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Prelude
Preliminaries

The Expand/Reduce Transformation

So I Was Asked...

I “So, you study about computers? What programs have you
written?”

I I had to explain that my research is more about how to
construct correct programs.

I Correctness: that a program does what it is supposed to do.

I “What do you mean? Doesn’t a program always does what it
is told to do?”
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Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7
I [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6
I [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I

−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right
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A Simple Program Whose Proof is Not

I The specification: max { sum (i , j) | 0 ≤ i ≤ j ≤ N }, where
sum (i , j) = a[i ] + a[i + 1] + . . .+ a[j ].

I The program:

s = 0; m = 0;
for (i=0; i<=N; i++) {

s = max(0, a[j]+s);
m = max(m, s);

}
I They do not look like each other at all!

I Moral: programs that appear “simple” might not be really that
simple!

I When we are given only the specification, can we construct
the program?
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Verification v.s. Derivation

How do we know a program is correct with respect to a
specification?

I Verification: given a program, prove that it is correct with
respect to some specification.

I Derivation: start from the specification, and attempt to
construct only correct programs!

Theoretical development of one side benefits the other.
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Program Derivation

I Wikipedia: program derivation is the derivation of a program
from its specification, by mathematical means.

I To write a formal specification (which could be
non-executable), and then apply mathematically correct rules
in order to obtain an executable program.

I The program thus obtained is correct by construction.
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A Typical Derivation

max { sum (i , j) | 0 ≤ i ≤ j ≤ N }
= {Premise 1}

max ·map sum · concat ·map inits · tails

= {Premise 2}
. . .

= {. . . }
The final program!
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It’s How We Get There That Matters!

Meaning of Life

= {Premise 1}
. . .

= {Premise 2}
. . .

= {. . . }
42!

The answer may be simple. It
is how we get there that
matters.
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Functional Programming

I In program derivation, programs are entities we manipulate.
Procedural programs (e.g. C programs), however, are difficult
to manipulate because they lack nice properties.

I In C, we do not even have f (3) + f (3) = 2× f (3).

I In functional programming, programs are viewed as
mathematical functions that can be reasoned algebraically,
thus more suitable for program derivation.

I However, we will talk about procedural program derivation in
the latter part of this course.
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Functions

I For the purpose of this lecture, it suffices to assume that
functional programs actually denote functions from sets to
sets.

I The reality is more complicated. But that is out of the scope
of this course.

I Functions can be viewed as sets of pairs, each specifies an
input-output mapping.

I E.g. the function square is specified by
{(1, 1), (2, 4), (3, 9) . . .}.

I Function application is denoted by juxtaposition, e.g. square 3.

I Given f :: α→ β and g :: β → γ, their composition
g · f :: α→ γ is defined by (g · f ) a = g (f a).
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Recursively Defined Functions

I Functions (or total functions) can be recursively defined:

fact 0 = 1,
fact (n + 1) = (n + 1)× fact n.

As a simplified view, we take fact as the least set satisfying
the equations above.

I As a result, any total function satisfying the equations above is
fact. This is a long story cut short, however!

I Applying fact to a value:

fact 3
= 3× fact 2
= 3× 2× fact 1
= 3× 2× fact 1
= 3× 2× 1× 1.
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Natural Numbers and Lists

I Natural numbers: data N = 0 | 1 + N.
I E.g. 3 can be seen as being composed out of 1 + (1 + (1 + 0)).

I Lists: data [a] = [ ] | a : [a].
I A list with three items 1, 2, and 3 is constructed by

1 : (2 : (3 : [ ])), abbreviated as [1, 2, 3].
I hd (x : xs) = x .
I tl (x : xs) = xs.

I Noticed some similarities?

13 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Functions
Data Structures

Binary Trees

For this course, we will use two kinds of binary trees: internally
labelled trees, and externally labelled ones:

I data iTree α = Null | Node α (iTree α) (iTree α).
I E.g.

Node 3 (Node 2 Null Null) (Node 1 Null (Node 4 Null Null)).

I data eTree α = Tip a | Bin (eTree α) (eTree α).
I E.g. Bin (Bin (Tip 1) (Tip 2)) (Tip 3).
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Sum and Map

I The function sum adds up the numbers in a list:

sum :: [Int]→ Int
sum [ ] = 0
sum (x : xs) = x + sum xs.

I E.g. sum [7, 9, 11] = 27.

I The function map f takes a list and builds a new list by
applying f to every item in the input:

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs.

I E.g. map square [3, 4, 6] = [9, 16, 36].
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Sum of Squares
I Given a sequence a1,a2,. . . ,an, compute a2

1 + a2
2 + . . .+ a2

n.
Specification: sumsq = sum ·map square.

I The spec. builds an intermediate list. Can we eliminate it?
I The input is either empty or not. When it is empty:

sumsq [ ]

= { definition of sumsq }
(sum ·map square) [ ]

= { function composition }
sum (map square [ ])

= { definition of map }
sum [ ]

= { definition of sum }
0.
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Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)

= { definition of sumsq }
sum (map square (x : xs))

= { definition of map }
sum (square x : map square xs)

= { definition of sum }
square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs.

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

19 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))

= { definition of map }
sum (square x : map square xs)

= { definition of sum }
square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs.

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

19 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)

= { definition of sum }
square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs.

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

19 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)
= { definition of sum }

square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs.

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

19 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)
= { definition of sum }

square x + sum (map square xs)
= { definition of sumsq }

square x + sumsq xs.

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

19 / 134



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Unfold/Fold Transformation

I Perhaps the most intuitive, yet still handy, style of functional
program derivation.

I Keep unfolding the definition of functions, apply necessary
rules, and finally fold the definition back.

I It works under the assumption that a function satisfying the
derived equations is the function defined by the equations.

I In this course, we use the terms “fold” and “unfold” for
another purpose. Therefore we refer to this technique as the
expand/reduce transformation.
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Proving Auxiliary Properties

I Our style of program derivation:

expression

= {some property}
. . . .

I Some of the properties are rather obvious. Some needs to be
proved separately.

I In this section we will practice perhaps the most fundamental
proof technique, which is still very useful.
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The Induction Principle

I Recall the so called “mathematical induction”. To prove that
a property p holds for all natural numbers, we need to show:

I that p holds for 0, and
I if p holds for n, it holds for n + 1 as well.

I We can do so because the set of natural numbers is an
inductive type.

I The type of finite lists is an inductive types too. Therefore the
property p holds for all finite lists if

I property p holds for [ ], and
I if p holds for xs, it holds for x : xs as well.
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Appending Two Lists

I The function (++) appends two lists into one:

(++) :: [a]→ [a]→ [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys).

I E.g.

[1, 2] ++ [3, 4]
= 1 : ([2] ++ [3, 4])
= 1 : (2 : ([ ] ++ [3, 4]))
= 1 : (2 : [3, 4])
= [1, 2, 3, 4].

I The time it takes to compute xs ++ ys is proportional to the
length of x .
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Sum Distributes into Append

Example: let us show that sum (xs ++ ys) = sum xs + sum ys, for
finite lists xs and ys.
Case [ ]:

sum [ ] + sum ys

= { definition of sum }
0 + sum ys

= { arithmetic }
sum ys

= { by definition of (++), [ ] ++ ys = ys }
sum ([ ] ++ ys).
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Sum Distributes into Append, the Inductive Case
Case x : xs:

sum (x : xs) + sum ys

= { definition of sum}
(x + sum xs) + sum ys

= { (+) is associative: (a + b) + c = a + (b + c) }
x + (sum xs + sum ys)

= { induction hypothesis }
x + sum(xs ++ ys)

= { definition of sum }
sum(x : (xs ++ ys))

= { definition of (++) }
sum((x : xs) ++ ys).
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Some Properties to be Proved

The following properties are left as exercises for you to prove. We
will make use of some of them in the lecture.

I Concatenation is associative:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs).

(Note that the right-hand side is in general faster than the
left-hand side.)

I The function concat concatenates a list of lists:
concat [ ] = [ ],
concat (xs : xss) = xs ++ concat xss.

E.g. concat [[1, 2], [3, 4], [5]] = [1, 2, 3, 4, 5]. We have
sum · concat = sum ·map sum.
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Inductive Proofs on Trees

Recall the datatype:

data iTree α = Null | Node α (iTree α) (iTree α).

What is the induction principle for iTree?
A property p holds for all finite iTrees if . . .

I the property p holds for Null , and

I for all a,t,and u, if p holds for t and u, then p holds for
Node a t u.
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I for all a,t,and u, if p holds for t and u, then p holds for
Node a t u.
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Example: Reversing a List

I The function reverse is defined by:

reverse [ ] = [ ],
reverse (x : xs) = reverse xs ++ [x ].

E.g.
reverse [1, 2, 3, 4] = ((([ ]++[4])++[3])++[2])++[1] = [4, 3, 2, 1].

I But how about its time complexity? Since (++) is O(n), it
takes O(n2) time to revert a list this way.

I Can we make it faster?
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Introducing an Accumulating Parameter

I Let us consider a generalisation of reverse. Define:

rcat xs ys = reverse xs ++ ys.

I If we can construct a fast implementation of rcat, we can
implement reverse by:

reverse xs = rcat xs [ ].
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Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation.
Consider the case when xs is [ ]:

rcat [ ] ys

= { definition of rcat }
reverse [ ] ++ ys

= { definition of reverse }
[ ] ++ ys

= { definition of (++) }
ys.
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Reversing a List, Inductive Case

Case x : xs:

rcat (x : xs) ys

= { definition of rcat }
reverse (x : xs) ++ ys

= { definition of reverse }
(reverse xs ++ [x ]) ++ ys

= { since (xs ++ ys) ++ zs = xs ++ (ys ++ zs) }
reverse xs ++ ([x ] ++ ys)

= { definition of rcat }
rcat xs (x : ys).
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Linear-Time List Reversal

I We have therefore constructed an implementation of rcat:

rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (x : ys),

which runs in linear time!

I A generalisation of reverse is easier to implement than reverse
itself? How come?

I If you try to understand rcat operationally, it is not difficult to
see how it works.

I The partially reverted list is accumulated in ys.
I The initial value of ys is set by reverse xs = rcat xs [ ].
I Hmm... it is like a loop, isn’t it?
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Tracing Reverse

reverse [1, 2, 3, 4]
= rcat [1, 2, 3, 4] [ ]
= rcat [2, 3, 4] [1]
= rcat [3, 4] [2, 1]
= rcat [4] [3, 2, 1]
= rcat [ ] [4, 3, 2, 1]
= [4, 3, 2, 1]

reverse xs = rcat xs [ ]
rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (x : ys)

xs, ys ← XS , [ ];
while xs 6= [ ] do

xs, ys ← tl xs, hd xs : ys;
return ys;
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Tail Recursion

I Tail recursion: a special case of recursion in which the last
operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x ′1 . . . x ′n

I To implement general recursion, we need to keep a stack of
return addresses. For tail recursion, we do not need such a
stack.

I Tail recursive definitions are like loops. Each xi is updated to
x ′i in the next iteration of the loop.

I The first call to f sets up the initial values of each xi .
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Accumulating Parameters

I To efficiently perform a computation (e.g. reverse xs), we
introduce a generalisation with an extra parameter, e.g.:

rcat xs ys = reverse xs ++ ys.

I Try to derive an efficient implementation of the generalised
function. The extra parameter is usually used to
“accumulate” some results, hence the name.

I To make the accumulation work, we usually need some kind of
associativity.

I A technique useful for, but not limited to, constructing
tail-recursive definition of functions.
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Loop Invariants

To implement reverse, we introduce rcat such that:

rcat xs ys = reverse xs ++ ys. (1)

Functional:
We initialise rcat by:

reverse xs = rcat xs [ ],

and try to derive a faster version of rcat
satisfying (1):

rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (y : ys).

Procedural:
We initialise the loop, and try to derive a
loop body maintaining a loop invariant
related to (1).

xs, ys ← XS , [ ];
{reverse XS = reverse xs ++ ys}
while xs 6= [ ] do

xs, ys ← tl xs, hd xs : ys;
return ys;
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Accumulating Parameter: Another Example

I Recall the “sum of squares” problem:

sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs.

The program still takes linear space (for the stack of return
addresses). Let us construct a tail recursive auxiliary function.

I Introduce ssp xs n =

sumsq xs + n

.

I Initialisation: sumsq xs =

ssp xs 0

.

I Construct ssp:

ssp [ ] n = 0 + n = n
ssp (x : xs) n = (square x + sumsq xs) + n

= sumsq xs + (square x + n)
= ssp xs (square x + n).
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Steep Lists

I A steep list is a list in which every element is larger than the
sum of those to its right:

steep [ ] = true
steep (x : xs) = steep xs ∧ x > sum xs.

I The definition above, if executed directly, is an O(n2)
program. Can we do better?

I Just now we learned to construct a generalised function which
takes more input. This time, we try the dual technique: to
construct a function returning more results.
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Generalise by Returning More

I Recall that fst (a, b) = a and snd (a, b) = b.

I It is hard to quickly compute steep alone. But if we define

steepsum xs = (steep xs, sum xs),

and manage to synthesise a quick definition of steepsum, we
can implement steep by steep = fst · steepsum.

I We again proceed by case analysis. Trivially,

steepsum [ ] = (true, 0).
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Deriving for the Non-Empty Case
For the case for non-empty inputs:

steepsum (x : xs)

= { definition of steepsum }
(steep (x : xs), sum (x : xs))

= { definitions of steep and sum }
(steep xs ∧ x > sum xs, x + sum xs)

= { extracting sub-expressions involving xs }
let (b, y) = (steep xs, sum xs)
in (b ∧ x > y , x + y)

= { definition of steepsum }
let (b, y) = steepsum xs
in (b ∧ x > y , x + y).
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Synthesised Program

I We have thus come up with:

steep = fst · steepsum
steepsum [ ] = (true, 0)
steepsum (x : xs) = let (b, y) = steepsum xs

in (b ∧ x > y , x + y),

which runs in O(n) time.

I Again we observe the phenomena that a more general
function is easier to implement.

I It is actually common in indutive proofs, too. To prove a
theorem, we sometimes have to generalise it so that we have a
stronger inductive hypothesis.

I Talking about inductive proofs again, in the next lecture let us
see a general pattern for induction.
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Summary for the First Day
I Program derivation: constructing programs from their

specifications, through formal reasoning.
I Expand/reduce transformation: the most fundamental kind of

program derivation — expand the definitions of functions, and
reduce them back when necessary.

I Most of the properties we need during the reasoning, for this
course, can be proved by induction.

I Accumulating parameters: sometimes a more general program
is easier to construct.

I Sometimes used to construct loops. Closely related to loop
invariants in procedural program derivation.

I Usually relies on some associtivity property to work.

I Tupling: a dual technique often used to generalise a function
so that we can derive a quicker recursive definition.

I Like it so far? More fun tomorrow!
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From Yesterday. . .

I Expand/reduce transformation: the most basic kind of
program derivation. Expand the definitions of functions, and
reduce them back when necessary.

I Proof by induction.

I Accumulating parameter: a handy technique for, among other
purposes, deriving tail recursive functions.

I Tupling: a dual technique often used to generalise a function
so that we can derive a quicker recursive definition.

I Today we will be dealing with slightly abstract concepts.
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More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
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A Common Pattern We’ve Seen Many Times. . .

I
sum [ ] = 0
sum (x : xs) = x + sum xs

I
length [ ] = 0
length (x : xs) = 1 + length xs

I
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

I This pattern is extracted and called foldr :

foldr f e [ ] = e,
foldr f e (x : xs) = f x (foldr f e xs).
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Replacing Constructors

I
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

I One way to look at foldr (⊕) e is that it replaces [ ] with e and
(:) with (⊕):

foldr (⊕) e [1, 2, 3, 4]
= foldr (⊕) e (1 : (2 : (3 : (4 : [ ]))))
= 1⊕ (2⊕ (3⊕ (4⊕ e))).

I sum = foldr (+) 0.

I length = foldr (λx n.1 + n) 0.

I map f = foldr (λx xs.f x : xs) [ ].
I One can see that id = foldr (:) [ ].
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Some Trivial Folds on Lists
I Function max returns the maximum element in a list:

I
max [ ] = -∞,
max (x : xs) = x ↑ max xs.

I max = foldr (↑) -∞.

I Function prod returns the product of a list:

I
prod [ ] = 1,
prod (x : xs) = x × prod xs.

I prod = foldr (×) 1.

I Function and returns the conjunction of a list:

I
and [ ] = true,
and (x : xs) = x ∧ and xs.

I and = foldr (∧) true.

I Lets emphasise again that id on lists is a fold:

I
id [ ] = [ ],
id (x : xs) = x : id xs.

I id = foldr (:) [ ].
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Why Folds?

I The same reason we kept talking about patterns in design.

I Control abstraction, procedure abstraction, data
abstraction,. . . can programming patterns be abstracted too?

I Program structure becomes an entity we can talk about,
reason about, and reuse.

I We can describe algorithms in terms of fold, unfold, and other
recognised patterns.

I We can prove properties about folds,
I and apply the proved theorems to all programs that are folds,

either for compiler optimisation, or for mathematical reasoning.

I Among the theorems about folds, the most important is
probably the fold-fusion theorem.
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The Fold-Fusion Theorem

The theorem is about when the composition of a function and a
fold can be expressed as a fold.

Theorem (Fold-Fusion)

Given f :: α→ β → β, e :: β, h :: β → γ, and g :: α→ γ → γ,
we have:

h · foldr f e = foldr g (h e),

if h (f x y) = g x (h y) for all x and y .
For program derivation, we are usually given h, f , and e, from
which we have to construct g .
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Tracing an Example
Let us try to get an intuitive understand of the theorem:

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (h (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (h (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a, b, c ].
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Sum of Squares, Again

I Consider sum ·map square again. This time we use the fact
that map f = foldr (mf f ) [ ], where mf f x xs = f x : xs.

I sum ·map square is a fold, if we can find a ssq such that
sum (mf square x xs) = ssq x (sum xs). Let us try:

sum (mf square x xs)
= { definition of mf }

sum (square x : xs)
= { definition of sum }

square x + sum xs

= { let ssq x y = square x + y }
ssq x (sum xs).

Therefore, sum ·map square = foldr ssq 0.
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More on Folds and Fold-fusion

I Compare the proof with the one yesterday. They are
essentially the same proof.

I Fold-fusion theorem abstracts away the common parts in this
kind of inductive proofs, so that we need to supply only the
“important” parts.

I Tupling can be seen as a kind of fold-fusion. The derivation of
steepsum, for example, can be seen as fusing:

steepsum · id = steepsum · foldr (:) [ ].
I Not every function can be expressed as a fold. For example, tl

is not a fold!
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Longest Prefix

I The function call takeWhile p xs returns the longest prefix of
xs that satisfies p:

takeWhile p [ ] = [ ],
takeWhile p (x : xs) = if p x then x : takeWhile p xs

else [ ].
I E.g. takeWhile (≤ 3) [1, 2, 3, 4, 5] = [1, 2, 3].
I It can be defined by a fold:

takeWhile p = foldr (tke p) [ ],
tke p x xs = if p x then x : xs else [ ].

I Its dual, dropWhile (≤ 3) [1, 2, 3, 4, 5] = [4, 5], is not a fold.
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All Prefixes

I The function inits returns the list of all prefixes of the input
list:

inits [ ] = [[ ]],
inits (x : xs) = [ ] : map (x : ) (inits xs).

I E.g. inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]].
I It can be defined by a fold:

inits = foldr ini [[ ]],
ini x xss = [ ] : map (x : ) xss.
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All Suffixes

I The function tails returns the list of all suffixes of the input
list:

tails [ ] = [ ],
tails (x : xs) = let (ys : yss) = tails xs

in (x : ys) : ys : yss.

I E.g. tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]].
I It can be defined by a fold:

tails = foldr til [[ ]],
til x (ys : yss) = (x : ys) : ys : yss.
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Scan

I scanr f e = map (foldr f e) · tails.

I E.g.

scanr (+) 0 [1, 2, 3]
= map sum (tails [1, 2, 3])
= map sum [[1, 2, 3], [2, 3], [3], [ ]]
= [6, 5, 3, 0].

I Of course, it is slow to actually perform map (foldr f e)
separately. By fold-fusion, we get a faster implementation:

scanr f e = foldr (sc f ) [e],
sc f x (y : ys) = f x y : y : ys.
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Specifying Maximum Segment Sum

I Finally we have introduced enough concepts to tackle the
maximum segment sum problem!

I A segment can be seen as a prefix of a suffix.

I The function segs computes the list of all the segments.

segs = concat ·map inits · tails.

I Therefore, mss is specified by:

mss = max ·map sum · segs.
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The Derivation!

We reason:

max ·map sum · concat ·map inits · tails

= { since map f · concat = concat ·map (map f ) }
max · concat ·map (map sum) ·map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails.

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scan, which has a faster implementation.
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Maximum Prefix Sum
Concentrate on max ·map sum · inits:

max ·map sum · inits

= { definition of init, ini x xss = [ ] : map (x : ) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, see below }
max · foldr zplus [0].

The fold fusion works because:

map sum (ini x xss)
= map sum ([ ] : map (x : ) xss)
= 0 : map (sum · (x : )) xss

= 0 : map (x+) (map sum xss).

Define zplus x xss = 0 : map (x+) xss.
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Maximum Prefix Sum, 2nd Fold Fusion
Concentrate on max ·map sum · inits:

max ·map sum · inits

= { definition of init, ini x xss = [ ] : map (x : ) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, zplus x xss = 0 : map (x+) xss }
max · foldr zplus [0]

= { fold fusion, let zmax x y = 0 ↑ (x + y) }
foldr zmax 0.

The fold fusion works because ↑ distributes into (+):

max (0 : map (x+) xs)
= 0 ↑ max (map (x+) xs)
= 0 ↑ (x + max xs).
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Back to Maximum Segment Sum
We reason:

max ·map sum · concat ·map inits · tails

= { since map f · concat = concat ·map (map f ) }
max · concat ·map (map sum) ·map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails

= { reasoning in the previous slides }
max ·map (foldr zmax 0) · tails

= { introducing scanr }
max · scanr zmax 0.
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Maximum Segment Sum in Linear Time!

I We have derived mss = max · scanr zmax 0, where
zmax x y = 0 ↑ (x + y).

I The algorithm runs in linear time, but takes linear space.

I A tupling transformation eliminates the need for linear space.

mss = fst ·maxhd · scanr zmax 0

where maxhd xs = (max xs, hd xs). We omit this last step in
the lecture.

I The final program is mss = fst · foldr step (0, 0), where
step x (m, y) = ((0 ↑ (x + y)) ↑ m, 0 ↑ (x + y)).
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Folds on Trees

I Folds are not limited to lists. In fact, every datatype with
so-called “regular base functors” induces a fold.

I Recall some datatypes for trees:

data iTree α = Null | Node a (iTree α) (iTree α);
data eTree α = Tip a | Bin (eTree α) (eTree α).

I The fold for iTree, for example, is defined by:

foldiT f e Null = e,
foldiT f e (Node a t u) = f a (foldiT f e t) (foldiT f e u).

I The fold for eTree, is given by:

foldeT f g (Tip x) = g x ,
foldeT f g (Bin t u) = f (foldeT f g t) (foldeT f g u).
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Some Simple Functions on Trees

I to compute the size of an iTree:

sizeiTree = foldiT (λx m n.m + n + 1) 0.

I To sum up labels in an eTree:

sumeTree = foldeT (+) id .

I To compute a list of all labels in an iTree and an eTree:

flatteniT = foldiT (λx xs ys.xs ++ [x ] ++ ys) [ ],
flatteneT = foldeT (++) (λx .[x ]).

72 / 134



Folds
Unfolds

Hylomorphism
Wrapping Up

Unfold on Lists
Folds v.s. Unfolds

Folds
The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Unfolds
Unfold on Lists
Folds v.s. Unfolds

Hylomorphism
A Museum of Sorting Algorithms
Hylomorphism and Recursion

Wrapping Up

73 / 134



Folds
Unfolds

Hylomorphism
Wrapping Up

Unfold on Lists
Folds v.s. Unfolds

Unfolds Generate Data Structures

I While folds consumes a data structure, unfolds builds data
structures.

I Unfold on lists is defined by:

unfoldr p f s = if p s then [ ] else
let (x , s ′) = f s in x : unfoldr p f s ′.

The value s is a “seed” to generate a list with. Function p
checks the seed to determines whether to stop. If not,
function f is used to generate an element and the next seed.
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Some Useful Functions Defined as Unfolds

I For brevity let us introduce the “split” notation. Given
functions f :: α→ β and g :: α→ γ, 〈f , g〉 :: α→ (β, γ) is a
function defined by:

〈f , g〉 a = (f a, g a).

I The function call fromto m n builds a list [n, n + 1, . . . ,m]:
fromto m = unfoldr (≥ m) 〈id , (1+)〉.

I The function tails+ is like tails, but returns non-empty tails
only:

tails+ = unfoldr null 〈id , tl〉,
where null xs yields true iff xs = [ ].

75 / 134



Folds
Unfolds

Hylomorphism
Wrapping Up

Unfold on Lists
Folds v.s. Unfolds

Unfolds May Build Infinite Data Structures

I The function call from n builds the infinitely long list
[n, n + 1, . . .]:

from = unfoldr (const false) 〈id , (1+)〉.
I More generally, iterate f x builds an infinitely long list

[x , f x , f (f x) . . .]:
iterate f = unfoldr (const false) 〈id , f 〉.

We have from = iterate (1+).
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Merging as an Unfold

I Given two sorted lists (xs, ys), the call merge (xs, ys) merges
them into one sorted list:

merge = unfoldr null2 mrg
null2 (xs, ys) = null xs ∧ null ys
mrg ([ ], y : ys) = (y , ([ ], ys))
mrg (x : xs, [ ]) = (x , (xs, [ ]))
mrg (x : xs, y : ys) = if x ≤ y then (x , (xs, y : ys))

else (y , (x : xs, ys)).
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Folds and Unfolds

I Folds and unfolds are dual concepts. Folds consume data
structure, while unfolds build data structures.

I List constructors have types: (:) :: α→ [α]→ [α] and
[ ] :: [α]; in fold f e, the arguments have types:
f :: α→ β → β and e :: β.

I List deconstructors have types: 〈hd , tl〉 :: [α]→ (α, [α]); in
unfoldr p f , the argument f has type β → (α, β).

I They do not look exactly symmetrical yet. But that is just
because our notations are not general enough.
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Folds v.s. Unfolds

I Folds are defined on inductive datatypes. All inductive
datatypes are finite, and emit inductive proofs. Folds basically
captures induction on the input.

I As we have seen, unfolds may generate infinite data
structures.

I They are related to coinductive datatypes.
I Proof by induction does not (trivially) work for coinductive

data in general. We need to instead use coinductive proof.
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A Sketch of A Coinductive Proof

To prove that map f · iterate f = iterate f (f x), we show that for
all possible observations, the lhs equals the rhs.

I hd ·map f · iterate f = hd · iterate f (f x). Trivial.

I tl ·map f · iterate f = tl · iterate f (f x):

tl (map f (iterate f x))
= tl (f x : map f (iterate f (f x)))
= {hypothesis}

tl (f x : iterate f (f (f x)))
= tl (iterate f (f x)).

The hypothesis looks a bit shaky: isn’t it circular reasoning?
We need to describe it in a more rigourous setting to establish
its validity. This is out of the scope of this lecture.
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Unfolds on Trees

Unfolds can also be extended to trees. For internally labelled
binary trees we define:

unfoldiT p f s = if p s then Null else
let (x , s1, s2) = f s
in Node x (unfoldiT p f s1)

(unfoldiT p f s2).

And for externally labelled binary trees we define:

unfoldeT p f g s = if p s then Tip (g s) else
let (s1, s2) = f s
in Bin (unfoldeT p f g s1)

(unfoldeT p f g s2).
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Unflattening a Tree

I Recall the function flatteneT :: eTree α→ [α], defined as a
fold, flattening a tree into a list. Let us consider doing the
reverse.

I Assume that we have the following functions:
I single xs = true iff xs contains only one element.
I half :: [α]→ ([α], [α]) split a list of length n into two lists of

lengths roughly half of n.

I The function unflatteneT builds a tree out of a list:
unflattenT :: [α]→ eTree [α],
unflattenT = unfoldeT single half id .
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Mergesort as a Hylomorphism

I Recall the function merge merging a pair of sorted lists into
one sorted list. Assume that it has a curried variant mergec .

I What does this function do?

msort = foldeT mergec id · unflatteneT

I This is mergesort!
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Quicksort as a Hylomorphism

I Let partition be defined by:

partition (x : xs) = (x , filter (≤ x) xs, filter (> x) xs).

I Recall the function flatteniT flattening an iTree, defined by a
fold.

I Quicksort can be defined by:

qsort = flatteniT · unfoldiT null partition.

I Compare and notice some symmetry:

qsort = flatteniT · partitioniT ,
msort = mergeeT · unflatteneT .

Both are defined as a fold after an unfold.
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Insertion Sort and Selection Sort

I Insertion sort can be defined by an fold:

isort = foldr insert [ ],
where insert is specified by

insert x xs = takeWhile (< x) xs ++ [x ] ++ dropWhile (< x) xs.

I Selection sort, on the other hand, can be naturally seen as an
unfold:

ssort = unfoldr null select,

where select is specified by

select xs = (max xs, xs − [max xs]).
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Hylomorphism

I A fold after an unfold is called a hylomorphism.

I The unfold phase expands a data structure, while the fold
phase reduces it.

I The divide-and-conquer pattern, for example, can be modelled
by hylomorphism on trees.

I To avoid generating an intermediate tree, the fold and the
unfold can be fused into a recursive function. E.g. let
hyloiT f e p g = foldiT f e · unfoldiT p g , we have

hyloiT f e p g s = if p s then e else
let (x , s1, s2) = g s
in f x (hyloiT f e p g s1)

(hyloiT f e p g s2).
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Hylomorphism and Recursion

Okay, we can express hylomorphisms using recursion. But let us
look at it the other way round.

I Imagine a programming in which you are not allowed to write
explicit recursion. You are given only folds and unfolds for
algebraic datatypes1.

I When you do need recursion, define a datatype capturing the
pattern of recursion, and split the recursion into a fold and an
unfold.

I This way, we can express any recursion by hylomorphisms!

Therefore, the hylomorphism is a concept as expressive as recursive
functions (and, therefore, the Turing machine) — if we are allowed
to have hylomorphisms, that is.

1Built from regular base functors, if that makes any sense.
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Folds Take Inductive Types

I So far, we have assumed that it is allowed to write
fold · unfold . However, let us not forget that they are defined
on different types!

I Folds takes inductive types.
I If we use folds only, everything terminates (a good property!).
I Recall that we assume a simple model of functions between

sets.
I On the downside, of course, not every program can be written

in terms of folds.
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Unfolds Return Coinductive Types

Unfolds returns coinductive types.

I We can generate infinite data structure.

I But if we are allowed to use only unfolds, every program still
terminates because there is no “consumer” to infinitely
process the infinite data.

I Not every program can be written in terms of unfolds, either.
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Hylomorphism, Recursion and Termination

If we allow fold · unfold ,

I we can now express every program computable by a Turing
machine.

I But, we need a model assuming that inductive types and
coinductive types coincide.

I Therefore, folds must prepare to accept infinite data.

I Therefore, some programs may fail to terminate!

I Which means that partial functions have emerged.

I Recursive equations may not have unique solutions.

I And everything we believe so far are not on a solid basis
anymore!
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Termination, Type Theory, Semantics . . .

I One possible way out: instead of total function between sets,
we move to partial functions between complete partial orders,
and model what recursion means in this setting.

I There are also alternative approaches staying with functions
and sets, but talk about when an equation has a unique
solution.

I This is where all the following concepts and fields meet each
other: unique solutions, termination, type theory, semantics,
programming language theory, computability theory . . . and a
lot more!
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What have we learned?

I To derive programs from specification, functional
programming languages allows the expand/reduce
transformation.

I A number of properties we need can be proved by induction.
I To capture recurring patterns in reasoning, we move to

structural recursion: folds captures induction, while unfolds
capture coinduction.

I We gave lots of examples of the fold-fusion rule.
I Unfolds are equally important, unfortunately we ran out of

space.

I Hylomorphism is as expressive as you can get. However, it
introduces non-termination. And that opens rooms for plenty
of related research.
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Where to Go from Here?

I The Functional Pearls column in Journal of Functional
Proramming has lots of neat example of derivations.

I Procedural program derivation (basing on the weakest
precondition calculus) is another important branch we did not
talk about.

I There are plenty of literature about folds, and

I more recently, papers about unfolds and coinduction.

I You may be interested in theories about inductive types,
coinductive types, and datatypes in general,

I and semantics, denotational and operational,

I which may eventually lead you to category theory!
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Procedural Program Derivation
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From Day 1 and Day 2. . .

We have covered a lot about functional program derivation:

I Expand/reduce transformation, and proof by induction.

I Some derivation techniques: accumulating parameter, tupling.

I Folds and fold fusion.

I Unfolds and hylomorphism.

For something you can apply to your work in the “real world”, we
will talk about deriving procedural programs in the last part of this
lecture.
Most of the materials are taken from Anne Kaldewaij’s book
Programming: the Derivation of Algorithms.
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The Guarded Command Language

I A program computing the greatest common divisor:

|[ con A,B : int;

{0 < A ∧ 0 < B}

var x , y : int;

x , y := A,B;
do y < x → x := x − y

[] x < y → y := y − x
od

{x = y = gcd(A,B)}

]|.
I Notice: a section for declarations, followed by a section for

statements.

I Assignments: :=; do denotes loops with guarded bodies.

I Assertions delimited in curly brackets.
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Assertions

I The state space of a program is the states of all its variables.
I E.g. the GCD program has state space Z× Z.

I The Hoare triple {P}S{Q}, operationally, denotes that the
statement S , when executed in a state satisfying P,
terminates in a state satisfying Q.

I E.g., {P}S{true} expresses that S terminates.
I {P}S{Q} and P0 ⇒ P implies {P0}S{Q}.
I {P}S{Q} and Q ⇒ Q0 implies {P}S{Q0}.

I Perhaps the simplest statement: {P}skip{Q} iff. P ⇒ Q.
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Verification v.s. Derivation

I Recall the relationship between verification and derivation:
I Verification: given a program, prove that it is correct with

respect to some specification.
I Derivation: start from the specification, and attempt to

construct only correct programs.

I For this course, verification is mostly about putting in the
right assertions.

I We will talk about verification first, before moving on to
derivation.
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Procedural Program Derivation
Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Maximum Segment Sum, Procedually

Wrapping Up
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Substitution and Assignments

I P[E/x ]: substituting occurrences of x in P for E .
I E.g. (x ≤ 3)[x − 1/x ] ≡ x − 1 ≤ 3 ≡ x ≤ 4.

I Which is correct:

1. {P}x := E{P[E/x ]}, or
2. {P[E/x ]}x := E{P}?

I Answer: 2! For example:

{(x ≤ 3)[x + 1/x ]}x := x + 1{x ≤ 3}
≡ {x + 1 ≤ 3}x := x + 1{x ≤ 3}
≡ {x ≤ 2}x := x + 1{x ≤ 3}.
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E.g. Swapping Booleans

I The ≡ operator is defined by

true ≡ true = true false ≡ true = false
true ≡ false = false false ≡ false = true

I (a ≡ b) ≡ c = a ≡ (b ≡ c); true ≡ a = a.

I Verify:

|[ var a, b : bool ;
{a ≡ A ∧ b ≡ B}

⇒ {b ≡ B ∧ a ≡ b ≡ b ≡ A}

a := a ≡ b;

{b ≡ B ∧ a ≡ b ≡ A} ⇒ {a ≡ a ≡ b ≡ B ∧ a ≡ b ≡ A}

b := a ≡ b;

{a ≡ b ≡ B ∧ b ≡ A}

a := a ≡ b;
{a ≡ B ∧ b ≡ A}

]|.
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Selection

I Selection takes the form if B0 → S0[] . . . []Bn → Sn fi.

I Each Bi is called a guard; Bi → Si is a guarded command.

I If none of the guards B0 . . .Bn evaluate to true, the program
aborts. Otherwise, one of the command with a true guard is
chosen non-deterministically and executed.

I To annotate an if statement:
{P}
if B0 → {P ∧ B0}S0{Q}
[] B1 → {P ∧ B1}S1{Q}

fi
{Q,Pf },

where Pf :: P ⇒ B0 ∨ B1.

106 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Selection

I Selection takes the form if B0 → S0[] . . . []Bn → Sn fi.

I Each Bi is called a guard; Bi → Si is a guarded command.

I If none of the guards B0 . . .Bn evaluate to true, the program
aborts. Otherwise, one of the command with a true guard is
chosen non-deterministically and executed.

I To annotate an if statement:
{P}
if B0 → {P ∧ B0}S0{Q}
[] B1 → {P ∧ B1}S1{Q}

fi
{Q,Pf },

where Pf :: P ⇒ B0 ∨ B1.

106 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Binary Maximum

I Goal: to assign x ↑ y to z . By definition,
z = x ↑ y ≡ (z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z .

I Try z := x . We reason:

((z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z)[x/z ]
≡ (x = x ∨ x = y) ∧ x ≤ x ∧ y ≤ x
≡ y ≤ x ,

which hinted at using a guarded command: y ≤ x → z := x .

I Indeed:
{true}
if y ≤ x → {y ≤ x}z := x{z = x ↑ y}
[] x ≤ y → {x ≤ y}z := y{z = x ↑ y}

fi
{z = x ↑ y}.
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Loops

I Repetition takes the form do B0 → S0[] . . . []Bn → Sn od.

I If none of the guards B0 . . .Bn evaluate to true, the loop
terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

I To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q,Pf },

where Pf :: P ∧ ¬B0 ∧ ¬B1 ⇒ Q.

I P is called the loop invariant. Every loop should be
constructed with an invariant in mind!
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Linear-Time Exponentiation

|[ con N{0 ≤ N}; var x , n : int;

x , n := 1, 0;

{x = 2n ∧ n ≤ N}

do n 6= N →

{x = 2n ∧ n ≤ N ∧ n 6= N}

x , n := x + x , n + 1

{x = 2n ∧ n ≤ N,Pf 1}

od
{x = 2N

,Pf 2

}
]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]
≡ x + x = 2n+1 ∧ n + 1 ≤ N
≡ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n 6= N)
⇒ x = 2N
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od
{x = 2N ,Pf 2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x + x , n + 1/x , n]
≡ x + x = 2n+1 ∧ n + 1 ≤ N
≡ x = 2n ∧ n < N

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n 6= N)
⇒ x = 2N
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Greatest Common Divisor

I Known: gcd(x , x) = x ; gcd(x , y) = gcd(x , x − y) if x > y .

I

|[ con A,B : int; {0 < A ∧ 0 < B}
var x , y : int;

x , y := A,B;
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I

(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x ]
≡ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

110 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Greatest Common Divisor

I Known: gcd(x , x) = x ; gcd(x , y) = gcd(x , x − y) if x > y .

I

|[ con A,B : int; {0 < A ∧ 0 < B}
var x , y : int;

x , y := A,B;
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I

(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x ]
≡ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

110 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Greatest Common Divisor

I Known: gcd(x , x) = x ; gcd(x , y) = gcd(x , x − y) if x > y .

I

|[ con A,B : int; {0 < A ∧ 0 < B}
var x , y : int;

x , y := A,B;
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)}
do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I

(0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B))[x − y/x ]
≡ 0 < x − y ∧ 0 < y ∧ gcd(x − y , y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B) ∧ y < x

110 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

A Weird Equilibrium

I Consider the following program:

|[ var x , y , z : int;
{true

, bnd = 3× (x ↑ y ↑ z)− (x + y + z)

}
do x < y → x := x + 1

[] y < z → y := y + 1
[] z < x → z := z + 1

od
{x = y = z}

]|.
I If it terminates at all, we do have x = y = z . But why does it

terminate?

1. bnd ≥ 0, and bnd = 0 implies none of the guards are true.
2. {x < y ∧ bnd = t}x := x + 1{bnd < t}.
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Repetition

To annotate a loop for total correctness:

{P, bnd = t}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si{P},
3. P ∧ (B1 ∨ B2)⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si{t < C}.

112 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Repetition

To annotate a loop for total correctness:

{P, bnd = t}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si{P},
3. P ∧ (B1 ∨ B2)⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si{t < C}.

112 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Repetition

To annotate a loop for total correctness:

{P, bnd = t}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si{P},

3. P ∧ (B1 ∨ B2)⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si{t < C}.

112 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Repetition

To annotate a loop for total correctness:

{P, bnd = t}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si{P},
3. P ∧ (B1 ∨ B2)⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si{t < C}.

112 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

Repetition

To annotate a loop for total correctness:

{P, bnd = t}
do B0 → {P ∧ B0}S0{P}

[] B1 → {P ∧ B1}S1{P}
od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i , {P ∧ Bi}Si{P},
3. P ∧ (B1 ∨ B2)⇒ t ≥ 0,

4. for all i , {P ∧ Bi ∧ t = C}Si{t < C}.

112 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Assignments and Selection
Repetition

E.g. Linear-Time Exponentiation

I What is the bound function?
|[ con N{0 ≤ N}; var x , n : int;

x , n := 1, 0;
{x = 2n ∧ n ≤ N

,N − n

}
do n 6= N →

x , n := x + x , n + 1
od
{x = 2N}

]|

I x = 2n ∧ n ∧ n 6= N ⇒ N − n ≥ 0,

I {. . . ∧ N − n = t}x , n := x + x , n − 1{N − n < t}.
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E.g. Greatest Common Divisor

I What is the bound function?
|[ con A,B : int; {0 < A ∧ 0 < B}

var x , y : int;

x , y := A,B;
{0 < x ∧ 0 < y ∧ gcd(x , y) = gcd(A,B)

, bnd = |x − y |

}
do y < x → x := x − y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

I . . .⇒ |x − y | ≥ 0,

I {. . . 0 < y ∧ y < x ∧ |x − y | = t}x := x − y{|x − y | < t}.
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Deriving Programs from Specifications

I From such a specification:

|[ con declarations;
{preconditions}
prog
{postcondition}

]|
we hope to derive prog .

I We usually work backwards from the post condition.

I The techniques we are about to learn is mostly about
constructing loops and loop invariants.
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Conjunctive Postconditions

I When the post condition has the form P ∧ Q, one may take
one of the conjuncts as the invariant and the other as the
guard:

I {P}do¬Q → S od{P ∧ Q}.
I E.g. consider the specficication:

|[ con A,B : int; {0 ≤ A ∧ 0 ≤ B}
var q, r : int;
divmod
{q = A div B ∧ r = A mod B}

]|.
I The post condition expands to

R :: A = q × B + r ∧ 0 ≤ r ∧ r < B.
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Computing the Quotient and the Remainder

Let try A = q × B + r ∧ 0 ≤ r as the invariant and ¬(r < B).

q, r := 0,A;

{P :: A = q × B + r ∧ 0 ≤ r}
do B ≤ r →

q := q + 1;
r := r − B

od
{P ∧ r < B}

I P is established by q, r := 0,A.

I Choose r as the bound.

I Since B > 0, try r := r − B:

P[r − B/r ]
≡ A = q × B + r − B ∧ 0 ≤ r − B
≡ A = (q − 1)× B + r ∧ B ≤ r .

I
(A = (q − 1)B + r ∧ B ≤ r)

[q + 1/q]

⇐ A = q × B + r ∧ B ≤ r
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Quantifications

I Given associative ⊕ with identity e, we denote
x m ⊕ x (m + 1) . . .⊕ x (n − 1) by (⊕i : m≤i<n : x i).

I (⊕i : n≤i<n : x i) = e.

I (⊕i : m≤i<n+1 : x i) = (⊕i : m≤i<n : x i)⊕ x n if m ≤ n.
I E.g.

I (+i : 3≤i<5 : i2) = 32 + 42 = 25.
I (+i , j : 3≤i≤j<5 : i × j) = 3× 3 + 3× 4 + 4× 4.
I (∧i : 2≤i<9 : odd i ⇒ prime i) = true.
I (↑ i : 1≤i<7 : −i2 + 5i) = 6 (when i = 2 or 3).

I As a convention, (+i : 0≤i<n : x i) is written
(Σi : 0≤i<n : x i).
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Summing Up an Array

|[ con N : int; {0 ≤ N} f : array [0..N) of int;

n, x := 0, 0;

{x = (Σi : 0≤i<n : f i)

∧ 0 ≤ n

, bnd : N − n}
do n 6= N →

x := x + f n; n := n + 1

od
{x = (Σi : 0≤i<N : f i)}

]|

I Use N − n as bound, try incrementing n:
(x = (Σi : 0≤i<n : f i)

∧ 0 ≤ n

)[n + 1/n]
≡ x = (Σi : 0≤i<n + 1 : f i)

∧ 0 ≤ n + 1
⇐ x = (Σi : 0≤i<n + 1 : f i) ∧ 0 ≤ n

≡ x = (Σi : 0≤i<n : f i) + f n

∧ 0 ≤ n

I

(x = (Σi : 0≤i<n : f i) + f n ∧ 0 ≤ n)

[x + f n/x ]
≡ x + f n = (Σi : 0≤i<n : f i) + f n ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f i) ∧ 0 ≤ n
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[x + f n/x ]
≡ x + f n = (Σi : 0≤i<n : f i) + f n ∧ 0 ≤ n

⇐ x = (Σi : 0≤i<n : f i) ∧ 0 ≤ n

120 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Taking Conjuncts as Invariants
Replacing Constants by Variables
Strengthening the Invariant
Tail Invariants

Summing Up an Array
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Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) = fib n + fib (n + 1).

|[ con N : int; {0 ≤ N} var x

, y

: int;
n, x

, y

:= 0, 0

, 1

;
{x = fib n ∧ 0 ≤ n ≤ N

∧ y = fib (n + 1)

}
do n 6= N →

x , y := y , x + y ;

n := n + 1
od
{x = fib N} ]|

I Inv. is established by n, x := 0, 0.

I
(x = fib n ∧ 0≤n≤N

∧ y = fib (n+1)

)[n+1/n]
≡ x = fib (n+1) ∧ 0≤n<N

∧ y = fib (n+2)

I

(x = fib (n+1) ∧ . . .

∧ y = fib (n+2)

)

[y , x + y/x , y ]
≡ y = fib (n+1) ∧ . . . ∧ x + y = fib (n+2)

⇐ x = fib n ∧ . . .

∧ y = fib (n+1)
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Using Associativity

I Consider again computing AB . Notice that:

x0 = 1
xy = 1× (x × x)y div 2 if even y ,

= x × xy−1 if odd y .

I Starting from AB , we can use the properties above to keep
“shifting some value to the left” until we have x1 × . . .× 1.

I Also notice that we need × to be associative.
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Using Associativity

I In general, to achieve r = f X where

f x = a if b x ,
f x = g x ⊕ f (h x) if ¬b x .

for associative ⊕ with identity e, we may:

x , r := X , e;
{r ⊕ f x = f X}
do¬b x → x , r := h x , r ⊕ g x od;
{r ⊕ a = f X}
r := r ⊕ a.

I Verify:

(r ⊕ f x = f X )[h x , r ⊕ g x/x , r ]
≡ (r ⊕ g x)⊕ f (h x) = f X
≡ r ⊕ (g x ⊕ f (h x)) = f X
≡ r ⊕ f x = f X .
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Fast Exponentiation

I To achieve r = AB , choose invariant r × xy = AB :

r , x , y := 1,A,B;
{r × xy = AB ∧ 0 ≤ y , bnd = y}
do y 6= 0 ∧ even y → x , y := x × x , y div 2

[] y 6= 0 ∧ odd y → r , y := r × x , y − 1
od
{r × xy = AB ∧ y = 0}.

I Verify the second branch, for example:

(r × xy = AB)[r × x , y − 1/r , y ]
≡ (r × x)× xy−1 = AB

≡ r × (x × xy−1) = AB

⇐ r × xy = AB ∧ y < 0.
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Specification

|[ con N : int; {0 ≤ N} f : array [0..N) of int;
var r

, n

: int;

n, r := 0, 0;
{r = (↑ p, q : 0≤p≤q≤n : sum p q) ∧ 0 ≤ n ≤ N}
do n 6= N →

. . . ; n := n + 1
od

{r = (↑ p, q : 0≤p≤q≤N : sum p q)}
]|

I sum p q = Σi : p≤i<q : f i .

I Replacing constant N by variable n, use an up-loop.
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Strengthening the Invariant

I Let P0 ≡ r = (↑ p, q : 0≤p≤q≤n : sum p q).

n, r

, s

:= 0, 0

, 0

;
{P0 ∧ 0 ≤ n ≤ N

∧ s = (↑ p : 0≤p≤n : sum p n)

}
do n 6= N →

. . . ; n := n + 1
od
{r = (↑ p, q : 0≤p≤q≤N : sum p q)}

I

(r = (↑ p, q : 0≤p≤q≤n : sum p q) ∧ 0≤n≤N)[n + 1/n]
≡ r = (↑ p, q : 0≤p≤q≤n + 1 : sum p q) ∧ 0≤n + 1≤N
≡ r = (↑ p, q : 0≤p≤q≤n : sum p q) ↑

(↑ p, q : 0≤p≤n+1 : sum p (n+1))
∧ 0≤n + 1≤N

I Let’s introduce P1 ≡ s = (↑ p : 0≤p≤n : sum p n).
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Constructing the Loop Body

I Known: P0 ≡ r = (↑ p, q : 0≤p≤q≤n : sum p q),

I P1 ≡ s = (↑ p : 0≤p≤n : sum p n),

I P0[n + 1/n] ≡ r = (↑ p, q : 0≤p≤q≤n : sum p q) ↑ (↑ p :
0≤p≤n+1 : sum p (n+1)).

I Therefore, a possible strategy would be:

{P0 ∧ P1 . . .}
s := ?;
{P0 ∧ P1[n + 1/n] . . .}
r := r ↑ s;
{P0[n + 1/n] ∧ P1[n + 1/n] . . .}
n := n + 1
{P0 ∧ P1 · ··}
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Updating the Prefix Sum

Recall P1 ≡ s = (↑ p : 0≤p≤n : sum p n).

(↑ p : 0≤p≤n : sum p n)[n + 1/n]
= ↑ p : 0≤p≤n+1 : sum p (n+1)
= (↑ p : 0≤p≤n : sum p (n+1)) ↑ sum (n+1) (n+1)
= (↑ p : 0≤p≤n : sum p (n+1)) ↑ 0
= (↑ p : 0≤p≤n : (sum p n + f n)) ↑ 0
= ((↑ p : 0≤p≤n : sum p n) + f n) ↑ 0

Thus, {P1}s :=?{P1[n + 1/n]} is satisfied by s := (s + f n) ↑ 0.

129 / 134



The Guarded Command Language
Procedural Program Derivation

Maximum Segment Sum, Procedually
Wrapping Up

Derived Program

|[ con N : int; {0 ≤ N} f : array [0..N) of int;
var r , s, n : int;

n, r , s := 0, 0, 0;
{P0 ∧ P1 ∧ 0 ≤ n ≤ N, bnd : N − n}
do n 6= N →

s := (s + f n) ↑ 0;
r := r ↑ s;
n := n + 1

od
{r = (↑ 0≤p≤q≤N : s : um p q)}

]|

I P0 ≡ r = (↑ 0≤p≤q≤n : s : um p q).
I P1 ≡ s = (↑ 0≤p≤n : s : um p n).
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What have we learned?

I Procedural program derivation by backwards reasoning.

I Key to procedural program derivation: every loop shall be
built with an invariant and a bound in mind.

I Some techniques to construct loop invariants:
I taking conjuncts as invariants;
I replacing constants by variables;
I strengthening the invariant;
I tail invariants.

I Some of them are closely related to techniques we introduced
in Day 1 and Day 2, e.g. tupling and accumulating
parameters.
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What’s Missing?

I Side-effects strictly forbidden in expressions.

I That means aliasing could cause disasters,
I which in turn makes call-by-reference dangerous.

I Extra care must be taken when we introduce subroutines.

I And, no pointers. Which means that we have problem talking
about complex data structures.

I In contrast, functional program derivation is essentially built on
a theory of data structure.

I Rescue: separation logic, to talk about when data structure is
shared.
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Where to Go from Here?

I Early issues of Science of Computer Programming have
regular columns for program derivation.

I Books and papers by Dijkstra, Gries, Back, Backhouse, etc.
I You might not actually derive programs, but knowledge learnt

here can be applied to program verification.
I Plenty of tools around for program verification basing on

pre/post-conditions. Some of them will be taught in the next
summer school.

I You might never derive any more programs for the rest of your
life. But the next time you need a loop, you will know better
how to construct it and why it works.
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