥
(→Iv)

¬P
(→Iw)

¬Q→ ¬P
(→Iu)

(P → Q) → ¬Q→ ¬P

Further Examples

[u : (P ∨Q) → R]

[v : P]
(∨Il)

P ∨Q
(→E)

R
(→Iv)

P → R

[u : (P ∨Q) → R]

[w : Q]
(∨Ir)

P ∨Q
(→E)

R
(→Iw)

Q→ R
(∧I)

(P → R) ∧ (Q→ R)
(→Iu)

(P ∨Q→ R) → (P → R) ∧ (Q→ R)

6

Derivability and Theorems

• a context Γ is a set of assumptions, i.e. Γ ≡ x1 : ϕ1, . . . , xn : ϕn where all
the xi are mutually distinct

• we write Γ1 ⊆ Γ2 to indicate that every assumption in Γ1 also occurs in
Γ2

• the range of Γ, written |Γ|, is the set of assumption formulas in Γ, i.e. the
ϕi

• we write Γ ⊢NJ ϕ to mean that ϕ can be derived from assumptions Γ using
the rules of NJ

for example, u : P → Q, v : ¬Q ⊢NJ ¬P

• if ⊢NJ ϕ (i.e., ϕ is derivable without assumptions), then ϕ is a theorem of
NJ

Some Theorems
Theorems:

• (ϕ→ χ→ ψ) → (χ→ ϕ→ ψ)

• ϕ→ χ→ ψ ↔ ϕ ∧ χ→ ψ

• (ϕ→ ϕ→ ψ) ∧ ϕ→ ψ

(Apparently) Non-Theorems:

• ϕ ∨ ¬ϕ

• ¬¬ϕ→ ϕ

• ¬(ϕ ∧ ψ) → ¬ϕ ∨ ¬ψ

• (¬ψ → ¬ϕ) → (ϕ→ ψ)

Theorems:

• ¬¬(ϕ ∨ ¬ϕ)

• ϕ→ ¬¬ϕ

• ¬ϕ ∨ ¬ψ → ¬(ϕ ∧ ψ)

• (ϕ→ ψ) → (¬ψ → ¬ϕ)

7

Properties of NJ(I)

Lemma 1 (Weakening). For any context Γ and formula ϕ, if Γ ⊢NJ ϕ and

Γ ⊆ Γ′, then Γ′ ⊢NJ ϕ.

Proof. Assume Γ, Γ′, and ϕ are given such that Γ ⊢NJ ϕ and Γ ⊆ Γ′. Thus there
must be a derivationD with open assumptions Γ and conclusion ϕ. We construct
a derivation D′ with open assumptions Γ′ and conclusion ϕ by induction on the
structure of D.

1. If the last step of D was an application of the assumption rule, then
ϕ ∈ |Γ|, hence also ϕ ∈ |Γ′|, and we can take D′ to also be an application
of the assumption rule.

2. If the last step of D was an application of (∧I), then ϕ must be of the form
ϕ1 ∧ ϕ2, and D looks like this:

Γ
...

D1

...
ϕ1

Γ
...

D2

...
ϕ2

(∧I)
ϕ1 ∧ ϕ2

Since the subderivations D1 and D2 are shorter than D, we can assume
by induction hypothesis that there are derivations D′

1
and D′

2
showing

Γ′ ⊢NJ ϕ1 and Γ′ ⊢NJ ϕ2. We can paste them together to obtain a
derivation of Γ′ ⊢NJ ϕ:

Γ′

...

D
′

1

...
ϕ1

Γ′

...

D
′

2

...
ϕ2

(∧I)
ϕ1 ∧ ϕ2

3. All other cases are handled similarly; for example, let us consider the case
that D ends in an application of (∨Ev,w). Then D looks like this:

8

Γ
...

D1

...
ψ1 ∨ ψ2

Γ, [v : ψ1]

...

D2

...
ϕ

Γ, [w : ψ2]

...

D3

...
ϕ

ϕ

Note that we have explicitly annotated all the subderivations with the sets
of open and closed assumptions. We will have to make sure that v and w
are such that Γ′ does not contain any assumptions labeled v and w; if it
does, we choose different names for v and w and consistently replace them
everywhere in D2 and D3.

Now, Γ ⊆ Γ′, and hence Γ, v : ψ1 ⊆ Γ′, v : ψ1 and Γ, w : ψ1 ⊆ Γ′, w : ψ1.
Since all three of D1, D2, and D3 are subderivations of D we can as-
sume that there are derivations D′

1
, D′

2
, D′

3
showing that Γ′ ⊢NJ ψ1 ∨ ψ2,

Γ′, v : ψ1 ⊢NJ ϕ, and Γ′, w : ψ2 ⊢NJ ϕ. By pasting these three derivations
together, we obtain a derivation of Γ′ ⊢NJ ϕ.

Theorem 2 (Soundness Theorem). The system NJ is sound: If ⊢NJ ϕ then

|= ϕ, i.e. all theorems are propositional tautologies.

Consequences of the Soundness Theorem

Corollary 3. If Γ ⊢NJ ϕ then |Γ| |= ϕ.

Corollary 4. The system NJ is consistent, i.e. there is a propositional formula

ϕ such that we do not have ⊢NJ ϕ.

Proof: Indeed, take ⊥. If we could derive ⊢NJ ⊥, then by the soundness
lemma |= ⊥. But that is not the case.

Properties of NJ(II)

• is natural deduction complete for classical semantics, i.e. does |= ϕ imply
⊢NJ ϕ?

• no: there are classical tautologies (e.g., P ∨¬P) without a proof in natural
deduction

• but we obtain completeness if we replace (⊥E) with

¬¬ϕ
(DN) ϕ

The resulting system is called NK.

9

2 Intuitionistic First Order Logic

Intuitionistic First Order Logic

• the language of intuitionistic first order logic is the same as with classical
logic

• the BHK interpretation can be extended to quantified formulas:

– a proof of ∀x.ϕ is a procedure that can be seen, for every value a, to
produce a proof of ϕ with x standing for a

– a proof of ∃x.ϕ is a value a for x together with a proof of ϕ for this
value

• NJ contains introduction and elimination rules for the quantifiers

Comparison with Classical Propositional Logic
Comparison of “a formula is true” and “a formula has a proof” (ctd.):

• in CL, to show that ∃x.ϕ is true, we can

1. assume that ϕ is false for all x

2. then derive a contradiction from this assumption

• in IL, to give a proof of ∃x.ϕ, we must present a concrete value for x
(called a witness) and a proof that ϕ holds for this x

The existential quantifier of intuitionistic logic is constructive.

Rules for the Universal Quantifier
Universal Introduction:

ϕ
(∀I)

∀x.ϕ

where x cannot occur free in any open assumption

Universal Elimination:

∀x.ϕ
(∀E)

ϕ[t/x]

for any term t

10

Example
For any ϕ, we can build the following derivation:

u : ∀x.∀y.ϕ
(∀E)

∀y.ϕ
(∀E) ϕ
(∀I)

∀x.ϕ
(∀I)

∀y.∀x.ϕ

The following attempt to derive ⊢NJ P (x) → P (y) fails due to the side
condition (x ∈ FV(P (x))):

[u : P (x)]
(∀I)

∀x.P (x)
(∀E)

P (y)
(→Iu)

P (x) → P (y)

Rules for the Existential Quantifier
Existential Introduction:

ϕ[t/x]
(∃I)

∃x.ϕ

for any term t
Existential Elimination:

∃x.ϕ

[u : ϕ]

...
ψ

(∃Eu)
ψ

where x cannot occur free in any open assumptions on the right and in ψ
All open assumptions from the left subderivation are also open in the

right subderivation.

Example
For any ϕ, we can build the following derivation:

u : ∃x.∃y.ϕ

[v : ∃y.ϕ]

[w : ϕ]
(∃I)

∃x.ϕ
(∃I)

∃y.∃x.ϕ
(∃Ew)

∃y.∃x.ϕ
(∃Ev)

∃y.∃x.ϕ

The following attempt to derive (∃x.P (x)) → (∀x.P (x)) fails due to the
variable condition:

u : ∃x.P (x) [v : P (x)]
(∃Ev)

P (x)
(∀I)

∀x.P (x)

11

Example
For any ϕ and ψ where x 6∈ FV(ϕ), we have

ϕ ∨ ∃x.ψ ⊢NJ ∃x.ϕ ∨ ψ :

t : ϕ ∨ (∃x.ψ)

[u : ϕ]
(∨Il)

ϕ ∨ ψ
(∃I)

∃x.ϕ ∨ ψ

[v : ∃x.ψ]

[w : ψ]
(∨Ir)

ϕ ∨ ψ
(∃I)

∃x.ϕ ∨ ψ
(∃Ew)

∃x.ϕ ∨ ψ
(∨Eu,v)

∃x.ϕ ∨ ψ

Example
The following attempt to derive ∀x.∃y.x < y ⊢NJ ∃x.∀y.x < y fails:

u : ∀x.∃y.x < y
(∀E)

∃y.x < y

[v : x < y]
(∀I)

∀x.x < y
(∃I)

∃y.∀x.x < y
(∃Ev)

∃y.∀x.x < y

Soundness and Completeness of NJ

Theorem 5 (Soundness Theorem). NJ is sound with respect to the classical

semantics.

Theorem 6 (Completeness Theorem). NK with the quantifier rules is complete

with respect to the classical semantics.

3 Intuitionistic Second Order Propositional Logic

Second Order Propositional Logic (SOPL)

• a different extension of propositional logic: quantify over propositions

• for example:

– ∀P.P → P : “all propositions imply themselves”

– ∃P.P ↔ Q ∧ R: “there is a proposition P that is equivalent to the
conjunction of propositions Q and R”

• this use of ∀ and ∃ is very different from FOL!

12

The Language of SOPL

• assume we have an alphabet R of propositional letters, denoted by P , Q,
R, . . .

• the set PF
2

R
of second order propositional formulas over R is defined in-

ductively:

1. every propositional letter is a formula

2. the symbol ⊥ is a formula (falsity)

3. if ϕ and ψ are formulas, then so are

– ϕ ∧ ψ (conjunction)

– ϕ ∨ ψ (disjunction)

– ϕ→ ψ (implication)

4. if ϕ is a formula and P is a propositional letter, then ∀P.ϕ and ∃P.ϕ
are formulas (second order universal and existential quantifier)

• define FV(ϕ) similar to FOL

Classical SOPL

• it is easy to give SOPL a classical semantics

• but remember that in classical logic every proposition is either true or
false, so

∀P.ϕ⇔ ϕ[⊤/P] ∧ ϕ[⊥/P]

and
∃P.ϕ⇔ ϕ[⊤/P] ∨ ϕ[⊥/P]

• so SOPL is actually “the same” as propositional logic

• only advantage: shorter formulas

Intuitionistic SOPL

• BHK interpretation for second order quantifiers:

– a proof of ∀P.ϕ is a procedure that, for every proposition p, can be
seen to produce a proof of ϕ with P standing for p

– a proof of ∃P.ϕ is a proposition p and a proof of ϕ with P standing
for p

• based on this interpretation, construct system NJ2 of natural deduction
for SOPL by taking propositional rules of NJ and rules for second-order
quantifiers

13

Rules for the Universal Quantifier in NJ2

Universal Introduction:

ϕ
(∀I)

∀P.ϕ

where P cannot occur free in any open assumption

Universal Elimination:

∀P.ϕ
(∀E)

ϕ[ψ/P]

for any formula ψ

Example
⊢NJ2 ∀P.∀Q.∀R.(P → R) ∧ (Q→ R) → ((P ∨Q) → R):

[u : P ∨Q]

[a : (P → R) ∧ (Q→ R)]
(∧El)

P → R [v : P]
(→E)

R

[a : (P → R) ∧ (Q→ R)]
(∧Er)

Q→ R [w : Q]
(→E)

R
(∨Ev,w)

R
(→Iu)

(P ∨Q) → R
(→Ia)

(P → R) ∧ (Q→ R) → ((P ∨Q) → R)
(∀I)

∀R.(P → R) ∧ (Q→ R) → ((P ∨Q) → R)
(∀I)

∀Q.∀R.(P → R) ∧ (Q→ R) → ((P ∨Q) → R)
(∀I)

∀P.∀Q.∀R.(P → R) ∧ (Q→ R) → ((P ∨Q) → R)

Rules for the Existential Quantifier
Existential Introduction:

ϕ[ψ/P]
(∃I)

∃P.ϕ

for any formula ψ
Existential Elimination:

∃P.ϕ

[u : ϕ]

...
ψ

(∃Eu)
ψ

where P cannot occur free in any open assumptions on the right and in
ψ

All open assumptions from the left subderivation are also open in the
right subderivation.

14

Surprise: We Only Need ∀ and →!

• as it turns out:

– ⊢NJ2 ⊥ ↔ (∀P.P)

– ⊢NJ2 ϕ ∧ ψ ↔ (∀P.(ϕ→ ψ → P) → P)

– ⊢NJ2 ϕ ∨ ψ ↔ (∀P.(ϕ→ P) → (ψ → P) → P)

– ⊢NJ2 (∃P.ϕ) ↔ (∀Q.(∀P.ϕ→ Q) → Q) for Q 6∈ FV(ϕ)

• so we can rewrite any formula to only use ∀ and → without impact on
provability!

• in contrast, all connectives are independent in (intuitionistic) propositional
and first order logic

15

Index

NJ2, 13
definability of connectives, 15
rules for second order existential

quantifier, 14
rules for second order universal quan-

tifier, 14
NJ

assumption rule, 4
consistency of, 9
elimination rules, 4
introduction rules, 4
propositional part, 4
rules for conjunction, 4
rules for disjunction, 5
rules for existential quantifier, 11
rules for falsity, 6
rules for implication, 5
rules for universal quantifier, 10
soundness of, 9, 12
weakening lemma, 8

NK, 9, 12

BHK Interpretation
for first order logic, 10
for propositional logic, 1
for second order logic, 13

Classical Logic
non-constructiveness of, 1

Context, 7
range of, 7

Derivation, 3

EFQ, 3

Intuitionistic Logic, 1
First Order, 10
Propositional, 1
Second Order, 13

Second Order Propositional Logic, 12
Classical, 13
Intuitionistic, 13

the language of, 13
SOPL, see Second Order Propositional

Logic

Theorem, 7

16

Logic
Part III: Basic Proof Theory and Curry-Howard Correspondence

Max Schäfer

1 Logics, Semantics, and Deductive Systems

What’s a Logic?

• a logic has a certain language in which formulas of the logic can be for-
mulated

• the language is usually given by an inductive definition, involving one or
more kinds of variables, connectives, quantifiers, etc.

• formulas of the language have some sort of intended meaning

Examples of Logics

• classical propositional logic (CPL): formulas express true or false propo-
sitions

• intuitionistic propositional logic (IPL): same language, formulas express
abstract problems or statements to be proved

• classical first order logic (CFOL): same intended meaning as propositional
case, more expressive formula language with quantification over individu-
als

• intuitionistic first order logic (IFOL): analogous

• second order propositional logic (SOL): also in classical and intuitionistic
variants

• other logics: minimal logic, linear logic and its varieties, modal logics,
temporal logic, Horn logic, rewrite logic, . . .

Semantics

• a semantics for a logic interprets the logic’s formulas in some mathematical
domain

• this is one way of pinning down the intuitive meaning of the formulas

1

• many semantics define a modelling relation Γ |= ϕ

• examples:

– Algebraic semantics: classical logic can be interpreted in Boolean
algebras, particularly the algebra of truth values; intuitionistic logic
can be interpreted in Heyting algebras

– Kripke structures: describe “possible worlds”; often used to give se-
mantics for modal and temporal logics, but also useful for intuition-
istic logic

– Categorical semantics: very flexible and powerful semantics, can be
used with just about any logic

Deductive Systems

• a deductive system allows to infer judgments about formulas of a logic

• many deductive systems define an entailment relation Γ ⊢ ϕ

• deductions are often written in tree form, but sometimes also in linear
fashion

• this is a different way of determining the meaning of the formulas

Examples of Deductive Systems

• Natural Deduction:

– NJ (intuitionistic logic): can infer judgments Γ ⊢ ϕ meaning that ϕ
is provable if all of the formulas in Γ are provable

– NK (for classical logic): Γ ⊢ ϕ means that ϕ is true if all formulas in
Γ are true

• Sequent Calculus:

– LJ (intuitionistic logic): same judgments as NJ, different rules

– LK (classical logic): judgment Γ ⊢ ∆ means that some formula from
∆ is true whenever all the formulas from Γ are true

• Hilbert Systems: given a list of axioms, theorems can be inferred by a
(small) number of rules

• many more

2

Consistency

• consistency is an important property of a deductive system

• it means that the deductive systems does not allow derivations of every
formula; i.e., there are formulas that are not derivable

• often, consistency is also defined by saying that ⊥ cannot be derived, or
that no contradiction of the form ϕ ∧ ¬ϕ can be derived

• for NJ (and many other systems), these definitions are equivalent, but not
for all systems!

Connection Between Semantics and Deductive Systems
Assume we have a semantics and a deductive system (for the same logic).

• if every derivable judgment yields a semantically true statement, then the
deduction system is sound

• if every semantically true statement corresponds to a derivable judgment,
then the deduction system is complete

• for example, NJ is sound for the truth value semantics, because Γ ⊢NJ ϕ
implies |Γ| |= ϕ

• often, completeness is a lot harder to prove than soundness; sometimes it
is impossible to achieve

Comparison Between Logics
Of the logics we have seen so far

• CPL is a sub-logic of CFOL, i.e. every theorem/tautology of CPL is
also a theorem/tautology of CFOL; not the other way around (because of
different syntax)

• IPL is a sub-logic of CPL; not the other way around (because of different
semantics)

• IPL is a sub-logic of IFOL; not the other way around (because of different
syntax)

Comparison Between Classical And Intuitionistic Logic

• classical logic seems stronger than intuitionistic logic: ⊢NK P ∨ ¬P , but
6⊢NJ P ∨ ¬P

• this is a “misunderstanding” of the classical connectives:

– classical ϕ ∨ ψ should intuitionistically be read as ¬(¬ϕ ∧ ¬ψ)

– classical ∃x.ϕ should intuitionistically be read as ¬(∀x.¬ϕ)

3

• translation from classical ϕ to intuitionistic ϕ∗:

– P ∗ := ¬¬P for P ∈ R, ⊥∗ := ⊥

– (ϕ ∧ ψ)∗ := ϕ∗ ∧ ψ∗, (ϕ→ ψ)∗ := ϕ∗ → ψ∗

– (ϕ ∨ ψ)∗ := ¬(¬ϕ∗ ∧ ¬ψ∗)

– (∃x.ϕ)∗ := ¬(∀x.¬ϕ∗)

– (∀x.ϕ)∗ := ∀x.ϕ∗

• we can prove: ⊢NK ϕ iff ⊢NJ ϕ
∗

• classically, ϕ⇔ ϕ∗ (but not intuitionistically!)

2 Proof Normalization

Underivability Results

• showing derivability is easy, underivability is much harder

• how do we show that 6⊢NJ ((P → Q) → P) → P?

• induction on derivations does not (immediately) work: too many choices,
no obvious induction hypothesis

• idea: show that all derivations can be brought into a certain normal form,
then do induction on normal forms only

Detours in NJ(→)

• consider the subset NJ(→) of NJ dealing only with implication (rules (→I)

and (→E))

• take a derivation of ⊢NJ (P → P → Q) → ((R→ R) → P) → Q:

[a : P → P → Q] [u : P]
(→E)

P → Q [u : P]
(→E)

Q
(→Iu)

P → Q

[b : (R→ R) → P]

[v : R]
(→Iv)

R→ R
(→E)

P
(→E)

Q
(→Ib)

((R→ R) → P) → Q
(→Ia)

(P → P → Q) → ((R→ R) → P) → Q

• could be simplified by plugging the derivation of P onto the two assump-
tions u : P

4

Normalized Derivation

[a : P → P → Q]

[b : (R→ R) → P]

[v : R]
(→Iv)

R→ R
(→E)

P
(→E)

P → Q

[b : (R→ R) → P]

[v : R]
(→Iv)

R→ R
(→E)

P
(→E)

Q
(→Ib)

((R→ R) → P) → Q
(→Ia)

(P → P → Q) → ((R→ R) → P) → Q

• in this derivation, the left premise of an application of (→E) is never derived
by (→I)

• if we walk from the conclusion upwards and always choose the left premise
of any rule application, we first encounter several (→I)s, then some (→E)s,
and finally an assumption

Normalization for NJ(→)

• a detour is a derivation fragment like this:

[u : ϕ]

...
ψ

(→Iu)
ϕ→ ψ

...
ϕ

(→E)
ψ

• a detour can be eliminated by substituting the derivation of ϕ on the right
for every assumption u : ϕ on the left

• a derivation without detours is called normal

Theorem 1 (Strong Normalization for NJ(→)). Every derivation in NJ(→) can
be brought into normal form by eliminating detours in some arbitrary order.

Example: Underivability

• assume ⊢NJ(→) ((P → Q) → P) → P ; then we should be able to construct
a normal derivation for it

• choices are dictated by normal form, lead to derivation fragment

[u : (P → Q) → P]

[u : (P → Q) → P] [v : P]

?
Q

(→Iv)
P → Q

(→E)
P

(→Iu)
((P → Q) → P) → P

5

Cannot be completed!

• we conclude: 6⊢NJ(→) ((P → Q) → P) → P

Normalization for NJ

• a similar normalization result holds for full NJ (and even for NJ2)

• roughly: always do eliminations first, then introductions

• important corollaries:

– if ⊢NJ ϕ ∨ ψ, then either ⊢NJ ϕ or ⊢NJ ψ

thus, 6⊢NJ P ∨ ¬P

– if ⊢NJ ∃x.ϕ, then ⊢NJ ϕ[t/x] for some term t

shows constructiveness of ∃

– there is an algorithm to decide whether ⊢NJ ϕ for ϕ ∈ PF

– there is a proof search procedure which will find a proof of ⊢NJ ϕ (for
arbitrary ϕ) if it exists

this procedure may not terminate if there is no proof (undecidability!)

3 The Curry-Howard Correspondence

Propositional Logic and Simply Typed Lambda Calculus
Remember the rules for → in NJ:

Implication Introduction:

[x : ϕ]

...
ψ

(→Ix)
ϕ→ ψ

Implication Elimination:

ϕ→ ψ ϕ
(→E)

ψ

Here is a variant with explicit contexts:

Implication Introduction:

Γ, x : ϕ ⊢ ψ
(→Ix)

Γ ⊢ ϕ→ ψ

6

Implication Elimination:

Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
(→E)

Γ ⊢ ψ

Propositional Logic and Simply Typed Lambda Calculus (ctd.)
Here is a variant with explicit
contexts:

Type inference rules for Simply
Typed Lambda Calculus:

Implication Introduction: Abstraction:

Γ, x : ϕ ⊢ ψ
(→Ix)

Γ ⊢ ϕ→ ψ

Γ, x : ϕ ⊢M : ψ
(abs)

Γ ⊢ (λx : ϕ.M) : ϕ→ ψ

Implication Elimination: Application:

Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
(→E)

Γ ⊢ ψ
Γ ⊢M : ϕ→ ψ Γ ⊢ N : ϕ

(app)
Γ ⊢ (M N) : ψ

Proof Terms

• propositions and types have the same structure

• simply typed lambda terms of type ϕ represent NJ proofs of proposition
ϕ (proof terms)

• they provide a concrete “implementation” of the BHK interpretation: a
proof term of an implication ϕ→ ψ is a lambda term which, when applied
to a proof term of ϕ, yields a proof term of ψ

• we can annotate derivations in NJ with their proof terms

Example: Lambda Terms and Derivation Trees

• this is the derivation tree corresponding to λx : A.x:

[x : A]
(→Ix)

(λx : A.x) : A→ A

• this is for λs : A→ A.λz : A.s(sz):

7

[s : A→ A]

[s : A→ A] [z : A]
(→E)

(s z) : A
(→E)

(s (s z)) : A
(→Iz)

(λz : A.s (s z)) : A→ A
(→Is)

(λs : A→ A.λz : A.s (s z)) : (A→ A) → A→ A

Normalization

• normalization in NJ corresponds to normalization in the lambda calculus;
detour elimination is beta reduction

• example (rule labels omitted for brevity):

[f : A→ A]

(λf : A→ A.f) : (A→ A) → A→ A

[x : A]

(λx : A.x) : A→ A

((λf : A→ A.f) (λx : A.x)) : A→ A

⇓

[x : A]

(λx : A.x) : A→ A

corresponds to

(λf : A→ A.f) (λx : A.x) −→β (λx : A.x)

• thus, programs written in simply typed lambda calculus always terminate!

Connectives and Datatypes

• conjunction corresponds to pairing:

s : ϕ t : ψ
(∧I)

(s, t) : ϕ ∧ ψ

p : ϕ ∧ ψ
(∧El)

(fst p) : ϕ

p : ϕ ∧ ψ
(∧Er)

(snd p) : ψ

Compare Haskell:

8

– (_,_) : a -> b -> (a, b)

– fst : (a, b) -> a

– snd : (a, b) -> b

• likewise, disjunction is disjoint sum, comparable to Haskell

data Sum a b = Inl a | Inr b

Second Order Propositional Logic and System F

• terms of System F (polymorphic lambda calculus) are proof terms of in-
tuitionistic second order propositional logic

• example:

[x : A]

(inlB x) : A ∨B

(λx : B.inlB x) : A→ A ∨B

(ΛB.λx : B.inlB x) : ∀B.a→ A ∨B

(ΛA.ΛB.λx : B.inlB x) : ∀A.∀B.a→ A ∨B

• many datatypes (booleans, numbers, lists, trees,. . .) can be encoded in
System F

• all programs implemented in this system terminate

First Order Logic and Dependent Types

• in second order logic, there are formulas depending on formulas (∀P.P ∨
¬P); they correspond to types depending on types (polymorphic types)

e.g. lists of integers

• in first order logic, there are formulas depending on terms (∀x.P (x)); they
correspond to types depending on values (dependent types)

e.g. lists of length 10

• both features improve type safety; e.g., consider function tail

– polymorphic typing: tail : ∀α.listα→ listα

ensures that the resulting list has the same element type as the ar-
gument list

– dependent typing: tail : ∀n.intlist (1 + n) → intlistn

ensures that the resulting list is one element shorter than the argu-
ment list, and that the function cannot be given an empty argument

9

Higher Order Logic/Constructive Type Theory

• in higher order logic (HOL), we have both polymorphic and dependent
types; programs and proofs about them are expressed in the same system

• the ∃ quantifier supports program specification:

– proof of ∃x.P (x) is a pair (a, p), where a is an individual and p a
proof of P (a)

– expression of type ∃x.P (x) is a pair (a, p), where a is another expres-
sion/program fulfilling specification P (a), as proved by p

– for example, if P (f) expresses “f is a function that sorts its input
list”, then ∃f.P (f) is a pair (f ′, p), where

∗ f ′ is a function (the implementation)

∗ p is a proof of P (f ′), i.e. a proof that the implementation fulfills
the specification

• example systems: Coq, Isabelle, Agda

Programming in Higher Order Logic

• programming in many HOL systems is similar to functional programming

• e.g., lists with length in Agda:

data List (A : Set) : Nat -> Set where

[] : List A 0

:: : {n : Nat} -> A -> List A n -> List A (1 + n)

• head function:

tail : {A : Set}{n : Nat} -> List A (1 + n) -> List A n

tail (_ :: xs) = xs

• example typings:

– 23 : Nat 42 : Nat

– 23::[] : List Nat 1 23::(42::[]) : List Nat 2

– tail (23::(42::[])) : List Nat 1

– tail [] cannot be typed, rejected by compiler!

• Agda is strongly normalizing, so all Agda programs always terminate (and
Agda is not Turing complete!)

10

Curry-Howard Correspondence

in logic: in programming languages:
formulas types
proofs lambda terms
implication function type
conjunction pair type
disjunction disjoint sum type
propositional logic simply typed lambda calculus
(first order) quantification dependent types
(second order) quantification polymorphic types
proof normalization term reduction
induction fold
classical logic programs with “jumps”

Recommended Reading

• Dirk van Dalen: Logic and Structure

introductory text, uses natural deduction for classical logic

• Jean-Yves Girard, Paul Taylor, Yves Lafont: Proofs and Types

introductory text, uses natural deduction for intuitionistic logic, emphasis
on second order logic and System F

• Greg Restall: Proof Theory and Philosophy

natural deduction for different logics, emphasis on proof theory

• Morten Sorensen, Pavel Urzyczyn: Lectures on the Curry-Howard Isomor-
phism

very comprehensive, covers different deduction systems and semantics for
propositional, first, and higher order logic

Conclusion

• modern mathematics (and with it all of modern science) uses logic, mostly
informally

• we can, however, formalize it

• there is not one “true” logical system; different systems are useful for
different purposes

• for any given system, there can be multiple explanations (semantics)

• for any given system, there can be multiple deduction systems

• we can study the capabilities of these systems and their relationship

11

• logic is used in computer science in many different areas, from artificial
intelligence to program verification

• in this course, we have only touched upon the basics; there is a lot more
out there!

12

Index

NJ(→), 4

Agda, 10
Turing completeness of, 10

CFOL, 1
Connectives and Datatypes, 8
Consistency, 3
Constructive Type Theory, 10
CPL, 1
Curry-Howard Correspondence, 11

Deductive System, 2
Dependent Types, 9
Detour, 5

elimination of a, 5

Higher Order Logic, 10
HOL, 10

IFOL, 1
IPL, 1

Normalization
and beta reduction, 8
for NJ2, 6
for NJ, 6
for NJ(→), 5

Polymorphism, 9
Proof term, 7

Semantics, 1
SOL, 1
System F, 9

Underivability, 4

13

