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2008

Unit I: FP in Haskell
Basic Concepts of

Functional Programming
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2008
What is Functional 
Programming?

Generally speaking:
• Functional programming is a style of programming 

in which the primary method of computation is the 
application of functions to arguments

•Define a function square: square x = x * x

Function name

Function body:
an expression

Formal parameter
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2008
What is Functional 
Programming?

Generally speaking:
• Functional programming is a style of programming 

in which the primary method of computation is the 
application of functions to arguments

Function application:   
square 5
= { applying square }

5 * 5
= { applying * }

25

square x = x * x

Substitute the argument 5
into the body of the function

No parentheses: square(5)
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2008Functions and Arguments

• Similarly an argument may itself be a function 
application:

square ( square 3 )
= { apply inner square }

square ( 3 * 3 )
= { apply * }

square ( 9 )
= { apply outer square }

9 * 9
= { apply * }

81
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2008Programming Paradigms

• FP is a programming paradigm …
• A programming paradigm

– is a way to think about programs, programming, and 
problem solving,

– is supported by one or more programming languages. 

• Various Programming Paradigms:
– Imperative (Procedural)
– Functional
– Object-Oriented
– Logic
– Hybrid
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2008Imperative vs. Functional

• Imperative languages specify the steps of a 
program in terms of assigning values to variables.

int sum (int n, int list[]) {
int total = 0;
for (int i = 0; i < n; ++i) 

total += list[i];
return s;

}
Variable
assignments

sum []        = 0
sum (x:xs) = x + sum xs

Equations

There is no loop! 
Recursive, please!

[]-empty list;
“:”-cons a list
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2008Imperative vs. Functional

In C, the sequence of 
actions is

i = 1
total = 1
i = 2
total = 3
i = 3
total = 6
i = 4
total = 10
i = 5
total = 15

Applying functions:
sum [ 1,2,3,4,5]

= { apply sum }
1 + sum [ 2,3,4,5]

= { apply sum }
1 + ( 2 + sum [ 3,4,5] )

= { apply sum }
1 + ( 2 + ( 3 + sum [4,5] )

= { apply sum }
…

= { apply + }
15
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2008Functional Programming

• Functional programs work exclusively with values, 
and expressions and functions which compute 
values.

• A value is a piece of data.
– 2, 4, 3.14159, ”John”, (0,0), [1,3,5],...

• An expression computes a value.
– 2+5*pi, length(l)-size(r)

• Expressions combine values using functions and operators.
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2008
Why FP?
What’s so Good about FP?

• To get experience of a different type of 
programming

• It has a solid mathematical basis
– Referential Transparency and Equation 

Reasoning
– Executable Specification
– …

• It’s fun!

1.Introduction
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2008Referential Transparency

Can we replace  f(x) + f(x) with  2*f(x)?

Yes, we can!
•If the function f is referential transparent.

•In particular, a function is referential transparency if its 
result depends only on the values of its parameters. 

•This concept occurs naturally in mathematics, but is 
broken by imperative programming languages.
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2008
Referential 
Transparency…

• Imperative programs are not RT due to side effects.
• Consider the following C/Java function f:

int y = 10;
int f(int i) {

return i + y++;
}   

then f(5)+f(5)= 15+16 = 31
but 2*f(5)= 2*15 = 30!
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2008
Referential 
Transparency…

• In a purely functional language, variables 
are similar to variables in mathematics: 
they hold a value, but they can’t be 
updated. 

• Thus all functions are RT, and therefore 
always yield the same result no matter 
how often they are called.
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2008Equational Reasoning

• RT implies that “equals can be replaced by equals”
• Evaluate an expression by substitution . I.e. we can 

replace a function application by the function 
definition itself.

double x  = 2 * x
even x    = x mod 2 == 0

even (double 5)  
⇒ even (2 * 5)     
⇒ even 10          
⇒ 10 mod 2 == 0
⇒ 0 == 0
⇒ True

[5/x]: x換成5

even’s definition,
[10/x]
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2008Computation in FP

• Achieved via function application
• Functions are mathematical functions without 

side-effects.
– Output is solely dependent of input.

Pure function

States

Impure function

with assignment

Can replace  f(x) + f(x) with  2*f(x)
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2008What’s so Good about FP?

• Referential Transparency and Equation 
Reasoning

• Executable Specification

• …

1.Introduction
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2008Quick Sort in C

qsort( a, lo, hi ) int a[ ], hi, lo; 
{   int h, l, p, t; 

if (lo < hi) 
{   l = lo;   h = hi;   p = a[hi]; 

do 
{  while ((l < h) && (a[l]  <= p))   l =  l  + 1; 

while ((h > l) && (a[h] >= p))   h = h – 1 ; 
if (l < h) [ t = a[l];  a[l] = a[h];  a[h] = t; } 

} while (l < h); 
t = a[l];   a[l] = a[hi];  a[hi] = t; 
qsort( a, lo, l-1 );   qsort( a, l+1, hi );

} 
} 
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2008Quick Sort in Haskell

• Quick sort:  the program is the specification!
qsort []     = []
qsort (x:xs) = qsort lt ++ [x] ++ qsort greq

where lt = [y | y <- xs, y < x]
greq = [y | y <- xs, y >= x]

List operations:
[] the empty list
x:xs adds an element x to the head of a list xs
xs ++ ys concatenates lists xs and ys
[x,y,z] abbreviation of x:(y:(z:[]))
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2008Historical View: Pioneers in FP

Church:
Lambda 
Calculus

Curry:
Combinatory
Logic

McCarthy:Lisp Landin:ISWIM Steele:Scheme Milner:ML Backus:FP
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2008

Background of Haskell
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2008What is Haskell?

• Haskell is a purely functional language created in 
1987 by scholars from Europe and US.

• Haskell was the first name of H. Curry, a logician
• Standardized language version:  Haskell 98
• Several compilers and interpreters available

– Hugs, Gofer, , GHCi, Helium
– GHC (Glasgow Haskell Compiler)

• Comprehensive web site:  
http://haskell.org/

Haskell Curry (1900-1982)
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2008Haskell vs. Miranda

1970s - 1980s:

David Turner developed a 
number of lazy functional 
languages, culminating in the 
Miranda system.

23

If Turner had agreed, there will be no Haskell?!
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2008Features of Haskell

• pure (referentially transparent) — no side-effects
• non-strict (lazy) — arguments are evaluated only 

when needed
• statically strongly typed — all type errors 

caught at compile-time
• type classes — safe overloading
• …
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2008Why Haskell?

• A language that doesn't affect the way you 
think about programming, is not worth
knowing.

--Anan Perlis

The recipient of the 
first ACM Turing Award
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2008
Any software written in 
Haskell?

• Pugs
– Implementation of Perl 6

• darcs
– Distributed, interactive, smart RCS

• lambdabot
• GHC
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2008
A chat between developers of 
the Pugs project

From freenode, #perl6, 2005/3/2
http://xrl.us/e98m

19:08 < malaire> Does pugs yet have system() or backticks or qx// or any way to use
system commands?

19:08 < autrijus> malaire: no, but I can do one for you now. a sec
19:09 < malaire> ok, I'm still reading YAHT, so I won't try to patch pugs just yet...
19:09 < autrijus> you want unary system or list system?
19:09 < autrijus> system("ls -l") vs system("ls", "-l")
19:10 < malaire> perhaps list, but either is ok
19:11 < autrijus> \\n   Bool pre     system  (Str)\
19:11 < autrijus> \\n   Bool pre     system  (Str: List)\
19:11 < autrijus> I'll do both :)
19:11 < autrijus> done. testing.
19:14 < autrijus> test passed. r386. enjoy
19:14 < malaire> that's quite fast development :)
19:14 < autrijus> :)
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2008

• Haskell, like Lisp/Scheme, ML (Ocaml, Standard 
ML) and F#, is based on Church's lambda (λ) 
calculus

• Unlike those languages, Haskell is pure (no 
updatable state)

• Haskell uses "monads" to handle stateful effects
– cleanly separated from the rest of the language

• Haskell "enforces a separation between Church 
and State"

Haskell vs. Scheme/ML
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2008
“FP” is another less-known 
FPL

Late 1970s:

John Backus develops FP, a now-
called combinator-based FPL.

29

Can Programming Be Liberated
from the von Neumann Style?

1977 Turing Award Lecture

1924-2007
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2008

Back to Haskell

The Basics
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2008Running Haskell Programs

• Pick a Haskell Implementation
• We’ll use Hugs or GHCi
• Interpreter mode (Hugs):

The Hugs > prompt means 
that the Hugs system is ready 
to evaluate an expression.

> 5+2*3
11

> (5+2)*3
21

> sqrt (3^2 + 4^2)
5.0

Read
Eval
Print  

Loop
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2008Hugs: a Haskell Interpreter

__   __ __  __  ____   ___      _________________________________________
||   || ||  || ||  || ||__      Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__||  __||     Copyright (c) 1994-2003
||---||         ___||           World Wide Web: http://haskell.org/hugs
||   ||                         Report bugs to: hugs-bugs@haskell.org
||   || Version: Nov 2003       _________________________________________

Hugs mode: Restart with command line option +98 for Haskell 98 mode

Type :? for help
Prelude>

http://www.haskell.org/hugs

winHugs: a Windows GUI
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2008Hugs

• The Hugs interpreter does two things:

• Evaluate expressions

• Evaluate commands, e.g.

– :quit quit
– :load <file> load a file
– :r redo the last load command
– :? help
– …
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2008Preparing Haskell Programs

• Create and Edit a file with a Haskell program
– File name extension:   .hs or .lhs
– Literate Haskell Programs

• Description and Comments about the program
• >Haskell
• >code

• Load the source program in to Hugs
– Enter the expression to evaluate
– Read-Evaluate-Print loop
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2008Running Haskell with GHC

• By Haskell Group at Glasgow University, UK
• Get GHC from http://haskell.org/ghc/
• GHC is a compiler; GHCi is the interpreter version
• $ ghc Main.hs

→ Main.hi
→ Main.c
→ a.out or Main.exe

• $ ghci Main.hs
Prelude Main> QuickSort [9, 4, 1, 2, 6]
[1,2,4,6,9]
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2008The Standard Prelude

The library file Prelude.hs provides a large number 
of standard functions.  In addition to the familiar 
numeric functions such as + and *, the library also 
provides many useful functions on lists.

• Calculating the length of a list:

> length [1,2,3,4]
4
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2008

• Appending the elements of two lists:

• Selecting the first element of a list:

> head [1,2,3,4]
1

> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

The Standard Prelude …

• Removing the first element of a list:

> tail [1,2,3,4]
[2,3,4]
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2008Function Application

In mathematics, function application is denoted 
using parentheses, and multiplication is often 
denoted using juxtaposition or space.

f(a,b) + c d

In Haskell, function application is denoted using 
space, and multiplication is denoted using *.

f a b + c*d
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2008Function Application …

• Function application (“calling a function with a 
particular argument”) has higher priority than any 
other operator.

• In math (and Java) we use parentheses to include 
arguments; in Haskell no parentheses are needed.

f a + b

means
(f a) + b  not

• since function application binds harder than plus.
f (a+b)
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2008
Summary: Function 
Application …

•Here’s a comparison between mathematical 
notations and Haskell:
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2008
Programs as Sets of 
Definitions
• A very simple functional program (also known as 

a functional script) in Haskell
– A set of definitions

square    :: Integer -> Integer

square x  =  x * x

smaller       :: (Integer, Integer) -> Integer

smaller (x,y) =  if x <= y then x else y

main = print (square(smaller(5, 3+4)))

Type Signature

Definition 
(i.e. equation)

Main expr to 
eval
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2008Definitions

• A Haskell program is a sequence of definitions 
followed by an expression to evaluate.

• A definition gives a name to a value.
• Haskell definitions are of the form:

name :: type
name = expression

• Examples:
size :: Int
size = (12+13)*4
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2008Function Definitions

• A function definition specifies how the result is 
computed from the arguments.

average :: Float->Float->Float

average x y = (x+y)/2

parameters

The body specifies 
how the result is 
computed. No ’return’

Function types specify the types 
of the arguments and the result.
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2008Function Notation

•Function arguments need not be enclosed in 
brackets!

Example:
square :: Float -> Float
square x = x*x

Calls: square 2.5 6.25

square (1.2+1.3) 6.25

Brackets are for grouping only!

Not
square(2.5)
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2008Simple Types

Characters, e.g., 'a'Char

Boolean values: True and FalseBool

Single- and double-precision 
floating point numbers

Float, Double

Unbounded rational numbersRational

32-bit integer numbersInt

Unbounded integer numbersInteger
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2008The Booleans

• type Bool
• operations

• exOr :: Bool -> Bool -> Bool
exOr x y = (x || y) && not (x && y)

notnot

or||

and&&
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2008The integers

• type Int: range –2147483648…2147483647
• type Integer: range unbounded
• operations

change signnegate
absolute valueabs
remaindermod
whole number divisiondiv
difference-
raise to the power^
product*
sum +
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2008Relational Operators

(==) for integers and Booleans. This means that (==) will have the type
Int -> Int -> Bool
Bool -> Bool -> Bool

Indeed   t -> t -> Bool if the type t carries an equality.
(==) :: Eq a => a -> a -> Bool

less than<
less than or equal to<=
not equal to/=
equal to==
greater than or equal to>=

greater than>
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2008Operators: Prefix and Infix

• Operators: infix. Use parentheses for prefix.
• Functions: prefix. Use backquotes for infix.

> 4*12-6
42
> (<) 2 3
True

> div 126 3
42
> 126 ‘div‘ 3
42
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2008
Precedence & 
Associativity
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2008The characters

• type Char

‘a’

‘\t’ tab
‘\n’ newline
‘\\’ backslash
‘\’’ single quote
‘\”’ double quote
‘\97’ character with ASCII code 97, i.e., ‘a’

Some operations: toUpper ‘a’ ‘A’
Ord ‘a’ 97
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2008Composite Types: Lists

[1,2,3], [2] :: [Int]

A list of integers.A list of values
enclosed in

square brackets.

Some operations:
[1,2,3] ++[4,5] [1,2,3,4,5]

head [1,2,3] 1

last [1,2,3] 3

tail [1,2,3] [2,3]

We can have lists of lists:
[ [1,3], [0, 5, 6], [4] ] :: [ [Int] ]

homogeneous
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2008Quiz

How would you add 4 to the end of the list [1,2,3]?
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2008Quiz

How would you add 4 to the end of the list [1,2,3]?

[1,2,3] ++ [4] [1,2,3,4]

[4] not 4!
++ combines two lists,

and 4 is not a list.
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2008Types: Strings

”Hello!” :: String
Any characters

enclosed in
double quotes.

List of Chars
[Char]

Some operations:
”Hello ” ++ ”World” ”Hello World”

First ”Hello” ’H’



06/30~-07/04 FP & Types 56

2008Composite Types: Tuples

• A tuple is a sequence of components that may 
be of different types

(1, 4)           :: (Int, Int)
(False, ‘b’, 4.294 )        :: (Bool, Char, Float)

(“Fish”, [True, True] ) :: (String, [Bool])

Tuples may contain basic types or list types 
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2008Tuple types

• The number of components in a tuple is called its 
arity. 

• Arity cannot be 1. 
• The tuple of arity zero () is called the empty tuple, 

while a tuple of arity 2 is called a pair, one of arity
3 a triple, and so on

Note that tuples are enclosed in parentheses, not 
square brackets
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2008Tuples and Lists

You can have lists of tuples and tuples of lists

[(1, True),(4, False)]            :: [(Int, Bool)]

(1.4, [3, 5, 64, 7, 12], True) :: (Float, [Int], Bool)

The definition of the tuple provides its arity – in cases above 
the tuples have arity of 2 and 3 respectively
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2008Function Types

• A function is a mapping of arguments of one 
type to results of another type

• T1 -> T2 maps arguments of type T1 to results 
of type T2

~         :: Bool -> Bool
isDigit :: Char -> Bool
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2008A Note on Function Types

• Function types associate to right.

maxOf3 :: Int -> Int -> Int -> Int

maxOf3 :: Int -> (Int -> (Int -> Int))

means

•Functions are values, and  partial application is OK.

let m = maxOf3 5
in let mm = m 8 

in mm 12 12
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2008Multi-Parameter Functions

• A simple way (but usually not the right way) of 
defining a multi-parameter function is to use 
tuples:

add :: (Int,Int) -> Int
add (x,y) = x+y

• Evaluate 
add (40,2)

• We get 42
• Later, we’ll learn about Curried Functions.
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2008Comments

• Line comments start with - and go to the end of 
the line: 
--This is a line comment.

• Nested comments start with {- and end with -}:
{-

This is a comment.
{-
And here’s another one....

-}
-}
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Function Definition by 
Cases and Recursion
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2008The abs function

• The absoulte value (abs) function:
– abs x = |x|

• The definition is by cases (multiple equations):
– abs x =     x, if x >= 0

-x, if x < 0
• How to define in Haskell?

abs x | x >= 0 = x
abs x | x < 0 = -x

A guard. An equation is used if its guard is True.
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2008Evaluating abs

Prelude> abs (-2)

• First equation, x = -2

• What is -2 >= 0?   False

• Second equation, x = -2 again

• What is -2 < 0?   True

• Result is –x, that is –(–2)

2

abs x | x >= 0 = x
abs x | x < 0   = -x

Try the 
equations in 

order, use the 
first with a True 

guard
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2008Other Forms

• Fully explicit

• Abbreviated left hand side

• Abbreviated last guard

• ”if” expression

abs x | x >= 0 = x
abs x | x < 0   = -x

abs x | x >= 0 = x
| x < 0  = -x

abs x | x >= 0 = x
| otherwise   = -x

abs x = 
if x >= 0 then x else -x
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2008Function Definition by Cases

fun v1 v2 … vn
| g1 = e1
| g2 = e2
…
| otherwise = er

max3 :: Int -> Int -> Int -> Int
max3 i j k | (i >= j) && (i >= k) = i

| (j >= k) = j
| otherwise = k

Guarded equations
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2008Function Definition by Cases

fun v1 v2 … vn
| g1 = e1
| g2 = e2
…
| otherwise = er

max3 :: Int -> Int -> Int -> Int
max3 i j k = 

if (i >= j) && (i >= k) then i
else if (j >= k) then j
else k

fun v1 v2 … vn =
if g1 then e1
else if g2 then e2
else if · · ·
else er
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2008Recursive Functions

fac 0 = 1

fac n | n > 0 = fac (n-1) * n

fac :: Int -> Int

fac n = if n == 0 then 1

else fac (n-1) * n

or

fac n = 1 * 2 * … * n
fac :: Int -> Int
fac n
| n==0 = 1
| otherwise = fac (n-1) * n



06/30~-07/04 FP & Types 70

2008Evaluating Factorials

fac :: Int -> Int

fac 0 = 1

fac n | n > 0 = fac (n-1) * n

fac 4 ?? 4 == 0 False

?? 4 > 0 True

fac (4-1) * 4

fac 3 * 4

fac 2 * 3 * 4

fac 1 * 2 * 3 * 4

fac 0 * 1 * 2 * 3 * 4

1 * 1 * 2 * 3 * 4

24
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2008Expensive to calculate...

fac 5
5 * (fac 4) 
5 * 4 * (fac 3)
5 * 4 * 3 * (fac 2) 
5 * 4 * 3 * 2 * (fac 1) 
5 * 4 * 3 * 2 * 1 * (fac 0) 
5 * 4 * 3 * 2 * 1 * 1
.
.
.
120

Stack (space)

Ti
m

e

fac 0  = 1
fac n | n > 0 = n * fac (n-1)
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2008Tail Recursion

fac n = tailfac n 1
where tailfac n acc

| n==0 = acc
| n>0  = tailfac (n-1) n*acc

•Tail recursion: recursive call occurs last
•The technique of accumulating parameters

•Local definitions
fac 5 tailfac 5 1

tailfac 4 5*1
tailfac 3 4*5*1

...
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2008A Better Process: Tail Recursion

(fac 5)
(tailfac 5 1)
(tailfac 4 5)
(tailfac 3 20)
(tailfac 2 60)
(tailfac 1 120)
(tailfac 0 120)
120

Stack

Ti
m

e Tail recursion is logically 
equivalent to a loop!
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Local Definitions:

the where clause

fun args = <fun body>
where

decl_1
decl_2
· · ·
decl_n

•The where-clause follows after a function body:

maxOf3 :: Int -> Int -> Int -> Int

maxOf3 x y z = maxOf2 u z
where
u = maxOf2 x y
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Local Definitions:
the let clause

let
<local definitions>

in
<expression>

fac n = let tailfac n acc 
| n==0 = acc
| n>0  = tailfac (n-1) n*acc

in
tailfac n 1
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2008The let Clause

f :: [Int] -> [Int]
f [ ] = [ ]
f xs =

let
square a = a * a
one = 1

in
(square (head xs) + one) : f (tail xs)

f [3,2] 
(square 3 + one) : f [2]  … [10,5]
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2008The Layout Rule

circumference r =
2 * pie * r

area r
= pie * r * r

bad x = area x
+ circumference x    -- Error: offside!

Indentation determines where a definition ends:
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let
y = x + 2
x = 5

in
x / y

• same as:
let y = {x + 2; x = 5} in x / y

Example

縮排而且對齊
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means

The layout rule avoids the need for explicit syntax 
to indicate the grouping of definitions.

a = b + c
where

b = 1
c = 2

d = a * 2

{a = b + c
where

{b = 1;
c = 2};

d = a * 2}

implicit grouping explicit grouping

Example
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2008The error Function

• error string can be used to generate an error 
message and terminate a computation.

• This is similar to Java’s exception mechanism, 
but a lot less advanced.

fac :: Int -> Int
fac n = if n<0 then

error "illegal argument"
else if n <= 1 then 1

else n * fac (n-1)

• > f (-1)
Program error: illegal argument
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2008
Example: Fibonacci 
Numbers

1 1 2 3 5 8 13 21...
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2008
Computing Fibonacci 
Numbers

• Here there are two base cases
– Neither can be reduced to a smaller problem by the 

recursive case.
• This definition is not very efficient – why not?

fib n | n > 1 = fib (n-1) + fib (n-2)
fib 0 = 1
fib 1 = 1
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2008

(fib 5)

(fib 3)         (fib 4)

(fib 1)   (fib 2) (fib 2)  (fib 3)

(fib 0) (fib 1)
(fib0)(fib 1)

(fib 1) (fib 2)

(fib 0)(fib 1)

Tree Recursion

Inefficient!

Repetitive computation
Rewrite it as tail recursive!
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2008

Pattern Matching
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2008Pattern Matching

• Pattern matching is a simple and intuitive way of 
defining a function.

• The library function ~ returns the negation of a 
logical value:

~ :: Bool -> Bool
~ False = True 
~ True = False

Constant pattern; 
order matters
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2008Pattern Matching

• We can also use pattern matching for functions 
that take more than one argument

• The library function (&&) returns the negation of 
a logical value

(&&) :: Bool -> Bool -> Bool
True && True = True 
True && False = False
False && True = False
False && False = False
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2008Pattern Matching

• We can simplify the definition of (&&) by using 
the wildcard character _

(&&) :: Bool -> Bool -> Bool
True && True = True
_     &&  _ = False

• This is also good because if the first argument is 
False then it doesn’t need to evaluate the 
second argument
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2008Pattern Matching

• Haskell has a naming convention that means 
that we cannot use the same variable name for 
more than one argument in an equation, so

b && b = b
_ && _ = False

would not be allowed, and needs to be rewritten as

b && c | b==c = b
| otherwise = False
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2008Tuple Patterns

• A tuple of patterns is itself a pattern which matches any 
tuple of the same arity whose components match the 
corresponding patterns in order

• Constant patterns
– ()
– (1, 5)
– (‘a’, 5.5, “abcd”)
– (“nested”, (100, ‘A’), (1,5,9))

• Patterns with variables
– (1, x)
– (s, i)
– (“nested”, t1, t2)
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2008Tuple Patterns

• The library functions fst and snd select the first 
and second components of a pair

fst :: (a,b) -> a
fst (x,_) = x

snd :: (a,b) -> a
snd (_,y) = y

>fst (5, ‘a’) 5     --(x binds to 5)
>snd (5, ‘a’) ‘a’ --(y binds to ‘a’)
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2008More  Selector Functions

•For pairs, we have
fst (x,y) = x      snd (x,y) = y

•For triples, we define
fst3 (x,y,z) = x       
snd3 (x,y,z) = y
trd3 (x,y,z) = z

•No general selectors such as:
select 3 (x,y,z) = z

What would the type
of the result be?
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2008
Selection using Pattern 
Matching

•Other than using special functions to select 
elements from a large tuple,
we can use pattern matching. Example: 

(x1, x2, x3) = a_triple_value

(x1, x2, x3) = (100, ‘A’, “Math”)

Example:

Then x1=100, x2=‘A’, x3=“Math”.
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2008List Patterns

• A list of patterns is also a pattern
• It matches any list of the same length whose 

elements all match the corresponding patterns in 
order. Example:

•Suppose we have a function test that checks if a list 
contains precisely three characters and the first of these 
is the letter ‘a’

test :: [Char] -> Bool
test [’a’,_,_] = True
test  _ = False
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2008List Patterns

• Lists are constructed one element at a time from 
the empty list

• The cons (construct) operator : produces a new 
list by adding a new element to the front of an 
existing list:

[3,5,7]
= { apply cons }

3 : [5,7]
= { apply cons }

3 : (5 : [7])
= { apply cons }

3 : (5 : (7 : []))

•cons associates to the right:

3:5:7:[]
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2008
Defining Functions with List 
Patterns

• We can use the cons function (:) to extend the 
test function to check the first element of a list of 
any length, not just three

test :: [Char] -> Bool
test (’a’:_) = True
test   _ = False
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2008
Defining Functions with List 
Patterns

• Null, head, and tail work in a similar manner

null :: [a] -> Bool
null [] = True
null (_:_) = False
head :: [a] -> a
head (x:_) = False
tail :: [a] -> [a]
tail (_:xs) = False
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2008
Internal Representation of 
Lists
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2008Lists are Homogenous

• Lists of lists:
[1]:[[2],[3]] ⇒ [[1],[2],[3]]

• Note that the elements of a list must be of the 
same type!

[1, [1], 1] ⇒ Illegal!
[[1], [2], [[3]]] ⇒ Illegal!
[1, True] ⇒ Illegal! 
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2008Integer Patterns

• Haskell also allows integer patterns of the form 
n+k where n is an integer variable and k>0 and 
an integer constant

• Pred maps 0 to itself and any other number to 
the number preceding it

pred :: Int -> Int
pred 0 = 0
pred (n+1) = n
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2008Recursion over Lists

•Compute the length of a list.

length ::[Int] -> Int
length xs = if xs ==[] then 0

else 1 + length (tail xs)

•This is called recursion on the tail .

•Using pattern matching:

length []     =  0
length (x:xs) = 1 + length xs
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2008
Evaluating Recursive 
Functions

length [] = 0
length (x : xs) = 1 + length xs

length (1 : 2 : 4 : [])
⇒ [ x ← 1 , xs ← 2 : 4 : [] ]
1 + length (2 : 4 : [])
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2008
Evaluating Recursive 
Functions

length [] = 0
length (x : xs) = 1 + (length xs)

length (1 : 2 : 4 : [])
⇒ [ x ← 1 , xs ← 2 : 4 : [] ]

1 + length (2 : 4 : [])
⇒ [ x ← 2 , xs ← 4 : [] ]

1 + 1 + length (4 : [])
⇒ [ x ← 4 , xs ← [] ]

1 + 1 + 1 + length []
⇒ [ ]

1 + 1 + 1 + 0
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2008
Polymorphic Functions & 
Types

• The length function does not care about the 
element type of its list parameter.
length [1,2,3] ⇒ 3
length [True, False] ⇒ 2
length [‘a’,‘b’,’c’,’d’] ⇒ 4

•Indeed, length is a polymorphic function, and 
its type is: length ::[a] -> Int

Here a is a type variable that can be 
instantiated to any types.
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2008Sum and Product of a List

sum :: [Int] -> Int
sum [] =  0
sum (x:xs) = x + sum xs

product :: [Int] -> Int
product [] =  0
product (x:xs) = x * product xs
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2008
Type Declarations and 
Checking

• In Java and most other languages the programmer has 
to declare what type variables, functions, etc have. We 
can do this too, in Haskell:
> 6*7 :: Int

42

• ::Int asserts that the expression 6*7 has the type Int.
• Haskell will check for us that we get our types right:

> 6*7 :: Bool
ERROR
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2008Type Inference

• We can let the Haskell interpreter infer the type of  
expressions, called type inference.

• The command :t(ype) expression asks Haskell to
• print the type of an expression:
> :type "hello"

"hello" :: String
• > :type True && False

True && False :: Bool
• > :t True && False :: Bool

True && False :: Bool
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2008Exercise

• Define a function upto such that for m,n:Int
and m <= n 

upto m n = [m, m+1, ..., n] 
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2008Variable Naming Convention

• When we write functions over lists it’s 
convenient to use a consistent variable naming 
convention. We let

• x, y, z, · · · denote list elements.
• xs, ys, zs, · · · denote lists of elements.
• xss, yss, zss, · · · denote lists of lists of 

elements.
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2008List Concatenation

• xs ++ ys --also known as append xs ys

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

[1,2,3] ++ [4,5,6]
= { apply ++ }

1: ([2,3] ++ [4,5,6])

= { apply ++ }
1: (2: ([3] ++ [4,5,6]))
…

1: (2: (3: [4,5,6])))
= { list notation }

[1,2,3,4,5,6]
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2008List Concatenation

•Concatenate multiple lists in a list:
concat :: [[a]] -> [a]
concat []   = []
concat (xs:xss) =  xs ++ concat xss

concat []           =  []
concat [[]]         =  []
concat [[1], [3,5]] = [1,3,5]

Examples:
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2008
More Polymorphic Recursive 
List Functions: reverse

• Reverse: reverse the order of the elements in a 
list

reverse  :: [a] -> [a]
reverse []       = []
reverse (x : xs) = reverse xs ++ [x]

Example
reverse [1,2,3,4] ⇒ [4,3,2,1]

•Let’s define a tail recursive version of the reverse.

But, its Time complexity: O(n2)

O(n)
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2008Tail Recursive “reverse”

reverse   :: [a] -> [a]
reverse xs = rev2 xs []

rev2 :: [a] -> [a] -> [a]
rev2 [] ys = ys
rev2 (x:xs) ys = (rev2 xs) (x:ys)

“A LISP (FP) programmer knows 
the value of everything 

and the cost of nothing.”
--Alan Perlis
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2008Zipping/Unzipping two lists

zip            :: [a] -> [b] -> [(a, b)]

zip []     ys =  []
zip xs [] =  []
zip (x:xs) (y:ys) =  (x,y) : zip xs ys

Ex: zip [1,2] [‘a’,’b’] = [(1,’a’),(2,’b’)]

Unzip        :: [(a,b)] -> ([a], [b])
unzip [] =  []
unzip ((x,y) : ps) =  (x:xs, y:ys)

where
(xs,ys) = unzip ps
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2008
Yet more list functions in the 
Prelude

• Many more list functions in the Prelude:
– Take, drop, (!!), …

• Prelude> take 3 "catflap"
"cat"

• Prelude> drop 2 [‘d',‘r',‘o',‘p']
“op"

• Prelude> “abcde” !! 3
d
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2008Exercises:

• Defining the drop function:
– drop 2 [1,2,3,4,5] = [3,4,5]

drop :: Int -> [a] -> [a]

• Defining the init function:
– init [1,2,3,4,5] = [1,2,3,4]    --remove the last element

init :: [a] -> [a]
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2008Mutual Recursion

• Functions that reference to each other
• Example: given a list, selecting even or odd 

positions from it. evens “abcde”
= { apply evens }

’a’ : odds “bcde”
= { apply odds }

’a’ : evens “cde”
= { apply evens }

’a’ : ’c’ : odds “de”
= { apply odds }

’a’ : ’c’ : evens “e”
…

evens::[a]->[a]
odds ::[a]->[a]
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2008Mutual Recursion

evens :: [a] -> [a]
evens [] = []
evens (x : xs) = x : odds xs

odds :: [a] -> [a]
odds [] = []
odds (_ : xs) = evens xs

•Given a list, selecting even or odd positions from it.
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2008Arithmetic Sequences
• Haskell provides a convenient notation for lists of numbers 

where the difference between consecutive numbers is 
constant.

[1..3]  ⇒ [1,2,3]
[5..1]  ⇒ []

• A similar notation is used when the difference between 
consecutive elements is = 1: Examples:

[1,3..9]  ⇒ [1,3,5,7,9]
[9,8..5]  ⇒ [9,8,7,6,5]
[9,8..11] ⇒ []

Or, in general:
[m,k..n] ⇒ [m,m+(k-m)*1,m+(k-m)*2,· · · ,n]



06/30~-07/04 FP & Types 119

2008

List Comprehension

List comprehensions allow many 
functions on lists to be performed in a 
clear and precise manner
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2008List Comprehension

• Mathematical form
{ x2 | x ∈ {1..5} } 

produces the set {1,4,9,16,25}

• Haskell
> [ x^2 | x<-[1..5] ]
[1,4,9,16,25]

where 
| means “such that”
<- means “is drawn from”; “for each element in”
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2008Generators

• The expression x<-[1..5] is called a generator

• Generators can also use patterns when drawing 
elements from a list. 

Suppose ps is a list of pairs: 
[(1,True), (2,False), (5,False), (9,True)]

If we want to extract all pairs of the form (x, True) then we can 
do this using the generator

> [ x | (x,True)<-ps ]
[1,9]
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2008Generators

• We can also use wildcards in generators
• If we take the same list of pair ps

[(1,True), (2,False), (5,False), (9,True)]
then

> [ x | (x,_)<-ps ]
[1,2,5,9]

extracts the list of the first components of the pairs
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2008Generators

• The library function length is also defined using 
a wildcard within a generator

length :: [a] -> Int
length xs = sum [1 | _<-xs]

• The length is calculated by creating a list that 
contains the value 1 for each element in xs, then 
summing this new list
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2008Multiple Generators

• List comprehensions can have multiple 
generators separated by commas

• We can generate a list of all possible pairings 
of the elements in two lists using
>[(x,y)| x<-[1,2], y<-[8,9] ]
[(1,8),(1,9),(2,8),(2,9)]

• The second generator cycles faster than the 
first generator. 

• Swap the order:
>[(x,y)| y<-[1,2], x<-[8,9] ]
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2008Generators

• A later generator can also depend on the value 
of an earlier generator

• The following list comprehension produces a list 
of all possible ordered pairings of the elements 
of [1..3] in order:

[(x,y)| x<-[1..3], y<-[x..3] ]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
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2008Generators

• Similarly we could define the library function 
concat, which concatenates lists, by using one 
generator to select each list then a second 
generator to select each element within the list

concat :: [[a]] -> [a]
concat xss = [x | xs<-xss, x<-xs]
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2008Guards

• As well as using generators to create sets, we 
can also use guards to filter the values produced 
by generators

• If a guard is True then the value is retained, 
otherwise it is discarded

> [x | x<-[1..10], even x]
[2,4,6,8,10]

• The function even x is the guard function
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2008Guards

• Similarly we can produce a function that maps a 
positive integer to its list of positive factors

factors :: Int -> Int
factors n = [x | x <-[1..n], 

n ‘mod‘ x==0 ]

• So
> factors 15
[1,3,5,15]
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2008Guards

• We can extend this to find primes, as a prime is 
a number whose only factors are 1 and the 
number itself

prime :: Int -> Bool
prime n = length (factors n == 2)

So
> prime 15 > prime 7
False True
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2008Guards

• We can use guards to implement a look-up table 
where a list of pairs of keys and values 
represents the data

• If the keys are of an equality type then we can 
create a function find that returns a list of all 
values associated with a given key



06/30~-07/04 FP & Types 131

2008String Comprehensions

• List comprehensions can be used to define 
functions on strings

• The function digits returns the list of integer 
digits from a string

digits :: String -> [Int]
digits xs = [ord x – ord ’0’ | x <- xs,    

isDigit x ]

So
> digits “1*5+3”
[1,5,3]
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2008

An Longer Example An Example:
Computing path distance

P

Q

R
S
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2008Representing a Point

type Point = (Float, Float)

distance :: Point -> Point -> Float

distance (x, y) (x’, y’) = 

sqrt ((x-x’)^2 + (y-y’)^2)

x- and y-coordinates.
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2008Representing a Path

P

Q

R

type Path = [Point]

examplePath = [p, q, r, s]

path_length = distance p q + distance q r 
+ distance r s

S
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2008Two Useful Functions

•init xs -- all but the last element of xs,

•tail xs -- all but the first element of xs.

init [p, q, r, s]  ⇒ [p, q, r]

tail [p, q, r, s]  ⇒ [q, r, s]

zip … [(p,q), (q,r), (r,s)]

sum [1,2,3] ⇒ 6
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2008The pathLength Function

pathLength :: Path -> Float

pathLength xs = sum [ distance p q

| (p,q) <- zip (init xs) (tail xs)]

Example:
pathLength [p, q, r, s] ⇒

distance p q + distance q r + distance r s
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2008

Higher-Order Functions

•Functions take functions as arguments
•Functional values and Lambda Expressions
•Functions return functions as results.
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2008

Write a Haskell function incAll that adds 1
to each element in a list of numbers.

E.g., incAll [1, 3, 5, 9] = [2, 4, 6, 10]

incAll :: [Int] -> [Int]

incAll [] = []
incAll (n : ns) = n+1 : incAll ns

A Motivating Example
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2008

• Write a Haskell function lengths that 
computes the lengths of each list in a list of 
lists.

E.g., 
lengths [[1,3], [], [5, 9]] = [2, 0, 2]
lengths ["but", "and, "if"]] = [3, 3, 2]

lengths :: [[a]] -> [num]

lengths [] = []
lengths (l : ls)

= (length l) : lengths ls

A Motivating Example,
cont’d
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2008Similarity and Abstraction

incAll [] = []
incAll (n : ns) = (+) n 1    : incAll ns

lengths (l : ls)  = (length l) : lengths ls
lengths [] = []

f (hd l)  : recCall (tail l)

[f l1, f l2, … f ln] 

l = [l1, l2, … ln]: 

Let f be (+) or length:



06/30~-07/04 FP & Types 141

2008

• Given a function and a list (of appropriate 
types), applies the function to each element of 
the list.

map :: (a -> b) -> [a] -> [b]

map f [] = []
map f (x : xs) = (f x) : map f xs

List map function 

[f l1, f l2, … f ln] [l1, l2, …,ln] 
map f
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2008
Using map

incAll = map (plus 1)
where plus m n = m + n

lengths = map (length)

Note that plus :: Int -> Int -> Int, 
so

(plus 1) :: Int -> Int.

Functions of this kind are sometimes referred to
as partially evaluated (applied).

map :: (a -> b) -> [a] -> [b]



06/30~-07/04 FP & Types 143

2008Partial Applications

Any function may be called with fewer arguments 
than it was defined with.

The result is a function of the remaining arguments.

If f ::Int -> Bool -> Int -> Bool

then f 3 :: Bool -> Int -> Bool

f 3 True :: Int -> Bool

f 3 True 4 :: Bool



06/30~-07/04 FP & Types 144

2008
Bracketing Function Calls 
and Types

We say function application “brackets to the left”

function types “bracket to the right”

If f ::Int -> (Bool -> (Int -> Bool))

then f 3 :: Bool -> (Int -> Bool)

(f 3) True :: Int -> Bool

((f 3) True) 4 :: Bool

Functions really
take only one
argument, and

return a function
expecting more

as a result.
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2008Another HoF: List filtering

p?
a, b, c, …. z a’, b’, c’…

if p? w, send w to output

filter even [1,2,3,4,6]  = [2,4,6]

even x = x ‘mod’ 2 == 0

filtr :: (a -> Bool) -> [a] -> [a] 
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2008Lambda Expressions

• Functions can also be defined using lambda 
expressions

• These are nameless functions made up of 
– A pattern for each of the arguments
– A body that shows how the result can be calculate 

from the arguments
• These are shown in Haskell using \ or 

mathematically using λ
Example:  \x  -> (x, x, x)

\ parameter -> body
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2008Lambda Expressions

• The square function could also be implemented 
as a lambda expression

\x -> x * x

• Lambda expressions can be used in the same 
way as other functions

> (\x->x*x) 2
4

map square    
[1,2,4]

≡

map (\x->x*x) 
[1,2,4]

filter (\x -> x `mod` 2 ==0) [2,3,5,6,7]

-> has lowest precedence, extends to the right
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2008Lambda Expressions

• Lambda expressions can also be used to show 
the meaning of curried expressions

add x y = x + y
can be understood as

add = \x -> (\y -> x + y)

which shows that the function takes a number x
which returns a function which in turn takes 
another number y and returns the sum of the two 
numbers
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2008

More About Functional Values

•Functions returning functions
•Partial Application
•Curried Functions
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2008Sections

Haskell distinguishes operators and functions:
operators have infix notation (e.g. 1 + 2),
while functions use prefix notation (e.g. plus 1 2).

Operators can be converted to functions by putting
them in brackets:  (+) m n = m + n.

Sections are partially evaluated operators.  E.g.:

• (+ m) n  =  m + n
• (0 <) x  =  0 < x
• (0 :) l     =  0 : l
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2008Using map More

squareAll = map (^2)
squareAll [1,2,3,4] = [2,4,9,16]

•What do the following functions do?

2. stringify = map (: [])

stringify :: [Char] -> [String]

1. addNewlines = map (++ "\n")
addNewlines :: [[Char]] -> [[Char]]
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2008
Functions Returning 
Functions

• Another view of partial application: functions 
returning functions. Example:

makeAdder :: Int->(Int->Int)
makeAdder n = \x -> x+n

or
makeAdder = \n -> \x -> x+n

incAll: [Int]->[Int]
incAll = map (makeAdder 1)

•makeAdder n: creates a function add n to its argument
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2008
Currying

There is a one-to-one correspondence between 
the types (A,B) -> C and  A -> (B -> C).

Given a function  f :: (A,B) -> C , 
its curried equivalent is the function

curriedF :: A -> B -> C

curriedF a b  =  f (a,b)



06/30~-07/04 FP & Types 154

2008Currying in Haskell

•Haskell functions are implicitly curried; 
multiple arguments can be applied one 
at a time.

plus x y = x + y

plus1 =  plus 1

plus1 5 = 6

•But add (x, y) = x + y
requires a pair of arguments:  add(1, 5)
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2008

fold (reduce) functions
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2008Motivating Examples

concat :: [[a]] -> [a]
concat []   = []
concat (xs:xss) =  xs ++ xss

concat [[2,5], [], [26,14]]= [2,5,26,14]

product :: [Int] -> Int
product [] = 1
product (n : ns) = n * product ns

product [2,5,26,14] = 2*5*26*14 = 3640

1. product: multiplies all the elements in a list of 
numbers together. 

2. concat: Concatenate multiple lists 
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2008Folding

A general pattern for the functions product and
concat is replacing constructors with operators.
For example, product replaces : (cons) with *
and [] with 1:

1 : (2 : (3 : (4 : [])))

1 * (2 * (3 * (4 * 1)))

[2,5] : ([] : ([3,4] : []))

[2,5] ++([] ++([3,4] ++[]))

•concat replaces : (cons) with ++ and [] with []:
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2008Folding Right

Haskell has a built-in function, foldr, that does
this replacement:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

(*) 1  (2 * (3 * (4 * 1)))

recusive callproduct = foldr (*)  1

concat = foldr (++) []
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2008Visualizing  foldr

f, 0
a

b
c

d
e []

f
f

f
f

f

0

a
b

c
d

e

foldr (–) 0 [1,2,3,4,5] = (1-(2-(3-(4-(5-0))))) 
= 3

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)
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2008Folding Left

Another direction to fold: foldl:

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

• product  = foldl (*) 1
•concat = foldl (++) []

•foldl max 0 [1,2,3] = 3
where max a b = if a > b then a else b
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2008Folding Left (reduce)

f, 0
a

b
c

d
e []

f
f

f
f

f

0

e
d

c
b

a

foldl (–) 0 [1,2,3,4,5] = (((((0-1)-2)-3)-4)-5)
= -15

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs
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2008Reversing a list using foldr

reverser   :: [a] -> [a]
reverser = foldr snoc []

where snoc x xs = xs ++ [x]

f
f

f
f

f

[]

a
b

c
d

e

f
f

f
f

[e]

a
b

c
d

Add ‘e’ to the end of [] 

--O(N2)
--Add ‘x’ to the end of xs

f
f

f

[e,d]

a
b

c
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2008Reversing a list using foldl

reversel :: [a] -> [a]
reversel = foldl cons []

where cons xs x = x : xs

f
f

f
f

f

[]

e
d

c
b

a

f
f

f
f

[a]

e
d

c
b

--O(N)

f
f

f

[b, a]

e
d

c

add a to the front of [] 
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2008Specialized fold

foldr1 :: (a -> a -> a) -> [a] -> a

foldl1 :: (a -> a -> a) -> [a] -> a

foldr1 (/) [8,12,24,4] = 4.0 

foldl1 (/) [64,4,2,8] = 1.0 

/
/

/8
12

24 4

/
/

/

464

2
8
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Combing Map and Reduce
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2008
Consider the three 
sums

•1 + 2 + … + 100  =  (100 * 101)/2

•1 + 4 + 9 + … + 1002 =  (100 * 101 * 102)/6

•1 + 1/32 + 1/52 + … + 1/1012 = π2/8

In mathematics they are all captured 
by the notion of a sum:

∑
=

100

1

2

k

k

∑
=

100

1k

k

∑
=

−
101

,1

2

oddk

k

∑
∈lx

xf )(

Can we express this abstraction directly?
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2008
Look at the three 
functions

∑
=

100

1k

k
sumIntegers k n  =

if k > n  then 0 else
k  +  (sum-integers (k+1) n)

= sum-integers 1 100

∑
=

100

1

2

k

k
sumSquares k  n  =

if k > n  then 0 else
(square k) + (sum-squares (k+1) n)

= sum-squares 1 100

piSum k  n  =  
if k > n  then 0 else
(1/(square k)) + (pi-sum (k+2) n)

∑
=

−
101

,1

2

oddk

k = pi-sum 1 101
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2008

Abstraction from the 
three functions

sum f next k n  =
if k > n then 0 else

(f k) +
sum f next (next k) n  

∑
∈lx

xf )(
sumIntegers k n  =

if k > n  then 0 else
k  +  (sum-integers (k+1) n)

sumSquares k  n  =
if k > n  then 0 else

(square k) + (sum-squares (k+1) n)

piSum k  n  =  
if k > n  then 0 else
(1/(square k)) + (pi-sum (k+2) n)

•sumIntegers = sum (\x->x) (+1)

•sumSquares = sum (\x->x^2) (+1)

•piSum = sum si (+2)
where si x = 1/(x*x)

Id x = x
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2008Using map and reduce

To implement summation:

sum f l = foldl (+) 0 (map f l)

E.g.,
Σ(x):   > sum (\x->x) [1, 2, 3]

value: 6
Σ(x2):   > sum (\x->x*x) [1, 2, 3]

value: 14

∑
∈ lx

xf )(
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2008Google is using FPL, too

2004 
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2008
Function Composition

compose ::
(b -> c) -> (a -> b) -> a -> c

compose f g x = f (g x)

There is a Haskell operator . that implements
compose:

infixr . 9
(f . g) x = f (g x)

Function composition is a higher-order function. 

g fx
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2008Composition Example

Define a function count which counts the number 
of lists of length n in a list L:

count 2 [[1],[],[2,3],[4,5],[]] = 2

Using recursion:
count :: Int -> [[a]] -> Int
count [] = 0
count n (x:xs)

| length x == n = 1 + count n xs
| otherwise     = count n xs

Using functional composition:

count’ n = length . filter (==n) . map length
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2008Composition Example

double :: [Int] -> [Int]
double xs = map (* 2) xs

•Double the numbers in a list

positive :: [Int] -> [Int]
positive xs = filter (0<) xs

•Remove negative numbers from a list

•Double the positive numbers in a list
doublePos :: [Int] -> [Int]
doublePos xs = map (* 2) (filter (0<) xs)

or
doublePos = map (* 2) . filter (0<)
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2008

Defining New Data Types

• Enumerated types
• Parameterized types
• Recursive types
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2008Type Declarations

•A new name for an existing type can be defined 
using a type declaration.

type String = [Char]
--String is a synonym for the type [Char].

•Type declarations can be used to make other types 
easier to read.  For example, given

type Pos = (Int,Int)

left  :: Pos → Pos
left (x,y) = (x-1,y)

•We can define 
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2008Type Declarations

• Like function definitions, 
type declarations can 
also have parameters.  
For example, given

• Type declarations can be 
nested:

we can define:
bits  :: Pair Int
bits   = (0,1)

copy  :: a → Pair a
copy x = (x,x)

type Pair a = (a,a)

type Pos   = (Int,Int)
type Trans = Pos → Pos

• However, they cannot be 
recursive:

type Tree = (Int,[Tree])
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2008Defining New Types

• Enumerated

• Parameterized (polymorphic)

• Recursive

data Bool = False | True

data Maybe a = Nothing | Just a

Data List a = Nil | Cons a (List a)
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2008Enumerated

data Bool = False | True

Bool is a new type, with two new 
values False and True.

Example:

•data is a keyword - defines a new  (algebraic) data type.
•Bool is the type name.
•True, False are constructors.
•True:: Bool, False ::Bool
•The type name and constructors must begin with an upper 
case letter.
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2008

answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip        :: Answer → Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways 
as those of built in types.  For example, given 

Enumerated
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2008

The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float
| Rect Float Float

square         :: Shape
square          = Rect 1 1

area           :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Enumerated
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2008Continued:

• Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.

• Circle and Rect can be viewed as functions that 
simply construct values of type Shape:

Circle :: Float → Shape

Rect   :: Float → Float → Shape

data Shape = Circle Float
| Rect Float Float
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2008

Not surprisingly, data declarations themselves can 
also have parameters.  For example, given

data Maybe a = Nothing | Just a

zero :: Maybe Int
zero  = Just 0

app  :: (a → b) → Maybe a → Maybe b
app f Nothing  = Nothing
app f (Just x) = Just (f x)

we can define:

Parameterized 
(Polymorphic)
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2008Recursive Types

In Haskell, new types can be defined in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat → Nat.

Nat contains the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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2008
Modeling 
Arithmetic Expressions

1

+

∗

32

1 + (2 * 3)
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2008Arithmetic Expressions

• We can define a suitable new recursive type to 
represent these expressions

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

• So the tree for 1 + 2 * 3 could be represented as
Add (Val 1) (Mul (Val 2) (Val 3))
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2008Arithmetic Expressions

• We can define recursive functions to process 
expressions

size :: Expr -> Int
size (Val n) = 1
size (Add x y) = size x + size y

eval :: Expr -> Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
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2008Binary Trees

In computing, it is often useful to store data in a 
two-way branching structure or binary tree.

5

7

96

3

41
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Using recursion, a suitable new type to represent 
such binary trees can be defined by:

For example, the tree on the previous slide would 
be represented as follows:

data Tree = Leaf Int
| Node Tree Int Tree

Node (Node (Leaf 1) 3 (Leaf 4))
5
(Node (Leaf 6) 7 (Leaf 9))

Binary Trees
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2008Binary Trees

• The function flatten returns the list of all integers
contained in the tree

flatten ::Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l n r)= flatten l

++ [n]
++ flatten r

• If the tree flattens to an ordered list then the tree 
is a search tree

• Our example flattens to [1,3,4,5,6,9]
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2008

We can define a function find that decides if a given 
integer occurs in a binary tree:

find               :: Int → Tree → Bool
find x (Leaf n)     = x==n
find x (Node l n r) = x==n

|| find x l
|| find x r

However, this function simply traverses the entire tree, and 
hence for our example tree may require up to seven 
comparisons to produce a result.

Searching a Binary Tree
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2008

Search trees have the important property that when 
trying to find a value in a tree we can always 
decide which of the two sub-trees it may occur in:

For example, trying to find any value in our search 
tree only takes at most three comparisons.

find x (Leaf n)            = x==n
find x (Node l n r) | x==n = True

| x<n  = find x l
| x>n  = find x r

Binary Search Trees
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2008

Lazy Evaluation
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2008Haskell is Lazy

Haskell only evaluates a sub-expression if it's
necessary to produce a result.

This is called lazy (or non-strict) evaluation

Main> head []
program error: empty argument list

Main> fst (0, head [])
0
Main>
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2008Patterns Force Evaluation

Haskell will evaluate a subexpression to test if
it matches a pattern.  Suppose we define:

Main> myFst (0, maxList [])
program error: empty argument list
Main>

myFst (x, 0) = x
myFst (x, y) = x

Then the second argument is always evaluated:
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2008Lazy But Productive

Haskell will produce as much of a result
as possible:

Main> [1, 2, div 3 0, 4]
[1,2,
program error: [primQrmInteger 3 0]

Main> map (1/) [1, 2, 0, 7]
[1.0,0.5,
program error: [primDivDouble 1.0 0.0]
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2008Lazy Evaluation

Lazy evaluation: a sub-expression is evaluated
only if it is necessary to produce a result.

The Haskell interpreter implements
topmost-outermost evaluation:

Rewriting is done as near the "top" of the
parse tree as possible.

For example:

reverse (1 : ((f 2) : [])) –-[1, f 2]
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2008Topmost-Outermost

reverse (1 : ((f 2) : []))
⇒

(snoc 1 (reverse ((f 2) : []))
⇒

(reverse ((f 2) : [])) ++ [1]
⇒

((snoc (f 2) (reverse [])) ++ [1]
⇒

((reverse []) ++ [(f 2)]) ++ [1]

reverse (n : ns) = snoc n (reverse ns)
snoc h tl = tl ++ [h]
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2008Topmost-Outermost

((reverse []) ++ [(f 2)]) ++ [1]
⇒

([] ++ [(f 2)]) ++ [1]
⇒

[(f 2)] ++ [1]
⇒

[(f 2),1]

(f 2) is not evaluated!
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2008Infinite Lists

Haskell has a "dot-dot" notation for lists:
Main> [0..7]
[0,1,2,3,4,5,6,7]

The upper bound can be omitted:

Main> [1..]
[1,2,3,4,5,6,7, ...
...
2918,2919,291<<not enough heap space --
task abandoned>>
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2008Using Infinite Lists

Haskell gives up displaying a list when it runs out
of memory, but infinite lists like [1..] can be
used in programs that only use a part of the list:

Main> head (tail (tail (tail [1..])))
4

This style of programming is often summarized
by the phrase "generators and selectors"
• [1..] is a generator
• head.tail.tail.tail is a selector
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2008Generators and Selectors

Because Haskell implements lazy evaluation,
it only evaluates as much of the generator
as is necessary:

Main> head (tail (tail (tail [1..])))
5
Main> reverse [1..]
ERROR - Garbage collection fails to 
reclaim sufficient space
Main>
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2008Another Selector

The built-in function takeWhile returns the
longest initial segment that satisfies a property p:

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x : xs)

| p x       = x : takeWhile p xs
| otherwise = []

Main> takeWhile (<10) [1, 2, 13, 3]
[1,2]
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2008Selectors

Note that evaluation of takeWhile stops as soon
as the given property doesn't hold, whereas
evaluation of filter only stops when the end of
the list is reached:

Main> takeWhile (<10) [1..]
[1,2,3,4,5,6,7,8,9]

Main> filter (<10) [1..]
[1,2,3,4,5,6,7,8,9

ERROR!



06/30~-07/04 FP & Types 204

2008Eratosthenes' Sieve

A number is prime iff
• it is divisible only by 1 and itself
• it is at least 2

The sieve:
• start with all the numbers from 2 on

•delete all multiples of the first number
from the remainder of the list 

•repeat
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2008Eratosthenes' Sieve

primes :: [Int]
primes = sieve [2..]
where
sieve (x:xs) = 
x : sieve [ y | y <- xs, y `mod` x /= 0 ]

Main> take 5 primes
[2,3,5,7,11]
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2008Never-Ending Recursion

The expression [n..] can be implemented
generally by a function:

natsfrom :: num -> [num]
natsfrom n = n : natsfrom (n+1)

Main> natsfrom 0
[0,1,2,3,....

Main> take 3 (natsfrom 0)
[0,1,2]

This function can be invoked in the usual way:

ERROR!
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2008Iterate

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Main> iterate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024,...

Main> iterate (drop 3) ”abcdef”
[”abcdef”, ”def”, ””, ””, ...

-- iterate f x == [x, f x, f (f x), ...] 
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2008
Problem: Grouping List 
Elements
group :: Int -> [a] -> [[a]]
group = ?

Main> group 3 ”apabepacepa!”
[”apa”,”bep”,”ace”,”pa!”]

group :: Int -> [a] -> [[a]]
group n = takeWhile (not . null)

. map (take n)

. iterate (drop n)

Hint: map (take 3) (iterate (drop 3) ”abcdef”)
=> map (take 3)[”abcdef”, ”def”, ””, ””, ...
=> [”abc”, ”def”, ””, ””, ...
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2008More to learn about Haskell

• Type classes 
• Constructor classes
• IO Monads
• State handing in a monadic style 
• …
• Various research-oriented  extensions in 

GHC
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Unit 2: Type Systems for FP

Part I: the       Calculus

The foundation of all FP languages.

λ
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2008The λ-Calculus

The λ-calculus was developed by 
the logician Alonzo Church in 
1930’s as a tool to study 
functions and computability.
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2008
λ-calculus in Computer 
Science

• Computability
• λ-definability, Church 1930’s
• Equivalent to Turing Machines, Turing 1937
• Equivalent to recursive functions, Kleene 1936

• Programming languages, 1960’s
• Naming, functions
• Lisp, Algol 60, ISWIM

• Language theory, 1970’s
• Semantics: operational and denotational
• Type systems
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2008
Original Aims of the 
λ-calculus

• A foundation for logic (1930’s)
– failed

• A theory of functions (Church 1941)
– model for computable functions

• Success 30 years later in Computer 
Science!
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2008The Next 700 PL’s

Peter Landin develops ISWIM, the first 
pure functional language, based strongly 
on the lambda calculus, with no 
assignments.

“ Whatever the next 700 languages 
turn out to be, they will surely be 
variants of lambda calculus.”

(Landin 1966)
Lambda calculus with constants
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2008Lambda Calculus: Variants

• The pure lambda calculus (LC) is a untyped
language composed entirely of functions

• The simply typed lambda calculus (SLC)

• The polymorphic typed lambda calculus (PLC)

• …
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2008Pure Untyped λ-calculus

• Syntax is simple: 

– M,N : := x   |   λx.M   |   M N
↑ ↑ ↑

variable    abstraction    application

• No types: e.g., (λx.x)y; (λx.x)(λx.x)

• No numbers or operations
• can be added
• values are function abstractions

• Functions are nameless
– No “let f = λx.M in N”

•M,N are called λ-terms or λ-expressions
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2008Syntax of λ-Terms

• Examples:
– λx.x : the identity function
−(λy. λx. x) f g: discards the first argument

• Notational conventions:
– applications associate to the left  (like in Haskell):

• “y z x” is “(y z) x”
– the body of a lambda extends as far as possible to the 

right:
• “λx.x λz.x z x” is     “λx.(x λz.(x z x))”

– “λx. λy. x y” often abbreviates to “λx y. x y”
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2008Terminology

• Bound variables (parameters)
• Free variables
• Example:

• λx.x y

x is bound
in the term λx.x y 

y is free in the term λx.x y
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2008Terminology

• λx.M

• λx.x y

the scope of x is the term M

x is bound
in the term λx.x y 

y is free in the term λx.x y

FV(x) = {x}
FV(λx.M) = FV(M) \
{x}
FV(M N) = FV(M) ∪
FV(N)
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2008Open                 Closed

– FV(E) ≠ {}

– xz
– λx.xz
– (λx.x)y
– (λy.(λx.xz)y)w

– FV(E) = {}

– λx.x
– λx.λy.xy
– (λx.x)(λy.y)
– λf.λg.λx.f x (g x)

• Ex. Underline the bound variables
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2008Evaluating λ- Terms

• Function application is straightforward:

(λx.(f x)) y --> f y

substitute y for x in (f x)

•Reduce all applications (λx.L)N

•Until none can be found
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2008Evaluating λ- Terms 

M [N/x] is the term in which 
all free occurrences of x in M
are replaced with N.

This replacement operation 
is called substitution. we 
will define it carefully later in 
the appendix

(λx. x x) (λy. y)

--> x x [λy.y / x]

== (λy. y) (λy. y)

--> y [λy.y / y]

== λy. y

•β-reduction

β

β
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2008Examples of β-reduction 

1. (λ x . x) a →β a

2. (λ x . λ y . x) a b →β (λ y . a) b →β a

3. (λ x . x a) (λ x . x)  →β (λ x . x) a  →β a

4. (λ x . λ y . x y) y →β (λ y . y y) 

[a/x]

[a/x] [b/y]

[λx.x/x] [a/x]

[y/x] Name capturing error!
y Become bound
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2008A Similar Example in C Macro

• Name capturing problem in macro expansion
#define swap(X,Y) [ int tmp=X; X=Y; Y=tmp; ]

int a, b; 
a = 5; 
b = 10;
swap(a, b);

=>

[int tmp=b; b=a; 
a=tmp;] 

OK

int a, tmp; 
a=5;
tmp = 10;
swap(a, tmp);

=>

[int tmp=a; a=tmp;
tmp=tmp; ] 

oops! tmp got trapped
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2008
Renaming Bound 
Variables
• Names of bound variables (parameters) do not 

matter.
• Example: λx. x =α λy. y =α λz. z

– But NOT:
λy. x y  =α λy. z y

• This is called α conversion in lambda calculus
 λx . E =α λz . E[z/x] (z is not free in E)

 λy. x y[x/y]  will make the “free” x captured.
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2008Example Revisited

4. (λ x . λ y . x y) y →β λ y . y y

4. (λ x . λ y . x y) y →α (λ x . λ z . x z) y 
→β (λ z . y z) 

[y/z]

y Become bound

Renaming the bounded y
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2008Normal Forms

• Evaluation via β-reduction
• Terms (λx.L)N are called β-redexes

• β-normal form = no β-redexes

• (λx.xx)y ← a β-redex

• →β yy ← β-normal form

• Not all λ-terms have β-nf
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2008An example with no NF

(λx. x x) (λx. x x)
--> x x [λx. x x/x]
== (λx. x x) (λx. x x)
--> … looping, no normal form

• In other words, it is simple to write 
non-terminating computations in the lambda 
calculus

β

Ω = (λx. x x)

ΩΩ has no β-nf
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2008Evaluation Strategy (Order)

• A term may have many redexes:

(λx.(λy.y)z) ((λz.z)w)

• Which application first?
• Does it matter?
• Yes: 

– Full Beta Reduction
– Normal Order
– Call-By-Name (CBN)
– Call-By-Value (CBV) (Applicative Order), etc.
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2008Full Beta Reduction

• Any redex can be chosen, and evaluation 
proceeds until no more redexes found.

• For example, 

(λx.(λy.y)z) ((λz.z)w)
-->β (λx.z) ((λz.z)w)
-->β z
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2008Normal Order Reduction

• Deterministic strategy which chooses the 
leftmost, outermost redex, until no more redexes.

• Example: 

(λx.(λy.y)z) ((λz.z)w)
-->β (λy.y)z
-->β z
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2008Why Not Normal Order? 

• In most (all?) programming languages, functions 
are considered values (fully evaluated)

• Thus, no reduction is done inside of functions 
(under the lambda)

λx. M is a value, not reducible

• No popular programming language uses normal 
order
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2008Call by Name; Call by Value

• Consider the application: (λx. E)  e1

• Call by value: evaluate the argument e1 to a 
value before β reduction

• Call by name: reduce the application, without
evaluating e1

• In both cases: a lambda abstraction: λx. E
is a value.
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2008Call-By-Name/Call-By-Value

• CBN example • CBV example

id (id (λz. id z))

→β id (λz. id z)

→β λz. id z

(id (id (λz. id z))

→ id (λz. id z)

→ λz. id z 

where id = λx.x
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2008
Order of Evaluation May 
Matter Much

• CBV (Inner redex):
(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β

(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β . . .

• CBN (Outer redex):
(λ y . λ z . z) ((λ x . x x) (λ x . x x)) →β

(λ z . z)

1st sequence is infinite. 2nd has normal form.
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2008Normalization Theorem

If a λ-expression E has a normal form, then 
the normal order strategy will terminate in a 
normal form.  (Curry & Feys, 1958)

Church-Rosser Corollary

The normal form of a λ-expression, 
if it exists, is unique. 

E

E1 E2

nf
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2008Comparison

• The call-by-value strategy is strict
• The arguments to functions are always 

evaluated, whether or not they are used by the 
body of the function

• Non-strict (or lazy) strategies evaluate only the 
arguments that are actually used
– call-by-name
– call-by-need
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2008LC and Type Theories 

R = {  X  |  X ∉ X },      is    R ∈ R?

Ω=(λx.x x), Ω Ω has no NF

•Russell’s paradox:

•Russell developed type theory,
attempting to solve the paradox.

•Church encounters similar
issues in pure LC:

•Church proposed the 
simply typed LC (1941)



06/30~-07/04 FP & Types 241

2008

Lambda Calculus and 
Programming Languages

Programming in the Lambda Calculus
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2008We can do everything

• The lambda calculus can be used as an 
“assembly language”

• We can show how to compile useful, high-level 
operations and language features into the 
lambda calculus
– Result = adding high-level operations is convenient

for programmers, but not a computational necessity
– Result = make your compiler intermediate language 

simpler
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2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the 
lambda calculus?

source = lambda calculus + let

target = lambda calculus

translate/compile
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2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the 
lambda calculus?

Example: let f = \x.xz in \y.f (f y) 

( \f.\y.f (f y) )(\x.xz)
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2008Compile the Let Expressions

• Given the let expressions in Haskell
let x = e1 in e2

• Question: can we implement this construct in the 
lambda calculus?

Rule: let f = λx.M in N

(λf.N)(λx.M)

•The let-expr is a kind of syntactic sugar
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2008Encoding Booleans in LC

• We will represent “true” and “false” as functions 
named “true” and “false”
– how do we define these functions?
– think about how “true” and “false” can be used
– they can be used by a testing:  

if b then x else y or as a function: if b x y
if true x y = x
if false x y = y

true x y = x
false x y = y

if  = λtorf . λx. λy . torf x y
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2008Encoding Booleans

• the encoding:

true = λt. λf. t

false = λt. λf. f

if = λx. λthen. λelse. 
x then else

if  true (λx.t1) (λx.t2) 

= (λx. λthen. λelse. x then else)   
(λt. λf. t) (λx.t1) (λx.t2)

-->* (λt. λf. t) (λx.t1) (λx.t2) 

-->* λx.t1

β

β
-->* Zero or more steps of beta 

reduction
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2008Encoding Booleans

true = λt. λf. t                false = λt. λf. f
and = λb. λc. b c false

and true true
-->* true true false 
-->* true

and false true 
-->* fals true false 
-->* false

β omitted
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2008
Encoding Natural Numbers 
in Lambda Calculus
• A natural number is a function that given an 

operation f and a starting value s, applies f a 
number of times to s:

0 =def λf. λs. s
1 =def λf. λs. f s
2 =def λf. λs. f (f s)

…

Church numerals

n  =def λf.λs. fn s
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2008
Computing with Natural 
Numbers
• The successor function

succ n =def λf. λs. f (n f s)
• Addition

add n1 n2 =def n1 succ n2

• Multiplication
mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
iszero n =def n (λb. false) true
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2008
Computing with Natural 
Numbers. Example

Given: succ n =def λf. λs. f (n f s)
0 =def λf. λs. s
1 =def λf. λs. f s

succ 0  =  
(λn.λf. λs. f (n f s)) 0 = 
(λn.λf. λs. f (n f s)) (λf. λs. s) →
(λf. λs. f ((λf. λs. s) f s) →
(λf. λs. f ((λs. s) s) →
λf. λs. f s = 1
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2008
Computing with Natural 
Numbers. Example

mult 2 2 →
2 (add 2) 0 →
(add 2) ((add 2) 0) →
2 succ (add 2 0) →
2 succ (2 succ 0) →
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) →
succ (succ (succ (λf. λs. f s))) →
succ (succ (λg. λy. g ((λf. λs. f s) g y)))
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4
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2008Encoding pairs

• would like to encode the operations
– mkPair e1 e2
– fst p
– snd p

• pairs will be functions
– when the function is used in the fst or snd operation it 

should reveal its first or second component 
respectively



06/30~-07/04 FP & Types 254

2008Encoding Pairs 

• A pair is a function that given a Boolean returns 
the left or the right element
mkpair x y  =def λ b. x y
fst p            =def p true
snd p          =def p false

• Example:
fst (mkpair x y) → (mkpair x y) true → true x y → x
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2008and we can go on...

• lists, trees and other datatypes
• recursion, ...
• ...
• the general trick:

– values will be functions – construct these functions so 
that they return the appropriate information when 
called by an operation

•Lambda calculus with predefined constants
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2008

Recursion in the
Lambda Calculus
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2008Recursion in the LC

• The Y combinator
Y ≡ λf.(λx.f(x x)) (λx.f(x x))

• Y has the property: for every function F,
Y F = F(Y F)

• In other words, (Y F) is the fixed point of F
• We can use Y to implement recursion in the LC.
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2008Solution

Y F 
≡ (λf.(λx.f(x x)) (λx.f(x x))) F
→β (λx.F(x x)) (λx.F(x x))
→β F ( (λx.F(x x)) (λx.F(x x)) )
←β F ((λf.(λx.f(x x)) (λx.f(x x))) F)
≡ F (Y F)

So, if we let X ≡ Y F then this tells us
X = F X

in other words, X is a fixed point of F.
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2008Recursion

• Factorial in Haskell:
fact = \n -> if (n==0) then 

1 
else 
(n*(fact (n-1)))

– Ex. Write fact in λ-calculus by using the 
Y combinator.

• Hint: consider the term 
• F ≡ λf.λn.if (isZero n) 1 (n*f (pred n))

• Ex. Evaluate fact 0, fact 1 and fact 2.
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2008Solution

fact ≡ Y F 
≡ Y ( λf.λn.if (isZero n) 1 (n*(f (pred

n))) )

fact 2 
= Y F 2
= F (Y F) 2
= (λf.λn.if (isZero n) 1 (n*(f (pred n)))) (Y F) 2
= (λn.if (isZero n) 1 (n*((Y F) (pred n)))) 2
= if (isZero 2) 1 (2*((Y F) (pred 2)))
= 2*(Y F (pred 2))
= 2*(Y F 1)
= 2*(fact 1)      and so on...
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2008

Appendix: Formal Treatment of 
Substitutions
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2008Name Capturing

– (λx.λy.x)y →β λy.y X

• Replacing doesn’t always work
• But if we α-convert first

– (λx.λy.x)y ≡α (λx.λy’.x)y 
– →β λy’.y

• Now define substitution M[N/x] to do this 
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2008Substitution M[N/x]

– x[N/x] ≡
– y[N/x]       ≡ (y≠x)
– (PQ)[N/x]    ≡
– (λx.L)[N/x]  ≡
– (λy.L)[N/x]  ≡ (y≠x)

• Hint: Take care with (λy.L). Consider the cases
– y∉FV(L) and y∉FV(N) and only rename y when 
necessary.
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2008Substitution M[N/x]

– We assume that y≠x throughout.  
– The first three cases are easy.

– x[N/x]      ≡ N
– y[N/x]      ≡ y
– (PQ)[N/x]    ≡ P[x:=N] Q[x:=N]

– In the next case the λx guarantees that x does not 
appear free in the term (λx.L), so there are no free 
occurences to substitute for.

– (λx.L)[N/x]  ≡ λx.L
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2008Substitution M[N/x]

– The final case is the tricky one.

– (λy.L)[N/x]  ≡ λy.L                 , if x∉FV(L) 
– λy.L[N/x]         , if y∉FV(N)
– λy’.L[y’/y’][N/x] , otherwise
– where y’∉FV(L)∪ FV(N)

– If x∉FV(L) then there are no x’s to replace with
– N’s, so the term stays the same.  If y∉FV(N)then 

there will be no y’s accidentally captured by the λy 
so we can keep λy.  But otherwise we must find a 
fresh variable y’ and replace λy by λy’.
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2008

Lambda Calculus with 
Constants and Types
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2008Example: Extended LC

E  ::=  constants: 1, 2, 3, …
succ, iszero
true, false,
&&(and), ||(or), !(not),   

| variable:  x, y, z, …
| λx.E
| E1 E2
| if E1 then E2 else E3

•Lambda calculus with Booleans and natural numbers
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2008
Evaluation Rules for the 
Extended LC

• Based on β-reduction
• Extended to Booleans 

and numbers
• Reduced to values:

– 0, 1, 2, …
– true, false
– λx.E

• Values are normal 
forms.

Some extended rules:
iszero 0        true
iszero (succ n) false

pred 0          0
pred (succ n)   n

if true then e1 else e2
e1

if false then e1 else e2
e2

e1 e2
---------------------
succ e1 succ e2 

...
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2008
Evaluation Rules for the 
Extended LC …

• Not all normal forms are values
– E.g., (x y)

• So, reduction (evaluation) may get stuck
– Got a normal form, but not a value. For example:

(λx. succ x) true succ true ??

Reproduce it in LC:
succ true = (λn.λf.λs.f (n f s))(λt.f.t)

λf.λs.f ((λt.f.t) f s)
λf.λs.f f  --Not a number! 
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2008Introducing Types

• Def: a term is stuck if it is in normal form and 
not a value

• Stuck terms model runtime errors
– “succ true”

• It’s a kind of type error!
• A key goal of types and type systems will be to 

remove such runtime errors
– Int = [ 0, 1, 2, … ], succ, pred, …
– Bool = [ true, false], and, or, not
– We cannot mix  Int with Bool values arbitrarily.
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2008

Lambda Calculus with 
Constants and Types

Based on the Simply Typed 
Lambda Calculus (SLC)
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2008Function Types

We introduce function types: A → B is the type of functions with
a parameter of type A and a result of type B. 
Types are defined by this grammar:

T ::= Int
| Bool
| T → T

By convention,  → associates to the right, so that
A → B → C means  A → (B → C).

Examples: Int → Int → Int curried function of two arguments

(Int → Int) → Int function which is given a function
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2008Types and Type Errors

We type the succ function and Boolean value true as

succ : Int -> Int
true : Bool

Then “succ true”

is not acceptable!

We’ll introduce typing rules to filter out
(type checking) such expressions.

f : T1 -> T2
e : T1

------------------
f e : T2
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2008
Lambda Calculus
with Types
To make it easier to define the typing rules, we will modify the
syntax so that a λ-abstraction explicitly specifies the type of its
parameter.

v ::= integer literal
| true | false
| λx:T.e

e ::= v
| x
| e + e | e == e | e && e | if e then e else e
| e e

T ::= Int
| Bool
| T → T

•And more operators, such
as ‘+’, ‘==‘, ‘&&’

values

expressions

types

Type declaration
for parameters
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2008Examples of Expressions

2, true, x

x+20-y*5

(x>y) || (y>10 && z==1) 

succ (if x==2 then 10 else 20)

if x==2 then 10 else 20

(if (x==0) then f else g) (y+5)
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2008Examples of Functions

λx:Int.x+2

λf:Int->Int.λx:Int.f (f x)

(λf:Int->Int.λx:Int.f (f x)) succ

λx:Int.λf:Int->Int.λg:Int->Int.
if (x==0) then f else g

λb:Bool.λx:Int.if b then x else -x
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2008
Type Checking for
Function Application

• In function application, the type of the argument 
must be the same with that of the parameter.

e1 : T1 -> T2
e2 : T1

-------------------
e1 e2 : T2

(λf:Int->Int.λx:Int.f (f x)): (Int->Int)->Int
succ: Int->Int

--------------------------------------------
(λf:Int->Int.λx:Int.f (f x)) succ : Int

(premises, or
assumptions)

(conclusion)
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2008

Determining the Type of an 
Expression 

Type Checking: Does e has a type τ?

τ ::= Int
| Bool
| τ1 → τ2

•τ is a meta-variable
representing a type
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2008Type Judgments

• A type judgment has the form
Γ |- exp : τ

• Γ is a typing environment
– Supplies the types of variables and functions
– Γ is a list of the form [ x : τ, . . .]

• exp  is a program expression
• τ is a type to be assigned to exp

• |- pronounced “turnstyle”, or “entails” (or 
“satisfies”)

“exp has type τ under TE Γ”
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2008
Example Valid Type 
Judgments

• [ ]                           |- true or false : Bool

• [ x : Int]                  |- x + 3 : Int

• [ p : Int -> String ]  |- (p 5) : String

•Type judgments are derived via typing rules.
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2008Format of Typing Rules

Assumptions:
Γ1 |- exp1 : τ1 . . . Γn |- expn : τn

Γ |- exp : τ

• Idea: Type of expression determined by type of 
its syntactic components

• Rule without assumptions is called an axiom
• Γ may be omitted when not needed

Conclusion:



06/30~-07/04 FP & Types 282

2008Axioms - Constants

|- n : Int (assuming n is an integer constant)

|- true : Bool |- false : Bool

• These rules are true with any typing 
environment

• n is a meta-variable
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2008Typing Environment

•We view a TE as a finite fun from identifiers to types
Γ : Ide Type

•A typing environment Γkeeps track of the types of 
free identifiers occurred in expressions

Γ = […, x:Int, f:Int->Int, …]

Γ’= […, x:Int, f:Int->Int, x:Bool, …]

So, given Γ as above, Γ(x) = Int

•No multiple bindings for any id:
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2008Axioms - Variables

Γ |- x : τ

•Typing rule for variables: (Var)

if  Γ(x) = τ

•We can also include the types for pre-defined
identifiers (functions) in Γ. For example:

• Γ = […, succ:Int->Int, …] 
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2008
Simple Rules -
Arithmetic

Primitive operators ( ⊕ ∈{ +, -, *, …}):
Γ |- e1 : Int Γ |- e2 : Int

Γ |- e1 ⊕ e2 : Int

Relations ( ˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : Int Γ |- e2 : Int

Γ |- e1 ˜ e2 :Bool
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2008Simple Rules - Booleans

Logical Connectives: 

Γ |- e1 : Bool Γ |- e2 : Bool
Γ |- e1 && e2 : Bool

Γ |- e1 : Bool Γ |- e2 : Bool
Γ |- e1 || e2 : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Start building the proof tree from the

bottom up

? 
Γ |- y || (x + 3 > 6) : Bool

Source: Prof. E. Gunter
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

? 
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Booleans: ||

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?                 
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?                 
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for variables

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool



06/30~-07/04 FP & Types 294

2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Arithmetic relations

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for constants

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Arithmetic operations

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for constants

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool



06/30~-07/04 FP & Types 305

2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Pick an assumption to prove

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Which rule has this as a conclusion?

?
Γ |- x : Int Γ |- 3 : Int

Γ |- x + 3 : Int Γ |- 6 : Int
Γ |- y : Bool Γ |- x + 3 > 6 : Bool

Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• Axiom for variables

Γ |- x : Int Γ |- 3 : int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008Simple Example

• Let Γ = [ x:Int ; y:Bool]
• Show Γ |- y || (x + 3 > 6) : Bool
• No more assumptions! DONE!

Γ |- x : Int Γ |- 3 : Int
Γ |- x + 3 : Int Γ |- 6 : Int

Γ |- y : Bool Γ |- x + 3 > 6 : Bool
Γ |- y || (x + 3 > 6) : Bool
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2008If-Expressions

• If_then_else rule:
Γ |- e1 : Bool Γ |- e2  : τ Γ |- e3  : τ

Γ |- (if e1 then e2  else e3) : τ

• τ is a type variable (meta-variable)
– it can take any type at all
– All instances in a rule application must get same type

• I.e., the Then branch, Else branch and 
if_then_else must all have same type
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2008Examples of IF

if x==2 then 10 else 20

if x==2 then 10 else false
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2008Function Application

• Application rule: (App)
Γ |- e1 : τ1 → τ2 Γ |- e2  : τ1

Γ |- (e1 e2) : τ2

• If you have a function expression e1 of type 
τ1 → τ2 applied to an argument of type τ1, the 
resulting expression has type τ2
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2008Application Examples

Γ |- (λf:Int->Int.λx:Int.f (f x)) succ : Int->Int

Γ |- (λf:Int->Int.λx:Int.f (f x)): (Int->Int)->Int->Int
Γ |- succ : Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- if b then f else g : Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- (if b then f else g) 5 : Int
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2008Function Rule

• Rules describe types, but also how the 
environment Γ may change

• λ-fun rule: (Abs)
[x : τ1 ] ∪ Γ |- e : τ2

Γ |- λx.e : τ1 → τ2

We often write Γ.x:T = Γ ∪ [x:T] --extends Γ

•If x ∈ dom(Γ),  then Γ.x:T means that the
new binding of x will  replace the original one.
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2008Function Example

[y : int ] ∪ Γ |- y + 3 : int
Γ |- λy.y + 3 : int → int

[succ:Int->Int].x:Int |- succ: Int->Int
------------------------------------------
[succ:Int->Int ].x:Int |- x: Int
-------------------------------------------App
[succ:Int->Int ].x:Int |- (succ x) : Int
------------------------------------------
[succ:Int->Int]        |- λx.(succ x) : In->Int
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2008Anther Fun Example

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Abs)
Γ |- λf:Int->Int.λx:Int.f (f x)):

(Int->Int)->Int->Int

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Abs)
Γ .f:Int->Int |- λx:Int.f (f x)): Int->Int

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ .f:Int->Int.x:Int |- f (f x)): Int

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ .f:Int->Int.x:Int |- f x: Int

Γ.f:Int->Int.x:Int |- f:Int->Int (Var)

Γ.f:Int->Int.x:Int |- x:Int (Var)

Γ.f:Int->Int.x:Int |- f:Int->Int

Γ |- λf:Int->Int.λx:Int.f (f x)): ?
•Move f and x to Γ
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2008

Γ |- i : Int if i is an integer literal
Γ |- true : Bool Γ |- false : Bool

x:T ∈ Γ
Γ |-- x : T

Γ|- E1:Int  Γ|- E2:Int
Γ|- E1 + E2 : Int

Γ|- E1:Int  Γ|- E2:Int
Γ|- E1 == E2 : Bool

Γ|- E1:Bool  Γ|- E2:Bool
Γ|- E1 && E2 : Bool

Γ.x:T1 |- E: T2
Γ|- λx:T1.E : T1->T2

Typing Rules for the LC 
with Constants & Types

Γ|-E1:Bool  Γ|-E2:T  Γ|-E3:T
Γ|- if E1 the E2 else E3 :T 

Γ|- E1:T1->T2  Γ|- E2:T1
Γ|- E1 E2 : T2

Γ |- x:T type judgement
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2008Typing Built-in Operators/Fun

•Alternative: treat built-in operators like literal
constants, and include their types in Γ

. . .

Γ |- &&   : Bool->Bool->Bool

Γ |- +    : Int->Int->Int

. . .

•Then, no need to have special rules for them

Γ |- succ : Int->Int
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2008Type Safety 

• Well-typed programs won’t get stuck!

• Theorem: If e is a closed expression of type T 
( |- e : T ),  then for all e' such that e ->* e', it is 
the case that either 

(A) e' is a value (say, v') and |- v' : t, or 
(B) exists e'' such that e' -> e''. 

If  |- e0: T, then e0 -> e1 ->e2 -> … -> v
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2008
The Simply Typed Lambda 
Calculus λ→

•The extended lambda calculus is based on the 
simply typed lambda calculus.

•The SLC was originally introduced by 
Alonzo Church in 1940 as an attempt to avoid 
paradoxical uses of the untyped lambda calculus.

•In the SLC, β-reduction is Strong normalizing:
all terms will be evaluated to a normal form.
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2008Limitations of the SLC

• Types are monomorphic.
|-- λx:Int.x+1 : Int->Int is OK

•But what is the type for the identity function?
|-- λx:?. x : ?

|-- λx:Int. x : Int->Int?

|-- λx:Bool. x : Bool->Bool?

|-- λx:Int->Int. x : (Int->Int)->(Int->Int)?

...
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2008Parametric Polymorphism

• Polymorphism:  allow many types for a value 
(hence also for  variable, expression)

• Introducing type variables and ∀ quantification to 
express parametric polymorphism.

|- λx:α.x : ∀α.α -> α

•Let α be a type variables representing any types.
We can type the id function as follows.
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2008Parametric Polymorphism…

Polymorphic type: ∀α.α -> α

The α can be instantiated to any types:

Int -> Int

(Int->Int)->(Int->Int)

Bool -> Bool

...
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2008

The Polymorphic Lambda 
Calculus (PLC)

•Second-Order Lambda Calculus
•System F

A.K.A
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2008Motivating PLC

• Like SLC, use explicit typing for fun parameters
– λx:T. E

• Extend types with generic type variables and 
quantification
– ∀α.α -> α

• Enhance terms with types 
– Type generalization: Λα.λx:α.E , a polymorphic term
– Type application: (Λα. λx:α. E) (Int->Int)

• Replace α with Int->Int
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2008Types of the PLC

Types τ ::= T     type constannts, (Int, Bool,…)
|     α type variables
| τ τ function types
|   ∀α.τ polymorphic types

Syntax:

Examples:

∀α.α ∀β.β

α β

∀α.∀β.(α β) ∀γ.γ

Int, Int->Bool, Int->Int->Bool, …

∀α.α->α
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2008Terms of the PLC

Terms Μ ::=    c     constants
|     x variables
| λx:τ. Μ function
|   M M            function application 
|   Λα(Μ) type generalization
| M τ type application  

Examples:
Id = Λα(λx:α.x)       --type generalization (abstraction)

(Λα.λx:α.x)(Int->Int) --type application (specialization)

≅ Λα.M
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2008Functions on Types

• In PLC, Λα (M) is an anonymous notation for 
the function F mapping each type τ to the value 
of M[τ/ α].

• I.e., computation in PLC involves β-reduction for 
such functions on types.

(Λα(M)) τ M[τ/α] 

e.g., (Λα(λx:α.x))  (Int->Int)   λx:Int->Int.x

as well as the usual form of β-reduction from λ-calculus
(λx:τ.M1) M2  M1[M2/x]
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2008Reduction in the PLC

In summary, we apply substitution on terms
as well as types explicitly. 
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2008PLC vs. SLC

In this system of PLC:
• Two new kinds of terms (expressions):

– Λα (M) (typically, α is used in M)  
– Application with type operand:  M τ (τ a type)

• The first kind of expression is also a value

• To the type language we add:
– Type variables – α
– Universal types of the form  ∀
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2008Polymorphism in PLC, 1

Id = Λα (λx:α.x)    has type    ∀α.α->α

Example: the identity function

We can apply Id to many kinds of arguments:

Id Int 5        = Λα (λx:α.x) Int 5 (λx:Int.x) 5 5

Id Bool true = Λα (λx:α.x) Bool true * true
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2008Polymorphism in PLC, 2

Example: applying a function twice

twice = Λα (λf:α→α. λx:α. f (f x)))
has type ∀α. (α→α)→α→α

and can be applied to arguments of different types:
a) twice Int (λx:Int.x+2) 5       --[Int/α]

(λf:Int->Int.λx:Int.f (f x)) (λx:Int.x+2) 5
((λx:int. x+2) ((λx:int. x+2) 5 )) 
* 9

b) twice Bool (λx:Bool. x) false *  false
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2008Polymorphism in PLC, 3

•Polymorphic function parameters
•Consider the following function application in LC:

(λf. (f 5, f True))  (λx.x) --(,) is a pair

Here the function parameter f is applied to
two types of arguments: Int and Bool

In PLC, (λx.x) is Λα.λx:α.x with type ∀α.α->α
so we let f has the polymorphic type: λf:∀α.α->α
And rewrite the above example as:

(λf:∀α.α->α.(f Int 5, f Bool True))  (Λα.λx:α.x)
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2008Polymorphism in PLC, 3

•Polymorphic function parameters
•Consider the following function application in LC:

(λf. (f 5, f True))  (λx.x) --(,) is a pair

(λf:∀α.α->α.(f Int 5, f Bool True))  (Λα.λx:α.x)

((Λα(λx:α.x)) Int 5, (Λα(λx:α.x)) Bool true)
… (5, true)

Write it in the PLC:
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2008Polymorphism in PLC, 4

Id = Λα (λx:α.x)    has type    ∀α.α->α

> (Id  (∀α.α->α))  Id = (Λα(λx:α.x) (∀α.α->α))  (Λα(λx:α.x)) 

Re-visit the identity function

We can apply Id to Id in a similar way:

has type  ∀α.α->α

(λx:∀α.α->α.x)  (Λα(λx:α.x))

Λα(λx:α.x)  = Id
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2008

Formal Typing Rules of PLC
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2008Syntax of PLC

Types τ ::= T     type constannts, (Int, Bool,…)
|     α type variables
| τ τ function types
|   ∀α.τ polymorphic types

Terms Μ ::=    c     constants
|     x variables
| λx:τ. Μ function
|   M M            function application 
|   Λα .Μ type generalization
| M τ type application  
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2008
Generic (Bound) vs. Free 
Type Variables

τ = ∀α.α ∀β.β
ftv(τ) = []

τ = ∀α.α β

ftv(τ) = [β]

•Free type variables      stand for some types;
•Generic type variables stand for any types.
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2008Type Judgements of PLC

Source: Prof. A. Pitts

•ftv(Γ) = ∪ ftv(τi)
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2008PLC Typing Rules

(var)         Γ |- x : τ if x:τ ∈ Γ

(fn)             Γ.x:τ1 |- M : τ2
Γ |- λx :τ1.M : τ1 -> τ2

(app)        Γ |- M1: τ1 -> τ2 Γ |- M2 : τ1
Γ |- M1 M2 : τ2

(gen)            Γ |- M : τ
Γ |- Λα.M : ∀α.τ

(ty_app)         Γ |- M : ∀α.τ1
Γ |- M τ2 : τ2[τ1/α]

If α ∉ ftv(Γ)
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2008The Side-Condition in Gen

If α ∉ ftv(Γ)
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2008PLC Typing Exercise

twice = Λα.λf:α→α.λx:α f (f x))
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2008
Type Inference 
(Type Reconstruction)

• Languages like Haskell differ somewhat from the 
pure polymorphic lambda calculus. 
– No type annotation for fun parameters
– No need to declare types and put in the “∀" 
– Not required to put in explicit type abstractions (Λ) or 

type specialization (applications). 

• Instead, the compiler figures those out for you 
through the process of type inference. 
– Γ |-- E : τ where E has no type annotation at all
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2008Type Reconstruction

• We can define a function erase on well-typed 
expressions, that removes all type-related 
information :

This brings us back to extended LC (ELC without 
types)

erase(M τ) = erase(M)   --remove type app

erase(Λα(M)) = erase(M) --remove type abs

erase(λx:τ.M) = erase(λx.M)--remove parameter type
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2008Type reconstruction

The type reconstruction (inference) problem:

Given  M without type information (in, say,  ELC), 
find:  
– M’ with type information (annotations, abstractions, 

applications) 
– Γ for freevars(M) (= freevars(M’))
– a type τ

s.t.  Erase (M’) = M and Γ |- M’ : τ

We then say that Γ |- M : τ
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2008
Example of Type 
Reconstruction

(λf. (f 5, f True))  (λx.x) --(,) is a pair

(λf:∀α.α->α.(f Int 5, f Bool True))  (Λα.λx:α.x)

Erase

)(
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2008Type reconstruction

Theorem:
Given M w/o type info, it is undecidable if well-

typed  M’ in PLC s.t. erase(M’) = M exists

Corollary:
Type reconstruction in PLC is impossible

So, how is it done in Haskell or SML?
Let us proceed to the Hindley-Milner Type System.
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2008

The Hindley-Milner Type 
System

We’ll use the Damas-Milner version

Damas and Milner, POPL 82, 
Principal type-schemes for functional programs
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2008Let-Polymorphism

• The HMTS is weaker than the PLC, but admits a 
type reconstruction algorithm.

• Parametric polymorphism is achieved via let-
expressions

• Function parameters are monomorphic only.

let  id=\x->x 
in  (id 5, id True)

(\f->(f 5, f True)) (\x->x)
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2008Mini-Haskell Expression

E  ::=   constants: 1, 2, 3, …
‘a’, ’b’, …,
True, False, &&, ||, !
+, -, *, …,    >, <. =, 

|     variable:  x, y, z, …
|    \x -> E 
|     E1 E2
|     if E1 then E2 else E3
|     let x = E1 in E2
|     (E1, E2)  | [] | [E1, …, En] | fst | snd | : | head | tail

pairs lists cons

Function abstraction
Function application
If-expr
Let-expr
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2008Expression Examples

3+5,      x>y+3,     not (x>y) || z>0

(1, ‘a’)      fst (‘a’, 5)   --pair

[True, False]    x:xs tail xs --list

\x -> if x>0 then x*x else 1

(\x -> x*x) (4+5)

\f -> \x -> f (f x) 

let f = \x-> x in (f True,  f ‘a’)  --pair
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2008Types in Mini-Haskell

• Simple types
– Int, Bool, Char, …

• Functional types
– Int Int, (Int Bool) Int, (Int Bool) (Int Int),…

• Pair types
– (Int, Bool),  (Int, (Bool, Char)),…

• List types
– [Int], [Bool], [[Int]], [(Int, Bool)], …

• Generalized types τ: adding type variablesα
– τ ::= Int | Bool | … | α|β… | τ1 τ2 | (τ1, τ2) | [τ]
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2008Types in the HMTS

• No more general polymorphic types of PLC.
– ∀α.α -> ∀β.β ->Int

• Adopts a two-layered types
– Types with variables, but no quantifiers
– Type Schemes that support only 

outermost quantification

∀α.∀β. (α->β)->[α]->[β]

Nested quantification
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2008Types & Type Schemes

• Types τ: (mono)

– τ ::= Int | Bool | … primitive types
| α| β| … type variables
| τ1 τ2                function types
| (τ1, τ2)                   pair (tuple) types
| [τ] list types 

• Type schemes σ: (poly)
σ ::=  τ |  ∀α . σ

(Right-associative)

generic type variable

two-layered types
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2008Examples of Type Schemes

(Char, Int) Bool ∀α.[ α] α Bool

[Int] (Int->Bool) Bool

[Int] β Bool

∀α. ∀β.(α β) [α] β

Invalid type schemes

[Int], Bool,  Char Bool

∀α.α β

Int ∀α.α

∀α.α

∀α.α ∀β.β

•Outermost quantification only
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2008
Generic (Bound) vs. Free 
Type Variables

σ = ∀α.∀.β.α β
ftv(σ) = {}

σ = ∀α.α β
ftv(σ) = {β}

•Free type variables      stand for some types;
•Generic type variables stand for any types.

∀α. β.(α β) [α] β ≡∀α.∀β.(α β) [α] β
Notation: omit inner ∀

ftv(α β)= {α,β}
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2008Typing in Mini-Haskell

• A type judgment has the form 
Γ |- exp : τ --not σ

• exp  is a Mini-Haskell expression
• τ is a Mini-Haskell type to be assigned to exp
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2008
Example Valid Type 
Judgments

• [ ]                             |- True or False : Bool

• [ x : int]                    |- x + 3 : int

• [ len : ∀α.[α]->Int ] |- len [1,3,5,7] : Int

• [ len : ∀α.[α]->Int ] |- len [True, False ] : Int

• [ len : ∀α.[α]->Int ] |- len : [[β]] ->Int via [[β]/α]
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2008Typing in Mini-Haskell 

Γ |- e1 : τ1   Γ |- e2  : τ2
Γ |- (e1, e2) : (τ1 ,τ2)

(Pair)

Γ |- [ ] : [τ]    --any type τ(nil)

Γ |- e1 : τ1   Γ |- e2  : [τ1]
Γ |- (e1:e2) : [τ1]

(cons)

Note: [e1, e2, e3] is a syntactic sugar of (e1:(e2:e3))

Γ |- n : Int

Γ |- True : Bool Γ|- False : Bool

(Int)

(Bool)

(assuming n is an Integer constant)
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2008Typing in Mini-Haskell, 1

•A major change lies in typing a function
•In PLC, we need to specify the type of a 
function’s parameter.

(fn)             Γ.x:τ1 |- M : τ2
Γ |- λx:τ1.M : τ1 -> τ2

•In the HTMS, We guess a type for x. No type 
annotation for parameters.

Γ.x:τ1 |- e :τ2

Γ |- λx.e : τ1->τ2

A type, not a type scheme,
such as ∀α.α, because fun
Parameters are monomorphic.

(Abs)
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2008Typing in Mini-Haskell, 2

•Guess as general as possible
•Consider the following two type derivations:

•We can define some kind of order (f) between
a type scheme and type

Γ.x:α |- x : α
Γ |- λx.x : α->α

Obviously, the one on the left is better for type 
reconstruction – it is the most general.

Γ.x:Int |- x : Int
Γ |- λx.x : Int->Int

f
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2008
Orders between Types and 
Type Schemes, 1

• Specialization order between types and type 
schemes: 
∀α.α α f β β

Int Int

Int (Bool Bool)

f

f

via [β/α]

via [Int/α]

via [Int/α,Bool/β]
∀α.β.α β β

∀α.α α
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2008
Order between a Type Scheme 
and a Type, 2

•Also called instantiation of a type scheme to a type.
∀α.α α f β β via [β/α]
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2008
Orders between Type 
Schemes and Types, 3

• Not all type variables are equal!
• Generic type variables vs. free type variables

∀α.α α β β

•Generic type variables can be instantiated to 
any types τ, but free types variables are not!

•Generalization order between a type scheme and
a type:   σ f τ,  this is required in typing rules

•Specialization between two types is derived
during type reconstruction as interim results.
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2008Typing in Mini-Haskell, 2

• Instantiate a type scheme to a type by guessing
– From ∀α.[α]->Int to  [[β]] ->Int

• Only when typing a variable:

(Var f) if  Γ(x) = σ and  σ f τ
Γ |- x : τ

[ len : ∀α.[α]->Int ]  |- len : [β] ->Int
Example:

•In PLC,
[ len : ∀α.[α]->Int ]  |- len β : [β] ->Int
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2008PLC vs. HTMS

• Recall that PLC has:
– General polymorphic types: τ ≡ ∀α.τ’
– Application with type operand:  M τ (τ a type)
– Type generalization: Λα (M)

• By contrast, the HMTS
– types τ and type schemes σ
– Instantiate a type scheme to a type

• From ∀α.[α]->Int to [[β]] ->Int
– Generalize a type to a type scheme 

• From [β] ->Int to ∀β. [β] ->Int
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2008Typing in Mini-Haskell, 3

Γ |- e1 : τ1 → τ2  Γ |- e2  : τ1
Γ |- (e1 e2) : τ2(App)

•Function application remains the same, except that
only monomorphic arguments (τ).

[ len : ∀α.[α]->Int ]  |- len : [Bool] ->Int
[ len : ∀α.[α]->Int ]  |- [True,False]  : [Bool]

Example:

[ len : ∀α.[α]->Int ]  |- len [True,False] : Int

Γ |- e1 : Bool Γ |- e2 : τ Γ |- e3 : τ
Γ |- if e1 then e2 else e3 : τ

(If)
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2008A Function Example

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Abs)
Γ |- \f->\x->f (f x)): (α->α)->α->α

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Abs)
Γ.f:α->α|- \x->f (f x)): α->α

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ.f:α->α.x:α |- f (f x)): α

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (App)
Γ.f:α->α.x:α |- f x: α

Γ.f:α->α.x:α |- f: α->α
Γ.f:α->α.x:α |- x: α

Γ.f:α->α.x:α |- f: α->α

Γ |- \f->\x->f (f x)): ?
•Move f and x to Γ
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2008Typing in Mini-Haskell, 4

•Generalizing a type to a type scheme via LET-expr

Γ |- \f->\x->f (f x)): (α->α)->α->α

∀α.(α->α)->α->α

Γ |- e1 : τ1

Γ |- let x=e1 in e2 : τ
(Let) x ∉ dom(Γ)

σ = Gen(τ1, Γ) = ∀α1…αn.τ1. 　

where  [α1,…,α n] = ftv(τ1) - ftv(Γ)

Γ. x:σ |- e2 : τ
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2008Generalization aka Closing

• Generalization introduces polymorphism

• Quantify type variables that are free in 　
but not free in the type environment (TE)

• Captures the notion of new type variables 
of τ (introduced via the Var f rule)　

Gen(Γ,τ) = ∀α1... αn. τ 
where  [α1... αn ] = ftv(τ) - ftv(Γ)
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2008
Example of Let-Polymorphism

(1)  Γ |- \x->x : α → α α is a fresh var, Gen called

(2.1) Γ. id:∀α.α → α |- id : Int->Int Γ. id:∀α.α → α |- 5 : Int
Γ. id:∀α.α → α |- id 5 : Int

(2.2) Γ. id:∀α.α→α |- id : Bool->Bool Γ. id:∀α.α→α |- True : Bool
Γ. id:∀α.α → α |- id True : Bool

Γ. id:∀α.α → α |- (id 5, id True) : (Int, Bool)

Γ |- let id=\x->x in (id 5, id True) : (Int, Bool)

Pair

Let

(2.1), (2.2)

E ≡ let id=\x->x in (id 5, id True)
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2008Exercises of Let-Polymorphism

1. We can also have “id id” in the let-body:
let id = \x->x in  id id

\x. let f = \y->x
in (f 1, f True)

AB

ΓA = [ x : α ] (1)    ΓA.[ y:β ] |- x : α
ΓA |- \y->x : β α

2. Derive the type for the following lambda function:
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2008HM Type Inference Rules

(App) Γ ├ e1 : τ -> τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’

(Abs)
Γ ├ λx.e :  τ -> τ’

(Var)
Γ ├ x : τ 

(Const)
Γ ├ c : τ

(Let)
Γ ├ (let x = e1 in e2) : τ’

Γ + [x : τ] ├ e : τ’

(x : σ) ∈ Γ σ ≥ τ

typeof(c) ≥ τ

Γ+[x : τ] ├ e1 : τ      Γ+[x:Gen(TE,τ)] ├ e2 : τ’

Syntax-Directed
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2008Limitations of the HMTS: 

E1 ≡ let id=\x->x in (id 5, id True)
vs. E2 ≡ (\f->(f 5, f True))(\x->x)

•E2≡ \f->(f 5, f True) is not typable:
Γ .x :τ1 |- e : τ2

Γ |- \x -> e : τ1 → τ2

Recall the (Abs) rule

[ f : ? ] |- (f 5, f True) : (Int, Bool)

•Only let-bound identifiers can be instantiated differently.

a type only, not a type scheme to instantiate

Semantically
E1 = E2, but

λ−bound (monomorphic) vs Let-bound Variables



06/30~-07/04 FP & Types 374

2008
Good Properties of the 
HMTS

• The HMTS for Mini-Haskell is sound.
– Well-typed programs won’t get stuck!.

• The typeability problem of the HMTS is decidable:
there is a type reconstruction algorithm which 
computes the principal type scheme for any Mini-
Haskell expression.
– The W algorithm using unification
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2008
Principle Type Schemes for 
Closed Expressions, 1

[ f:Int→Bool, x:Int] |- f : Int→Bool [f:Int→Bool, x:Int] |- x : Int

•What type for “\f->\x->f x”?

[ f:Int→Bool, x:Int] |- f x : Bool

[ f:Int→Bool] |- \x->f x : Int → Bool

[ ] |- \f->\x->f x : (Int → Bool ) → (Int → Bool)

Can we derive a more “general” type for this expression?

App

Abs

Abs
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2008
Principle Type Schemes for 
Closed Expressions, 2

[ f: α→β, x :α] |- f : α→β [f : α→β, x : α] |- x : α
[f : α→β, x : α] |- f x : β

[f : α →β] |- \x -> f x : (α →β)
[ ] |- \f -> \x -> f x : (α→β) → (α→β)

Any instance of (α →β) → (α →β) is a valid type.
E.g., (Int → Bool) →(Int → Bool)

•A more general type for “\f->\x->f x”?

Most general type
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2008
Principle Type Schemes for 
Closed Expressions

• A type scheme σ is the principal type scheme of a 
closed Mini-Haskell expression E if
(a)  |- E : τ is provable and σ = Gen(τ, {})
(b) for all τ’, if  |- E : τ’ is provable and σ’ = Gen(τ’, {})

then σ Â σ’

where by definition σ Â σ’ if σ’ = ∀α1…αn.τ’ and
FV(σ) ∩ {α1…αn } = {} and σ Â τ’ .

E.g., \f->\x->f x has the PTS of ∀α.β.(α β) (α β)
and ∀α.β.(α β) (α β) Â ∀γ.(γ Bool) (γ Bool)
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2008

Type Reconstruction Algorithm 
Based on Unification

The W Algorithm by Damas and Milner
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2008Type Inference

• Type inference is typically presented in two different forms:  

– Type inference rules: Rules define the type of each 
expression
• Clean and concise; needed to study the semantic properties, i.e., 

soundness of the type system

– Type inference (reconstruction) algorithm: Needed by the 
compiler writer to deduce the type of each subexpression 
or to deduce that the expression is ill typed.

• Often it is nontrivial to derive an inference algorithm for a 
given set of rules. There can be  many different algorithms 
for a set of typing rules.
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2008The W Algorithm (Damas&Milner 82)

W(Γ, e) returns (S,τ) such that  S(Γ) ├ e : τ 　

• Γ is a typing environment recording the most 
general type of each identifier that may occur in e

• e is an expression
• τ is a type, may contain type variables to be 

generalized
• S is a type substitution recording the changes in 

the free type variables in Γ, if any.
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2008The W Algorithm

W(Γ, e) returns (S,τ) such that  S(Γ) ├ e : τ 　

•Example: Open expression

Γ = [f:α->α, x:β],   e ≡ f x

W(Γ, e) = ([α/β], β) and

[α/β](Γ) ├ f x : β
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2008The W Algorithm

W(Γ, e) returns (S,τ) such that  S(Γ) ├ e : τ 　

•Example: closed expression

Γ = [],   e ≡ let id=\x->x in (id id)

W(Γ, e) = ([β->β/α], β−>β) and

[β->β/α](Γ) ├ e : β->β
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2008
The W Algorithm: 
Syntax-Directed

W(Γ, e) returns (S,τ) such that  S(Γ) ├ e : τ

Def W(Γ, e) =
Case e of

x  = ...
λx.e  = ...
(e1 e2) = ...
let  x = e1 in e2 = ...

Syntax-directed

The W algorithm is defined in terms of the syntactic
structure of the expression to type.
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2008The W Algorithm: Variables

(x : σ) ∈ Γ σ ≥ τ

Γ |- x:τ
(Var)

1. When e is a variable: Def W(Γ, e) =
Case e of

x         = ...

Recall the inference rule (axiom) for variables:

We do not yet know which τ to instantiate!
Let ∀α.α->α = Γ(x), we simply replace α with 
fresh (new) type variable, say β; and determine
the type for β later when x is applied via unification.
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2008The W Algorithm: Variables

(x : σ) ∈ Γ σ ≥ τ

Γ |- x:τ

(Var)

1. When e is a variable:

Def W(Γ, e) =
Case e of
x          =

Recall the inference rule (axiom) for variables:

We do not yet know which τ to instantiate!

β’s 
represent 
new type 
variables

if (x ∉  Dom(Γ)) then Fail
else  let ∀α1... αn.τ  = Γ(x);

in ( { }, [βi /αi]τ)
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2008The W Algorithm: Application

(App)

2. When e is an application: Def W(Γ, e) =
Case e of

(e1 e2)      =
...Recall the inference rule for fun application:

We have to ensure that the type of parameter is the same
as the type of the argument (e2)!

We apply the unification algorithm to compute a
Type substiution to unify them..

Γ├ e1 : τ->τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’
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2008The W Algorithm: Application

2. When e is a function application:

Def W(Γ, e) =
Case e of

(e1 e2) =

(App) Γ├ e1 : τ->τ’ Γ ├ e2 : τ
 Γ ├ (e1 e2) : τ’

let (S1, τ1) = W(Γ, e1);
(S2, τ2) = W(S1(Γ), e2);

S3 = Unify(S2(τ1), τ2 ->β);
in (S3 S2 S1, S3(β)) 

β represents 
a new type 
variable
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2008Unification: Unify(τ1, τ2 )

•Unify(τ1, τ2 ) = fail or a type substitution S
such that      Sτ1 = Sτ2.

Unify(α->α, Int->Bool) = fail

Unify([α]->β, [γ]->Int) = [γ/α,  Int/β]≡S

•And compute the Most General Unifier (MGU)
Let     S’ = [Bool/α, Int/β]. 

S’([α]->β) = S’([γ]->Int) and S f S’

Unify(α->α, Int->Int) = [Int/α] ≡ S
Then S(α->α) = S(Int->Int)
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2008Unification: Unify(τ1, τ2 )

def Unify(τ1 , τt2 ) =
case (τ1 , τ2 ) of

(τ1 , α )     = [τ1 / α ]
(α , τ2 )     = [τ2/ α ]
( C1 , C2 )  = if (eq? C1 , C2 ) then [ ] else  fail
(τ11-> τ12, τ21 -> τ22)
= let    S1 =Unify(τ11, τ21 )

S2 =Unify(S1 (τ12), S1 (τ22))
in   S2° S1

otherwise  = fail

•Composition of substitution: S2°S1

--Ci constant type

Ex: [Int/β]°[β/α]=[Int/β,Int/α]
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2008The W Algorithm: Function

(Abs)

3. When e is a lambda function: Def W(Γ, e) =
Case e of

\x->e      =
...Recall the inference rule for lambda function:

We have to guess a type for the parameter!

We use a new type variable to represent the type of the 
parameter and get a type for it later when the function is applied.

Γ+[x: τ]├ e : τ’
 Γ ├ \x.e : τ->τ’
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2008The W Algorithm: Function

(Abs)

3. When e is a lambda function:

Γ+[x: τ]├ e : τ’
 Γ ├ \x.e : τ->τ’

Def W(Γ, e) =
Case e of

\x->e      = let (S1, τ1) = W(Γ + [x:β], e);
in (S1, S1(β) -> τ1)

β is  new
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2008The W Algorithm: Let

(Let)

4. When e is a let expression: Def W(Γ, e) = 
Case e of

let  x = e1 in e2 =...

Recall the inference rule for let expression:

 Γ ├ let  x = e1 in e2 : τ’

Γ+[x : τ]├ e1 : τ      Γ+[x:Gen(TE,τ)] ├ e2 : τ’

Def W(Γ, e) = 
Case e of

let  x = e1 in e2 = let (S1, τ1) = W(Γ , e1);
σ = Gen( S1(Γ), τ1 );
(S2, τ2) = W(S1(Γ) + [x : σ], e2);

in (S2 S1, τ2)
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2008The W Algorithm

Def W(Γ, e) = Case e of
x  =

λx.e  =

(e1 e2) =

let  x = e1 in  e2
= 

β’s new 
type vars

let (S1, τ1) = W(Γ, e1);
(S2, τ2) = W(S1(Γ), e2);

S3 = Unify(S2(τ1), τ2 -> β);
in (S3 S2 S1, S3(u)) 

if (x ∉ Dom(Γ)) then Fail
else  let ∀t1...tn.τ  = Γ(x);

in ( { }, [βi / ti] τ)
let (S1, τ1) = W(Γ + [x : β], e);
in (S1, S1(β) -> τ1)

let (S1, τ1) = W(Γ , e1);
σ = Gen( S1(Γ), τ1 );
(S2, τ2) = W(S1(Γ) + [x : σ], e2);

in (S2 S1, τ2)
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2008The W Algorithm: Example
λx. let f = λy.x

in (f 1, f True)

W(∅, A) =

W({x : u1}, B) =

( [ ] , u1 )

( [ ] , u3 -> u1 )

∀u3.u3 -> u1

TE = {x : u1, f : ∀u3.u3 -> u1}

( [ ] , u4 -> u1 )

W(TE, 1) =  ( [ ] , Int )
[ Int / u4 , u1 / u5 ]

( [ ] , u1 )

( [ ] , (u1,u1) )

Unify(u4 -> u1 , Int -> u5)  =

W({x : u1, f : u2, y : u3}, x) =
W({x : u1, f : u2}, λy.x) =

Gen({x : u1}, u3 -> u1)  =

W(TE, (f 1) ) =

( [ ] , u1 -> (u1,u1) )

W(TE, f) =

Unify(u2 , u3 -> u1)  =

AB

[ (u3 -> u1) / u2 ]

...
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2008Important Observations

• Do not generalize over type variables used 
elsewhere

• Let is the only way of defining polymorphic 
constructs

• Generalize the types of let-bound identifiers 
only after processing their definitions
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2008
Properties of HM Type 
Inference (W)

• It is sound with respect to the type system.
An inferred type is verifiable using l-.

• It generates most general types of expressions.
called Principal Type Scheme.

Any verifiable type is inferred.

• Complexity
PSPACE-Hard
DEXPTIME-Complete
Nested let blocks
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2008Extensions

• Type Declarations
Sanity check; can relax restrictions

• Incremental Type checking
The whole program is not given at the same 
time, sound inferencing when types of some 
functions are not known

• Typing references to mutable objects
Hindley-Milner system is unsound for a
language with refs (mutable locations)

• Overloading Resolution
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2008
Puzzle: Another set of Inference 
rules

(Gen) TE ├ e : τ      α ∉ FV(TE)
TE ├ e : ∀α.τ      

(Spec) TE ├ e : ∀α.τ      
TE ├ e : τ [τ’/α]      

(Var) (x : τ) ∈  TE
TE ├ x : τ 

(Let) TE+{x:τ} ├ e1: τ      TE+{x:τ} ├ e2:τ’

TE ├ (let x = e1 in e2) : τ’

(App) and (Abs) rules remain unchanged.

Sound but 
no  direct
inference 
algorithm !

Not syntax-directed
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2008

Appendix: Haskell’s 
Type Classes 
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2008Polymorphism

Polymorphism

Universal
Polymorphism

Ad Hoc
Polymorphism

Parametric Subtyping Overloading Coercion

Polymorphism

?
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2008
When Overloading Meets 
Parametric Polymorphism

• Overloading: some operations can be defined 
for many different data types
– ==, /=, <, <=, >, >=, defined for many types
– +, -, *, defined for numeric types

•Consider the double function:   double = \x-> x+x

•What should be the proper type of double?
•Int -> Int -- too specific
• ∀a.a -> a -- too general

Indeed, this double function is not typeable in (earlier) SML!
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2008
Type Classes—a “middle”
way
• What should be the proper type of double?

∀a.a -> a -- too general
• It seems like we need something “in between”, 

that restricts “a” to be from the set of all types that 
admit addition operation, say 
Num = {Int, Integer, Float, Double, etc.}.—type class

double :: (∀ a ∈ Num) a -> a 
• Qualified types generalize this by qualifying the 

type variable, as in       (∀ a ∈ Num) a -> a ,
which in Haskell we write as  Num a => a -> a

•Note that the type signature  a -> a 
is really shorthand for ∀a.a -> a 
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2008Type Classes

• “Num” in the previous example is called a type 
class, and should not be confused with a type 
constructor or a value constructor.

• “Num T” should be read “T is a member of (or an 
instance of) the type class Num”.

• Haskell’s type classes are one of its most 
innovative features.

• This capability is also called “overloading”, 
because one function name is used for potentially 
very different purposes.

• There are many pre-defined type classes, but you 
can also define your own.
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2008
Defining Type Classes in 
Haskell, 1
•In Haskell, we use type classes and instance 
declarations to support parametric overloading 
systematically.

class  Num a where
(+), (-), (*)   :: a -> a -> a
negate       :: a -> a
…

•Type a belongs to class Num
if it has ‘+’,’-’,’*’, …of proper
signature defined.

Instance Declaration:
instance Num Int where

(+) =  IntAdd --primitive
(*)  =  IntMul -- primitive  
(-)  =  IntSub -- primitive
…

•Type Int is an instance
of class Num

A type is made an instance of a class by 
an instance declaration
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2008
Defining Type Classes in 
Haskell, 2

In Haskell, the qualified type for double
double x = x + x ::
∀a. Num a => a->a

I.e., we can apply double to only types which
are instances of class Num.

double 12        --OK
double 3.4      --OK
double “abc” --Error unless String is an instance 

--of class Num,

type predicate
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2008Constrained polymorphism

• Ordinary parametric polymorphism
f :: a -> a

"f is of type a -> a for any type a"

• Overloading using qualified types
f :: C a => a -> a

"f is of type a -> a for any type a belonging to the type 
class C"

•Think of a Qualified Type as a type with a Predicate set,
also called context in Haskell.
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2008Type Classes and Overloading

In Haskell, the function double is translated into 
double NumDict x = 

(select (+) from NumDict) x x

double :: ∀ a. Num a => a->a
The type predicate “Num a” will be supported
by an additional (dictionary) parameter.

Similar to 
double add x = x `add` x  -- add x x
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2008
Type Classes and 
Overloading

Dictionary for (type class, type) is created by the
Instance declaration.

instance Num Int where
(+) =  IntAdd --primitive
(*)  =  IntMul -- primitive  
(-)  =  IntSub -- primitive
…

Create a dictionary called  IntNumDict, and
“double 3” will be translated to

double intNumDIct 3
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2008Another Example: Equality

• Like addition, equality is not defined on all types 
(how do we test the equality of two functions, for 
example?).

• So the equality operator (==) in Haskell has type
Eq a => a -> a -> Bool.  For example:

42 == 42 True
`a` == `a` True
`a` == 42 << type error! >>

(types don’t match)
(+1) == (\x->x+1) << type error! >>

((->) is not an instance of Eq)
• Note: the type errors occur at compile time!
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2008Equality, cont’d

• Eq is defined by this type class declaration:
class Eq a  where

(==), (/=)       :: a -> a -> Bool
x /= y           =  not (x == y)
x == y           =  not (x /= y)

• The last two lines are default methods for the 
operators defined to be in this class.

• So the instance declarations for Eq only needs to 
define the “==“ method.
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2008Defining class instances (1)

• Make pre-existing classes instances of type class:
instance Eq Integer where

x == y = x `integerEq` y 
instance Eq Float where

x == y = x `floatEq` y 

• (assumes integerEq and floatEq functions 
exist)
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2008Defining class instances (2)

• Do same for composite data types, such as tuples
(pairs).

instance Eq (a, b) where
(x1, y1) == (x2, y2) = (x1==x2) &&

(y1==y2)

• Note the context: (Eq a, Eq b) => ...

(Eq a, Eq b) =>
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2008Defining class instances (3)

• Do same for composite data types, such as lists.

instance Eq [a] where
[] == []          = True    
(x:xs) == (y:ys)  =  x==y && xs==ys
_      == _      =  False

• Note the context: Eq a => ...

Eq a =>
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2008
Functions Requiring Context 
Constraints

•Consider the following list element testing function:

elem x [ ] =  False
elem x (y:ys)     =  (x == y) || elem x ys

elem :: Eq a => a -> [a] -> Bool

>elem 5  [1, 3, 5, 7]
True

>elem ‘a’ “This is an example”
False
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2008Context Constraints (cont’d)

succ :: Int -> Int
succ = (+1)

elem succ [succ] causes an error

ERROR - Illegal Haskell 98 class constraint 
in inferred type

*** Expression : elem succ [succ]
*** Type       : Eq (Int -> Int) => Bool

which conveys the fact that Int->Int is not an instance of 
the Eq class.
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2008
Other useful type 
classes

• Comparable types:
Ord < <= > >=

• Printable types:
Show show where
show :: (Show a) => a -> String

• Numeric types:
Num + - * negate abs etc.
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2008Show – Showable Types

• This class contains all those types whose values 
can be converted into character strings using

show :: a -> String

• Bool, Char, String, Int, Integer and Float, are 
part of this class, as well as list and tuple types 
whose elements and components are part of the 
class
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2008Show – Showable Types

> Show True
”True”

> show ’a’
”’a’”

> show 42
”42”

> show (´q´, 13)
”(’q’, 13)”
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2008Read – Readable Types

• This class contains all those types whose values 
can be converted from character strings using

read :: String -> a

• Bool, Char, String, Int, Integer and Float, are 
part of this class, as well as list and tuple types 
whose elements and components are part of the 
class
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2008Read – Readable Types

> read ”True” :: Bool
False

> read ”’a’” :: Char
’a’

> read ”42” :: Int
42

> read ”(´q´, 13)”
(’q’, 13)

> read ”[1,2,3]” :: [Int]
[1,2,3]
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2008Super/Subclasses 

•Subclasses in Haskell are more a syntactic mechanism.
•Class Ord is a subclass of Eq.

Note: If type T belongs to Ord, then T must also belong to Eq

“=>” is misleading!
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2008

Source: D. Basin
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2008
Recommended Readings

http://hal.inria.fr/inria-00076025/en/

http://portal.acm.org/citation.cfm?id=582176

http://portal.acm.org/citation.cfm?id=75283&dl=ACM&coll=GUIDE

•Luca Cardelli, Basic Polymorphic Typechecking.
http://research.microsoft.com/users/luca/Papers/BasicTypechecking.pdf



06/30~-07/04 FP & Types 424

2008Acknowledgements

• Parts of the materials presented here are taken 
from the slides prepared by :

• Dr. A.C. Daniels and Dr. S. Kahrs, Univ. of Kent, 
UK

• Professor. A. Pitts, Cambridge Univ., UK
• Professor E. Gunter, CS421, UIUC USA
• Professor Arvind, 6.827/F2006, MIT, USA


