
06/30~-07/04 FP & Types 1

2008

Introduction to Functional
Programming in Haskell &
the Hindley-Milner Type System

Kung Chen
National Chengchi University, Taiwan

2008 Formosan Summer School of
Logic, Language and Computation

λ

06/30~-07/04 FP & Types 2

2008Agenda

• Unit I: FP in Haskell
– Basic Concepts of FP
– Haskell Basics
– Higher-Order Functions
– Defining New Types
– Lazy Evaluation

• Unit 2: Intro. to Type Systems for FP
– The Lambda Calculus
– Typed Lambda Calculi
– The Hindley-Milner Type System

06/30~-07/04 FP & Types 3

2008

Unit I: FP in Haskell
Basic Concepts of

Functional Programming

06/30~-07/04 FP & Types 4

2008
What is Functional
Programming?

Generally speaking:
• Functional programming is a style of programming

in which the primary method of computation is the
application of functions to arguments

•Define a function square: square x = x * x

Function name

Function body:
an expression

Formal parameter

06/30~-07/04 FP & Types 5

2008
What is Functional
Programming?

Generally speaking:
• Functional programming is a style of programming

in which the primary method of computation is the
application of functions to arguments

Function application:
square 5
= { applying square }

5 * 5
= { applying * }

25

square x = x * x

Substitute the argument 5
into the body of the function

No parentheses: square(5)

06/30~-07/04 FP & Types 6

2008Functions and Arguments

• Similarly an argument may itself be a function
application:

square (square 3)
= { apply inner square }

square (3 * 3)
= { apply * }

square (9)
= { apply outer square }

9 * 9
= { apply * }

81

06/30~-07/04 FP & Types 7

2008Programming Paradigms

• FP is a programming paradigm …
• A programming paradigm

– is a way to think about programs, programming, and
problem solving,

– is supported by one or more programming languages.

• Various Programming Paradigms:
– Imperative (Procedural)
– Functional
– Object-Oriented
– Logic
– Hybrid

06/30~-07/04 FP & Types 8

2008Imperative vs. Functional

• Imperative languages specify the steps of a
program in terms of assigning values to variables.

int sum (int n, int list[]) {
int total = 0;
for (int i = 0; i < n; ++i)

total += list[i];
return s;

}
Variable
assignments

sum [] = 0
sum (x:xs) = x + sum xs

Equations

There is no loop!
Recursive, please!

[]-empty list;
“:”-cons a list

06/30~-07/04 FP & Types 9

2008Imperative vs. Functional

In C, the sequence of
actions is

i = 1
total = 1
i = 2
total = 3
i = 3
total = 6
i = 4
total = 10
i = 5
total = 15

Applying functions:
sum [1,2,3,4,5]

= { apply sum }
1 + sum [2,3,4,5]

= { apply sum }
1 + (2 + sum [3,4,5])

= { apply sum }
1 + (2 + (3 + sum [4,5])

= { apply sum }
…

= { apply + }
15

06/30~-07/04 FP & Types 10

2008Functional Programming

• Functional programs work exclusively with values,
and expressions and functions which compute
values.

• A value is a piece of data.
– 2, 4, 3.14159, ”John”, (0,0), [1,3,5],...

• An expression computes a value.
– 2+5*pi, length(l)-size(r)

• Expressions combine values using functions and operators.

06/30~-07/04 FP & Types 11

2008
Why FP?
What’s so Good about FP?

• To get experience of a different type of
programming

• It has a solid mathematical basis
– Referential Transparency and Equation

Reasoning
– Executable Specification
– …

• It’s fun!

1.Introduction

06/30~-07/04 FP & Types 12

2008Referential Transparency

Can we replace f(x) + f(x) with 2*f(x)?

Yes, we can!
•If the function f is referential transparent.

•In particular, a function is referential transparency if its
result depends only on the values of its parameters.

•This concept occurs naturally in mathematics, but is
broken by imperative programming languages.

06/30~-07/04 FP & Types 13

2008
Referential
Transparency…

• Imperative programs are not RT due to side effects.
• Consider the following C/Java function f:

int y = 10;
int f(int i) {

return i + y++;
}

then f(5)+f(5)= 15+16 = 31
but 2*f(5)= 2*15 = 30!

06/30~-07/04 FP & Types 14

2008
Referential
Transparency…

• In a purely functional language, variables
are similar to variables in mathematics:
they hold a value, but they can’t be
updated.

• Thus all functions are RT, and therefore
always yield the same result no matter
how often they are called.

06/30~-07/04 FP & Types 15

2008Equational Reasoning

• RT implies that “equals can be replaced by equals”
• Evaluate an expression by substitution . I.e. we can

replace a function application by the function
definition itself.

double x = 2 * x
even x = x mod 2 == 0

even (double 5)
⇒ even (2 * 5)
⇒ even 10
⇒ 10 mod 2 == 0
⇒ 0 == 0
⇒ True

[5/x]: x換成5

even’s definition,
[10/x]

06/30~-07/04 FP & Types 16

2008Computation in FP

• Achieved via function application
• Functions are mathematical functions without

side-effects.
– Output is solely dependent of input.

Pure function

States

Impure function

with assignment

Can replace f(x) + f(x) with 2*f(x)

06/30~-07/04 FP & Types 17

2008What’s so Good about FP?

• Referential Transparency and Equation
Reasoning

• Executable Specification

• …

1.Introduction

06/30~-07/04 FP & Types 18

2008Quick Sort in C

qsort(a, lo, hi) int a[], hi, lo;
{ int h, l, p, t;

if (lo < hi)
{ l = lo; h = hi; p = a[hi];

do
{ while ((l < h) && (a[l] <= p)) l = l + 1;

while ((h > l) && (a[h] >= p)) h = h – 1 ;
if (l < h) [t = a[l]; a[l] = a[h]; a[h] = t; }

} while (l < h);
t = a[l]; a[l] = a[hi]; a[hi] = t;
qsort(a, lo, l-1); qsort(a, l+1, hi);

}
}

06/30~-07/04 FP & Types 19

2008Quick Sort in Haskell

• Quick sort: the program is the specification!
qsort [] = []
qsort (x:xs) = qsort lt ++ [x] ++ qsort greq

where lt = [y | y <- xs, y < x]
greq = [y | y <- xs, y >= x]

List operations:
[] the empty list
x:xs adds an element x to the head of a list xs
xs ++ ys concatenates lists xs and ys
[x,y,z] abbreviation of x:(y:(z:[]))

06/30~-07/04 FP & Types 20

2008Historical View: Pioneers in FP

Church:
Lambda
Calculus

Curry:
Combinatory
Logic

McCarthy:Lisp Landin:ISWIM Steele:Scheme Milner:ML Backus:FP

06/30~-07/04 FP & Types 21

2008

Background of Haskell

06/30~-07/04 FP & Types 22

2008What is Haskell?

• Haskell is a purely functional language created in
1987 by scholars from Europe and US.

• Haskell was the first name of H. Curry, a logician
• Standardized language version: Haskell 98
• Several compilers and interpreters available

– Hugs, Gofer, , GHCi, Helium
– GHC (Glasgow Haskell Compiler)

• Comprehensive web site:
http://haskell.org/

Haskell Curry (1900-1982)

06/30~-07/04 FP & Types 23

2008Haskell vs. Miranda

1970s - 1980s:

David Turner developed a
number of lazy functional
languages, culminating in the
Miranda system.

23

If Turner had agreed, there will be no Haskell?!

06/30~-07/04 FP & Types 24

2008Features of Haskell

• pure (referentially transparent) — no side-effects
• non-strict (lazy) — arguments are evaluated only

when needed
• statically strongly typed — all type errors

caught at compile-time
• type classes — safe overloading
• …

06/30~-07/04 FP & Types 25

2008Why Haskell?

• A language that doesn't affect the way you
think about programming, is not worth
knowing.

--Anan Perlis

The recipient of the
first ACM Turing Award

06/30~-07/04 FP & Types 26

2008
Any software written in
Haskell?

• Pugs
– Implementation of Perl 6

• darcs
– Distributed, interactive, smart RCS

• lambdabot
• GHC

06/30~-07/04 FP & Types 27

2008
A chat between developers of
the Pugs project

From freenode, #perl6, 2005/3/2
http://xrl.us/e98m

19:08 < malaire> Does pugs yet have system() or backticks or qx// or any way to use
system commands?

19:08 < autrijus> malaire: no, but I can do one for you now. a sec
19:09 < malaire> ok, I'm still reading YAHT, so I won't try to patch pugs just yet...
19:09 < autrijus> you want unary system or list system?
19:09 < autrijus> system("ls -l") vs system("ls", "-l")
19:10 < malaire> perhaps list, but either is ok
19:11 < autrijus> \\n Bool pre system (Str)\
19:11 < autrijus> \\n Bool pre system (Str: List)\
19:11 < autrijus> I'll do both :)
19:11 < autrijus> done. testing.
19:14 < autrijus> test passed. r386. enjoy
19:14 < malaire> that's quite fast development :)
19:14 < autrijus> :)

06/30~-07/04 FP & Types 28

2008

• Haskell, like Lisp/Scheme, ML (Ocaml, Standard
ML) and F#, is based on Church's lambda (λ)
calculus

• Unlike those languages, Haskell is pure (no
updatable state)

• Haskell uses "monads" to handle stateful effects
– cleanly separated from the rest of the language

• Haskell "enforces a separation between Church
and State"

Haskell vs. Scheme/ML

06/30~-07/04 FP & Types 29

2008
“FP” is another less-known
FPL

Late 1970s:

John Backus develops FP, a now-
called combinator-based FPL.

29

Can Programming Be Liberated
from the von Neumann Style?

1977 Turing Award Lecture

1924-2007

06/30~-07/04 FP & Types 30

2008

Back to Haskell

The Basics

06/30~-07/04 FP & Types 31

2008Running Haskell Programs

• Pick a Haskell Implementation
• We’ll use Hugs or GHCi
• Interpreter mode (Hugs):

The Hugs > prompt means
that the Hugs system is ready
to evaluate an expression.

> 5+2*3
11

> (5+2)*3
21

> sqrt (3^2 + 4^2)
5.0

Read
Eval
Print

Loop

06/30~-07/04 FP & Types 32

2008Hugs: a Haskell Interpreter

__ __ __ __ ____ ___ ___
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003
||---|| ___|| World Wide Web: http://haskell.org/hugs
|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: Nov 2003 ___

Hugs mode: Restart with command line option +98 for Haskell 98 mode

Type :? for help
Prelude>

http://www.haskell.org/hugs

winHugs: a Windows GUI

06/30~-07/04 FP & Types 33

2008Hugs

• The Hugs interpreter does two things:

• Evaluate expressions

• Evaluate commands, e.g.

– :quit quit
– :load <file> load a file
– :r redo the last load command
– :? help
– …

06/30~-07/04 FP & Types 34

2008Preparing Haskell Programs

• Create and Edit a file with a Haskell program
– File name extension: .hs or .lhs
– Literate Haskell Programs

• Description and Comments about the program
• >Haskell
• >code

• Load the source program in to Hugs
– Enter the expression to evaluate
– Read-Evaluate-Print loop

06/30~-07/04 FP & Types 35

2008Running Haskell with GHC

• By Haskell Group at Glasgow University, UK
• Get GHC from http://haskell.org/ghc/
• GHC is a compiler; GHCi is the interpreter version
• $ ghc Main.hs

→ Main.hi
→ Main.c
→ a.out or Main.exe

• $ ghci Main.hs
Prelude Main> QuickSort [9, 4, 1, 2, 6]
[1,2,4,6,9]

06/30~-07/04 FP & Types 36

2008The Standard Prelude

The library file Prelude.hs provides a large number
of standard functions. In addition to the familiar
numeric functions such as + and *, the library also
provides many useful functions on lists.

• Calculating the length of a list:

> length [1,2,3,4]
4

06/30~-07/04 FP & Types 37

2008

• Appending the elements of two lists:

• Selecting the first element of a list:

> head [1,2,3,4]
1

> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

The Standard Prelude …

• Removing the first element of a list:

> tail [1,2,3,4]
[2,3,4]

06/30~-07/04 FP & Types 38

2008Function Application

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

f a b + c*d

06/30~-07/04 FP & Types 39

2008Function Application …

• Function application (“calling a function with a
particular argument”) has higher priority than any
other operator.

• In math (and Java) we use parentheses to include
arguments; in Haskell no parentheses are needed.

f a + b

means
(f a) + b not

• since function application binds harder than plus.
f (a+b)

06/30~-07/04 FP & Types 40

2008
Summary: Function
Application …

•Here’s a comparison between mathematical
notations and Haskell:

06/30~-07/04 FP & Types 41

2008
Programs as Sets of
Definitions
• A very simple functional program (also known as

a functional script) in Haskell
– A set of definitions

square :: Integer -> Integer

square x = x * x

smaller :: (Integer, Integer) -> Integer

smaller (x,y) = if x <= y then x else y

main = print (square(smaller(5, 3+4)))

Type Signature

Definition
(i.e. equation)

Main expr to
eval

06/30~-07/04 FP & Types 42

2008Definitions

• A Haskell program is a sequence of definitions
followed by an expression to evaluate.

• A definition gives a name to a value.
• Haskell definitions are of the form:

name :: type
name = expression

• Examples:
size :: Int
size = (12+13)*4

06/30~-07/04 FP & Types 43

2008Function Definitions

• A function definition specifies how the result is
computed from the arguments.

average :: Float->Float->Float

average x y = (x+y)/2

parameters

The body specifies
how the result is
computed. No ’return’

Function types specify the types
of the arguments and the result.

06/30~-07/04 FP & Types 44

2008Function Notation

•Function arguments need not be enclosed in
brackets!

Example:
square :: Float -> Float
square x = x*x

Calls: square 2.5 6.25

square (1.2+1.3) 6.25

Brackets are for grouping only!

Not
square(2.5)

06/30~-07/04 FP & Types 45

2008Simple Types

Characters, e.g., 'a'Char

Boolean values: True and FalseBool

Single- and double-precision
floating point numbers

Float, Double

Unbounded rational numbersRational

32-bit integer numbersInt

Unbounded integer numbersInteger

06/30~-07/04 FP & Types 46

2008The Booleans

• type Bool
• operations

• exOr :: Bool -> Bool -> Bool
exOr x y = (x || y) && not (x && y)

notnot

or||

and&&

06/30~-07/04 FP & Types 47

2008The integers

• type Int: range –2147483648…2147483647
• type Integer: range unbounded
• operations

change signnegate
absolute valueabs
remaindermod
whole number divisiondiv
difference-
raise to the power^
product*
sum +

06/30~-07/04 FP & Types 48

2008Relational Operators

(==) for integers and Booleans. This means that (==) will have the type
Int -> Int -> Bool
Bool -> Bool -> Bool

Indeed t -> t -> Bool if the type t carries an equality.
(==) :: Eq a => a -> a -> Bool

less than<
less than or equal to<=
not equal to/=
equal to==
greater than or equal to>=

greater than>

06/30~-07/04 FP & Types 49

2008Operators: Prefix and Infix

• Operators: infix. Use parentheses for prefix.
• Functions: prefix. Use backquotes for infix.

> 4*12-6
42
> (<) 2 3
True

> div 126 3
42
> 126 ‘div‘ 3
42

06/30~-07/04 FP & Types 50

2008
Precedence &
Associativity

06/30~-07/04 FP & Types 51

2008The characters

• type Char

‘a’

‘\t’ tab
‘\n’ newline
‘\\’ backslash
‘\’’ single quote
‘\”’ double quote
‘\97’ character with ASCII code 97, i.e., ‘a’

Some operations: toUpper ‘a’ ‘A’
Ord ‘a’ 97

06/30~-07/04 FP & Types 52

2008Composite Types: Lists

[1,2,3], [2] :: [Int]

A list of integers.A list of values
enclosed in

square brackets.

Some operations:
[1,2,3] ++[4,5] [1,2,3,4,5]

head [1,2,3] 1

last [1,2,3] 3

tail [1,2,3] [2,3]

We can have lists of lists:
[[1,3], [0, 5, 6], [4]] :: [[Int]]

homogeneous

06/30~-07/04 FP & Types 53

2008Quiz

How would you add 4 to the end of the list [1,2,3]?

06/30~-07/04 FP & Types 54

2008Quiz

How would you add 4 to the end of the list [1,2,3]?

[1,2,3] ++ [4] [1,2,3,4]

[4] not 4!
++ combines two lists,

and 4 is not a list.

06/30~-07/04 FP & Types 55

2008Types: Strings

”Hello!” :: String
Any characters

enclosed in
double quotes.

List of Chars
[Char]

Some operations:
”Hello ” ++ ”World” ”Hello World”

First ”Hello” ’H’

06/30~-07/04 FP & Types 56

2008Composite Types: Tuples

• A tuple is a sequence of components that may
be of different types

(1, 4) :: (Int, Int)
(False, ‘b’, 4.294) :: (Bool, Char, Float)

(“Fish”, [True, True]) :: (String, [Bool])

Tuples may contain basic types or list types

06/30~-07/04 FP & Types 57

2008Tuple types

• The number of components in a tuple is called its
arity.

• Arity cannot be 1.
• The tuple of arity zero () is called the empty tuple,

while a tuple of arity 2 is called a pair, one of arity
3 a triple, and so on

Note that tuples are enclosed in parentheses, not
square brackets

06/30~-07/04 FP & Types 58

2008Tuples and Lists

You can have lists of tuples and tuples of lists

[(1, True),(4, False)] :: [(Int, Bool)]

(1.4, [3, 5, 64, 7, 12], True) :: (Float, [Int], Bool)

The definition of the tuple provides its arity – in cases above
the tuples have arity of 2 and 3 respectively

06/30~-07/04 FP & Types 59

2008Function Types

• A function is a mapping of arguments of one
type to results of another type

• T1 -> T2 maps arguments of type T1 to results
of type T2

~ :: Bool -> Bool
isDigit :: Char -> Bool

06/30~-07/04 FP & Types 60

2008A Note on Function Types

• Function types associate to right.

maxOf3 :: Int -> Int -> Int -> Int

maxOf3 :: Int -> (Int -> (Int -> Int))

means

•Functions are values, and partial application is OK.

let m = maxOf3 5
in let mm = m 8

in mm 12 12

06/30~-07/04 FP & Types 61

2008Multi-Parameter Functions

• A simple way (but usually not the right way) of
defining a multi-parameter function is to use
tuples:

add :: (Int,Int) -> Int
add (x,y) = x+y

• Evaluate
add (40,2)

• We get 42
• Later, we’ll learn about Curried Functions.

06/30~-07/04 FP & Types 62

2008Comments

• Line comments start with - and go to the end of
the line:
--This is a line comment.

• Nested comments start with {- and end with -}:
{-

This is a comment.
{-
And here’s another one....

-}
-}

06/30~-07/04 FP & Types 63

2008

Function Definition by
Cases and Recursion

06/30~-07/04 FP & Types 64

2008The abs function

• The absoulte value (abs) function:
– abs x = |x|

• The definition is by cases (multiple equations):
– abs x = x, if x >= 0

-x, if x < 0
• How to define in Haskell?

abs x | x >= 0 = x
abs x | x < 0 = -x

A guard. An equation is used if its guard is True.

06/30~-07/04 FP & Types 65

2008Evaluating abs

Prelude> abs (-2)

• First equation, x = -2

• What is -2 >= 0? False

• Second equation, x = -2 again

• What is -2 < 0? True

• Result is –x, that is –(–2)

2

abs x | x >= 0 = x
abs x | x < 0 = -x

Try the
equations in

order, use the
first with a True

guard

06/30~-07/04 FP & Types 66

2008Other Forms

• Fully explicit

• Abbreviated left hand side

• Abbreviated last guard

• ”if” expression

abs x | x >= 0 = x
abs x | x < 0 = -x

abs x | x >= 0 = x
| x < 0 = -x

abs x | x >= 0 = x
| otherwise = -x

abs x =
if x >= 0 then x else -x

06/30~-07/04 FP & Types 67

2008Function Definition by Cases

fun v1 v2 … vn
| g1 = e1
| g2 = e2
…
| otherwise = er

max3 :: Int -> Int -> Int -> Int
max3 i j k | (i >= j) && (i >= k) = i

| (j >= k) = j
| otherwise = k

Guarded equations

06/30~-07/04 FP & Types 68

2008Function Definition by Cases

fun v1 v2 … vn
| g1 = e1
| g2 = e2
…
| otherwise = er

max3 :: Int -> Int -> Int -> Int
max3 i j k =

if (i >= j) && (i >= k) then i
else if (j >= k) then j
else k

fun v1 v2 … vn =
if g1 then e1
else if g2 then e2
else if · · ·
else er

06/30~-07/04 FP & Types 69

2008Recursive Functions

fac 0 = 1

fac n | n > 0 = fac (n-1) * n

fac :: Int -> Int

fac n = if n == 0 then 1

else fac (n-1) * n

or

fac n = 1 * 2 * … * n
fac :: Int -> Int
fac n
| n==0 = 1
| otherwise = fac (n-1) * n

06/30~-07/04 FP & Types 70

2008Evaluating Factorials

fac :: Int -> Int

fac 0 = 1

fac n | n > 0 = fac (n-1) * n

fac 4 ?? 4 == 0 False

?? 4 > 0 True

fac (4-1) * 4

fac 3 * 4

fac 2 * 3 * 4

fac 1 * 2 * 3 * 4

fac 0 * 1 * 2 * 3 * 4

1 * 1 * 2 * 3 * 4

24

06/30~-07/04 FP & Types 71

2008Expensive to calculate...

fac 5
5 * (fac 4)
5 * 4 * (fac 3)
5 * 4 * 3 * (fac 2)
5 * 4 * 3 * 2 * (fac 1)
5 * 4 * 3 * 2 * 1 * (fac 0)
5 * 4 * 3 * 2 * 1 * 1
.
.
.
120

Stack (space)

Ti
m

e

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

06/30~-07/04 FP & Types 72

2008Tail Recursion

fac n = tailfac n 1
where tailfac n acc

| n==0 = acc
| n>0 = tailfac (n-1) n*acc

•Tail recursion: recursive call occurs last
•The technique of accumulating parameters

•Local definitions
fac 5 tailfac 5 1

tailfac 4 5*1
tailfac 3 4*5*1

...

06/30~-07/04 FP & Types 73

2008A Better Process: Tail Recursion

(fac 5)
(tailfac 5 1)
(tailfac 4 5)
(tailfac 3 20)
(tailfac 2 60)
(tailfac 1 120)
(tailfac 0 120)
120

Stack

Ti
m

e Tail recursion is logically
equivalent to a loop!

06/30~-07/04 FP & Types 74

2008
Local Definitions:

the where clause

fun args = <fun body>
where

decl_1
decl_2
· · ·
decl_n

•The where-clause follows after a function body:

maxOf3 :: Int -> Int -> Int -> Int

maxOf3 x y z = maxOf2 u z
where
u = maxOf2 x y

06/30~-07/04 FP & Types 75

2008
Local Definitions:
the let clause

let
<local definitions>

in
<expression>

fac n = let tailfac n acc
| n==0 = acc
| n>0 = tailfac (n-1) n*acc

in
tailfac n 1

06/30~-07/04 FP & Types 76

2008The let Clause

f :: [Int] -> [Int]
f [] = []
f xs =

let
square a = a * a
one = 1

in
(square (head xs) + one) : f (tail xs)

f [3,2]
(square 3 + one) : f [2] … [10,5]

06/30~-07/04 FP & Types 77

2008The Layout Rule

circumference r =
2 * pie * r

area r
= pie * r * r

bad x = area x
+ circumference x -- Error: offside!

Indentation determines where a definition ends:

06/30~-07/04 FP & Types 78

2008

let
y = x + 2
x = 5

in
x / y

• same as:
let y = {x + 2; x = 5} in x / y

Example

縮排而且對齊

06/30~-07/04 FP & Types 79

2008

means

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a = b + c
where

b = 1
c = 2

d = a * 2

{a = b + c
where

{b = 1;
c = 2};

d = a * 2}

implicit grouping explicit grouping

Example

06/30~-07/04 FP & Types 80

2008The error Function

• error string can be used to generate an error
message and terminate a computation.

• This is similar to Java’s exception mechanism,
but a lot less advanced.

fac :: Int -> Int
fac n = if n<0 then

error "illegal argument"
else if n <= 1 then 1

else n * fac (n-1)

• > f (-1)
Program error: illegal argument

06/30~-07/04 FP & Types 81

2008
Example: Fibonacci
Numbers

1 1 2 3 5 8 13 21...

06/30~-07/04 FP & Types 82

2008
Computing Fibonacci
Numbers

• Here there are two base cases
– Neither can be reduced to a smaller problem by the

recursive case.
• This definition is not very efficient – why not?

fib n | n > 1 = fib (n-1) + fib (n-2)
fib 0 = 1
fib 1 = 1

06/30~-07/04 FP & Types 83

2008

(fib 5)

(fib 3) (fib 4)

(fib 1) (fib 2) (fib 2) (fib 3)

(fib 0) (fib 1)
(fib0)(fib 1)

(fib 1) (fib 2)

(fib 0)(fib 1)

Tree Recursion

Inefficient!

Repetitive computation
Rewrite it as tail recursive!

06/30~-07/04 FP & Types 84

2008

Pattern Matching

06/30~-07/04 FP & Types 85

2008Pattern Matching

• Pattern matching is a simple and intuitive way of
defining a function.

• The library function ~ returns the negation of a
logical value:

~ :: Bool -> Bool
~ False = True
~ True = False

Constant pattern;
order matters

06/30~-07/04 FP & Types 86

2008Pattern Matching

• We can also use pattern matching for functions
that take more than one argument

• The library function (&&) returns the negation of
a logical value

(&&) :: Bool -> Bool -> Bool
True && True = True
True && False = False
False && True = False
False && False = False

06/30~-07/04 FP & Types 87

2008Pattern Matching

• We can simplify the definition of (&&) by using
the wildcard character _

(&&) :: Bool -> Bool -> Bool
True && True = True
_ && _ = False

• This is also good because if the first argument is
False then it doesn’t need to evaluate the
second argument

06/30~-07/04 FP & Types 88

2008Pattern Matching

• Haskell has a naming convention that means
that we cannot use the same variable name for
more than one argument in an equation, so

b && b = b
_ && _ = False

would not be allowed, and needs to be rewritten as

b && c | b==c = b
| otherwise = False

06/30~-07/04 FP & Types 89

2008Tuple Patterns

• A tuple of patterns is itself a pattern which matches any
tuple of the same arity whose components match the
corresponding patterns in order

• Constant patterns
– ()
– (1, 5)
– (‘a’, 5.5, “abcd”)
– (“nested”, (100, ‘A’), (1,5,9))

• Patterns with variables
– (1, x)
– (s, i)
– (“nested”, t1, t2)

06/30~-07/04 FP & Types 90

2008Tuple Patterns

• The library functions fst and snd select the first
and second components of a pair

fst :: (a,b) -> a
fst (x,_) = x

snd :: (a,b) -> a
snd (_,y) = y

>fst (5, ‘a’) 5 --(x binds to 5)
>snd (5, ‘a’) ‘a’ --(y binds to ‘a’)

06/30~-07/04 FP & Types 91

2008More Selector Functions

•For pairs, we have
fst (x,y) = x snd (x,y) = y

•For triples, we define
fst3 (x,y,z) = x
snd3 (x,y,z) = y
trd3 (x,y,z) = z

•No general selectors such as:
select 3 (x,y,z) = z

What would the type
of the result be?

06/30~-07/04 FP & Types 92

2008
Selection using Pattern
Matching

•Other than using special functions to select
elements from a large tuple,
we can use pattern matching. Example:

(x1, x2, x3) = a_triple_value

(x1, x2, x3) = (100, ‘A’, “Math”)

Example:

Then x1=100, x2=‘A’, x3=“Math”.

06/30~-07/04 FP & Types 93

2008List Patterns

• A list of patterns is also a pattern
• It matches any list of the same length whose

elements all match the corresponding patterns in
order. Example:

•Suppose we have a function test that checks if a list
contains precisely three characters and the first of these
is the letter ‘a’

test :: [Char] -> Bool
test [’a’,_,_] = True
test _ = False

06/30~-07/04 FP & Types 94

2008List Patterns

• Lists are constructed one element at a time from
the empty list

• The cons (construct) operator : produces a new
list by adding a new element to the front of an
existing list:

[3,5,7]
= { apply cons }

3 : [5,7]
= { apply cons }

3 : (5 : [7])
= { apply cons }

3 : (5 : (7 : []))

•cons associates to the right:

3:5:7:[]

06/30~-07/04 FP & Types 95

2008
Defining Functions with List
Patterns

• We can use the cons function (:) to extend the
test function to check the first element of a list of
any length, not just three

test :: [Char] -> Bool
test (’a’:_) = True
test _ = False

06/30~-07/04 FP & Types 96

2008
Defining Functions with List
Patterns

• Null, head, and tail work in a similar manner

null :: [a] -> Bool
null [] = True
null (_:_) = False
head :: [a] -> a
head (x:_) = False
tail :: [a] -> [a]
tail (_:xs) = False

06/30~-07/04 FP & Types 97

2008
Internal Representation of
Lists

06/30~-07/04 FP & Types 98

2008Lists are Homogenous

• Lists of lists:
[1]:[[2],[3]] ⇒ [[1],[2],[3]]

• Note that the elements of a list must be of the
same type!

[1, [1], 1] ⇒ Illegal!
[[1], [2], [[3]]] ⇒ Illegal!
[1, True] ⇒ Illegal!

06/30~-07/04 FP & Types 99

2008Integer Patterns

• Haskell also allows integer patterns of the form
n+k where n is an integer variable and k>0 and
an integer constant

• Pred maps 0 to itself and any other number to
the number preceding it

pred :: Int -> Int
pred 0 = 0
pred (n+1) = n

06/30~-07/04 FP & Types 100

2008Recursion over Lists

•Compute the length of a list.

length ::[Int] -> Int
length xs = if xs ==[] then 0

else 1 + length (tail xs)

•This is called recursion on the tail .

•Using pattern matching:

length [] = 0
length (x:xs) = 1 + length xs

06/30~-07/04 FP & Types 101

2008
Evaluating Recursive
Functions

length [] = 0
length (x : xs) = 1 + length xs

length (1 : 2 : 4 : [])
⇒ [x ← 1 , xs ← 2 : 4 : []]
1 + length (2 : 4 : [])

06/30~-07/04 FP & Types 102

2008
Evaluating Recursive
Functions

length [] = 0
length (x : xs) = 1 + (length xs)

length (1 : 2 : 4 : [])
⇒ [x ← 1 , xs ← 2 : 4 : []]

1 + length (2 : 4 : [])
⇒ [x ← 2 , xs ← 4 : []]

1 + 1 + length (4 : [])
⇒ [x ← 4 , xs ← []]

1 + 1 + 1 + length []
⇒ []

1 + 1 + 1 + 0

06/30~-07/04 FP & Types 103

2008
Polymorphic Functions &
Types

• The length function does not care about the
element type of its list parameter.
length [1,2,3] ⇒ 3
length [True, False] ⇒ 2
length [‘a’,‘b’,’c’,’d’] ⇒ 4

•Indeed, length is a polymorphic function, and
its type is: length ::[a] -> Int

Here a is a type variable that can be
instantiated to any types.

06/30~-07/04 FP & Types 104

2008Sum and Product of a List

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

product :: [Int] -> Int
product [] = 0
product (x:xs) = x * product xs

06/30~-07/04 FP & Types 105

2008
Type Declarations and
Checking

• In Java and most other languages the programmer has
to declare what type variables, functions, etc have. We
can do this too, in Haskell:
> 6*7 :: Int

42

• ::Int asserts that the expression 6*7 has the type Int.
• Haskell will check for us that we get our types right:

> 6*7 :: Bool
ERROR

06/30~-07/04 FP & Types 106

2008Type Inference

• We can let the Haskell interpreter infer the type of
expressions, called type inference.

• The command :t(ype) expression asks Haskell to
• print the type of an expression:
> :type "hello"

"hello" :: String
• > :type True && False

True && False :: Bool
• > :t True && False :: Bool

True && False :: Bool

06/30~-07/04 FP & Types 107

2008Exercise

• Define a function upto such that for m,n:Int
and m <= n

upto m n = [m, m+1, ..., n]

06/30~-07/04 FP & Types 108

2008Variable Naming Convention

• When we write functions over lists it’s
convenient to use a consistent variable naming
convention. We let

• x, y, z, · · · denote list elements.
• xs, ys, zs, · · · denote lists of elements.
• xss, yss, zss, · · · denote lists of lists of

elements.

06/30~-07/04 FP & Types 109

2008List Concatenation

• xs ++ ys --also known as append xs ys

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

[1,2,3] ++ [4,5,6]
= { apply ++ }

1: ([2,3] ++ [4,5,6])

= { apply ++ }
1: (2: ([3] ++ [4,5,6]))
…

1: (2: (3: [4,5,6])))
= { list notation }

[1,2,3,4,5,6]

06/30~-07/04 FP & Types 110

2008List Concatenation

•Concatenate multiple lists in a list:
concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

concat [] = []
concat [[]] = []
concat [[1], [3,5]] = [1,3,5]

Examples:

06/30~-07/04 FP & Types 111

2008
More Polymorphic Recursive
List Functions: reverse

• Reverse: reverse the order of the elements in a
list

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Example
reverse [1,2,3,4] ⇒ [4,3,2,1]

•Let’s define a tail recursive version of the reverse.

But, its Time complexity: O(n2)

O(n)

06/30~-07/04 FP & Types 112

2008Tail Recursive “reverse”

reverse :: [a] -> [a]
reverse xs = rev2 xs []

rev2 :: [a] -> [a] -> [a]
rev2 [] ys = ys
rev2 (x:xs) ys = (rev2 xs) (x:ys)

“A LISP (FP) programmer knows
the value of everything

and the cost of nothing.”
--Alan Perlis

06/30~-07/04 FP & Types 113

2008Zipping/Unzipping two lists

zip :: [a] -> [b] -> [(a, b)]

zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Ex: zip [1,2] [‘a’,’b’] = [(1,’a’),(2,’b’)]

Unzip :: [(a,b)] -> ([a], [b])
unzip [] = []
unzip ((x,y) : ps) = (x:xs, y:ys)

where
(xs,ys) = unzip ps

06/30~-07/04 FP & Types 114

2008
Yet more list functions in the
Prelude

• Many more list functions in the Prelude:
– Take, drop, (!!), …

• Prelude> take 3 "catflap"
"cat"

• Prelude> drop 2 [‘d',‘r',‘o',‘p']
“op"

• Prelude> “abcde” !! 3
d

06/30~-07/04 FP & Types 115

2008Exercises:

• Defining the drop function:
– drop 2 [1,2,3,4,5] = [3,4,5]

drop :: Int -> [a] -> [a]

• Defining the init function:
– init [1,2,3,4,5] = [1,2,3,4] --remove the last element

init :: [a] -> [a]

06/30~-07/04 FP & Types 116

2008Mutual Recursion

• Functions that reference to each other
• Example: given a list, selecting even or odd

positions from it. evens “abcde”
= { apply evens }

’a’ : odds “bcde”
= { apply odds }

’a’ : evens “cde”
= { apply evens }

’a’ : ’c’ : odds “de”
= { apply odds }

’a’ : ’c’ : evens “e”
…

evens::[a]->[a]
odds ::[a]->[a]

06/30~-07/04 FP & Types 117

2008Mutual Recursion

evens :: [a] -> [a]
evens [] = []
evens (x : xs) = x : odds xs

odds :: [a] -> [a]
odds [] = []
odds (_ : xs) = evens xs

•Given a list, selecting even or odd positions from it.

06/30~-07/04 FP & Types 118

2008Arithmetic Sequences
• Haskell provides a convenient notation for lists of numbers

where the difference between consecutive numbers is
constant.

[1..3] ⇒ [1,2,3]
[5..1] ⇒ []

• A similar notation is used when the difference between
consecutive elements is = 1: Examples:

[1,3..9] ⇒ [1,3,5,7,9]
[9,8..5] ⇒ [9,8,7,6,5]
[9,8..11] ⇒ []

Or, in general:
[m,k..n] ⇒ [m,m+(k-m)*1,m+(k-m)*2,· · · ,n]

06/30~-07/04 FP & Types 119

2008

List Comprehension

List comprehensions allow many
functions on lists to be performed in a
clear and precise manner

06/30~-07/04 FP & Types 120

2008List Comprehension

• Mathematical form
{ x2 | x ∈ {1..5} }

produces the set {1,4,9,16,25}

• Haskell
> [x^2 | x<-[1..5]]
[1,4,9,16,25]

where
| means “such that”
<- means “is drawn from”; “for each element in”

06/30~-07/04 FP & Types 121

2008Generators

• The expression x<-[1..5] is called a generator

• Generators can also use patterns when drawing
elements from a list.

Suppose ps is a list of pairs:
[(1,True), (2,False), (5,False), (9,True)]

If we want to extract all pairs of the form (x, True) then we can
do this using the generator

> [x | (x,True)<-ps]
[1,9]

06/30~-07/04 FP & Types 122

2008Generators

• We can also use wildcards in generators
• If we take the same list of pair ps

[(1,True), (2,False), (5,False), (9,True)]
then

> [x | (x,_)<-ps]
[1,2,5,9]

extracts the list of the first components of the pairs

06/30~-07/04 FP & Types 123

2008Generators

• The library function length is also defined using
a wildcard within a generator

length :: [a] -> Int
length xs = sum [1 | _<-xs]

• The length is calculated by creating a list that
contains the value 1 for each element in xs, then
summing this new list

06/30~-07/04 FP & Types 124

2008Multiple Generators

• List comprehensions can have multiple
generators separated by commas

• We can generate a list of all possible pairings
of the elements in two lists using
>[(x,y)| x<-[1,2], y<-[8,9]]
[(1,8),(1,9),(2,8),(2,9)]

• The second generator cycles faster than the
first generator.

• Swap the order:
>[(x,y)| y<-[1,2], x<-[8,9]]

06/30~-07/04 FP & Types 125

2008Generators

• A later generator can also depend on the value
of an earlier generator

• The following list comprehension produces a list
of all possible ordered pairings of the elements
of [1..3] in order:

[(x,y)| x<-[1..3], y<-[x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

06/30~-07/04 FP & Types 126

2008Generators

• Similarly we could define the library function
concat, which concatenates lists, by using one
generator to select each list then a second
generator to select each element within the list

concat :: [[a]] -> [a]
concat xss = [x | xs<-xss, x<-xs]

06/30~-07/04 FP & Types 127

2008Guards

• As well as using generators to create sets, we
can also use guards to filter the values produced
by generators

• If a guard is True then the value is retained,
otherwise it is discarded

> [x | x<-[1..10], even x]
[2,4,6,8,10]

• The function even x is the guard function

06/30~-07/04 FP & Types 128

2008Guards

• Similarly we can produce a function that maps a
positive integer to its list of positive factors

factors :: Int -> Int
factors n = [x | x <-[1..n],

n ‘mod‘ x==0]

• So
> factors 15
[1,3,5,15]

06/30~-07/04 FP & Types 129

2008Guards

• We can extend this to find primes, as a prime is
a number whose only factors are 1 and the
number itself

prime :: Int -> Bool
prime n = length (factors n == 2)

So
> prime 15 > prime 7
False True

06/30~-07/04 FP & Types 130

2008Guards

• We can use guards to implement a look-up table
where a list of pairs of keys and values
represents the data

• If the keys are of an equality type then we can
create a function find that returns a list of all
values associated with a given key

06/30~-07/04 FP & Types 131

2008String Comprehensions

• List comprehensions can be used to define
functions on strings

• The function digits returns the list of integer
digits from a string

digits :: String -> [Int]
digits xs = [ord x – ord ’0’ | x <- xs,

isDigit x]

So
> digits “1*5+3”
[1,5,3]

06/30~-07/04 FP & Types 132

2008

An Longer Example An Example:
Computing path distance

P

Q

R
S

06/30~-07/04 FP & Types 133

2008Representing a Point

type Point = (Float, Float)

distance :: Point -> Point -> Float

distance (x, y) (x’, y’) =

sqrt ((x-x’)^2 + (y-y’)^2)

x- and y-coordinates.

06/30~-07/04 FP & Types 134

2008Representing a Path

P

Q

R

type Path = [Point]

examplePath = [p, q, r, s]

path_length = distance p q + distance q r
+ distance r s

S

06/30~-07/04 FP & Types 135

2008Two Useful Functions

•init xs -- all but the last element of xs,

•tail xs -- all but the first element of xs.

init [p, q, r, s] ⇒ [p, q, r]

tail [p, q, r, s] ⇒ [q, r, s]

zip … [(p,q), (q,r), (r,s)]

sum [1,2,3] ⇒ 6

06/30~-07/04 FP & Types 136

2008The pathLength Function

pathLength :: Path -> Float

pathLength xs = sum [distance p q

| (p,q) <- zip (init xs) (tail xs)]

Example:
pathLength [p, q, r, s] ⇒

distance p q + distance q r + distance r s

06/30~-07/04 FP & Types 137

2008

Higher-Order Functions

•Functions take functions as arguments
•Functional values and Lambda Expressions
•Functions return functions as results.

06/30~-07/04 FP & Types 138

2008

Write a Haskell function incAll that adds 1
to each element in a list of numbers.

E.g., incAll [1, 3, 5, 9] = [2, 4, 6, 10]

incAll :: [Int] -> [Int]

incAll [] = []
incAll (n : ns) = n+1 : incAll ns

A Motivating Example

06/30~-07/04 FP & Types 139

2008

• Write a Haskell function lengths that
computes the lengths of each list in a list of
lists.

E.g.,
lengths [[1,3], [], [5, 9]] = [2, 0, 2]
lengths ["but", "and, "if"]] = [3, 3, 2]

lengths :: [[a]] -> [num]

lengths [] = []
lengths (l : ls)

= (length l) : lengths ls

A Motivating Example,
cont’d

06/30~-07/04 FP & Types 140

2008Similarity and Abstraction

incAll [] = []
incAll (n : ns) = (+) n 1 : incAll ns

lengths (l : ls) = (length l) : lengths ls
lengths [] = []

f (hd l) : recCall (tail l)

[f l1, f l2, … f ln]

l = [l1, l2, … ln]:

Let f be (+) or length:

06/30~-07/04 FP & Types 141

2008

• Given a function and a list (of appropriate
types), applies the function to each element of
the list.

map :: (a -> b) -> [a] -> [b]

map f [] = []
map f (x : xs) = (f x) : map f xs

List map function

[f l1, f l2, … f ln] [l1, l2, …,ln]
map f

06/30~-07/04 FP & Types 142

2008
Using map

incAll = map (plus 1)
where plus m n = m + n

lengths = map (length)

Note that plus :: Int -> Int -> Int,
so

(plus 1) :: Int -> Int.

Functions of this kind are sometimes referred to
as partially evaluated (applied).

map :: (a -> b) -> [a] -> [b]

06/30~-07/04 FP & Types 143

2008Partial Applications

Any function may be called with fewer arguments
than it was defined with.

The result is a function of the remaining arguments.

If f ::Int -> Bool -> Int -> Bool

then f 3 :: Bool -> Int -> Bool

f 3 True :: Int -> Bool

f 3 True 4 :: Bool

06/30~-07/04 FP & Types 144

2008
Bracketing Function Calls
and Types

We say function application “brackets to the left”

function types “bracket to the right”

If f ::Int -> (Bool -> (Int -> Bool))

then f 3 :: Bool -> (Int -> Bool)

(f 3) True :: Int -> Bool

((f 3) True) 4 :: Bool

Functions really
take only one
argument, and

return a function
expecting more

as a result.

06/30~-07/04 FP & Types 145

2008Another HoF: List filtering

p?
a, b, c, …. z a’, b’, c’…

if p? w, send w to output

filter even [1,2,3,4,6] = [2,4,6]

even x = x ‘mod’ 2 == 0

filtr :: (a -> Bool) -> [a] -> [a]

06/30~-07/04 FP & Types 146

2008Lambda Expressions

• Functions can also be defined using lambda
expressions

• These are nameless functions made up of
– A pattern for each of the arguments
– A body that shows how the result can be calculate

from the arguments
• These are shown in Haskell using \ or

mathematically using λ
Example: \x -> (x, x, x)

\ parameter -> body

06/30~-07/04 FP & Types 147

2008Lambda Expressions

• The square function could also be implemented
as a lambda expression

\x -> x * x

• Lambda expressions can be used in the same
way as other functions

> (\x->x*x) 2
4

map square
[1,2,4]

≡

map (\x->x*x)
[1,2,4]

filter (\x -> x `mod` 2 ==0) [2,3,5,6,7]

-> has lowest precedence, extends to the right

06/30~-07/04 FP & Types 148

2008Lambda Expressions

• Lambda expressions can also be used to show
the meaning of curried expressions

add x y = x + y
can be understood as

add = \x -> (\y -> x + y)

which shows that the function takes a number x
which returns a function which in turn takes
another number y and returns the sum of the two
numbers

06/30~-07/04 FP & Types 149

2008

More About Functional Values

•Functions returning functions
•Partial Application
•Curried Functions

06/30~-07/04 FP & Types 150

2008Sections

Haskell distinguishes operators and functions:
operators have infix notation (e.g. 1 + 2),
while functions use prefix notation (e.g. plus 1 2).

Operators can be converted to functions by putting
them in brackets: (+) m n = m + n.

Sections are partially evaluated operators. E.g.:

• (+ m) n = m + n
• (0 <) x = 0 < x
• (0 :) l = 0 : l

06/30~-07/04 FP & Types 151

2008Using map More

squareAll = map (^2)
squareAll [1,2,3,4] = [2,4,9,16]

•What do the following functions do?

2. stringify = map (: [])

stringify :: [Char] -> [String]

1. addNewlines = map (++ "\n")
addNewlines :: [[Char]] -> [[Char]]

06/30~-07/04 FP & Types 152

2008
Functions Returning
Functions

• Another view of partial application: functions
returning functions. Example:

makeAdder :: Int->(Int->Int)
makeAdder n = \x -> x+n

or
makeAdder = \n -> \x -> x+n

incAll: [Int]->[Int]
incAll = map (makeAdder 1)

•makeAdder n: creates a function add n to its argument

06/30~-07/04 FP & Types 153

2008
Currying

There is a one-to-one correspondence between
the types (A,B) -> C and A -> (B -> C).

Given a function f :: (A,B) -> C ,
its curried equivalent is the function

curriedF :: A -> B -> C

curriedF a b = f (a,b)

06/30~-07/04 FP & Types 154

2008Currying in Haskell

•Haskell functions are implicitly curried;
multiple arguments can be applied one
at a time.

plus x y = x + y

plus1 = plus 1

plus1 5 = 6

•But add (x, y) = x + y
requires a pair of arguments: add(1, 5)

06/30~-07/04 FP & Types 155

2008

fold (reduce) functions

06/30~-07/04 FP & Types 156

2008Motivating Examples

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ xss

concat [[2,5], [], [26,14]]= [2,5,26,14]

product :: [Int] -> Int
product [] = 1
product (n : ns) = n * product ns

product [2,5,26,14] = 2*5*26*14 = 3640

1. product: multiplies all the elements in a list of
numbers together.

2. concat: Concatenate multiple lists

06/30~-07/04 FP & Types 157

2008Folding

A general pattern for the functions product and
concat is replacing constructors with operators.
For example, product replaces : (cons) with *
and [] with 1:

1 : (2 : (3 : (4 : [])))

1 * (2 * (3 * (4 * 1)))

[2,5] : ([] : ([3,4] : []))

[2,5] ++([] ++([3,4] ++[]))

•concat replaces : (cons) with ++ and [] with []:

06/30~-07/04 FP & Types 158

2008Folding Right

Haskell has a built-in function, foldr, that does
this replacement:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

(*) 1 (2 * (3 * (4 * 1)))

recusive callproduct = foldr (*) 1

concat = foldr (++) []

06/30~-07/04 FP & Types 159

2008Visualizing foldr

f, 0
a

b
c

d
e []

f
f

f
f

f

0

a
b

c
d

e

foldr (–) 0 [1,2,3,4,5] = (1-(2-(3-(4-(5-0)))))
= 3

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

06/30~-07/04 FP & Types 160

2008Folding Left

Another direction to fold: foldl:

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

• product = foldl (*) 1
•concat = foldl (++) []

•foldl max 0 [1,2,3] = 3
where max a b = if a > b then a else b

06/30~-07/04 FP & Types 161

2008Folding Left (reduce)

f, 0
a

b
c

d
e []

f
f

f
f

f

0

e
d

c
b

a

foldl (–) 0 [1,2,3,4,5] = (((((0-1)-2)-3)-4)-5)
= -15

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

06/30~-07/04 FP & Types 162

2008Reversing a list using foldr

reverser :: [a] -> [a]
reverser = foldr snoc []

where snoc x xs = xs ++ [x]

f
f

f
f

f

[]

a
b

c
d

e

f
f

f
f

[e]

a
b

c
d

Add ‘e’ to the end of []

--O(N2)
--Add ‘x’ to the end of xs

f
f

f

[e,d]

a
b

c

06/30~-07/04 FP & Types 163

2008Reversing a list using foldl

reversel :: [a] -> [a]
reversel = foldl cons []

where cons xs x = x : xs

f
f

f
f

f

[]

e
d

c
b

a

f
f

f
f

[a]

e
d

c
b

--O(N)

f
f

f

[b, a]

e
d

c

add a to the front of []

06/30~-07/04 FP & Types 164

2008Specialized fold

foldr1 :: (a -> a -> a) -> [a] -> a

foldl1 :: (a -> a -> a) -> [a] -> a

foldr1 (/) [8,12,24,4] = 4.0

foldl1 (/) [64,4,2,8] = 1.0

/
/

/8
12

24 4

/
/

/

464

2
8

06/30~-07/04 FP & Types 165

2008

Combing Map and Reduce

06/30~-07/04 FP & Types 166

2008
Consider the three
sums

•1 + 2 + … + 100 = (100 * 101)/2

•1 + 4 + 9 + … + 1002 = (100 * 101 * 102)/6

•1 + 1/32 + 1/52 + … + 1/1012 = π2/8

In mathematics they are all captured
by the notion of a sum:

∑
=

100

1

2

k

k

∑
=

100

1k

k

∑
=

−
101

,1

2

oddk

k

∑
∈lx

xf)(

Can we express this abstraction directly?

06/30~-07/04 FP & Types 167

2008
Look at the three
functions

∑
=

100

1k

k
sumIntegers k n =

if k > n then 0 else
k + (sum-integers (k+1) n)

= sum-integers 1 100

∑
=

100

1

2

k

k
sumSquares k n =

if k > n then 0 else
(square k) + (sum-squares (k+1) n)

= sum-squares 1 100

piSum k n =
if k > n then 0 else
(1/(square k)) + (pi-sum (k+2) n)

∑
=

−
101

,1

2

oddk

k = pi-sum 1 101

06/30~-07/04 FP & Types 168

2008

Abstraction from the
three functions

sum f next k n =
if k > n then 0 else

(f k) +
sum f next (next k) n

∑
∈lx

xf)(
sumIntegers k n =

if k > n then 0 else
k + (sum-integers (k+1) n)

sumSquares k n =
if k > n then 0 else

(square k) + (sum-squares (k+1) n)

piSum k n =
if k > n then 0 else
(1/(square k)) + (pi-sum (k+2) n)

•sumIntegers = sum (\x->x) (+1)

•sumSquares = sum (\x->x^2) (+1)

•piSum = sum si (+2)
where si x = 1/(x*x)

Id x = x

06/30~-07/04 FP & Types 169

2008Using map and reduce

To implement summation:

sum f l = foldl (+) 0 (map f l)

E.g.,
Σ(x): > sum (\x->x) [1, 2, 3]

value: 6
Σ(x2): > sum (\x->x*x) [1, 2, 3]

value: 14

∑
∈ lx

xf)(

06/30~-07/04 FP & Types 170

2008Google is using FPL, too

2004

06/30~-07/04 FP & Types 171

2008
Function Composition

compose ::
(b -> c) -> (a -> b) -> a -> c

compose f g x = f (g x)

There is a Haskell operator . that implements
compose:

infixr . 9
(f . g) x = f (g x)

Function composition is a higher-order function.

g fx

06/30~-07/04 FP & Types 172

2008Composition Example

Define a function count which counts the number
of lists of length n in a list L:

count 2 [[1],[],[2,3],[4,5],[]] = 2

Using recursion:
count :: Int -> [[a]] -> Int
count [] = 0
count n (x:xs)

| length x == n = 1 + count n xs
| otherwise = count n xs

Using functional composition:

count’ n = length . filter (==n) . map length

06/30~-07/04 FP & Types 173

2008Composition Example

double :: [Int] -> [Int]
double xs = map (* 2) xs

•Double the numbers in a list

positive :: [Int] -> [Int]
positive xs = filter (0<) xs

•Remove negative numbers from a list

•Double the positive numbers in a list
doublePos :: [Int] -> [Int]
doublePos xs = map (* 2) (filter (0<) xs)

or
doublePos = map (* 2) . filter (0<)

06/30~-07/04 FP & Types 174

2008

Defining New Data Types

• Enumerated types
• Parameterized types
• Recursive types

06/30~-07/04 FP & Types 175

2008Type Declarations

•A new name for an existing type can be defined
using a type declaration.

type String = [Char]
--String is a synonym for the type [Char].

•Type declarations can be used to make other types
easier to read. For example, given

type Pos = (Int,Int)

left :: Pos → Pos
left (x,y) = (x-1,y)

•We can define

06/30~-07/04 FP & Types 176

2008Type Declarations

• Like function definitions,
type declarations can
also have parameters.
For example, given

• Type declarations can be
nested:

we can define:
bits :: Pair Int
bits = (0,1)

copy :: a → Pair a
copy x = (x,x)

type Pair a = (a,a)

type Pos = (Int,Int)
type Trans = Pos → Pos

• However, they cannot be
recursive:

type Tree = (Int,[Tree])

06/30~-07/04 FP & Types 177

2008Defining New Types

• Enumerated

• Parameterized (polymorphic)

• Recursive

data Bool = False | True

data Maybe a = Nothing | Just a

Data List a = Nil | Cons a (List a)

06/30~-07/04 FP & Types 178

2008Enumerated

data Bool = False | True

Bool is a new type, with two new
values False and True.

Example:

•data is a keyword - defines a new (algebraic) data type.
•Bool is the type name.
•True, False are constructors.
•True:: Bool, False ::Bool
•The type name and constructors must begin with an upper
case letter.

06/30~-07/04 FP & Types 179

2008

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer → Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways
as those of built in types. For example, given

Enumerated

06/30~-07/04 FP & Types 180

2008

The constructors in a data declaration can also have
parameters. For example, given

data Shape = Circle Float
| Rect Float Float

square :: Shape
square = Rect 1 1

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Enumerated

06/30~-07/04 FP & Types 181

2008Continued:

• Shape has values of the form Circle r where r is a
float, and Rect x y where x and y are floats.

• Circle and Rect can be viewed as functions that
simply construct values of type Shape:

Circle :: Float → Shape

Rect :: Float → Float → Shape

data Shape = Circle Float
| Rect Float Float

06/30~-07/04 FP & Types 182

2008

Not surprisingly, data declarations themselves can
also have parameters. For example, given

data Maybe a = Nothing | Just a

zero :: Maybe Int
zero = Just 0

app :: (a → b) → Maybe a → Maybe b
app f Nothing = Nothing
app f (Just x) = Just (f x)

we can define:

Parameterized
(Polymorphic)

06/30~-07/04 FP & Types 183

2008Recursive Types

In Haskell, new types can be defined in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat → Nat.

Nat contains the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•

06/30~-07/04 FP & Types 184

2008
Modeling
Arithmetic Expressions

1

+

∗

32

1 + (2 * 3)

06/30~-07/04 FP & Types 185

2008Arithmetic Expressions

• We can define a suitable new recursive type to
represent these expressions

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

• So the tree for 1 + 2 * 3 could be represented as
Add (Val 1) (Mul (Val 2) (Val 3))

06/30~-07/04 FP & Types 186

2008Arithmetic Expressions

• We can define recursive functions to process
expressions

size :: Expr -> Int
size (Val n) = 1
size (Add x y) = size x + size y

eval :: Expr -> Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y

06/30~-07/04 FP & Types 187

2008Binary Trees

In computing, it is often useful to store data in a
two-way branching structure or binary tree.

5

7

96

3

41

06/30~-07/04 FP & Types 188

2008

Using recursion, a suitable new type to represent
such binary trees can be defined by:

For example, the tree on the previous slide would
be represented as follows:

data Tree = Leaf Int
| Node Tree Int Tree

Node (Node (Leaf 1) 3 (Leaf 4))
5
(Node (Leaf 6) 7 (Leaf 9))

Binary Trees

06/30~-07/04 FP & Types 189

2008Binary Trees

• The function flatten returns the list of all integers
contained in the tree

flatten ::Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l n r)= flatten l

++ [n]
++ flatten r

• If the tree flattens to an ordered list then the tree
is a search tree

• Our example flattens to [1,3,4,5,6,9]

06/30~-07/04 FP & Types 190

2008

We can define a function find that decides if a given
integer occurs in a binary tree:

find :: Int → Tree → Bool
find x (Leaf n) = x==n
find x (Node l n r) = x==n

|| find x l
|| find x r

However, this function simply traverses the entire tree, and
hence for our example tree may require up to seven
comparisons to produce a result.

Searching a Binary Tree

06/30~-07/04 FP & Types 191

2008

Search trees have the important property that when
trying to find a value in a tree we can always
decide which of the two sub-trees it may occur in:

For example, trying to find any value in our search
tree only takes at most three comparisons.

find x (Leaf n) = x==n
find x (Node l n r) | x==n = True

| x<n = find x l
| x>n = find x r

Binary Search Trees

06/30~-07/04 FP & Types 192

2008

Lazy Evaluation

06/30~-07/04 FP & Types 193

2008Haskell is Lazy

Haskell only evaluates a sub-expression if it's
necessary to produce a result.

This is called lazy (or non-strict) evaluation

Main> head []
program error: empty argument list

Main> fst (0, head [])
0
Main>

06/30~-07/04 FP & Types 194

2008Patterns Force Evaluation

Haskell will evaluate a subexpression to test if
it matches a pattern. Suppose we define:

Main> myFst (0, maxList [])
program error: empty argument list
Main>

myFst (x, 0) = x
myFst (x, y) = x

Then the second argument is always evaluated:

06/30~-07/04 FP & Types 195

2008Lazy But Productive

Haskell will produce as much of a result
as possible:

Main> [1, 2, div 3 0, 4]
[1,2,
program error: [primQrmInteger 3 0]

Main> map (1/) [1, 2, 0, 7]
[1.0,0.5,
program error: [primDivDouble 1.0 0.0]

06/30~-07/04 FP & Types 196

2008Lazy Evaluation

Lazy evaluation: a sub-expression is evaluated
only if it is necessary to produce a result.

The Haskell interpreter implements
topmost-outermost evaluation:

Rewriting is done as near the "top" of the
parse tree as possible.

For example:

reverse (1 : ((f 2) : [])) –-[1, f 2]

06/30~-07/04 FP & Types 197

2008Topmost-Outermost

reverse (1 : ((f 2) : []))
⇒

(snoc 1 (reverse ((f 2) : []))
⇒

(reverse ((f 2) : [])) ++ [1]
⇒

((snoc (f 2) (reverse [])) ++ [1]
⇒

((reverse []) ++ [(f 2)]) ++ [1]

reverse (n : ns) = snoc n (reverse ns)
snoc h tl = tl ++ [h]

06/30~-07/04 FP & Types 198

2008Topmost-Outermost

((reverse []) ++ [(f 2)]) ++ [1]
⇒

([] ++ [(f 2)]) ++ [1]
⇒

[(f 2)] ++ [1]
⇒

[(f 2),1]

(f 2) is not evaluated!

06/30~-07/04 FP & Types 199

2008Infinite Lists

Haskell has a "dot-dot" notation for lists:
Main> [0..7]
[0,1,2,3,4,5,6,7]

The upper bound can be omitted:

Main> [1..]
[1,2,3,4,5,6,7, ...
...
2918,2919,291<<not enough heap space --
task abandoned>>

06/30~-07/04 FP & Types 200

2008Using Infinite Lists

Haskell gives up displaying a list when it runs out
of memory, but infinite lists like [1..] can be
used in programs that only use a part of the list:

Main> head (tail (tail (tail [1..])))
4

This style of programming is often summarized
by the phrase "generators and selectors"
• [1..] is a generator
• head.tail.tail.tail is a selector

06/30~-07/04 FP & Types 201

2008Generators and Selectors

Because Haskell implements lazy evaluation,
it only evaluates as much of the generator
as is necessary:

Main> head (tail (tail (tail [1..])))
5
Main> reverse [1..]
ERROR - Garbage collection fails to
reclaim sufficient space
Main>

06/30~-07/04 FP & Types 202

2008Another Selector

The built-in function takeWhile returns the
longest initial segment that satisfies a property p:

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x : xs)

| p x = x : takeWhile p xs
| otherwise = []

Main> takeWhile (<10) [1, 2, 13, 3]
[1,2]

06/30~-07/04 FP & Types 203

2008Selectors

Note that evaluation of takeWhile stops as soon
as the given property doesn't hold, whereas
evaluation of filter only stops when the end of
the list is reached:

Main> takeWhile (<10) [1..]
[1,2,3,4,5,6,7,8,9]

Main> filter (<10) [1..]
[1,2,3,4,5,6,7,8,9

ERROR!

06/30~-07/04 FP & Types 204

2008Eratosthenes' Sieve

A number is prime iff
• it is divisible only by 1 and itself
• it is at least 2

The sieve:
• start with all the numbers from 2 on

•delete all multiples of the first number
from the remainder of the list

•repeat

06/30~-07/04 FP & Types 205

2008Eratosthenes' Sieve

primes :: [Int]
primes = sieve [2..]
where
sieve (x:xs) =
x : sieve [y | y <- xs, y `mod` x /= 0]

Main> take 5 primes
[2,3,5,7,11]

06/30~-07/04 FP & Types 206

2008Never-Ending Recursion

The expression [n..] can be implemented
generally by a function:

natsfrom :: num -> [num]
natsfrom n = n : natsfrom (n+1)

Main> natsfrom 0
[0,1,2,3,....

Main> take 3 (natsfrom 0)
[0,1,2]

This function can be invoked in the usual way:

ERROR!

06/30~-07/04 FP & Types 207

2008Iterate

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Main> iterate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024,...

Main> iterate (drop 3) ”abcdef”
[”abcdef”, ”def”, ””, ””, ...

-- iterate f x == [x, f x, f (f x), ...]

06/30~-07/04 FP & Types 208

2008
Problem: Grouping List
Elements
group :: Int -> [a] -> [[a]]
group = ?

Main> group 3 ”apabepacepa!”
[”apa”,”bep”,”ace”,”pa!”]

group :: Int -> [a] -> [[a]]
group n = takeWhile (not . null)

. map (take n)

. iterate (drop n)

Hint: map (take 3) (iterate (drop 3) ”abcdef”)
=> map (take 3)[”abcdef”, ”def”, ””, ””, ...
=> [”abc”, ”def”, ””, ””, ...

06/30~-07/04 FP & Types 209

2008Suggested Reading

• Paul Hudak, “Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, 1989.

• Paul Hudak and Joseph H. Fasel, “A Gentle Introduction
to Haskell,” ACM SIGPLAN Notices, vol. 27, no. 5, May
1992. <Haskell tutoria>l

• Simon Thomson, The Craft of Functional Programming,
2nd Ed., Addison-Wesley,1999.

• Graham Hutton, Programming in Haskell, Cambridge
Univ. Press, 2007

06/30~-07/04 FP & Types 210

2008More to learn about Haskell

• Type classes
• Constructor classes
• IO Monads
• State handing in a monadic style
• …
• Various research-oriented extensions in

GHC

06/30~-07/04 FP & Types 211

2008Acknowledgement

• Some of the materials presented here are taken
from the slides prepared by :

• Professor G. M. Hutton, Nottingham Univ., UK
• Professor J. Hughes, Chalmers Univ., Sweden
• Professor N. Whitehead, University of Akureyri

in Iceland
• Professor G. Malcolm, Univ. of Liverpool, UK

06/30~-07/04 FP & Types 212

2008

Unit 2: Type Systems for FP

Part I: the Calculus

The foundation of all FP languages.

λ

06/30~-07/04 FP & Types 213

2008The λ-Calculus

The λ-calculus was developed by
the logician Alonzo Church in
1930’s as a tool to study
functions and computability.

06/30~-07/04 FP & Types 214

2008
λ-calculus in Computer
Science

• Computability
• λ-definability, Church 1930’s
• Equivalent to Turing Machines, Turing 1937
• Equivalent to recursive functions, Kleene 1936

• Programming languages, 1960’s
• Naming, functions
• Lisp, Algol 60, ISWIM

• Language theory, 1970’s
• Semantics: operational and denotational
• Type systems

06/30~-07/04 FP & Types 215

2008
Original Aims of the
λ-calculus

• A foundation for logic (1930’s)
– failed

• A theory of functions (Church 1941)
– model for computable functions

• Success 30 years later in Computer
Science!

06/30~-07/04 FP & Types 216

2008The Next 700 PL’s

Peter Landin develops ISWIM, the first
pure functional language, based strongly
on the lambda calculus, with no
assignments.

“ Whatever the next 700 languages
turn out to be, they will surely be
variants of lambda calculus.”

(Landin 1966)
Lambda calculus with constants

06/30~-07/04 FP & Types 217

2008Lambda Calculus: Variants

• The pure lambda calculus (LC) is a untyped
language composed entirely of functions

• The simply typed lambda calculus (SLC)

• The polymorphic typed lambda calculus (PLC)

• …

06/30~-07/04 FP & Types 218

2008Pure Untyped λ-calculus

• Syntax is simple:

– M,N : := x | λx.M | M N
↑ ↑ ↑

variable abstraction application

• No types: e.g., (λx.x)y; (λx.x)(λx.x)

• No numbers or operations
• can be added
• values are function abstractions

• Functions are nameless
– No “let f = λx.M in N”

•M,N are called λ-terms or λ-expressions

06/30~-07/04 FP & Types 219

2008Syntax of λ-Terms

• Examples:
– λx.x : the identity function
−(λy. λx. x) f g: discards the first argument

• Notational conventions:
– applications associate to the left (like in Haskell):

• “y z x” is “(y z) x”
– the body of a lambda extends as far as possible to the

right:
• “λx.x λz.x z x” is “λx.(x λz.(x z x))”

– “λx. λy. x y” often abbreviates to “λx y. x y”

06/30~-07/04 FP & Types 220

2008Terminology

• Bound variables (parameters)
• Free variables
• Example:

• λx.x y

x is bound
in the term λx.x y

y is free in the term λx.x y

06/30~-07/04 FP & Types 221

2008Terminology

• λx.M

• λx.x y

the scope of x is the term M

x is bound
in the term λx.x y

y is free in the term λx.x y

FV(x) = {x}
FV(λx.M) = FV(M) \
{x}
FV(M N) = FV(M) ∪
FV(N)

06/30~-07/04 FP & Types 222

2008Open Closed

– FV(E) ≠ {}

– xz
– λx.xz
– (λx.x)y
– (λy.(λx.xz)y)w

– FV(E) = {}

– λx.x
– λx.λy.xy
– (λx.x)(λy.y)
– λf.λg.λx.f x (g x)

• Ex. Underline the bound variables

06/30~-07/04 FP & Types 223

2008Evaluating λ- Terms

• Function application is straightforward:

(λx.(f x)) y --> f y

substitute y for x in (f x)

•Reduce all applications (λx.L)N

•Until none can be found

06/30~-07/04 FP & Types 224

2008Evaluating λ- Terms

M [N/x] is the term in which
all free occurrences of x in M
are replaced with N.

This replacement operation
is called substitution. we
will define it carefully later in
the appendix

(λx. x x) (λy. y)

--> x x [λy.y / x]

== (λy. y) (λy. y)

--> y [λy.y / y]

== λy. y

•β-reduction

β

β

06/30~-07/04 FP & Types 225

2008Examples of β-reduction

1. (λ x . x) a →β a

2. (λ x . λ y . x) a b →β (λ y . a) b →β a

3. (λ x . x a) (λ x . x) →β (λ x . x) a →β a

4. (λ x . λ y . x y) y →β (λ y . y y)

[a/x]

[a/x] [b/y]

[λx.x/x] [a/x]

[y/x] Name capturing error!
y Become bound

06/30~-07/04 FP & Types 226

2008A Similar Example in C Macro

• Name capturing problem in macro expansion
#define swap(X,Y) [int tmp=X; X=Y; Y=tmp;]

int a, b;
a = 5;
b = 10;
swap(a, b);

=>

[int tmp=b; b=a;
a=tmp;]

OK

int a, tmp;
a=5;
tmp = 10;
swap(a, tmp);

=>

[int tmp=a; a=tmp;
tmp=tmp;]

oops! tmp got trapped

06/30~-07/04 FP & Types 227

2008
Renaming Bound
Variables
• Names of bound variables (parameters) do not

matter.
• Example: λx. x =α λy. y =α λz. z

– But NOT:
λy. x y =α λy. z y

• This is called α conversion in lambda calculus
 λx . E =α λz . E[z/x] (z is not free in E)

 λy. x y[x/y] will make the “free” x captured.

06/30~-07/04 FP & Types 228

2008Example Revisited

4. (λ x . λ y . x y) y →β λ y . y y

4. (λ x . λ y . x y) y →α (λ x . λ z . x z) y
→β (λ z . y z)

[y/z]

y Become bound

Renaming the bounded y

06/30~-07/04 FP & Types 229

2008Normal Forms

• Evaluation via β-reduction
• Terms (λx.L)N are called β-redexes

• β-normal form = no β-redexes

• (λx.xx)y ← a β-redex

• →β yy ← β-normal form

• Not all λ-terms have β-nf

06/30~-07/04 FP & Types 230

2008An example with no NF

(λx. x x) (λx. x x)
--> x x [λx. x x/x]
== (λx. x x) (λx. x x)
--> … looping, no normal form

• In other words, it is simple to write
non-terminating computations in the lambda
calculus

β

Ω = (λx. x x)

ΩΩ has no β-nf

06/30~-07/04 FP & Types 231

2008Evaluation Strategy (Order)

• A term may have many redexes:

(λx.(λy.y)z) ((λz.z)w)

• Which application first?
• Does it matter?
• Yes:

– Full Beta Reduction
– Normal Order
– Call-By-Name (CBN)
– Call-By-Value (CBV) (Applicative Order), etc.

06/30~-07/04 FP & Types 232

2008Full Beta Reduction

• Any redex can be chosen, and evaluation
proceeds until no more redexes found.

• For example,

(λx.(λy.y)z) ((λz.z)w)
-->β (λx.z) ((λz.z)w)
-->β z

06/30~-07/04 FP & Types 233

2008Normal Order Reduction

• Deterministic strategy which chooses the
leftmost, outermost redex, until no more redexes.

• Example:

(λx.(λy.y)z) ((λz.z)w)
-->β (λy.y)z
-->β z

06/30~-07/04 FP & Types 234

2008Why Not Normal Order?

• In most (all?) programming languages, functions
are considered values (fully evaluated)

• Thus, no reduction is done inside of functions
(under the lambda)

λx. M is a value, not reducible

• No popular programming language uses normal
order

06/30~-07/04 FP & Types 235

2008Call by Name; Call by Value

• Consider the application: (λx. E) e1

• Call by value: evaluate the argument e1 to a
value before β reduction

• Call by name: reduce the application, without
evaluating e1

• In both cases: a lambda abstraction: λx. E
is a value.

06/30~-07/04 FP & Types 236

2008Call-By-Name/Call-By-Value

• CBN example • CBV example

id (id (λz. id z))

→β id (λz. id z)

→β λz. id z

(id (id (λz. id z))

→ id (λz. id z)

→ λz. id z

where id = λx.x

06/30~-07/04 FP & Types 237

2008
Order of Evaluation May
Matter Much

• CBV (Inner redex):
(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β

(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β . . .

• CBN (Outer redex):
(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β

(λ z . z)

1st sequence is infinite. 2nd has normal form.

06/30~-07/04 FP & Types 238

2008Normalization Theorem

If a λ-expression E has a normal form, then
the normal order strategy will terminate in a
normal form. (Curry & Feys, 1958)

Church-Rosser Corollary

The normal form of a λ-expression,
if it exists, is unique.

E

E1 E2

nf

06/30~-07/04 FP & Types 239

2008Comparison

• The call-by-value strategy is strict
• The arguments to functions are always

evaluated, whether or not they are used by the
body of the function

• Non-strict (or lazy) strategies evaluate only the
arguments that are actually used
– call-by-name
– call-by-need

06/30~-07/04 FP & Types 240

2008LC and Type Theories

R = { X | X ∉ X }, is R ∈ R?

Ω=(λx.x x), Ω Ω has no NF

•Russell’s paradox:

•Russell developed type theory,
attempting to solve the paradox.

•Church encounters similar
issues in pure LC:

•Church proposed the
simply typed LC (1941)

06/30~-07/04 FP & Types 241

2008

Lambda Calculus and
Programming Languages

Programming in the Lambda Calculus

06/30~-07/04 FP & Types 242

2008We can do everything

• The lambda calculus can be used as an
“assembly language”

• We can show how to compile useful, high-level
operations and language features into the
lambda calculus
– Result = adding high-level operations is convenient

for programmers, but not a computational necessity
– Result = make your compiler intermediate language

simpler

06/30~-07/04 FP & Types 243

2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the
lambda calculus?

source = lambda calculus + let

target = lambda calculus

translate/compile

06/30~-07/04 FP & Types 244

2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the
lambda calculus?

Example: let f = \x.xz in \y.f (f y)

(\f.\y.f (f y))(\x.xz)

06/30~-07/04 FP & Types 245

2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the
lambda calculus?

Rule: let f = λx.M in N

(λf.N)(λx.M)

•The let-expr is a kind of syntactic sugar

06/30~-07/04 FP & Types 246

2008Encoding Booleans in LC

• We will represent “true” and “false” as functions
named “true” and “false”
– how do we define these functions?
– think about how “true” and “false” can be used
– they can be used by a testing:

if b then x else y or as a function: if b x y
if true x y = x
if false x y = y

true x y = x
false x y = y

if = λtorf . λx. λy . torf x y

06/30~-07/04 FP & Types 247

2008Encoding Booleans

• the encoding:

true = λt. λf. t

false = λt. λf. f

if = λx. λthen. λelse.
x then else

if true (λx.t1) (λx.t2)

= (λx. λthen. λelse. x then else)
(λt. λf. t) (λx.t1) (λx.t2)

-->* (λt. λf. t) (λx.t1) (λx.t2)

-->* λx.t1

β

β
-->* Zero or more steps of beta

reduction

06/30~-07/04 FP & Types 248

2008Encoding Booleans

true = λt. λf. t false = λt. λf. f
and = λb. λc. b c false

and true true
-->* true true false
-->* true

and false true
-->* fals true false
-->* false

β omitted

06/30~-07/04 FP & Types 249

2008
Encoding Natural Numbers
in Lambda Calculus
• A natural number is a function that given an

operation f and a starting value s, applies f a
number of times to s:

0 =def λf. λs. s
1 =def λf. λs. f s
2 =def λf. λs. f (f s)

…

Church numerals

n =def λf.λs. fn s

06/30~-07/04 FP & Types 250

2008
Computing with Natural
Numbers
• The successor function

succ n =def λf. λs. f (n f s)
• Addition

add n1 n2 =def n1 succ n2

• Multiplication
mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
iszero n =def n (λb. false) true

06/30~-07/04 FP & Types 251

2008
Computing with Natural
Numbers. Example

Given: succ n =def λf. λs. f (n f s)
0 =def λf. λs. s
1 =def λf. λs. f s

succ 0 =
(λn.λf. λs. f (n f s)) 0 =
(λn.λf. λs. f (n f s)) (λf. λs. s) →
(λf. λs. f ((λf. λs. s) f s) →
(λf. λs. f ((λs. s) s) →
λf. λs. f s = 1

06/30~-07/04 FP & Types 252

2008
Computing with Natural
Numbers. Example

mult 2 2 →
2 (add 2) 0 →
(add 2) ((add 2) 0) →
2 succ (add 2 0) →
2 succ (2 succ 0) →
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) →
succ (succ (succ (λf. λs. f s))) →
succ (succ (λg. λy. g ((λf. λs. f s) g y)))
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4

06/30~-07/04 FP & Types 253

2008Encoding pairs

• would like to encode the operations
– mkPair e1 e2
– fst p
– snd p

• pairs will be functions
– when the function is used in the fst or snd operation it

should reveal its first or second component
respectively

06/30~-07/04 FP & Types 254

2008Encoding Pairs

• A pair is a function that given a Boolean returns
the left or the right element
mkpair x y =def λ b. x y
fst p =def p true
snd p =def p false

• Example:
fst (mkpair x y) → (mkpair x y) true → true x y → x

06/30~-07/04 FP & Types 255

2008and we can go on...

• lists, trees and other datatypes
• recursion, ...
• ...
• the general trick:

– values will be functions – construct these functions so
that they return the appropriate information when
called by an operation

•Lambda calculus with predefined constants

06/30~-07/04 FP & Types 256

2008

Recursion in the
Lambda Calculus

06/30~-07/04 FP & Types 257

2008Recursion in the LC

• The Y combinator
Y ≡ λf.(λx.f(x x)) (λx.f(x x))

• Y has the property: for every function F,
Y F = F(Y F)

• In other words, (Y F) is the fixed point of F
• We can use Y to implement recursion in the LC.

06/30~-07/04 FP & Types 258

2008Solution

Y F
≡ (λf.(λx.f(x x)) (λx.f(x x))) F
→β (λx.F(x x)) (λx.F(x x))
→β F ((λx.F(x x)) (λx.F(x x)))
←β F ((λf.(λx.f(x x)) (λx.f(x x))) F)
≡ F (Y F)

So, if we let X ≡ Y F then this tells us
X = F X

in other words, X is a fixed point of F.

06/30~-07/04 FP & Types 259

2008Recursion

• Factorial in Haskell:
fact = \n -> if (n==0) then

1
else
(n*(fact (n-1)))

– Ex. Write fact in λ-calculus by using the
Y combinator.

• Hint: consider the term
• F ≡ λf.λn.if (isZero n) 1 (n*f (pred n))

• Ex. Evaluate fact 0, fact 1 and fact 2.

06/30~-07/04 FP & Types 260

2008Solution

fact ≡ Y F
≡ Y (λf.λn.if (isZero n) 1 (n*(f (pred

n))))

fact 2
= Y F 2
= F (Y F) 2
= (λf.λn.if (isZero n) 1 (n*(f (pred n)))) (Y F) 2
= (λn.if (isZero n) 1 (n*((Y F) (pred n)))) 2
= if (isZero 2) 1 (2*((Y F) (pred 2)))
= 2*(Y F (pred 2))
= 2*(Y F 1)
= 2*(fact 1) and so on...

06/30~-07/04 FP & Types 261

2008

Appendix: Formal Treatment of
Substitutions

06/30~-07/04 FP & Types 262

2008Name Capturing

– (λx.λy.x)y →β λy.y X

• Replacing doesn’t always work
• But if we α-convert first

– (λx.λy.x)y ≡α (λx.λy’.x)y
– →β λy’.y

• Now define substitution M[N/x] to do this

06/30~-07/04 FP & Types 263

2008Substitution M[N/x]

– x[N/x] ≡
– y[N/x] ≡ (y≠x)
– (PQ)[N/x] ≡
– (λx.L)[N/x] ≡
– (λy.L)[N/x] ≡ (y≠x)

• Hint: Take care with (λy.L). Consider the cases
– y∉FV(L) and y∉FV(N) and only rename y when
necessary.

06/30~-07/04 FP & Types 264

2008Substitution M[N/x]

– We assume that y≠x throughout.
– The first three cases are easy.

– x[N/x] ≡ N
– y[N/x] ≡ y
– (PQ)[N/x] ≡ P[x:=N] Q[x:=N]

– In the next case the λx guarantees that x does not
appear free in the term (λx.L), so there are no free
occurences to substitute for.

– (λx.L)[N/x] ≡ λx.L

06/30~-07/04 FP & Types 265

2008Substitution M[N/x]

– The final case is the tricky one.

– (λy.L)[N/x] ≡ λy.L , if x∉FV(L)
– λy.L[N/x] , if y∉FV(N)
– λy’.L[y’/y’][N/x] , otherwise
– where y’∉FV(L)∪ FV(N)

– If x∉FV(L) then there are no x’s to replace with
– N’s, so the term stays the same. If y∉FV(N)then

there will be no y’s accidentally captured by the λy
so we can keep λy. But otherwise we must find a
fresh variable y’ and replace λy by λy’.

06/30~-07/04 FP & Types 266

2008

Lambda Calculus with
Constants and Types

06/30~-07/04 FP & Types 267

2008Example: Extended LC

E ::= constants: 1, 2, 3, …
succ, iszero
true, false,
&&(and), ||(or), !(not),

| variable: x, y, z, …
| λx.E
| E1 E2
| if E1 then E2 else E3

•Lambda calculus with Booleans and natural numbers

06/30~-07/04 FP & Types 268

2008
Evaluation Rules for the
Extended LC

• Based on β-reduction
• Extended to Booleans

and numbers
• Reduced to values:

– 0, 1, 2, …
– true, false
– λx.E

• Values are normal
forms.

Some extended rules:
iszero 0 true
iszero (succ n) false

pred 0 0
pred (succ n) n

if true then e1 else e2
e1

if false then e1 else e2
e2

e1 e2

succ e1 succ e2

...

06/30~-07/04 FP & Types 269

2008
Evaluation Rules for the
Extended LC …

• Not all normal forms are values
– E.g., (x y)

• So, reduction (evaluation) may get stuck
– Got a normal form, but not a value. For example:

(λx. succ x) true succ true ??

Reproduce it in LC:
succ true = (λn.λf.λs.f (n f s))(λt.f.t)

λf.λs.f ((λt.f.t) f s)
λf.λs.f f --Not a number!

06/30~-07/04 FP & Types 270

2008Introducing Types

• Def: a term is stuck if it is in normal form and
not a value

• Stuck terms model runtime errors
– “succ true”

• It’s a kind of type error!
• A key goal of types and type systems will be to

remove such runtime errors
– Int = [0, 1, 2, …], succ, pred, …
– Bool = [true, false], and, or, not
– We cannot mix Int with Bool values arbitrarily.

06/30~-07/04 FP & Types 271

2008

Lambda Calculus with
Constants and Types

Based on the Simply Typed
Lambda Calculus (SLC)

06/30~-07/04 FP & Types 272

2008Function Types

We introduce function types: A → B is the type of functions with
a parameter of type A and a result of type B.
Types are defined by this grammar:

T ::= Int
| Bool
| T → T

By convention, → associates to the right, so that
A → B → C means A → (B → C).

Examples: Int → Int → Int curried function of two arguments

(Int → Int) → Int function which is given a function

06/30~-07/04 FP & Types 273

2008Types and Type Errors

We type the succ function and Boolean value true as

succ : Int -> Int
true : Bool

Then “succ true”

is not acceptable!

We’ll introduce typing rules to filter out
(type checking) such expressions.

f : T1 -> T2
e : T1

f e : T2

06/30~-07/04 FP & Types 274

2008
Lambda Calculus
with Types
To make it easier to define the typing rules, we will modify the
syntax so that a λ-abstraction explicitly specifies the type of its
parameter.

v ::= integer literal
| true | false
| λx:T.e

e ::= v
| x
| e + e | e == e | e && e | if e then e else e
| e e

T ::= Int
| Bool
| T → T

•And more operators, such
as ‘+’, ‘==‘, ‘&&’

values

expressions

types

Type declaration
for parameters

06/30~-07/04 FP & Types 275

2008Examples of Expressions

2, true, x

x+20-y*5

(x>y) || (y>10 && z==1)

succ (if x==2 then 10 else 20)

if x==2 then 10 else 20

(if (x==0) then f else g) (y+5)

06/30~-07/04 FP & Types 276

2008Examples of Functions

λx:Int.x+2

λf:Int->Int.λx:Int.f (f x)

(λf:Int->Int.λx:Int.f (f x)) succ

λx:Int.λf:Int->Int.λg:Int->Int.
if (x==0) then f else g

λb:Bool.λx:Int.if b then x else -x

06/30~-07/04 FP & Types 277

2008
Type Checking for
Function Application

• In function application, the type of the argument
must be the same with that of the parameter.

e1 : T1 -> T2
e2 : T1

e1 e2 : T2

(λf:Int->Int.λx:Int.f (f x)): (Int->Int)->Int
succ: Int->Int

--
(λf:Int->Int.λx:Int.f (f x)) succ : Int

(premises, or
assumptions)

(conclusion)

06/30~-07/04 FP & Types 278

2008

Determining the Type of an
Expression

Type Checking: Does e has a type τ?

τ ::= Int
| Bool
| τ1 → τ2

•τ is a meta-variable
representing a type

06/30~-07/04 FP & Types 279

2008Type Judgments

• A type judgment has the form
Γ |- exp : τ

• Γ is a typing environment
– Supplies the types of variables and functions
– Γ is a list of the form [x : τ, . . .]

• exp is a program expression
• τ is a type to be assigned to exp

• |- pronounced “turnstyle”, or “entails” (or
“satisfies”)

“exp has type τ under TE Γ”

06/30~-07/04 FP & Types 280

2008
Example Valid Type
Judgments

• [] |- true or false : Bool

• [x : Int] |- x + 3 : Int

• [p : Int -> String] |- (p 5) : String

•Type judgments are derived via typing rules.

06/30~-07/04 FP & Types 281

2008Format of Typing Rules

Assumptions:
Γ1 |- exp1 : τ1 . . . Γn |- expn : τn

Γ |- exp : τ

• Idea: Type of expression determined by type of
its syntactic components

• Rule without assumptions is called an axiom
• Γ may be omitted when not needed

Conclusion:

06/30~-07/04 FP & Types 282

2008Axioms - Constants

|- n : Int (assuming n is an integer constant)

|- true : Bool |- false : Bool

• These rules are true with any typing
environment

• n is a meta-variable

06/30~-07/04 FP & Types 283

2008Typing Environment

•We view a TE as a finite fun from identifiers to types
Γ : Ide Type

•A typing environment Γkeeps track of the types of
free identifiers occurred in expressions

Γ = […, x:Int, f:Int->Int, …]

Γ’= […, x:Int, f:Int->Int, x:Bool, …]

So, given Γ as above, Γ(x) = Int

•No multiple bindings for any id:

06/30~-07/04 FP & Types 284

2008Axioms - Variables

Γ |- x : τ

•Typing rule for variables: (Var)

if Γ(x) = τ

•We can also include the types for pre-defined
identifiers (functions) in Γ. For example:

• Γ = […, succ:Int->Int, …]

06/30~-07/04 FP & Types 285

2008
Simple Rules -
Arithmetic

Primitive operators (⊕ ∈{ +, -, *, …}):
Γ |- e1 : Int Γ |- e2 : Int

Γ |- e1 ⊕ e2 : Int

Relations (˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : Int Γ |- e2 : Int

Γ |- e1 ˜ e2 :Bool

06/30~-07/04 FP & Types 286

2008Simple Rules - Booleans

Logical Connectives:

Γ |- e1 : Bool Γ |- e2 : Bool
Γ |- e1 && e2 : Bool

Γ |- e1 : Bool Γ |- e2 : Bool
Γ |- e1 || e2 : Bool

06/30~-07/04 FP & Types 287

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Start building the proof tree from the

bottom up

?
Γ |- y || (x + 3 > 6) : Bool

Source: Prof. E. Gunter

06/30~-07/04 FP & Types 288

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 289

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Booleans: ||

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 290

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 291

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 292

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for variables

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 293

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 294

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 295

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Arithmetic relations

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 296

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 297

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 298

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for constants

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 299

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 300

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 301

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Arithmetic operations

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 302

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 303

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 304

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for constants

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 305

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 306

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 307

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for variables

Γ |- x : Int Γ |- 3 : int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 308

2008Simple Example

• Let Γ = [x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• No more assumptions! DONE!

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool

06/30~-07/04 FP & Types 309

2008If-Expressions

• If_then_else rule:
Γ |- e1 : Bool Γ |- e2 : τ Γ |- e3 : τ

Γ |- (if e1 then e2 else e3) : τ

• τ is a type variable (meta-variable)
– it can take any type at all
– All instances in a rule application must get same type

• I.e., the Then branch, Else branch and
if_then_else must all have same type

06/30~-07/04 FP & Types 310

2008Examples of IF

if x==2 then 10 else 20

if x==2 then 10 else false

06/30~-07/04 FP & Types 311

2008Function Application

• Application rule: (App)
Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1

Γ |- (e1 e2) : τ2

• If you have a function expression e1 of type
τ1 → τ2 applied to an argument of type τ1, the
resulting expression has type τ2

06/30~-07/04 FP & Types 312

2008Application Examples

Γ |- (λf:Int->Int.λx:Int.f (f x)) succ : Int->Int

Γ |- (λf:Int->Int.λx:Int.f (f x)): (Int->Int)->Int->Int
Γ |- succ : Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- if b then f else g : Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- (if b then f else g) 5 : Int

06/30~-07/04 FP & Types 313

2008Function Rule

• Rules describe types, but also how the
environment Γ may change

• λ-fun rule: (Abs)
[x : τ1] ∪ Γ |- e : τ2

Γ |- λx.e : τ1 → τ2

We often write Γ.x:T = Γ ∪ [x:T] --extends Γ

•If x ∈ dom(Γ), then Γ.x:T means that the
new binding of x will replace the original one.

06/30~-07/04 FP & Types 314

2008Function Example

[y : int] ∪ Γ |- y + 3 : int
Γ |- λy.y + 3 : int → int

[succ:Int->Int].x:Int |- succ: Int->Int
--
[succ:Int->Int].x:Int |- x: Int
---App
[succ:Int->Int].x:Int |- (succ x) : Int
--
[succ:Int->Int] |- λx.(succ x) : In->Int

06/30~-07/04 FP & Types 315

2008Anther Fun Example

−−− (Abs)
Γ |- λf:Int->Int.λx:Int.f (f x)):

(Int->Int)->Int->Int

−− (Abs)
Γ .f:Int->Int |- λx:Int.f (f x)): Int->Int

−−− (App)
Γ .f:Int->Int.x:Int |- f (f x)): Int

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ .f:Int->Int.x:Int |- f x: Int

Γ.f:Int->Int.x:Int |- f:Int->Int (Var)

Γ.f:Int->Int.x:Int |- x:Int (Var)

Γ.f:Int->Int.x:Int |- f:Int->Int

Γ |- λf:Int->Int.λx:Int.f (f x)): ?
•Move f and x to Γ

06/30~-07/04 FP & Types 316

2008

Γ |- i : Int if i is an integer literal
Γ |- true : Bool Γ |- false : Bool

x:T ∈ Γ
Γ |-- x : T

Γ|- E1:Int Γ|- E2:Int
Γ|- E1 + E2 : Int

Γ|- E1:Int Γ|- E2:Int
Γ|- E1 == E2 : Bool

Γ|- E1:Bool Γ|- E2:Bool
Γ|- E1 && E2 : Bool

Γ.x:T1 |- E: T2
Γ|- λx:T1.E : T1->T2

Typing Rules for the LC
with Constants & Types

Γ|-E1:Bool Γ|-E2:T Γ|-E3:T
Γ|- if E1 the E2 else E3 :T

Γ|- E1:T1->T2 Γ|- E2:T1
Γ|- E1 E2 : T2

Γ |- x:T type judgement

06/30~-07/04 FP & Types 317

2008Typing Built-in Operators/Fun

•Alternative: treat built-in operators like literal
constants, and include their types in Γ

. . .

Γ |- && : Bool->Bool->Bool

Γ |- + : Int->Int->Int

. . .

•Then, no need to have special rules for them

Γ |- succ : Int->Int

06/30~-07/04 FP & Types 318

2008Type Safety

• Well-typed programs won’t get stuck!

• Theorem: If e is a closed expression of type T
(|- e : T), then for all e' such that e ->* e', it is
the case that either

(A) e' is a value (say, v') and |- v' : t, or
(B) exists e'' such that e' -> e''.

If |- e0: T, then e0 -> e1 ->e2 -> … -> v

06/30~-07/04 FP & Types 319

2008
The Simply Typed Lambda
Calculus λ→

•The extended lambda calculus is based on the
simply typed lambda calculus.

•The SLC was originally introduced by
Alonzo Church in 1940 as an attempt to avoid
paradoxical uses of the untyped lambda calculus.

•In the SLC, β-reduction is Strong normalizing:
all terms will be evaluated to a normal form.

06/30~-07/04 FP & Types 320

2008Limitations of the SLC

• Types are monomorphic.
|-- λx:Int.x+1 : Int->Int is OK

•But what is the type for the identity function?
|-- λx:?. x : ?

|-- λx:Int. x : Int->Int?

|-- λx:Bool. x : Bool->Bool?

|-- λx:Int->Int. x : (Int->Int)->(Int->Int)?

...

06/30~-07/04 FP & Types 321

2008Parametric Polymorphism

• Polymorphism: allow many types for a value
(hence also for variable, expression)

• Introducing type variables and ∀ quantification to
express parametric polymorphism.

|- λx:α.x : ∀α.α -> α

•Let α be a type variables representing any types.
We can type the id function as follows.

06/30~-07/04 FP & Types 322

2008Parametric Polymorphism…

Polymorphic type: ∀α.α -> α

The α can be instantiated to any types:

Int -> Int

(Int->Int)->(Int->Int)

Bool -> Bool

...

06/30~-07/04 FP & Types 323

2008

The Polymorphic Lambda
Calculus (PLC)

•Second-Order Lambda Calculus
•System F

A.K.A

06/30~-07/04 FP & Types 324

2008Motivating PLC

• Like SLC, use explicit typing for fun parameters
– λx:T. E

• Extend types with generic type variables and
quantification
– ∀α.α -> α

• Enhance terms with types
– Type generalization: Λα.λx:α.E , a polymorphic term
– Type application: (Λα. λx:α. E) (Int->Int)

• Replace α with Int->Int

06/30~-07/04 FP & Types 325

2008Types of the PLC

Types τ ::= T type constannts, (Int, Bool,…)
| α type variables
| τ τ function types
| ∀α.τ polymorphic types

Syntax:

Examples:

∀α.α ∀β.β

α β

∀α.∀β.(α β) ∀γ.γ

Int, Int->Bool, Int->Int->Bool, …

∀α.α->α

06/30~-07/04 FP & Types 326

2008Terms of the PLC

Terms Μ ::= c constants
| x variables
| λx:τ. Μ function
| M M function application
| Λα(Μ) type generalization
| M τ type application

Examples:
Id = Λα(λx:α.x) --type generalization (abstraction)

(Λα.λx:α.x)(Int->Int) --type application (specialization)

≅ Λα.M

06/30~-07/04 FP & Types 327

2008Functions on Types

• In PLC, Λα (M) is an anonymous notation for
the function F mapping each type τ to the value
of M[τ/ α].

• I.e., computation in PLC involves β-reduction for
such functions on types.

(Λα(M)) τ M[τ/α]

e.g., (Λα(λx:α.x)) (Int->Int) λx:Int->Int.x

as well as the usual form of β-reduction from λ-calculus
(λx:τ.M1) M2 M1[M2/x]

06/30~-07/04 FP & Types 328

2008Reduction in the PLC

In summary, we apply substitution on terms
as well as types explicitly.

06/30~-07/04 FP & Types 329

2008PLC vs. SLC

In this system of PLC:
• Two new kinds of terms (expressions):

– Λα (M) (typically, α is used in M)
– Application with type operand: M τ (τ a type)

• The first kind of expression is also a value

• To the type language we add:
– Type variables – α
– Universal types of the form ∀

06/30~-07/04 FP & Types 330

2008Polymorphism in PLC, 1

Id = Λα (λx:α.x) has type ∀α.α->α

Example: the identity function

We can apply Id to many kinds of arguments:

Id Int 5 = Λα (λx:α.x) Int 5 (λx:Int.x) 5 5

Id Bool true = Λα (λx:α.x) Bool true * true

06/30~-07/04 FP & Types 331

2008Polymorphism in PLC, 2

Example: applying a function twice

twice = Λα (λf:α→α. λx:α. f (f x)))
has type ∀α. (α→α)→α→α

and can be applied to arguments of different types:
a) twice Int (λx:Int.x+2) 5 --[Int/α]

(λf:Int->Int.λx:Int.f (f x)) (λx:Int.x+2) 5
((λx:int. x+2) ((λx:int. x+2) 5))
* 9

b) twice Bool (λx:Bool. x) false * false

06/30~-07/04 FP & Types 332

2008Polymorphism in PLC, 3

•Polymorphic function parameters
•Consider the following function application in LC:

(λf. (f 5, f True)) (λx.x) --(,) is a pair

Here the function parameter f is applied to
two types of arguments: Int and Bool

In PLC, (λx.x) is Λα.λx:α.x with type ∀α.α->α
so we let f has the polymorphic type: λf:∀α.α->α
And rewrite the above example as:

(λf:∀α.α->α.(f Int 5, f Bool True)) (Λα.λx:α.x)

06/30~-07/04 FP & Types 333

2008Polymorphism in PLC, 3

•Polymorphic function parameters
•Consider the following function application in LC:

(λf. (f 5, f True)) (λx.x) --(,) is a pair

(λf:∀α.α->α.(f Int 5, f Bool True)) (Λα.λx:α.x)

((Λα(λx:α.x)) Int 5, (Λα(λx:α.x)) Bool true)
… (5, true)

Write it in the PLC:

06/30~-07/04 FP & Types 334

2008Polymorphism in PLC, 4

Id = Λα (λx:α.x) has type ∀α.α->α

> (Id (∀α.α->α)) Id = (Λα(λx:α.x) (∀α.α->α)) (Λα(λx:α.x))

Re-visit the identity function

We can apply Id to Id in a similar way:

has type ∀α.α->α

(λx:∀α.α->α.x) (Λα(λx:α.x))

Λα(λx:α.x) = Id

06/30~-07/04 FP & Types 335

2008

Formal Typing Rules of PLC

06/30~-07/04 FP & Types 336

2008Syntax of PLC

Types τ ::= T type constannts, (Int, Bool,…)
| α type variables
| τ τ function types
| ∀α.τ polymorphic types

Terms Μ ::= c constants
| x variables
| λx:τ. Μ function
| M M function application
| Λα .Μ type generalization
| M τ type application

06/30~-07/04 FP & Types 337

2008
Generic (Bound) vs. Free
Type Variables

τ = ∀α.α ∀β.β
ftv(τ) = []

τ = ∀α.α β

ftv(τ) = [β]

•Free type variables stand for some types;
•Generic type variables stand for any types.

06/30~-07/04 FP & Types 338

2008Type Judgements of PLC

Source: Prof. A. Pitts

•ftv(Γ) = ∪ ftv(τi)

06/30~-07/04 FP & Types 339

2008PLC Typing Rules

(var) Γ |- x : τ if x:τ ∈ Γ

(fn) Γ.x:τ1 |- M : τ2
Γ |- λx :τ1.M : τ1 -> τ2

(app) Γ |- M1: τ1 -> τ2 Γ |- M2 : τ1
Γ |- M1 M2 : τ2

(gen) Γ |- M : τ
Γ |- Λα.M : ∀α.τ

(ty_app) Γ |- M : ∀α.τ1
Γ |- M τ2 : τ2[τ1/α]

If α ∉ ftv(Γ)

06/30~-07/04 FP & Types 340

2008The Side-Condition in Gen

If α ∉ ftv(Γ)

06/30~-07/04 FP & Types 341

2008PLC Typing Exercise

twice = Λα.λf:α→α.λx:α f (f x))

06/30~-07/04 FP & Types 342

2008
Type Inference
(Type Reconstruction)

• Languages like Haskell differ somewhat from the
pure polymorphic lambda calculus.
– No type annotation for fun parameters
– No need to declare types and put in the “∀"
– Not required to put in explicit type abstractions (Λ) or

type specialization (applications).

• Instead, the compiler figures those out for you
through the process of type inference.
– Γ |-- E : τ where E has no type annotation at all

06/30~-07/04 FP & Types 343

2008Type Reconstruction

• We can define a function erase on well-typed
expressions, that removes all type-related
information :

This brings us back to extended LC (ELC without
types)

erase(M τ) = erase(M) --remove type app

erase(Λα(M)) = erase(M) --remove type abs

erase(λx:τ.M) = erase(λx.M)--remove parameter type

06/30~-07/04 FP & Types 344

2008Type reconstruction

The type reconstruction (inference) problem:

Given M without type information (in, say, ELC),
find:
– M’ with type information (annotations, abstractions,

applications)
– Γ for freevars(M) (= freevars(M’))
– a type τ

s.t. Erase (M’) = M and Γ |- M’ : τ

We then say that Γ |- M : τ

06/30~-07/04 FP & Types 345

2008
Example of Type
Reconstruction

(λf. (f 5, f True)) (λx.x) --(,) is a pair

(λf:∀α.α->α.(f Int 5, f Bool True)) (Λα.λx:α.x)

Erase

)(

06/30~-07/04 FP & Types 346

2008Type reconstruction

Theorem:
Given M w/o type info, it is undecidable if well-

typed M’ in PLC s.t. erase(M’) = M exists

Corollary:
Type reconstruction in PLC is impossible

So, how is it done in Haskell or SML?
Let us proceed to the Hindley-Milner Type System.

06/30~-07/04 FP & Types 347

2008

The Hindley-Milner Type
System

We’ll use the Damas-Milner version

Damas and Milner, POPL 82,
Principal type-schemes for functional programs

06/30~-07/04 FP & Types 348

2008Let-Polymorphism

• The HMTS is weaker than the PLC, but admits a
type reconstruction algorithm.

• Parametric polymorphism is achieved via let-
expressions

• Function parameters are monomorphic only.

let id=\x->x
in (id 5, id True)

(\f->(f 5, f True)) (\x->x)

06/30~-07/04 FP & Types 349

2008Mini-Haskell Expression

E ::= constants: 1, 2, 3, …
‘a’, ’b’, …,
True, False, &&, ||, !
+, -, *, …, >, <. =,

| variable: x, y, z, …
| \x -> E
| E1 E2
| if E1 then E2 else E3
| let x = E1 in E2
| (E1, E2) | [] | [E1, …, En] | fst | snd | : | head | tail

pairs lists cons

Function abstraction
Function application
If-expr
Let-expr

06/30~-07/04 FP & Types 350

2008Expression Examples

3+5, x>y+3, not (x>y) || z>0

(1, ‘a’) fst (‘a’, 5) --pair

[True, False] x:xs tail xs --list

\x -> if x>0 then x*x else 1

(\x -> x*x) (4+5)

\f -> \x -> f (f x)

let f = \x-> x in (f True, f ‘a’) --pair

06/30~-07/04 FP & Types 351

2008Types in Mini-Haskell

• Simple types
– Int, Bool, Char, …

• Functional types
– Int Int, (Int Bool) Int, (Int Bool) (Int Int),…

• Pair types
– (Int, Bool), (Int, (Bool, Char)),…

• List types
– [Int], [Bool], [[Int]], [(Int, Bool)], …

• Generalized types τ: adding type variablesα
– τ ::= Int | Bool | … | α|β… | τ1 τ2 | (τ1, τ2) | [τ]

06/30~-07/04 FP & Types 352

2008Types in the HMTS

• No more general polymorphic types of PLC.
– ∀α.α -> ∀β.β ->Int

• Adopts a two-layered types
– Types with variables, but no quantifiers
– Type Schemes that support only

outermost quantification

∀α.∀β. (α->β)->[α]->[β]

Nested quantification

06/30~-07/04 FP & Types 353

2008Types & Type Schemes

• Types τ: (mono)

– τ ::= Int | Bool | … primitive types
| α| β| … type variables
| τ1 τ2 function types
| (τ1, τ2) pair (tuple) types
| [τ] list types

• Type schemes σ: (poly)
σ ::= τ | ∀α . σ

(Right-associative)

generic type variable

two-layered types

06/30~-07/04 FP & Types 354

2008Examples of Type Schemes

(Char, Int) Bool ∀α.[α] α Bool

[Int] (Int->Bool) Bool

[Int] β Bool

∀α. ∀β.(α β) [α] β

Invalid type schemes

[Int], Bool, Char Bool

∀α.α β

Int ∀α.α

∀α.α

∀α.α ∀β.β

•Outermost quantification only

06/30~-07/04 FP & Types 355

2008
Generic (Bound) vs. Free
Type Variables

σ = ∀α.∀.β.α β
ftv(σ) = {}

σ = ∀α.α β
ftv(σ) = {β}

•Free type variables stand for some types;
•Generic type variables stand for any types.

∀α. β.(α β) [α] β ≡∀α.∀β.(α β) [α] β
Notation: omit inner ∀

ftv(α β)= {α,β}

06/30~-07/04 FP & Types 356

2008Typing in Mini-Haskell

• A type judgment has the form
Γ |- exp : τ --not σ

• exp is a Mini-Haskell expression
• τ is a Mini-Haskell type to be assigned to exp

06/30~-07/04 FP & Types 357

2008
Example Valid Type
Judgments

• [] |- True or False : Bool

• [x : int] |- x + 3 : int

• [len : ∀α.[α]->Int] |- len [1,3,5,7] : Int

• [len : ∀α.[α]->Int] |- len [True, False] : Int

• [len : ∀α.[α]->Int] |- len : [[β]] ->Int via [[β]/α]

06/30~-07/04 FP & Types 358

2008Typing in Mini-Haskell

Γ |- e1 : τ1 Γ |- e2 : τ2
Γ |- (e1, e2) : (τ1 ,τ2)

(Pair)

Γ |- [] : [τ] --any type τ(nil)

Γ |- e1 : τ1 Γ |- e2 : [τ1]
Γ |- (e1:e2) : [τ1]

(cons)

Note: [e1, e2, e3] is a syntactic sugar of (e1:(e2:e3))

Γ |- n : Int

Γ |- True : Bool Γ|- False : Bool

(Int)

(Bool)

(assuming n is an Integer constant)

06/30~-07/04 FP & Types 359

2008Typing in Mini-Haskell, 1

•A major change lies in typing a function
•In PLC, we need to specify the type of a
function’s parameter.

(fn) Γ.x:τ1 |- M : τ2
Γ |- λx:τ1.M : τ1 -> τ2

•In the HTMS, We guess a type for x. No type
annotation for parameters.

Γ.x:τ1 |- e :τ2

Γ |- λx.e : τ1->τ2

A type, not a type scheme,
such as ∀α.α, because fun
Parameters are monomorphic.

(Abs)

06/30~-07/04 FP & Types 360

2008Typing in Mini-Haskell, 2

•Guess as general as possible
•Consider the following two type derivations:

•We can define some kind of order (f) between
a type scheme and type

Γ.x:α |- x : α
Γ |- λx.x : α->α

Obviously, the one on the left is better for type
reconstruction – it is the most general.

Γ.x:Int |- x : Int
Γ |- λx.x : Int->Int

f

06/30~-07/04 FP & Types 361

2008
Orders between Types and
Type Schemes, 1

• Specialization order between types and type
schemes:
∀α.α α f β β

Int Int

Int (Bool Bool)

f

f

via [β/α]

via [Int/α]

via [Int/α,Bool/β]
∀α.β.α β β

∀α.α α

06/30~-07/04 FP & Types 362

2008
Order between a Type Scheme
and a Type, 2

•Also called instantiation of a type scheme to a type.
∀α.α α f β β via [β/α]

06/30~-07/04 FP & Types 363

2008
Orders between Type
Schemes and Types, 3

• Not all type variables are equal!
• Generic type variables vs. free type variables

∀α.α α β β

•Generic type variables can be instantiated to
any types τ, but free types variables are not!

•Generalization order between a type scheme and
a type: σ f τ, this is required in typing rules

•Specialization between two types is derived
during type reconstruction as interim results.

06/30~-07/04 FP & Types 364

2008Typing in Mini-Haskell, 2

• Instantiate a type scheme to a type by guessing
– From ∀α.[α]->Int to [[β]] ->Int

• Only when typing a variable:

(Var f) if Γ(x) = σ and σ f τ
Γ |- x : τ

[len : ∀α.[α]->Int] |- len : [β] ->Int
Example:

•In PLC,
[len : ∀α.[α]->Int] |- len β : [β] ->Int

06/30~-07/04 FP & Types 365

2008PLC vs. HTMS

• Recall that PLC has:
– General polymorphic types: τ ≡ ∀α.τ’
– Application with type operand: M τ (τ a type)
– Type generalization: Λα (M)

• By contrast, the HMTS
– types τ and type schemes σ
– Instantiate a type scheme to a type

• From ∀α.[α]->Int to [[β]] ->Int
– Generalize a type to a type scheme

• From [β] ->Int to ∀β. [β] ->Int

06/30~-07/04 FP & Types 366

2008Typing in Mini-Haskell, 3

Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1
Γ |- (e1 e2) : τ2(App)

•Function application remains the same, except that
only monomorphic arguments (τ).

[len : ∀α.[α]->Int] |- len : [Bool] ->Int
[len : ∀α.[α]->Int] |- [True,False] : [Bool]

Example:

[len : ∀α.[α]->Int] |- len [True,False] : Int

Γ |- e1 : Bool Γ |- e2 : τ Γ |- e3 : τ
Γ |- if e1 then e2 else e3 : τ

(If)

06/30~-07/04 FP & Types 367

2008A Function Example

−− (Abs)
Γ |- \f->\x->f (f x)): (α->α)->α->α

−− (Abs)
Γ.f:α->α|- \x->f (f x)): α->α

−−− (App)
Γ.f:α->α.x:α |- f (f x)): α

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ.f:α->α.x:α |- f x: α

Γ.f:α->α.x:α |- f: α->α
Γ.f:α->α.x:α |- x: α

Γ.f:α->α.x:α |- f: α->α

Γ |- \f->\x->f (f x)): ?
•Move f and x to Γ

06/30~-07/04 FP & Types 368

2008Typing in Mini-Haskell, 4

•Generalizing a type to a type scheme via LET-expr

Γ |- \f->\x->f (f x)): (α->α)->α->α

∀α.(α->α)->α->α

Γ |- e1 : τ1

Γ |- let x=e1 in e2 : τ
(Let) x ∉ dom(Γ)

σ = Gen(τ1, Γ) = ∀α1…αn.τ1. 　

where [α1,…,α n] = ftv(τ1) - ftv(Γ)

Γ. x:σ |- e2 : τ

06/30~-07/04 FP & Types 369

2008Generalization aka Closing

• Generalization introduces polymorphism

• Quantify type variables that are free in 　
but not free in the type environment (TE)

• Captures the notion of new type variables
of τ (introduced via the Var f rule)　

Gen(Γ,τ) = ∀α1... αn. τ
where [α1... αn] = ftv(τ) - ftv(Γ)

06/30~-07/04 FP & Types 370

2008
Example of Let-Polymorphism

(1) Γ |- \x->x : α → α α is a fresh var, Gen called

(2.1) Γ. id:∀α.α → α |- id : Int->Int Γ. id:∀α.α → α |- 5 : Int
Γ. id:∀α.α → α |- id 5 : Int

(2.2) Γ. id:∀α.α→α |- id : Bool->Bool Γ. id:∀α.α→α |- True : Bool
Γ. id:∀α.α → α |- id True : Bool

Γ. id:∀α.α → α |- (id 5, id True) : (Int, Bool)

Γ |- let id=\x->x in (id 5, id True) : (Int, Bool)

Pair

Let

(2.1), (2.2)

E ≡ let id=\x->x in (id 5, id True)

06/30~-07/04 FP & Types 371

2008Exercises of Let-Polymorphism

1. We can also have “id id” in the let-body:
let id = \x->x in id id

\x. let f = \y->x
in (f 1, f True)

AB

ΓA = [x : α] (1) ΓA.[y:β] |- x : α
ΓA |- \y->x : β α

2. Derive the type for the following lambda function:

06/30~-07/04 FP & Types 372

2008HM Type Inference Rules

(App) Γ ├ e1 : τ -> τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’

(Abs)
Γ ├ λx.e : τ -> τ’

(Var)
Γ ├ x : τ

(Const)
Γ ├ c : τ

(Let)
Γ ├ (let x = e1 in e2) : τ’

Γ + [x : τ] ├ e : τ’

(x : σ) ∈ Γ σ ≥ τ

typeof(c) ≥ τ

Γ+[x : τ] ├ e1 : τ Γ+[x:Gen(TE,τ)] ├ e2 : τ’

Syntax-Directed

06/30~-07/04 FP & Types 373

2008Limitations of the HMTS:

E1 ≡ let id=\x->x in (id 5, id True)
vs. E2 ≡ (\f->(f 5, f True))(\x->x)

•E2≡ \f->(f 5, f True) is not typable:
Γ .x :τ1 |- e : τ2

Γ |- \x -> e : τ1 → τ2

Recall the (Abs) rule

[f : ?] |- (f 5, f True) : (Int, Bool)

•Only let-bound identifiers can be instantiated differently.

a type only, not a type scheme to instantiate

Semantically
E1 = E2, but

λ−bound (monomorphic) vs Let-bound Variables

06/30~-07/04 FP & Types 374

2008
Good Properties of the
HMTS

• The HMTS for Mini-Haskell is sound.
– Well-typed programs won’t get stuck!.

• The typeability problem of the HMTS is decidable:
there is a type reconstruction algorithm which
computes the principal type scheme for any Mini-
Haskell expression.
– The W algorithm using unification

06/30~-07/04 FP & Types 375

2008
Principle Type Schemes for
Closed Expressions, 1

[f:Int→Bool, x:Int] |- f : Int→Bool [f:Int→Bool, x:Int] |- x : Int

•What type for “\f->\x->f x”?

[f:Int→Bool, x:Int] |- f x : Bool

[f:Int→Bool] |- \x->f x : Int → Bool

[] |- \f->\x->f x : (Int → Bool) → (Int → Bool)

Can we derive a more “general” type for this expression?

App

Abs

Abs

06/30~-07/04 FP & Types 376

2008
Principle Type Schemes for
Closed Expressions, 2

[f: α→β, x :α] |- f : α→β [f : α→β, x : α] |- x : α
[f : α→β, x : α] |- f x : β

[f : α →β] |- \x -> f x : (α →β)
[] |- \f -> \x -> f x : (α→β) → (α→β)

Any instance of (α →β) → (α →β) is a valid type.
E.g., (Int → Bool) →(Int → Bool)

•A more general type for “\f->\x->f x”?

Most general type

06/30~-07/04 FP & Types 377

2008
Principle Type Schemes for
Closed Expressions

• A type scheme σ is the principal type scheme of a
closed Mini-Haskell expression E if
(a) |- E : τ is provable and σ = Gen(τ, {})
(b) for all τ’, if |- E : τ’ is provable and σ’ = Gen(τ’, {})

then σ Â σ’

where by definition σ Â σ’ if σ’ = ∀α1…αn.τ’ and
FV(σ) ∩ {α1…αn } = {} and σ Â τ’ .

E.g., \f->\x->f x has the PTS of ∀α.β.(α β) (α β)
and ∀α.β.(α β) (α β) Â ∀γ.(γ Bool) (γ Bool)

06/30~-07/04 FP & Types 378

2008

Type Reconstruction Algorithm
Based on Unification

The W Algorithm by Damas and Milner

06/30~-07/04 FP & Types 379

2008Type Inference

• Type inference is typically presented in two different forms:

– Type inference rules: Rules define the type of each
expression
• Clean and concise; needed to study the semantic properties, i.e.,

soundness of the type system

– Type inference (reconstruction) algorithm: Needed by the
compiler writer to deduce the type of each subexpression
or to deduce that the expression is ill typed.

• Often it is nontrivial to derive an inference algorithm for a
given set of rules. There can be many different algorithms
for a set of typing rules.

06/30~-07/04 FP & Types 380

2008The W Algorithm (Damas&Milner 82)

W(Γ, e) returns (S,τ) such that S(Γ) ├ e : τ 　

• Γ is a typing environment recording the most
general type of each identifier that may occur in e

• e is an expression
• τ is a type, may contain type variables to be

generalized
• S is a type substitution recording the changes in

the free type variables in Γ, if any.

06/30~-07/04 FP & Types 381

2008The W Algorithm

W(Γ, e) returns (S,τ) such that S(Γ) ├ e : τ 　

•Example: Open expression

Γ = [f:α->α, x:β], e ≡ f x

W(Γ, e) = ([α/β], β) and

[α/β](Γ) ├ f x : β

06/30~-07/04 FP & Types 382

2008The W Algorithm

W(Γ, e) returns (S,τ) such that S(Γ) ├ e : τ 　

•Example: closed expression

Γ = [], e ≡ let id=\x->x in (id id)

W(Γ, e) = ([β->β/α], β−>β) and

[β->β/α](Γ) ├ e : β->β

06/30~-07/04 FP & Types 383

2008
The W Algorithm:
Syntax-Directed

W(Γ, e) returns (S,τ) such that S(Γ) ├ e : τ

Def W(Γ, e) =
Case e of

x = ...
λx.e = ...
(e1 e2) = ...
let x = e1 in e2 = ...

Syntax-directed

The W algorithm is defined in terms of the syntactic
structure of the expression to type.

06/30~-07/04 FP & Types 384

2008The W Algorithm: Variables

(x : σ) ∈ Γ σ ≥ τ

Γ |- x:τ
(Var)

1. When e is a variable: Def W(Γ, e) =
Case e of

x = ...

Recall the inference rule (axiom) for variables:

We do not yet know which τ to instantiate!
Let ∀α.α->α = Γ(x), we simply replace α with
fresh (new) type variable, say β; and determine
the type for β later when x is applied via unification.

06/30~-07/04 FP & Types 385

2008The W Algorithm: Variables

(x : σ) ∈ Γ σ ≥ τ

Γ |- x:τ

(Var)

1. When e is a variable:

Def W(Γ, e) =
Case e of
x =

Recall the inference rule (axiom) for variables:

We do not yet know which τ to instantiate!

β’s
represent
new type
variables

if (x ∉  Dom(Γ)) then Fail
else let ∀α1... αn.τ = Γ(x);

in ({ }, [βi /αi]τ)

06/30~-07/04 FP & Types 386

2008The W Algorithm: Application

(App)

2. When e is an application: Def W(Γ, e) =
Case e of

(e1 e2) =
...Recall the inference rule for fun application:

We have to ensure that the type of parameter is the same
as the type of the argument (e2)!

We apply the unification algorithm to compute a
Type substiution to unify them..

Γ├ e1 : τ->τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’

06/30~-07/04 FP & Types 387

2008The W Algorithm: Application

2. When e is a function application:

Def W(Γ, e) =
Case e of

(e1 e2) =

(App) Γ├ e1 : τ->τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’

let (S1, τ1) = W(Γ, e1);
(S2, τ2) = W(S1(Γ), e2);

S3 = Unify(S2(τ1), τ2 ->β);
in (S3 S2 S1, S3(β))

β represents
a new type
variable

06/30~-07/04 FP & Types 388

2008Unification: Unify(τ1, τ2)

•Unify(τ1, τ2) = fail or a type substitution S
such that Sτ1 = Sτ2.

Unify(α->α, Int->Bool) = fail

Unify([α]->β, [γ]->Int) = [γ/α, Int/β]≡S

•And compute the Most General Unifier (MGU)
Let S’ = [Bool/α, Int/β].

S’([α]->β) = S’([γ]->Int) and S f S’

Unify(α->α, Int->Int) = [Int/α] ≡ S
Then S(α->α) = S(Int->Int)

06/30~-07/04 FP & Types 389

2008Unification: Unify(τ1, τ2)

def Unify(τ1 , τt2) =
case (τ1 , τ2) of

(τ1 , α) = [τ1 / α]
(α , τ2) = [τ2/ α]
(C1 , C2) = if (eq? C1 , C2) then [] else fail
(τ11-> τ12, τ21 -> τ22)
= let S1 =Unify(τ11, τ21)

S2 =Unify(S1 (τ12), S1 (τ22))
in S2° S1

otherwise = fail

•Composition of substitution: S2°S1

--Ci constant type

Ex: [Int/β]°[β/α]=[Int/β,Int/α]

06/30~-07/04 FP & Types 390

2008The W Algorithm: Function

(Abs)

3. When e is a lambda function: Def W(Γ, e) =
Case e of

\x->e =
...Recall the inference rule for lambda function:

We have to guess a type for the parameter!

We use a new type variable to represent the type of the
parameter and get a type for it later when the function is applied.

Γ+[x: τ]├ e : τ’
 Γ ├ \x.e : τ->τ’

06/30~-07/04 FP & Types 391

2008The W Algorithm: Function

(Abs)

3. When e is a lambda function:

Γ+[x: τ]├ e : τ’
 Γ ├ \x.e : τ->τ’

Def W(Γ, e) =
Case e of

\x->e = let (S1, τ1) = W(Γ + [x:β], e);
in (S1, S1(β) -> τ1)

β is new

06/30~-07/04 FP & Types 392

2008The W Algorithm: Let

(Let)

4. When e is a let expression: Def W(Γ, e) =
Case e of

let x = e1 in e2 =...

Recall the inference rule for let expression:

 Γ ├ let x = e1 in e2 : τ’

Γ+[x : τ]├ e1 : τ Γ+[x:Gen(TE,τ)] ├ e2 : τ’

Def W(Γ, e) =
Case e of

let x = e1 in e2 = let (S1, τ1) = W(Γ , e1);
σ = Gen(S1(Γ), τ1);
(S2, τ2) = W(S1(Γ) + [x : σ], e2);

in (S2 S1, τ2)

06/30~-07/04 FP & Types 393

2008The W Algorithm

Def W(Γ, e) = Case e of
x =

λx.e =

(e1 e2) =

let x = e1 in e2
=

β’s new
type vars

let (S1, τ1) = W(Γ, e1);
(S2, τ2) = W(S1(Γ), e2);

S3 = Unify(S2(τ1), τ2 -> β);
in (S3 S2 S1, S3(u))

if (x ∉ Dom(Γ)) then Fail
else let ∀t1...tn.τ = Γ(x);

in ({ }, [βi / ti] τ)
let (S1, τ1) = W(Γ + [x : β], e);
in (S1, S1(β) -> τ1)

let (S1, τ1) = W(Γ , e1);
σ = Gen(S1(Γ), τ1);
(S2, τ2) = W(S1(Γ) + [x : σ], e2);

in (S2 S1, τ2)

06/30~-07/04 FP & Types 394

2008The W Algorithm: Example
λx. let f = λy.x

in (f 1, f True)

W(∅, A) =

W({x : u1}, B) =

([] , u1)

([] , u3 -> u1)

∀u3.u3 -> u1

TE = {x : u1, f : ∀u3.u3 -> u1}

([] , u4 -> u1)

W(TE, 1) = ([] , Int)
[Int / u4 , u1 / u5]

([] , u1)

([] , (u1,u1))

Unify(u4 -> u1 , Int -> u5) =

W({x : u1, f : u2, y : u3}, x) =
W({x : u1, f : u2}, λy.x) =

Gen({x : u1}, u3 -> u1) =

W(TE, (f 1)) =

([] , u1 -> (u1,u1))

W(TE, f) =

Unify(u2 , u3 -> u1) =

AB

[(u3 -> u1) / u2]

...

06/30~-07/04 FP & Types 395

2008Important Observations

• Do not generalize over type variables used
elsewhere

• Let is the only way of defining polymorphic
constructs

• Generalize the types of let-bound identifiers
only after processing their definitions

06/30~-07/04 FP & Types 396

2008
Properties of HM Type
Inference (W)

• It is sound with respect to the type system.
An inferred type is verifiable using l-.

• It generates most general types of expressions.
called Principal Type Scheme.

Any verifiable type is inferred.

• Complexity
PSPACE-Hard
DEXPTIME-Complete
Nested let blocks

06/30~-07/04 FP & Types 397

2008Extensions

• Type Declarations
Sanity check; can relax restrictions

• Incremental Type checking
The whole program is not given at the same
time, sound inferencing when types of some
functions are not known

• Typing references to mutable objects
Hindley-Milner system is unsound for a
language with refs (mutable locations)

• Overloading Resolution

06/30~-07/04 FP & Types 398

2008
Puzzle: Another set of Inference
rules

(Gen) TE ├ e : τ α ∉ FV(TE)
TE ├ e : ∀α.τ

(Spec) TE ├ e : ∀α.τ
TE ├ e : τ [τ’/α]

(Var) (x : τ) ∈ TE
TE ├ x : τ

(Let) TE+{x:τ} ├ e1: τ TE+{x:τ} ├ e2:τ’

TE ├ (let x = e1 in e2) : τ’

(App) and (Abs) rules remain unchanged.

Sound but
no direct
inference
algorithm !

Not syntax-directed

06/30~-07/04 FP & Types 399

2008

Appendix: Haskell’s
Type Classes

06/30~-07/04 FP & Types 400

2008Polymorphism

Polymorphism

Universal
Polymorphism

Ad Hoc
Polymorphism

Parametric Subtyping Overloading Coercion

Polymorphism

?

06/30~-07/04 FP & Types 401

2008
When Overloading Meets
Parametric Polymorphism

• Overloading: some operations can be defined
for many different data types
– ==, /=, <, <=, >, >=, defined for many types
– +, -, *, defined for numeric types

•Consider the double function: double = \x-> x+x

•What should be the proper type of double?
•Int -> Int -- too specific
• ∀a.a -> a -- too general

Indeed, this double function is not typeable in (earlier) SML!

06/30~-07/04 FP & Types 402

2008
Type Classes—a “middle”
way
• What should be the proper type of double?

∀a.a -> a -- too general
• It seems like we need something “in between”,

that restricts “a” to be from the set of all types that
admit addition operation, say
Num = {Int, Integer, Float, Double, etc.}.—type class

double :: (∀ a ∈ Num) a -> a
• Qualified types generalize this by qualifying the

type variable, as in (∀ a ∈ Num) a -> a ,
which in Haskell we write as Num a => a -> a

•Note that the type signature a -> a
is really shorthand for ∀a.a -> a

06/30~-07/04 FP & Types 403

2008Type Classes

• “Num” in the previous example is called a type
class, and should not be confused with a type
constructor or a value constructor.

• “Num T” should be read “T is a member of (or an
instance of) the type class Num”.

• Haskell’s type classes are one of its most
innovative features.

• This capability is also called “overloading”,
because one function name is used for potentially
very different purposes.

• There are many pre-defined type classes, but you
can also define your own.

06/30~-07/04 FP & Types 404

2008
Defining Type Classes in
Haskell, 1
•In Haskell, we use type classes and instance
declarations to support parametric overloading
systematically.

class Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
…

•Type a belongs to class Num
if it has ‘+’,’-’,’*’, …of proper
signature defined.

Instance Declaration:
instance Num Int where

(+) = IntAdd --primitive
(*) = IntMul -- primitive
(-) = IntSub -- primitive
…

•Type Int is an instance
of class Num

A type is made an instance of a class by
an instance declaration

06/30~-07/04 FP & Types 405

2008
Defining Type Classes in
Haskell, 2

In Haskell, the qualified type for double
double x = x + x ::
∀a. Num a => a->a

I.e., we can apply double to only types which
are instances of class Num.

double 12 --OK
double 3.4 --OK
double “abc” --Error unless String is an instance

--of class Num,

type predicate

06/30~-07/04 FP & Types 406

2008Constrained polymorphism

• Ordinary parametric polymorphism
f :: a -> a

"f is of type a -> a for any type a"

• Overloading using qualified types
f :: C a => a -> a

"f is of type a -> a for any type a belonging to the type
class C"

•Think of a Qualified Type as a type with a Predicate set,
also called context in Haskell.

06/30~-07/04 FP & Types 407

2008Type Classes and Overloading

In Haskell, the function double is translated into
double NumDict x =

(select (+) from NumDict) x x

double :: ∀ a. Num a => a->a
The type predicate “Num a” will be supported
by an additional (dictionary) parameter.

Similar to
double add x = x `add` x -- add x x

06/30~-07/04 FP & Types 408

2008
Type Classes and
Overloading

Dictionary for (type class, type) is created by the
Instance declaration.

instance Num Int where
(+) = IntAdd --primitive
(*) = IntMul -- primitive
(-) = IntSub -- primitive
…

Create a dictionary called IntNumDict, and
“double 3” will be translated to

double intNumDIct 3

06/30~-07/04 FP & Types 409

2008Another Example: Equality

• Like addition, equality is not defined on all types
(how do we test the equality of two functions, for
example?).

• So the equality operator (==) in Haskell has type
Eq a => a -> a -> Bool. For example:

42 == 42 True
`a` == `a` True
`a` == 42 << type error! >>

(types don’t match)
(+1) == (\x->x+1) << type error! >>

((->) is not an instance of Eq)
• Note: the type errors occur at compile time!

06/30~-07/04 FP & Types 410

2008Equality, cont’d

• Eq is defined by this type class declaration:
class Eq a where

(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

• The last two lines are default methods for the
operators defined to be in this class.

• So the instance declarations for Eq only needs to
define the “==“ method.

06/30~-07/04 FP & Types 411

2008Defining class instances (1)

• Make pre-existing classes instances of type class:
instance Eq Integer where

x == y = x `integerEq` y
instance Eq Float where

x == y = x `floatEq` y

• (assumes integerEq and floatEq functions
exist)

06/30~-07/04 FP & Types 412

2008Defining class instances (2)

• Do same for composite data types, such as tuples
(pairs).

instance Eq (a, b) where
(x1, y1) == (x2, y2) = (x1==x2) &&

(y1==y2)

• Note the context: (Eq a, Eq b) => ...

(Eq a, Eq b) =>

06/30~-07/04 FP & Types 413

2008Defining class instances (3)

• Do same for composite data types, such as lists.

instance Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

• Note the context: Eq a => ...

Eq a =>

06/30~-07/04 FP & Types 414

2008
Functions Requiring Context
Constraints

•Consider the following list element testing function:

elem x [] = False
elem x (y:ys) = (x == y) || elem x ys

elem :: Eq a => a -> [a] -> Bool

>elem 5 [1, 3, 5, 7]
True

>elem ‘a’ “This is an example”
False

06/30~-07/04 FP & Types 415

2008Context Constraints (cont’d)

succ :: Int -> Int
succ = (+1)

elem succ [succ] causes an error

ERROR - Illegal Haskell 98 class constraint
in inferred type

*** Expression : elem succ [succ]
*** Type : Eq (Int -> Int) => Bool

which conveys the fact that Int->Int is not an instance of
the Eq class.

06/30~-07/04 FP & Types 416

2008
Other useful type
classes

• Comparable types:
Ord < <= > >=

• Printable types:
Show show where
show :: (Show a) => a -> String

• Numeric types:
Num + - * negate abs etc.

06/30~-07/04 FP & Types 417

2008Show – Showable Types

• This class contains all those types whose values
can be converted into character strings using

show :: a -> String

• Bool, Char, String, Int, Integer and Float, are
part of this class, as well as list and tuple types
whose elements and components are part of the
class

06/30~-07/04 FP & Types 418

2008Show – Showable Types

> Show True
”True”

> show ’a’
”’a’”

> show 42
”42”

> show (´q´, 13)
”(’q’, 13)”

06/30~-07/04 FP & Types 419

2008Read – Readable Types

• This class contains all those types whose values
can be converted from character strings using

read :: String -> a

• Bool, Char, String, Int, Integer and Float, are
part of this class, as well as list and tuple types
whose elements and components are part of the
class

06/30~-07/04 FP & Types 420

2008Read – Readable Types

> read ”True” :: Bool
False

> read ”’a’” :: Char
’a’

> read ”42” :: Int
42

> read ”(´q´, 13)”
(’q’, 13)

> read ”[1,2,3]” :: [Int]
[1,2,3]

06/30~-07/04 FP & Types 421

2008Super/Subclasses

•Subclasses in Haskell are more a syntactic mechanism.
•Class Ord is a subclass of Eq.

Note: If type T belongs to Ord, then T must also belong to Eq

“=>” is misleading!

06/30~-07/04 FP & Types 422

2008

Source: D. Basin

06/30~-07/04 FP & Types 423

2008
Recommended Readings

http://hal.inria.fr/inria-00076025/en/

http://portal.acm.org/citation.cfm?id=582176

http://portal.acm.org/citation.cfm?id=75283&dl=ACM&coll=GUIDE

•Luca Cardelli, Basic Polymorphic Typechecking.
http://research.microsoft.com/users/luca/Papers/BasicTypechecking.pdf

06/30~-07/04 FP & Types 424

2008Acknowledgements

• Parts of the materials presented here are taken
from the slides prepared by :

• Dr. A.C. Daniels and Dr. S. Kahrs, Univ. of Kent,
UK

• Professor. A. Pitts, Cambridge Univ., UK
• Professor E. Gunter, CS421, UIUC USA
• Professor Arvind, 6.827/F2006, MIT, USA

