}L APLAo

2008

Introduction to Functional
Programming in Haskell &
the Hindley-Milner Type System

Kung Chen
National Chengchi University, Taiwan

2008 Formosan Summer School of
Logic, Language and Computation

06/30~-07/04 FP & Types 1

3.0
Agenda ‘%Zoi“;‘ﬂ@

« Unitl: FP in Haskell

— Basic Concepts of FP
— Haskell Basics
— Higher-Order Functions
— Defining New Types
— Lazy Evaluation
* Unit 2: Intro. to Type Systems for FP
— The Lambda Calculus

— Typed Lambda Calculi
— The Hindley-Milner Type System

06/30~-07/04 FP & Types o

Unit I: FP in Haskell
Basic Concepts of

Functional Programming

06/30~-07/04 FP & Types

AOLAA

2008

What is Functional
Programming?

Generally speaking:

AOLAA

2008

* Functional programming is a style of programming
In which the primary method of computation is the

application of functions to arguments

*Define a function square:

Function name /

Formal parameter

square X = X * X

Function body:
an expression

06/30~-07/04 FP & Types 4

What is Functional APOLAA
Programming? 2008

Generally speaking:

* Functional programming is a style of programming
In which the primary method of computation is the
application of functions to arguments

square X = X * X

Function application:
No parentheses: square (5) square 5

Substitute the argument 5 = 1applying square }

into the body of the function " N
= { applying * }
25

06/30~-07/04 FP & Types 5

Functions and Arguments Q’\fi%

« Similarly an argument may itself be a function
application:

square (square 3)
= { apply inner square }
square (3 *3)

={apply * }
square (9)

= { apply outer square }
9*9

={apply * }
81

06/30~-07/04 FP & Types 6

Programming Paradigms

 FP is a programming paradigm ...
* A programming paradigm

AOLAA

2008

— Is a way to think about programs, programming, and

problem solving,

— IS supported by one or more programming languages.

* Various Programming Paradigms:
— Imperative (Procedural)
— Functional
— Object-Oriented
— Logic
os/50--bAyprid FP & Types

Imperative vs. Functional

AOLAA

2008

* Imperative languages specify the steps of a
program in terms of assigning values to variables.

int sum (int n, int list[]) {
int total = O;
for (inti=0;i<n; ++i)
total += list][i];
return s;

}

Variable
assignments

06/30~-07/04

FP & Types

sum[] =0

Sum/x XS) = X + sum Xs
[]-empty list; r/Equations ’
“:”_cons a list

There is no loop!
Recursive, please!

AOLAA

Imperative vs. Functional 2008

In C, the sequence of
actions is

=1

total = 1

| =2
total = 3
=3
total = 6
1 =4
total = 10
1=5
total = 15

Applying functions:
sum [1,2,3,4,5]
= { apply sum }
1+ sum [2,3,4,9]
= { apply sum }
1+(2+sum]|3,4,5])
= { apply sum }
1+(2+(3+sum[4,9])
= { apply sum }
={ apply +}
15

06/30~-07/04

FP & Types 9

Functional Programming Q’%%i%

* Functional programs work exclusively with values,
and expressions and functions which compute

values.

* A value is a piece of data.

-2, 4, 3.14159, ”"John”, (0,0), [1,3,5],...
* An expression computes a value.

— 2+5*p1, length(l)-size(r)
« Expressions combine values using functions and operators.

06/30~-07/04 FP & Types 10

Why FP? tinjrodyitien,
What’s so Good about FP? 2008

* To get experience of a different type of
programming
* It has a solid mathematical basis

— Referential Transparency and Equation
Reasoning

— Executable Specification

e |t's fun!

06/30~-07/04 FP & Types 11

Referential Transparency @fi%

Can we replace f(x) + f(x) with 2*f(x)?

Yes, we can!

oIf the function f Is referential transparent.

*In particular, a function is referential transparency if its
result depends only on the values of its parameters.

*This concept occurs naturally in mathematics, but is
broken by imperative programming languages.

06/30~-07/04 FP & Types 12

Referential
Transparency...

AOLAA

2008

* Imperative programs are not RT due to side effects.

« Consider the following C/Java function f£:

int v = 10;
int f£f(int 1) {
return 1 + y++;

J

then £ (5)+f(5)= 15+16

but 2*f(5)= 2*15

06/30~-07/04 FP & Types

13

Referential

Transparency...

AOLAA

2008

* In a purely functional language, variables
are similar to variables in mathematics:

they hold a value, but they can't be

updated.

 Thus all functions are RT, and therefore
always yield the same result no matter

how often they are called.

06/30~-07/04

FP & Types

14

Equational Reasoning Q’\fi%

 RT implies that “equals can be replaced by equals”

« Evaluate an expression by substitution . l.e. we can
replace a function application by the function
definition itself.

double x = 2 * x
even X = X mod 2 ==

even (double 5)

0 ==

06/30~-07/04 True FP & Types 15

= even (2 * bH) [5/X]: x#B17Y5

= even 10 s definit
=~ 10 mod 2 —-— ﬁgﬁf efinition,
—

—

Computation in FP

« Achieved via function application

AOLAA

2008

e Functions are mathematical functions without

side-effects.
— Output is solely dependent of input.

States

)1

— | Pure function | —— — Impure function ——

— —_ — —>

with assignment

Canreplace f(x) + f(x) with 2*f (x)

06/30~-07/04 FP & Types

16

11In tion
What’s so Good about FP? ‘é%?i%

» Referential Transparency and Equation
Reasoning

» Executable Specification

06/30~-07/04 FP & Types 17

Quick Sortin C

AOLAA

2008

gsort(a, lo, hi) int a[], hi, lo;
{ inth,lI p,t;
if (lo < hi)
{ I=lo; h=hi; p=alhi];
do
{ while ((I<h) & (@[l] <=p)) I=1 +1;
while (h > 1) && (a[h] >=p)) h=h-1;
If (I <h) [t=a[l]; a[l] =a[h]; a[h] =t; }
} while (I < h);
t = al[l]; a[l] = a[hi]; a[hi] =t;
gsort(a, lo, I-1); gsort(a, I+1, hi);

06/30~-07/04 FP & Types

18

. . e
Quick Sort in Haskell Q’zoff@

* Quick sort: the program is the specification!

gsort [] = 11
gsort (x:xs) = gsort It ++ [Xx] ++ gsort greq
where It =]y | v <- xs, y < X]
greq = [y | y <- xs, y >= x]

List operations:
[] the empty list
X:xXs adds an element x to the head of a list xs
xs ++ ys concatenates lists xs and ys
[x,v,z] abbreviation of x:(y:(z:[]))

06/30~-07/04 FP & Types 19

AOLAA

Historical View: Pioneers in FP 2008

McCarthy:Lisp Landin:ISWIM Steele:Scheme_ Milner:-ML Backus:FP

- |
it LT I
1 nu l T B4 l:lh_-:

Curry:
Combinatory
Logic

Lambda
Calculus

06/30~-07/04 ‘ .. A & 20

AOLAA

2008

&

Background of Haskell

06/30~-07/04 FP & Types 21

. 3,0
What i1s Haskell? onff@

« Haskell is a purely functional language created in
1987 by scholars from Europe and US.

« Haskell was the first name of H. Curry, a logician
« Standardized language version: Haskell 98

« Several compilers and interpreters available
— Hugs, Gofer, , GHCIi, Helium
— GHC (Glasgow Haskell Compiler)

 Comprehensive web site:
http://haskell.org/

Haskell Curry (1900-1982)

06/30~-07/04 FP & Types 22

Haskell vs. Miranda

1970s - 1980s:

David Turner developed a
number of /azy functional
languages, culminating in the
Miranda system.

AOLAA

2008

If Turner had agreed, there will be no Haskell?!

06/30~-07/04 FP & Types

Features of Haskell Q%%;%

* pure (referentially transparent) — no side-effects

* non-strict (lazy) — arguments are evaluated only
when needed

 statically strongly typed — all type errors
caught at compile-time

* type classes — safe overloading

06/30~-07/04 FP & Types 24

Why Haskell? A0 4o

* A language that doesn't affect the way you
think about programming, is not worth
knowing.

--Anan Perlis

The recipient of the
first ACM Turing Award

06/30~-07/04 FP & Types

Any software written in APOLAA

Haskell? 2008
* Pugs R‘;n | f’j
— Implementation of Perl 6 \e®/
darcs
— Distributed, interactive, smart RCS Qdarcs
lambdabot
GHC

06/30~-07/04

audreyt> @pl f h = hGetContents h >>= \x -> return (lines x)
lambdabot> f = (lines "fmap™) . hGetContents

audreyt> @djinn (a -> b) -> (¢ -> b) -> Either a c -> b
lambdabot> f a b ¢ =

lambdabot> case c of
lambdabot> Left d -> a d
lambdabot> Right e -> b e

FP & Types 26

A chat between developers of SOL4A
the Pugs project 2008

From freenode, #perl6, 2005/3/2
http://xrl.us/e98m

19:08 < malaire> Does pugs yet have system() or backticks or gx// or any way to use
system commands?

19:08 < autrijus> malaire: no, but | can do one for you now. a sec

19:09 < malaire> ok, I'm still reading YAHT, so | won't try to patch pugs just yet...

19:09 < autrijus> you want unary system or list system?

19:09 < autrijus> system("Is -I") vs system("Is", "-I")

19:10 < malaire> perhaps list, but either is ok

19:11 < autrijus>\\n Bool pre system (Str)\

19:11 < autrijus>\\n Bool pre system (Str: List)\

19:11 < autrijus> I'll do both :)

19:11 < autrijus> done. testing.

19:14 < autrijus> test passed. r386. enjoy

19:14 < malaire> that's quite fast development :)

19:14 < autrijus> :)

06/30~-07/04 FP & Types 27

Haskell vs. Scheme/ML Q’%%i%

 Haskell, like Lisp/Scheme, ML (Ocaml, Standard
ML) and F#, is based on Church's lambda (A)
calculus

e Unlike those languages, Haskell is pure (no
updatable state)

 Haskell uses "monads” to handle stateful effects
— cleanly separated from the rest of the language

e Haskell "enforces a separation between Church
and State"

06/30~-07/04 FP & Types 28

“FP” I1s another less-known
FPL

Can Programming Be Liberated
from the von Neumann Style?

1977 Turing Award Lecture

Late 1970s:

John Backus develops FP, a now-

called combinator-based FPL.

06/30~-07/04 FP & Types

AOLAA

2008

1924-2007

Back

06/30~-07/04

{

Haskell

A Purely Functional Language

featuring static typing, higher-order functions,
polymorphism, type classes and monadic effects

The Basics

FP & Types

AOLAA

2008

30

Running Haskell Programs @\fi%

* Pick a Haskell Implementation
 We'll use Hugs or GHCI
* Interpreter mode (Hugs):

> 542%3 ugs > prompt means
11 e Hugs system Is ready
luate an expression.

> (5+42)*3
21 /\

Read
Eval Loop
> sqrt (3A2 + 4A2) .
5 0 Pnnt
_/

06/30~-07/04 FP & Types 31

Hugs: a Haskell Interpreter | $niC

http://www.haskell.org/hugs

1 I 11 . Hugs 98: Based on the Haskell 98 standard
[l _—_II Il Copyright (c) 1994-2003

| 1l World Wide Web: http://haskell.org/hugs
1| || Report bugs to: hugs-bugs@haskell.org
|| || Version: Nov 2003

Hugs mode: Restart with command line option +98 for Haskell 98 mode

Type :? for help
Prelude>

winHugs: a Windows GUI

06/30~-07/04 FP & Types 32

0
Hugs onlodf@

 The Hugs interpreter does two things:
 Evaluate expressions

 Evaluate commands, e.g.

— :quit quit

— :load <file> load a file

— :r redo the last load command
— :? help

06/30~-07/04 FP & Types 33

Preparing Haskell Programs

AOLAA

2008

* Create and Edit a file with a Haskell program

— File name extension: .hs or .lhs

— Literate Haskell Programs
 Description and Comments about the program
« >Haskell
* >code

* Load the source program in to Hugs
— Enter the expression to evaluate
— Read-Evaluate-Print loop

06/30~-07/04 FP & Types

34

Running Haskell with GHC

Get GHC from http://haskell.org/ghc/

AOLAA

2008

By Haskell Group at Glasgow University, UK

 GHC is a compiler; GHCi is the interpreter version

$ ghc Main.hs

— Main.hi
— Main.c
— a.out or Main.exe

$ ghci Main.hs

Prelude Main> QuickSort [9, 4, 1, 2, 6]

[1,2,4,6,9]

06/30~-07/04 FP & Types

35

The Standard Prelude S

2008

The library file Prelude.hs provides a large number
of standard functions. In addition to the familiar
numeric functions such as + and *, the library also
provides many useful functions on lists.

e Calculating the length of a list:

> length [1,2,3,4]
4

06/30~-07/04 FP & Types 36

The Standard Prelude ...

 Appending the elements of two lists:

> [1,2,3] ++ [4,5,6]
[1!2!3!4!5,6]

e Selecting the first element of a list:

> head [1,2,3,4]
1

e Removing the first element of a list:

> tail [1,2,3,4]
[2,3,4]

06/30~-07/04 FP & Types

AOLAA

2008

37

Function Application @\fi%

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

fab + c*d
. |

06/30~-07/04 FP & Types 38

Function Application ... @\fi%

* Function application (“calling a function with a
particular argument”) has higher priority than any
other operator.

* In math (and Java) we use parentheses to include
arguments; in Haskell no parentheses are needed.

fa+b

means
(Fa) +b not T (at+b)

* since function application binds harder than plus.

06/30~-07/04 FP & Types 39

Summary: Function AOL4A
Application ... 2008

*Here’s a comparison between mathematical
notations and Haskell:

Math Haskell

flx) f x

f(z,y) f xy
flg(x)) f (g x)
flz,g9(y)) £ x (g y)
f(@)g(y) 33 * 9 Y

06/30~-07/04 FP & Types 40

Programs as Sets of
Definitions

AOLAA

2008

* A very simple functional program (also known as

a functional script) in Haskell

_ initi Type Signature
A set of definitions P ype olg

square : - Integer -> Integer

square X = X * X > Definition
(i.e. equation)

smaller :- (Integer, Integer) -> Integer
smaller (X,y) = 1f X <=y then X else y

main = print (square(smaller(5, 3+4)))‘I\A

Main expr to

06/30~-07/04 FP & Types eval

41

Definitions

AOLAA

2008

* A Haskell program is a sequence of definitions

followed by an expression to evaluate.
A definition gives a name to a value.
 Haskell definitions are of the form:
type

name = expression

name

e Examples:
size

size = (12+13)*4

06/30~-07/04

FP & Types

42

Function Definitions Q’%ii%

A function definition specifies how the result is
computed from the arguments.

Function types specify the types
of the arguments and the result.

average :: Float->Float->Float

average X Yy = (x+y)<%

\—
parameters

The body specifies
how the result 1is
omputed. No ’return’

06/30~-07/04 FP & Types 43

Function Notation S

2008

*Function arguments need not be enclosed In
brackets!

Example:

square :: Float —-> Float
square x = X*X

Calls: square 2.5 - 6.25

Not
square (2.5)

square (1.2+1.3) > 6.25

m for grouping only!]

06/30~-07/04 FP & Types 44

. O
Simple Types Q’zoff@

Integer Unbounded integer numbers
Int 32-bit integer numbers

Rational Unbounded rational numbers
Float, Double Single- and double-precision

floating point numbers

Bool Boolean values: True and False

Char Characters, e.g., 'a’

06/30~-07/04 FP & Types 45

3.0
The Booleans oni%@
* type Bool
e operations e g
|| or
not not
e exOr :: Bool -> Bool —-> Bool

exOr x v = (x || y) && not (X && V)

06/30~-07/04 FP & Types 46

The integers

AOLAA

2008

* type Int:range —2147483648..2147483647
* type Integer: range unbounded

e operations |+

sum

product

A

raise to the power

difference

div

whole number division

mod

remainder

abs

absolute value

negate

change sign

06/30~-07/04 FP & Types

47

Relational Operators Q’%Si%

> | greater than

>= | greater than or equal to

== |equalto
/= | not equal to

<= |less than or equal to

< less than

(==) for integers and Booleans. This means that (==) will have the type
Int -> Int -> Bool

Bool -> Bool -> Bool

Indeed t -> t -> Bool if the type t carries an equality.

(==) :: Eg a => a -> a —-> Bool

06/30~-07/04 FP & Types 48

Operators: Prefix and Infix

« Operators: infix. Use parentheses for prefix.
* Functions: prefix. Use backquotes for infix.

> 4*12-6
42

> (<) 2 3
True

> div 126 3
42

> 126 “div® 3
42

06/30~-07/04 FP & Types

AOLAA

2008

49

Precedence &

AOLAA

Associativity 2008
Op Precedence | Associativity | Description
8 8 right Exponentiation
%, / / left Mul, Div
‘div® I free Division
‘rem® 14 free Remainder
‘mod® 14 free Modulus
+, - 6 left Add, Subtract
==, /= 4 free (In-) Equality
<, <=,>,>= 4 free Relational
Comparison

06/30~-07/04

FP & Types

50

3 O0L4~
The characters o8
* type Char

\al

“\t’ tab

‘\n’ newline

A\ backslash

“\7 single quote

7 double quote

‘“\ 97’ character with ASCII code 97, i.e., ‘a’
Some operations: ¢ jyoner Vg7 Ry

Ord ‘a’ » 97

06/30~-07/04 FP & Types 51

Composite Types: Lists

AOLAA

2008
A list of values wf integers.
enclosed in
square brackets. [1,2,31, [2] [Int]
Some operations: homogeneous
[11213] ++[4/5] > [112/3/415]
head [1,2, 3] 1
last [1,2, 3] > 3
tail [1,2,3] > [2, 3]

We can have lists of lists:
[(1,31, [0, 5, o], [4]]

06/30~-07/04 FP & Types

[Int]]

52

Quiz Q’zooe

How would you add 4 to the end of the list [1,2,3]?

06/30~-07/04 FP & Types 53

Quiz Qizooe

How would you add 4 to the end of the list [1,2,3]7?

[1,2,3] ++ . [1,2,3,4]

[4] not 4!
++ combines two lists,
and 4 is not a list.

06/30~-07/04 FP & Types 54

: 30
Types: Strings szoff@

Any characters
enclosed in "Hello!” :: String

\double quotes. List of Chars
[Char]

Some operations:

"Hello 7”7 ++ "World” »"Hello World”

First “"Hello” » T H'

06/30~-07/04 FP & Types 55

Composite Types: Tuples

AOLAA

2008

* Atuple is a sequence of components that may

be of different types

(1, 4) .- (Int, Int)

(“Fish”, [True, True]) :: (String, [Bool])

(False, 'b’, 4.294) .. (Bool, Char, Float)

Tuples may contain basic types or list types

06/30~-07/04 FP & Types

56

30
Tuple types Q’zoff@

* The number of components in a tuple is called its
arity.

 Arity cannot be 1.

* The tuple of arity zero () is called the empty tuple,
while a tuple of arity 2 is called a pair, one of arity
3 a triple, and so on

Note that tuples are enclosed in parentheses, not
square brackets

06/30~-07/04 FP & Types 57

Tuples and Lists @ﬁ%@

You can have lists of tuples and tuples of lists

[(1, True),(4, False)] .- [(Int, Bool)]
(1.4, [3, 5,64, 7, 12], True) :: (Float, [Int], Bool)

The definition of the tuple provides its arity — in cases above
the tuples have arity of 2 and 3 respectively

06/30~-07/04 FP & Types 58

Function Types A0 4o

2008

A function is a mapping of arguments of one
type to results of another type

« T1->T2 maps arguments of type T1 to results
of type T2

~ .. Bool -> Bool
IsDigit :: Char -> Bool

06/30~-07/04 FP & Types 59

. .0
A Note on Function Types onff@

* Function types associate to right.

maxOf3 :: Int -> Int -> Int -> Int
means
maxOf3 :: Int -> (Int -> (Int -> Int))

Functions are values, and partial application is OK.

let m = max0Of3 5
in let mm = m 8

in mm 12 —> 12

06/30~-07/04 FP & Types 60

Multi-Parameter Functions @fi%

* A simple way (but usually not the right way) of
defining a multi-parameter function is to use
tuples:

add :: (Int,Int) -> Int
add (x,y) = Xty

 Evaluate
add (40, 2)

« We get 42
o Later, we'll learn about Curried Functions.

06/30~-07/04 FP & Types 61

Comments

AOLAA

2008

* Line comments start with - and go to the end of

the line:

——This 1s a line comment.

 Nested comments start with {- and end with -}:

{_

This 1s a comment.

{_

And here’s another one....

—}
-}

06/30~-07/04

FP & Types

62

Function Definition by
Cases and Recursion

06/30~-07/04 FP & Types

AOLAA

2008

63

. OL4 A
The abs function Q’zooe

* The absoulte value (abs) function:
— abs x = ||
* The definition is by cases (multiple equations):
—absx= (x, ifx>=0
{-x, fx<0O

« How to define in Haskell?

abs x | x >=0 X
abs x | x <0 - X

mj;r/d. An equation is used if its guard is True.

06/30~-07/04 FP & Types 64

. 0
Evaluating abs Q’zoff@

Prelude> abs (-2) abs x | x >= 0
abs x | x < O

 First equation, x = -2

* What is -2 >= 07?7 - False

« Second equation, x = -2 again

. B y
What is -2 <0? - True Try the N\

* Result is —x, that is —(—2) equations in
order, use the
first with a True

_ guard W,

06/30~-07/04 FP & Types 65

50L4~
Other Forms oo

Fully explicit abs x | x >= 0 = x
abs x | x < 0 = -x

Abbreviated left hand side |aps x | x >= 0 = x
| x < 0 = -x

Abbreviated last guard

abs x | x > 0 = X
| otherwise = —-X

e "If” expression

abs x =
1if x > 0 then x else -x

06/30~-07/04 FP & Types 66

Function Definition by Cases Q’%%i%

fun vl vZ2 .. vn
| gl = el)
-~ Guarded equations
| otherwise = e, D
max3 - Int -> Int -> Int -> Int
max3 1 J kK| (8 >=) && (1 >= k) =1
| A >=k) =]

| otherwise = k

06/30~-07/04 FP & Types 67

Function Definition by Cases

AOLAA

2008
fun vl ove .. ovn fun vl v2 ... vnh =
ol - & if gl then e,
N\ .
g2 = € N—/ else if g2 then e,
else if - - -
| otherwise = e, else e,
max3 :: Int -> Int -> Int -> Int
max3 1 J k =

it (1 >=3) && (1 >= k) then 1
else if (J >= k) then j
else k

06/30~-07/04 FP & Types

68

AOLAA

Recursive Functions 2008
facn=1*2*..."n
fac :: Int -> Int
fac n
| n==0 = 1
| otherwise = fac (n-1) * n
fac 0 = 1
facn | n > 0 = fac (n-1) * n
or
fac :: Int -> Int
fac n = 1f n == 0 then 1

else Fac (n-1) * n

06/30~-07/04 FP & Types 69

. . OL4 A
Evaluating Factorials 008
fac :: Int -> Int
fac 0 =1
facn | n >0 = fac (n-1) * n

fac4d ?7?74==0 —False —fac2*3*4

??74>0 — True

fflC (4-1) * 4
fac3* 4

06/30~-07/04 FP & Types

|
facl*2*3*4

|
f%CO*1*2*3*4
15"1*2*3*4
24

70

. 0
Expensive to calculate... ‘%zo%f@
fac 5 Stack (space)

5 * (fac 4)

5 * 4 * (fac 3)

5 *4 * 3 * (fac 2)

5*4 *3 * 2 * (fac 1)
5*4 *3*2*1%* (fac 0)
5*4 *3*2*1*1

Time

fac 0 =1
facn | n >0 =n * fac (n-1)

120

08/30~-07/04 FP & Types 71

Taill Recursion

AOLAA

2008

*Tail recursion: recursive call occurs last
*The technique of accumulating parameters

fac n = tailfac n 1
where tairlfac n acc

I n==
///// | n>0

accC

L_ocal definitions

taitlfac (n-1) n*acc

06/30~-07/04

fac 5 2 tailfac 5 1
- tailfac 4 5*1
-2 tairlfac 3 4*5*1

FP & Types 72

AOLAA

A Better Process: Tall Recursion 2008

Time

(fac 5)
(tairlfac
(tairlfac
(tarlfac
(tarlfac
(tairlfac
(tairlfac
120

¥6/30~-07/04

O R, N W b O

1)
5)
20)
60)

120)
120)

>

Stack

Tairl recursion i1s logically
equivalent to a loop!

FP & Types 73

the where cl

Local Definitions:

ause

AOLAA

2008

*The where-clause follows after a function body:

fun args = <fun body>
where
decl 1
decl 2
decl n

maxOf3 :-: Int
maxOf3 X y z =

-> Int -> Int -> Int

maxO0f2 u z
where
u = max0f2 x vy

06/30~-07/04

FP & Types

74

Local Definitions: AOLA4A
the let clause 2008

let

<local definitions>
in

<expression>

fac n = let tailfac n acc
| n== acc
| n>0 tairlfac (n-1) n*acc

tatlfac n 1

06/30~-07/04 FP & Types 75

The et Clause

AOLAA

2008
T :: [Int] -> [Int]
fL1=11
T Xs =
let
square a = a * a
one = 1
in
(square (head xs) + one) : T (tail xs)

r [3,2]

- (square 3 + one) : £ [2] =2 .

06/30~-07/04 FP & Types

-2 [10,5]

76

The Layout Rule

AOLAA

2008

Indentation determines where a definition ends:

circumference r =
2 * ple *r

area r

= ple *r *r

bad X|= area X
+ circumference x

-— Error:

offside!

06/30~-07/04 FP & Types

77

Example
AN = S

let

y = X + 2

X =95
in

X /Yy
e same as:

lety = {Xx + 2; xX=5}Inx /Yy

06/30~-07/04 FP & Types

AOLAA

2008

78

3,0
Example Q’zoff@

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a=Db + C {a=Db+ cC
where where
b =1 means> {b = 1;
C = 2 C = 2};
d = & * 2 d = 34 2}

implicit groupinga explicit QVOUpinﬁa

06/30~-07/04 FP & Types 79

The error Function

AOLAA

2008

* error string can be used to generate an error

message and terminate a computation.

* This is similar to Java’'s exception mechanism,

but a lot less advanced.

fac :: Int -> Int
fac n = 1f n<0 then
error "i1llegal argument"
else 1f n <= 1 then 1
else n * fac (n-1)

e > £ (-1)
Program error: illegal argument

06/30~-07/04 FP & Types

80

Example: Fibonaccl AL
Numbers 2008

\ /
Y
\ \iU
Y
\ /
Y

06/30~-07/04 FP & Types 81

Computing Fibonacci GOL4 A
Numbers 2008

fib n | n
fib 0 =1
fib 1 =1

> 1 = fib (n-1) + fib (n-2)

« Here there are two base cases

— Neither can be reduced to a smaller problem by the
recursive case.

 This definition is not very efficient — why not?

06/30~-07/04 FP & Types 82

. 5.0
Tree Recursion Q’zoff@
;”“5)\‘ Inefficient!
(fib 3) (flb 4)
/ \

(fFib 1) (Fib 2) (flb 2) (flb 3)

(fi1b O) (fi1b 1) / \
(fibO) (fib 1)

. . fib 1 fib 2
Repetitive computation () ()

Rewrite it as tail recursive! (fib O)(flb 1)

06/30~-07/04 FP & Types 83

Pattern Matching

06/30~-07/04 FP & Types

AOLAA

2008

84

Pattern Matching

AOLAA

2008

« Pattern matching is a simple and intuitive way of

defining a function.

* The library function ~ returns the negation of a

logical value:
~ - Bool -> Bool
~ False = True
~ True = False
/\

Constant pattern;
order matters

06/30~-07/04 FP & Types

85

Pattern Matching %%ii%@

* We can also use pattern matching for functions
that take more than one argument

* The library function (&&) returns the negation of
a logical value

(&&) ” Bool -> Bool -> Bool
True && True = True

True && False = False

False && True = False

False && False = False

06/30~-07/04 FP & Types 86

Pattern Matching %%ii%@

* We can simplify the definition of (&&) by using
the wildcard character

(&&) ” Bool -> Bool -> Bool
True && True = True
_ && = False

* This is also good because if the first argument is
False then it doesn’t need to evaluate the
second argument

06/30~-07/04 FP & Types 87

Pattern Matching

AOLAA

2008

* Haskell has a naming convention that means
that we cannot use the same variable name for
more than one argument in an equation, so

b && Db =pb
&& = False

X

would not be allowed, and needs to be rewritten as

b && C | b== =b
| otherwise = False

06/30~-07/04 FP & Types

v

88

AOLAA

Tuple Patterns 2008

« A tuple of patterns is itself a pattern which matches any
tuple of the same arity whose components match the
corresponding patterns in order

« Constant patterns

= ()

- (1, 5)

- (‘a’, 5.5, “abcd”)

~ (“nested”, (100, ‘A’), (1,5,9))
« Patterns with variables

- (1, x)

- (s, 1)

— (“nested”, tl, t2)

06/30~-07/04 FP & Types 89

AOLAA

Tuple Patterns 2008

* The library functions fst and snd select the first
and second components of a pair

fst - (a,b) > a

fst (X,) = X

snd (a,b) > a

snd (_y) =Yy
>fst (b6, “a’) =2 5 -—-(X binds to 5)
>snd (6) 2 ‘a’ -—-(y binds to “a’)

06/30~-07/04

FP & Types 90

More Selector Functions

AOLAA

2008

*For pairs, we have

fst (x,vy) = X snd (x,V) Y
For triples, we define

fst3 (x,vy,z) = X

snd3 (x,vy,z) =V o

. What would the type
trd3 (x,y,z) = z of the result be? j

*No general selectors such as:
select 3 (xX,V,2) = zZ

06/30~-07/04 FP & Types

91

Selection using Pattern
Matching

*Other than using special functions to select

elements from a large tuple,

we can use pattern matching. Example:

AOLAA

2008

(x1, x2, x3) = a _triple value

Example:

(x1, x2, x3) = (100, ‘A",
Then x1=100, x2=‘A’, x3=“Math'.

06/30~-07/04 FP & Types

\\Math//)

92

List Patterns

AOLAA

2008

* A list of patterns is also a pattern

* |t matches any list of the same length whose
elements all match the corresponding patterns in

order. Example:

*Suppose we have a function test that checks if a list
contains precisely three characters and the first of these

IS the letter ‘a’

test

test

test 'a’, ,] = True

.. [Char] -> Bool

= False

06/30~-07/04

FP & Types 93

| (Ol
List Patterns o8

 Lists are constructed one element at a time from
the empty list

* The cons (construct) operator : produces a new
list by adding a new element to the front of an

eXIStmg list: ecONS associates to the right:
[3,5,7] 3:5:7:11
= { apply cons }
3:[5,7]
= { apply cons }
3:(5:[7])
= { apply cons }
3:(0:(7:1])

06/30~-07/04 FP & Types 94

Defining Functions with List
Patterns

AOLAA

2008

* We can use the cons function (:) to extend the
test function to check the first element of a list of

any length, not just three

test ('a’:) = True

test = False

test .. [Char] -> Bool

06/30~-07/04 FP & Types

95

Defining Functions with List

Patterns

 Null, head, and tail work in a similar manner

null

null []

null (_:)
head
head (X:)
tail

tail (_:xs)

.. [a] -> Bool
= True

= False

. [a]->a
= False
:[a] -> [&]
= False

06/30~-07/04

FP & Types

AOLAA

2008

96

Internal Representation of SOL4A
Lists 2008

Head Tail

o ® o
4 4 1 : [2,3] HK
e 1" ® | e
y N / , LN
S & 2 |e]e
a s
3 []
2:3:[1 or [2,3] 1:2:3:[] or [1,2,3]

06/30~-07/04 FP & Types 97

Lists are Homogenous

e Lists of lists:

[11:0[21,([3]1] = [[11,02],[3]]

AOLAA

2008

* Note that the elements of a list must be of the

same type!
(1, [1], 1] =
({11, [2]1, [[311] =
[1, True] =

06/30~-07/04 FP & Types

egal!
egal!
egal!

98

Integer Patterns @ﬁ%@

» Haskell also allows integer patterns of the form
n+k where n is an integer variable and k>0 and

an integer constant

* Pred maps 0 to itself and any other number to
the number preceding it

Drec o Int -> Int
ored 0 =0
ored (n+1) =n

06/30~-07/04 FP & Types 99

. . 5.0
Recursion over Lists Q’zo%f@

Compute the length of a list.

length ::[Int] -> Int
length xs = 1f xs ==[] then O
else 1 + length (tail xs)

*This is called recursion on the tail .

*Using pattern matching:

O
1 + length xs

length []
length (X:Xxs)

06/30~-07/04 FP & Types 100

Evaluating Recursive
Functions

AOLAA

2008

length [] =0

length (X - xs) = 1 + length Xxs

length (1 - 2 - 4 - [D

= [X« 1, XS « 2 :
1 + length (2 - 4 - [D

4 :

[1 1]

06/30~-07/04 FP & Types

101

Evaluating Recursive
Functions

AOLAA

2008

length [] = O

length (X - xs) = 1 + (length xs)

length (1 - 2 - 4 - [D
4 -

= [X <« 1 , XS « 2 : :
1 + length (2 - 4 - [D

= [X « 2 , Xxs « 4 - []1]
1 +1+ length (4 - [D

= [X « 4 , xs « [] 1]

1+ 1+ 1+ length []
= []
1+1+1+0

[1]

06/30~-07/04 FP & Types

102

Polymorphic Functions & SOL4A
TypeS 2008

 The length function does not care about the
element type of its list parameter.
length [1,2,3] = 3

length [True, False] = 2
length [‘a’, ‘b'",’c’,’d"] = 4

*Indeed, 1length is a polymorphic function, and
its type is:

length ::Ja] -> Int

Here a is a type variable that can be
instantiated to any types.

06/30~-07/04 FP & Types 103

Sum and Product of a List

sum :: [Int] -> Int

sum [] = 0
sum (X:XS) X + sum XS

AOLAA

2008

product :: [Int] —-> Int
product [] = 0
product (x:xs) = X * product xs

06/30~-07/04 FP & Types

104

Type Declarations and SOL4A
Checking 2008

* In Java and most other languages the programmer has
to declare what type variables, functions, etc have. We
can do this too, in Haskell:

> 6*7 :: Int
472
« ::Int asserts that the expression 6*7 has the type Int.
« Haskell will check for us that we get our types right:
> 6*7 :: Bool
ERROR

06/30~-07/04 FP & Types 105

Type Inference Q’%Si%

* We can let the Haskell interpreter infer the type of
expressions, called type inference.

« The command :t (ype) expression asks Haskell to
 print the type of an expression:
> :type "hello"
"hello" :: String
e > :type True && False
True && False :: Bool
e > :t True && False :: Bool
True && False :: Bool

06/30~-07/04 FP & Types 106

. Q&@L%@
Exercise 2008

* Define a function upto such that form, n: Int
andm <= n

upto m n = [m, m+l, ..., n]

06/30~-07/04 FP & Types 107

AOLAA

Variable Naming Convention 2008

* When we write functions over lists it's
convenient to use a consistent variable naming

convention. We let

* X,V,2Z, """ denote
* XS, VS, ZSs, " denote
* XSS, ySS, zSS, * - denote

ISt elements.
Ists of elements.
Ists of lists of

elements.

06/30~-07/04 FP & Types

108

List Concatenation

AOLAA

2008
e Xs t++ Vs —--also known as append xs ys
(++) :: [a] -> [a] [a]
[] ++ ys = yS
(x ¢ Xs) ++ ys = Xx (xs ++ ys)
[1,2,3] ++ [4,5,6]
= { apply ++ }
1: ([2,3] ++ [4,5,6])
= { apply ++ }
1: (2: ([3] ++ [4,5,6]))
1: (2: (3: [4,5,6])))
= { list notation }
[1,2,3,4,5,06]
06/30~-07/04 FP & Types 109

List Concatenation

AOLAA

2008

*Concatenate multiple lists in a list:

concat [[a]] —-> [a]
concat [] =[]
concat (Xs:xXxss) = XS ++ concat xss
Examples:

concat

concat [[]
concat [[1l], [3,5]]

06/30~-07/04 FP & Types

[]
[]

= [1,3,5]

110

More Polymorphic Recursive SOL4A

List Functions: reverse 2008
« Reverse: reverse the order of the elements in a
list

reverse :: [a] -> [a]

reverse |[] = []

reverse (X : Xs) = reverse xXs ++ [X]

Example

reverse [1,2,3,4] = (4,3,2,1]

But, its Time complexity: O(n?)

| et’s define a tail recursive version of the reverse.
O(n)

06/30~-07/04 FP & Types 111

. . 14 1) w
Tail Recursive “reverse ‘%zoff@
reverse - [a] -> [a]
reverse xs = rev2 xs []
rev2 - [a] -> [a] -> [a]
rev2 [] yS = YyS
rev2 (X:Xs) Vys = (rev2 xs) (X:ys)

“A LISP (FP) programmer knows
the value of everything
and the cost of nothing.’
--Alan Perlis

06/30~-07/04 FP & Types 112

Zipping/Unzipping two lists Q’zoff@

Z1p :: lal => [b] -> [(a, b)]
zip [] vs =[]
z1lp xS (] =[]
Zzlp (x:xs8) (y:ys) = (X,VY) : z1lp XS VS

EX: zip [1,2] [‘a’,’b’] = [(1,7a"), (2,'b")]

Unzip :: [(a,b)] -> (lal, [b])
unzip [] =[]
unzip ((x,y) : ps) = (x:xXs, y:yYs)
where
(Xs,yS) = unzip ps

06/30~-07/04 FP & Types 113

Yet more list functions In the
Prelude

* Many more list functions in the Prelude:

— Take, drop, (1), ...

« Prelude> take 3 "catflap”
Ilcatll

. Prelude> drop 2 [“d",“r",<o",“p"]

“Ole
e Prelude> “abcde” 11 3
d

06/30~-07/04 FP & Types

AOLAA

2008

114

. _ Q\\J@M@
Exercises: 2008

* Defining the drop function:
— drop 2 [1,2,3,4,5] = [3,4,5]

drop :: Int -> [a] —> [a]

* Defining the init function:
—1nit [1,2,3,4,5] = [1,2,3,4] --remove the last element

init :: [a] —> [a]

06/30~-07/04 FP & Types 115

. 30
Mutual Recursion Q’zoff@

 Functions that reference to each other
 Example: given a list, selecting even or odd

positions from it. evens “abede”
evens::[a]->[a] = { apply evens }
odds ::[a]->[a] 'a’ : odds “bcde”
= { apply odds }
'a’ . evens “cde”
= { apply evens }
'a’ . 'c’ . odds “de”
= { apply odds }

J J (1P

a :’'c :evens ‘e

06/30~-07/04 FP & Types 116

Mutual Recursion

AOLAA

2008

*Given a list, selecting even or odd positions from it.

evens
evens ||
evens (X : Xs) =

odds .
odds [] =
odds (: Xs) =

[a] —-> [a]
[]
X : odds xs

[a] -> [a]

[]
evens Xs

06/30~-07/04 FP & Types

117

Arithmetic Sequences Q’%Si%

« Haskell provides a convenient notation for lists of numbers
where the difference between consecutive numbers is
constant.

[1..3]1 = [1,2,3]
[>..1] =[]

A similar notation is used when the difference between
consecutive elements is = 1. Examples:

[1,3..9] = [1,3,5,7,9]
[9,8..5] = [9,8,7,60,5]
[9,8..11] = []

Or, in general:
[m,k..n] = [m,m+(k-m)*1l,m+(k-m)*2, « -+ ,n]

06/30~-07/04 FP & Types 118

List Comprehension

List comprehensions allow many
functions on lists to be performed in a
clear and precise manner

06/30~-07/04 FP & Types

AOLAA

2008

119

List Comprehension Q’\fi%

 Mathematical form
{x2|xe€{1..5}}
produces the set {1,4,9,16,25}

 Haskell
> [x*2 | x<-[1..3] 1]
[11,4,9,16,25]

where
| means “such that”
<- means “is drawn from”; “for each element in”

06/30~-07/04 FP & Types 120

$Plo
Generators 2008

* The expression x<-[1..5] is called a generator

» Generators can also use patterns when drawing
elements from a list.

Suppose ps is a list of pairs:
[(1,True), (2,False), (5,False), (9,True)]

If we want to extract all pairs of the form (x, True) then we can

do this using the generator

> [x | (X,True)<-ps]
[1,9]

06/30~-07/04 EP & Types 121

APl4n
Generators 2008

* We can also use wildcards in generators
* |If we take the same list of pair ps
[(1,True), (2,False), (5,False), (9,True)]
then
> [x | (x,)<-ps]
[1,2,5,9]
extracts the list of the first components of the pairs

06/30~-07/04 FP & Types 122

Pldn
Generators 2008

* The library function length is also defined using
a wildcard within a generator

length :: [a] —-> Int
length xs = sum [1 | <-xs]

* The length is calculated by creating a list that
contains the value 1 for each element in xs, then
summing this new list

06/30~-07/04 FP & Types 123

Multiple Generators Q%%;%

« List comprehensions can have multiple
generators separated by commas

 We can generate a list of all possible pairings
of the elements in two lists using

>[(x,y) | x<=[1,2], y<-[8,9] |
[(1,8),(1,9),(2,8),(2,9)]
 The second generator cycles faster than the
first generator.

 Swap the order:
>[(XIY)| y<_[]—/2]l X<_[8/9]]

06/30~-07/04 FP & Types 124

Generators

AOLAA

2008

* A later generator can also depend on the value

of an earlier generator

* The following list comprehension produces a list
of all possible ordered pairings of the elements

of [1..3] in order:

> [(x,y)] x<-[1..3], y<-[X..3]]

[(111)1 (112)1 (113)1 (212)1 (213)1 (313)]

06/30~-07/04 FP & Types

125

Pldn
Generators 2008

« Similarly we could define the library function
concat, which concatenates lists, by using one
generator to select each list then a second
generator to select each element within the list

concat :: [[a]] —-> [a]
concatt XSs = [X | XS<-XSS, X<-XS]

06/30~-07/04 FP & Types 126

Guards o

2008

* As well as using generators to create sets, we

can also use guards to filter the values produced
by generators

 If a guard is True then the value is retained,
otherwise it is discarded

> [x | x<-=[1..10], even x]
[2/ 4/ 6/ 8/ 1O]

* The function even X is the guard function

06/30~-07/04 FP & Types 127

50L4~
Guards o8

* Similarly we can produce a function that maps a
positive integer to its list of positive factors

factors > Int -—> Int

factors n = (X | X <=-[1..n],
n “mod*“ x==0]

e SO
> factors 15
[1,3,5,15]

06/30~-07/04 FP & Types 128

50L4~
Guards o8

* We can extend this to find primes, as a prime is
a number whose only factors are 1 and the
number itself

prime s Int -> Bool

prime n = length (Ffactors n == 2)
So

> prime 15 > prime 7/

False True

06/30~-07/04 FP & Types 129

Guards o

2008

* We can use guards to implement a look-up table
where a list of pairs of keys and values
represents the data

* If the keys are of an equality type then we can
create a function find that returns a list of all
values associated with a given key

06/30~-07/04 FP & Types 130

String Comprehensions Q’\fi%

 List comprehensions can be used to define
functions on strings

* The function digits returns the list of integer
digits from a string

digits :: String -> [Int]
digits xs = [ord x — ord "0’ | x <- xs,
1sDigit x |
So
> digits “1*5+3”
(1,5, 3]

06/30~-07/04 FP & Types 131

AN Longenianple e

Computing path distance

/ T

06/30~-07/04 FP & Types

AOLAA

2008

132

Representing a Point Q’%Si%

type Point = (Float, Float)

ﬁ—coordinates.

distance :: Point -> Point -> Float

distance (x, y) (x', y’') =

sgqrt ((x-x")"2 + (y-y’')"2)

06/30~-07/04 FP & Types 133

: Q\\J@M@
Representing a Path 2008
Q\ X
/ R/
P
type Path = [Point]
examplePath = [p, g, r, s]

path length = distance p g + distance g r
+ distance r s

06/30~-07/04 FP & Types 134

Two Useful Functions

«init xs -- all but the last element of xs,

-tail xs ~--all butthe first element of xs.

init [pr g9, I, S] = [pr oy

tail [p, g9, ¥, s] = [qg9, r,

le [(p,CI)/ (qrr)/

sum [1,2,3] = 6

06/30~-07/04 FP & Types

(r,s)]

AOLAA

2008

135

. 1.0
The pathLength Function oni‘ﬂ@

pathLength :: Path -> Float
pathLength xs = Sum [distance p g

| (p,gq) <- zi1p (init xs) (tail xs)]
Example:

pathLength [p, g, r, s] =

distance p g + distance g r + distance r s

06/30~-07/04 FP & Types 136

AOLAA

2008

Higher-Order Functions

*Functions take functions as arguments
*Functional values and Lambda Expressions
*Functions return functions as results.

06/30~-07/04 FP & Types 137

A Motivating Example Q’%%i%

Write a Haskell function incAll that adds 1
to each element in a list of numbers.

E.g.,, incAll [1, 3, 5, 9] = [2, 4, 6, 10]}

incAIl :-: [Int] -> [Int]
incAll [] =[]

incAIl (n - ns) = n+l : IncAll ns

06/30~-07/04 FP & Types 138

A Motivating Example, A OL4A
cont’d 2008

* Write a Haskell function lengths that
computes the lengths of each list in a list of
lists.

E.g.,

lengths [[1.3]. [1. [5. 911 = [2, O, 2]
lengths [“but”, “and, "if']] = [3, 3, 2]

lengths :-: [[a]] -> [hum]

lengths [1 = []
lengths (1 - Is)
= (length 1) : lengths Is

06/30~-07/04 FP & Types 139

Similarity and Abstraction Q’\%‘;%

incAll [1 = []

incAIl (n - ns) (+) n1l - [IncAll ns

lengths (1 : Is) (length 1)| - |lengths Is

lengths [] = []

-
L

Let f be (+) or length: | ¥ (hd 1) : recCall (tail)

1= [0, 1, . 1]:]

[f1, f1,, . Ffl1]

06/30~-07/04 FP & Types 140

List map function

« Given a function and a list (of appropriate

AOLAA

2008

types), applies the function to each element of

the list.
map -: (a -> b) -> [a] -> [Db]
map ¥ [1 = []
map f (X - xs) = (F xX) - map T xs

map T

. L, ool [F 1, Fh,, . F1]

06/30~-07/04 FP & Types

141

Using map $Pdo

2008

map -: (a -> b) -> [a] -> [Db]
incAIl = map (plus 1)
where plus mn =m + n

lengths = map (length)

Note that plus :: Int -> Int -> Int,

SO
(plus 1) :: Int -> Int.

Functions of this kind are sometimes referred to
as partially evaluated (applied).

06/30~-07/04 FP & Types 142

Partial Applications

AOLAA

2008

Any function may be called with fewer arguments

than it was defined with.

The result is a function of the remaining arguments.

|f f ::Int -> Bool -> Int -> Bool
then £ 3 :: Bool -> Int -> Bool

f 3 True :: Int -> Bool

f 3 True 4 :: Bool

06/30~-07/04 FP & Types

143

Bracketing Function Calls
and Types

AOLAA

2008

We say function application “brackets to the left”

function types “bracket to the right”

|f f ::Int -> (Bool -> (Int -> Bo

then f 3 :: Bool -> (Int -> Bool)

(f 3) True :: Int -> Bool Functions realM
take only one

((f 3) True) 4 :: BRool

06/30~-07/04 FP & Types

ol))

argument, and
return a function

expecting more

\ as a result. /

Another HoF: List filtering Q’%%i%

filtr :: (a -> Bool) -> [a] -> [a]

If p? w, send w to output
a,b,c, ..z a’, b, c...

n?

filter even [1,2,3,4,6] = [2,4,6]

even X = X ‘mod’ 2 ==

06/30~-07/04 FP & Types 145

Lambda Expressions @fi%

* Functions can also be defined using lambda
expressions

* These are nameless functions made up of

— A pattern for each of the arguments
— A body that shows how the result can be calculate
from the arguments
* These are shown in Haskell using \ or

mathematically using A
Example: \Xx -> (X, X, X)

\ parameter -> body

06/30~-07/04 FP & Types 146

Lambda Expressions @fi%

* The square function could also be implemented
as a lambda expression

\ X => X * X

 Lambda expressions can be used in the same
way as other functions

map square
[1,2,4]

> (\x->x*x) 2
4

filter (\x -> x “mod’ Qﬂaspo)(\{xz-%X§X@ 7]

1,2z,
-> has lowest preceder%ce exter%ds to the right
06/30~-07/04 FP & Types 147

Lambda Expressions @fi%

 Lambda expressions can also be used to show
the meaning of curried expressions

add Xy =X + Yy
can be understood as
add = \xXx —> (\y —> X + V)

which shows that the function takes a number x
which returns a function which in turn takes
another number y and returns the sum of the two
numbers

06/30~-07/04 FP & Types 148

AOLAA

2008

More About Functional Values

*Functions returning functions
Partial Application
*Curried Functions

06/30~-07/04 FP & Types 149

| (0L,
Sections o8

Haskell distinguishes operators and functions:
operators have infix notation (e.g. 1 + 2),
while functions use prefix notation (e.g. plus 1 2).

Operators can be converted to functions by putting
them in brackets: (+) mn =m +n.

Sections are partially evaluated operators. E.g.:

e (+mM)n =m+n
* (0<) x =0<x
c O:)1I =0:1

06/30~-07/04 FP & Types 150

Using map More S

2008
squareAll = map (72)
squareAll [1,2,3,4] = [2,4,9,106]
*\What do the following functions do?
1. addNewlines = map (++ "\n")
addNewlines :: [[Char]] -> [[Char]]

2. stringify = map (: [])
stringify :: [Char] -> [String]

06/30~-07/04 FP & Types 151

Functions Returning APOLAA
Functions 2008

* Another view of partial application: functions
returning functions. Example:

makeAdder n: creates a function add n to its argument

makeAdder :: Int->(Int->Int)
makeAdder n = \X -> X+n

or
makeAdder = \n -> \X -> X+n

incAll: [ITnt]=>[Int]
incAll = map (makeAdder 1)

06/30~-07/04 FP & Types 152

Currying 0

2008

There is a one-to-one correspondence between
the types (A,B) ->C and A -> (B ->C).

Given a function f:: (A,B) ->C,
its curried equivalent is the function

curriedF -:: A -—> B -—> C

curriedFr a b = T (a,b)

06/30~-07/04 FP & Types 153

Currying in Haskell

AOLAA

2008

*Haskell functions are implicitly curried;
multiple arguments can be applied one

at a time.
plus x y = xXx + vy
plusl = plus 1
plusl 5 = 6
‘But add (x, v) = x + v

requires a pair of arguments: add (1, 5)

06/30~-07/04 FP & Types

154

AOLAA

2008

fold (reduce) functions

06/30~-07/04 FP & Types 155

Motivating Examples @\fi%

1. product: multiplies all the elements in a list of
numbers together.

product [2,5,26,14] = 2*5*26*14 = 3640
product :: [Int] -> Int

product [] =1
product (n - ns) = n * product ns

2. concat: Concatenate multiple lists
concat [[2,5]1, [1, [26,14]]= [2,5,26,14]

concat :: [[a]l]l -> [a]
concat [] = [1

concat (XS:XSsS) = XS ++ XSS
06/30~-07/04 FP & Types 156

Folding A0 4o

2008

A general pattern for the functions product and
concat is replacing constructors with operators.

For example, product replaces : (cons) with *
and [] with 1:

1 :CC:-2@: ¢ :-1D))
1*@*@*@E* 1)))

econcat replaces : (cons) with ++ and [] with []:
[2.5]1 = ([0 = (I3.41 - [D)
[2,5] ++(L1 ++([3,4]1 ++L1))

06/30~-07/04 FP & Types

157

Folding Right

AOLAA

2008

Haskell has a built-in function, foldr, that does

this replacement:

foldr :: (a ->

b ->b) ->b ->Ja] -> b

foldr T e [] = e

foldr f e (X - xs) = T x (foldr T e xs)
1 @*CE*¢E" 1))

product = foldr (*) 1 recusive call

concat = foldr (++) []

06/30~-07/04

FP & Types 158

Visualizing foldr Q%fi%@

foldr :- (@ ->b ->b) ->b ->[a] > b
foldr f e [] = e
foldr f e (X - xs) = T x |(foldr T e xs)

f

a/f
f
—~ f0 -

foldr (-) O [1,2,3,4,5] = (1-(2-(3-(4-(5-0)))))

= 3
06/30~-07/04 FP & Types 159

Folding Left S

2008

Another direction to fold: foldl:

foldl :: (b ->a ->b) ->b ->[a] -> b

foldl f e [] = ¢
foldl fe (X - xs) = foldl T (f e xX) Xs

* product = foldl (*) 1
econcat = foldl (++) []

efoldl max O [1,2,3] =3
wheremax a b = if a > b then a else b

06/30~-07/04 FP & Types 160

Folding Left (reduce)

AOLAA

2008
foldl :: (b ->a ->b) ->b ->[a] -> b
foldl f e [] =-¢
foldl fe (x - xs) = foldl T |(f e X)|xs
/f
1N
fl °
’ d
— f0 -
b
foldl (=) O [1,2,3,4,5] = (((((0-1)-2)-3)-4)-5)

= -15
06/30~-07/04 FP & Types

Reversing a list using foldr

reverser - [a] -> [a]
reverser = foldr snoc []
where snoc X xs = xs ++ [X]

--Add ‘X’ to the end of xs

f i

AOLAA

2008

—--0(N2)

f

f

d
b//f\ >

f
¢ // f c//
d / . d/ [e]
° N7
N7
Add ‘e’ to the end of []
06/30~-07/04 FP & Types

fl /I /T
a-b fl —> a-b// f

162

AOLAA

Reversing a list using foldl 2008
reversel :: [a] -> [a]
reversel = foldl cons [] --O(N)

where cons Xs X = X - XS

f f f

fl f/\ f

/f/\e /f\e f/\e

A A VAN

N\ N ba] ©
N b [al b

[l a N\

N\,

add a to the front of []

06/30~-07/04 FP & Types 163

L e
Specialized fold Q’zoff@

foldrl :: (a -> a -> a) -> [a] -> a

/
N\
Foldrl (/) [8,12,24,4] = 4.0 8// /]
iy
24

\\ﬁ

foldll :: (a ->a -> a) -> [a] -> a

foldll (/) [64,4,2,8] = 1.0 /

64 4

06/30~-07/04 FP & Types 164

Combing Map and Reduce

06/30~-07/04 FP & Types

AOLAA

2008

165

Consider the three APL4n
SUMS 2008

“1+2+...+100_= (100 * 101)/2

“1+4+9+ ... +1002 = (100 * 101 * 102)/6 !

1 +1/32+1/5%+ ... + 1/1012 = 72/8 100
2K

In mathematics they are all captured o
by the notion of a sum: k:l,%d

101

Can we express this abstraction directly?
06/30~-07/04 FP & Types 166

Look at the three

functions

100

Z K = sum-integers 1 100
k=1

0

Z k® = sum-squares 1 100
k=1

101

k~* i
> k™ = pi-sum 1 101
k=1,o0dd

06/30~-07/04

sumintegers k n =
if k>n then 0 else

k + (sum-integers (k+1) n)

AOLAA

2008

sumSquares k n =
if k>n then 0O else
(square k) + (sum-squares

k+1) n)

piSum k n =
if K>n then O else

(1/(square k)) + (pi-sum (k+2) n)

FP & Types

167

Abstraction from the

AOLAA

three functions 2008
2.0
xel sumintegers k n =
sumfnextkn— """""""""""""" ; if k>n then O else
| - + - (K+1)
. if k>nthen 0else i K+ (sum-integers (k+1) n)
(f k) +
sum f next (nextk) n
‘| sumSquares k n =
___ .| if k>n then O else
sumlintegers = sum (\x->x) (+1) (square k) + (sum-squares (k+1) n)
ssumSquares = sum (\X->x"2) (+71)
: : piSum k n =
*piSum = sum si (+2) if k>n then O else
where si x = 1/(x"x) (1/(square k)) + (pi-sum (k+2) n)
06/30~-07/04 Id x = x FP & Types 168

AOLAA

Using map and reduce 2008

To implement summation: Z f(x)

sum £ 1 = Toldl (+) O (map f I)

E.g.,
> (X): >sum (\x->x) [1, 2, 3]
value: 6
> (x2): >sum (\x->x*x) [1, 2, 3]
value: 14

06/30~-07/04 FP & Types 169

. . 3.0
Google is using FPL, too Q’zoﬁl@

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
Jeff @ google.com, sanjay @ google.com

Google, Inc. 2004

As a reaction to this complexity, we designed a new
abstraction that allows us to ex press the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-

spired bv the map and reduce primitives present in Lisp
and many other functional languages. We realized that

06/30~-07/04 FP & Types 170

Function Composition

AOLAA

2008

Function composition is a higher-order function.

compose ::
(b ->¢c) >(G@->Db) >a->c
compose f g x = ¥ (g X)

X > g > f

There is a Haskell operator . that implements

compose.

infixr . 9
(f.g)x=71 (%)

06/30~-07/04 FP & Types

171

Composition Example Q’%%i%

Define a function count which counts the number
of lists of length nin a list L:

count 2 [[1],[],[2,3],[4,5]1,[1] = 2
Using recursion:

count :: Int -> [[a]] —-> Int
count [] = 0
count n (x:xs)
| length x == n 1 + count n xs

| otherwise count n xs

Using functional composition:

count” n = length . filter (==n) . map length

06/30~-07/04 FP & Types 172

Composition Example Q’%Si%

*Double the numbers in a list
double :: [Int] -> [Int]
double xs = map (* 2) xs

‘Remove negative numbers from a list
positive :: [Int] -> [Int]
positive xs = filter (0<) xs

*Double the positive numbers in a list

doublePos :: [Int] -> [Int]
doublePos xs = map (* 2) (filter (0<) xs)
or

doublePos = map (* 2) . filter (0<)

06/30~-07/04 FP & Types 173

Defining New Data Types

 Enumerated types
 Parameterized types
 Recursive types

06/30~-07/04 FP & Types

AOLAA

2008

174

Type Declarations @ﬁfﬂ?@

*A new name for an existing type can be defined
using a type declaration.

type String = [Char]
--String is a synonym for the type [Char].

*Type declarations can be used to make other types
easier to read. For example, given

type Pos = (Int,Int)

\We can define left - Pos —» Pos
left (X,y) = (X-1,y)

06/30~-07/04 FP & Types 175

Type Declarations

AOLAA

2008

 Like function definitions,
type declarations can
also have parameters.
For example, given

* Type declarations can be
nested:

type Pos = (Int,lnt)v

type Pair a = (a,a)

type Trans = Pos — Pos

we can define:

bits :: Pair Int
bits = (0,1)

copy :-: a — Pair a
copy X = (X,X)

 However, they cannot be
recursive:

type Tree = (Int,[Tree])x

06/30~-07/04 FP & Ty

pes 176

Defining New Types

* Enumerated

data Bool = False | True

« Parameterized (polymorphic)

AOLAA

2008

data Maybe a = Nothing | Just a

e Recursive

Data List a = Nil | Cons a (List a)

06/30~-07/04 FP & Types

177

50L4~
Enumerated o8

Example:

data Bool = False | True
Bool is a new type, with two new
values False and True.

-data is a keyword - defines a new (algebraic) data type.
*Bool is the type name.

e True, False are constructors.

eTrue:: Bool, False ::Bool

*The type name and constructors must begin with an upper
case letter.

06/30~-07/04 FP & Types 178

Enumerated

AOLAA

2008

Values of new types can be used in the same ways
as those of built in types. For example, given

data Answer = Yes | No | Unknown

we can define:

answers
answers

flip

flip Yes
flip No

flip Unknown

- Answer — Answer

= Yes

[Answer]
[Yes,No,Unknown]

NO

Unknown

06/30~-07/04

FP & Types 179

50L4~
Enumerated o8

The constructors In a data declaration can also have
parameters. For example, given

Circle Float

data Shape =
| Rect Float Float

we can define:

square - - Shape
square = Rect 1 1
area - - Shape —» Float

area (Circle r) = p1 * r™"2
area (Rect X Yy) X *y

06/30~-07/04 FP & Types 180

. WOL4n
Continued: onoe

Circle Float

data Shape =
| Rect Float Float

« Shape has values of the form Circle r where ris a
float, and Rect x y where x and y are floats.

e Circle and Rect can be viewed as functions that
simply construct values of type Shape:

Circle :-: Float —» Shape

Rect - Float —» Float —» Shape

06/30~-07/04 FP & Types 181

Parameterized
(Polymorphic)

AOLAA

2008

Not surprisingly, data declarations themselves can

also have parameters. For example, given

data Maybe a = Nothing | Just a

we can define:

zero :-: Maybe Int
zero = Just O

app T Nothing
app ¥ (Just x) =

app :: (a » b) — Maybe a — Maybe b
= Nothing

Just (F %)

06/30~-07/04 FP & Types

182

Recursive Types

AOLAA

2008

In Haskell, new types can be defined in terms of

themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat — Nat.j

Nat IS a new type, with constructors
Zero :: Natand Succ ::

Nat contains the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

06/30~-07/04 r:j FP & Types

183

Modeling
Arithmetic Expressions

1 + (2 * 3)

+

/" N\

1 *

7N\

06/30~-07/04 FP & Types

AOLAA

2008

184

Arithmetic Expressions

AOLAA

2008

* We can define a suitable new recursive type to

represent these expressions

data Expr = Val Int
| Add Expr EXpr
| Mul Expr EXxpr

« So the tree for 1 + 2 * 3 could be represented as

Add (val 1) (Mul (val 2)

06/30~-07/04 FP & Types

(Val 3))

185

Arithmetic Expressions Q’%%i%

* We can define recursive functions to process
expressions

size :: Expr -> Int
size (Val n) =1

size (Add X y) = size X + size y
eval :: Expr -> Int
eval (Val n) =N

eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y

06/30~-07/04 FP & Types 186

Binary Trees Q’%fi%

In computing, it is often useful to store data in a
two-way branching structure or binary tree.

5

N

3 /

7\ 7\

06/30~-07/04 FP & Types 187

Binary Trees

AOLAA

2008

Using recursion, a suitable new type to represent

such binary trees can be defined by:

Lea¥F Int

data Tree =
| Node Tree Int Tree

For example, the tree on the previous slide would

be represented as follows:

Node (Node (Leaf 1) 3 (Leaf 4))
5
(Node (Leaf 6) 7 (Leaf 9))

06/30~-07/04 FP & Types

188

Binary Trees

AOLAA

2008

* The function flatten returns the list of all integers

contained in the tree

flatten ::Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node I n r)= flatten I

++ [n]

++ flatten r

o |f the tree flattens to an ordered list then the
IS a search tree

* Our example flattens to [1,3,4,5,6,9]

06/30~-07/04 FP & Types

tree

189

Searching a Binary Tree

AOLAA

2008

We can define a function find that decides if a given

iInteger occurs in a binary tree:

find x (Leaf n) X==N

find X (Node I n r) = x==
|| find x 1|
|| find X r

find - Int - Tree —» Bool

However, this function simply traverses the entire tree, and

hence for our example tree may require up to seven

comparisons to produce a result.

06/30~-07/04 FP & Types

190

Binary Search Trees Q%%;%

Search trees have the important property that when
trying to find a value in a tree we can always
decide which of the two sub-trees it may occur in:

find x (Leaf n) = X==n
find X (Node I n r) | x==n = True
| x<n = find x 1|
| x>n = fiInd X r

For example, trying to find any value in our search
tree only takes at most three comparisons.

06/30~-07/04 FP & Types 191

Lazy Evaluation

06/30~-07/04 FP & Types

AOLAA

2008

192

0
Haskell Is Lazy onff@

Haskell only evaluates a sub-expression if it's
necessary to produce a result.

This is called lazy (or non-strict) evaluation

Main> head []
program error: empty argument list

Main> st (0, head [1)
0]

Main>

06/30~-07/04 FP & Types 193

_ 0
Patterns Force Evaluation Q’zoff@

Haskell will evaluate a subexpression to test if
it matches a pattern. Suppose we define:

myFst (x, 0)
myFst (X, Y)

X
X

Then the second argument is always evaluated:

Main> myFst (O, maxList [])
program error: empty argument list
Main>

06/30~-07/04 FP & Types 194

Lazy But Productive

AOLAA

2008

Haskell will produce as much of a result
as possible:

Main> [1, 2, div 3 0, 4]
[1127
program error: [primQrminteger 3 0]

Main> map (1/) [1, 2, 0, 7]
[1.0,0.5,

program error: [primDivDouble 1.0 0.0]

06/30~-07/04 FP & Types

195

Lazy Evaluation Q’\%f@

Lazy evaluation: a sub-expression is evaluated
only if it is necessary to produce a result.

The Haskell interpreter implements
topmost-outermost evaluation:

Rewriting is done as near the "top" of the
parse tree as possible.

For example:

reverse (1 - ((F 2) - [D) —I1, T 2]

06/30~-07/04 FP & Types 196

Topmost-Outermost

AOLAA

2008

snoc h tl = tl ++ [h]

reverse (n - ns) = snoc n (reverse ns)

reverse (1 - ((* 2) : [D)

—
(snoc 1 (reverse ((F 2) - [D)

=

(reverse ((fF 2) - [D) ++ 1]

=

((snoc (T 2) (reverse [])) ++ [1]

=

((reverse []) ++ (T 2)]) ++ [1]

06/30~-07/04 FP & Types

197

Topmost-Outermost

AOLAA

2008

—

—

—

((reverse []) ++ [(F 2D ++ [1]
(1 ++ [(F 2] ++ [1]

[(T 2)] ++ [1]

[(T 2),1]

(f 2) Is not evaluated!

06/30~-07/04 FP & Types

198

o . 3,0
Infinite Lists Q’zoff@

Haskell has a "dot-dot" notation for lists:

Main> [0..7]
[0,1,2,3,4,5,6,7]

The upper bound can be omitted:

Main> [1..]
[1,2,3’4’5,6,7’

2918,2919,291<<not enough heap space --
task abandoned>>

06/30~-07/04 FP & Types 199

Using Infinite Lists

AOLAA

2008

Haskell gives up displaying a list when it runs out

of memory, but infinite lists like [1..7] can be
used in programs that only use a part of the list:

Main> head (tail (tail (tail [1..])))
4

This style of programming is often summarized

by the phrase "generators and selectors”
« [1..] is agenerator
- head.tail.tail.tail is a selector

06/30~-07/04 FP & Types

200

Generators and Selectors

Because Haskell implements lazy evaluation,
it only evaluates as much of the generator
as IS necessary:

AOLAA

2008

Main> head (tail (tail (tail [1..])))
5

Main> reverse [1..]

ERROR - Garbage collection fails to
reclaim sufficient space

Main>

06/30~-07/04 FP & Types

201

Another Selector

AOLAA

2008

The built-in function takeWhi le returns the

longest initial segment that satisfies a property p:

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p []1 = [1
takeWhile p (X - Xs)

| p X x - takeWhile p Xxs

| otherwise [

Main> takeWhile (<10) [1, 2, 13, 3]
[1.2]

06/30~-07/04 FP & Types

202

50L4~
Selectors o8

Note that evaluation of takeWhile stops as soon
as the given property doesn't hold, whereas
evaluation of filter only stops when the end of
the list is reached:

Main> takeWhile (<10) [1..]
[11,2,3,4,5,6,7,8,9]

Main> Filter (<10) [1..]
[1,2,3,4,5,6,7,8,9
ERROR!

06/30~-07/04 FP & Types 203

Eratosthenes' Sieve

A number is prime iff

it is divisible only by 1 and itself

itis at least 2

The sieve:

start with all the numbers from 2 on

-delete all multiples of the first number
from the remainder of the list

-repeat

06/30~-07/04 FP & Types

AOLAA

2008

204

Eratosthenes' Sieve Lo

2008

primes :: [Int]
primes = sieve [2..]
where
sieve (X:IXSs) =
X - sieve [y] y<-Xs,y mod x /=0]

Main> take 5 primes
[2,3,5,7,11]

06/30~-07/04 FP & Types 205

Never-Ending Recursion

AOLAA

2008

The expression [n..] can be implemented

generally by a function:

natsfrom :: num -> [num]

natsfrom n = n : natsfrom (n+1l)

This function can be invoked in the usual way:

Main> natsfrom O
[0,1,2,3,---. ERROR!

Main> take 3 (natsfrom 0)
[0,1,2]

06/30~-07/04 FP & Types

206

Iterate

—— 1terate T x == [x, fx, F (F x), -...]

1terate :

> (a ->a) -> a -> [a]

iterate T x = X - 1terate T (f X)

[’abcdef”’,

Main> i1terate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024, . ..

Main> 1terate (drop 3) abcdef”

,,def,,, ,,,,’ ,,,,’

06/30~-07/04

FP & Types

AOLAA

2008

207

Problem: Grouping List
Elements

AOLAA

2008

group :-: Int -> [a] -> [[all
group = ?

[’apa’,”’bep”,”ace”,”pal’’]

Main> group 3 apabepacepal”

Hint: map (take 3) (i1terate (drop 3) abcdef)

=> map (take 3)[abcdef
=> [7abc”, ’def”’, 7~

group :-: Int -> [a] -> [[a]l]

. map (take n)
iterate (drop n)

group n = takeWhile (not . null)

06/30~-07/04 FP & Types

208

Suggested Reading

AOLAA

2008

« Paul Hudak, “Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing

Surveys 21/3, 1989.

« Paul Hudak and Joseph H. Fasel, “A Gentle Introduction
to Haskell,” ACM SIGPLAN Notices, vol. 27, no. 5, May

1992. <Haskell tutoria>|

« Simon Thomson, The Craft of Functional Programming,

2nd Ed., Addison-Wesley,1999.

« Graham Hutton, Programming in Haskell, Cambridge

Univ. Press, 2007

06/30~-07/04 FP & Types

209

More to learn about Haskell Q’%%i%

* Type classes
 Constructor classes

* |O Monads
» State handing in a monadic style

e Various research-oriented extensions in
GHC

06/30~-07/04 FP & Types 210

Acknowledgement Q’%%i%

« Some of the materials presented here are taken
from the slides prepared by :

* Professor G. M. Hutton, Nottingham Univ., UK
* Professor J. Hughes, Chalmers Univ., Sweden

* Professor N. Whitehead, University of Akureyri
In lceland

* Professor G. Malcolm, Univ. of Liverpool, UK

06/30~-07/04 FP & Types 211

AOLAA

2008

Unit 2. Type Systems for FP

Part |: the A Calculus

The foundation of all FP languages.

06/30~-07/04 FP & Types 212

The A -Calculus

The A -calculus was developed by
the logician Alonzo Church in
1930’s as a tool to study
functions and computability.

06/30~-07/04 FP & Types

AOLAA

2008

213

A-calculus iIn Computer
Science

« Computability
 A-definability, Church 1930’s

« Equivalent to Turing Machines, Turing 1937

AOLAA

2008

« Equivalent to recursive functions, Kleene 1936

* Programming languages, 1960’s

* Naming, functions
* Lisp, Algol 60, ISWIM

* Language theory, 1970’s

« Semantics: operational and denotational

* Type systems
06/30~-07/04 FP & Types

214

Original Aims of the
A-calculus

A foundation for logic (1930’s)

— failed

A theory of functions (Church 1941)
— model for computable functions

» Success 30 years later in Computer

Science!

06/30~-07/04 FP & Types

AOLAA

2008

215

The Next 700 PL’s Qﬁﬂ“;‘ﬂ@

Peter Landin develops ISWIM, the first
pure functional language, based strongly
on the lambda calculus, with no
assignments.

“ Whatever the next 700 languages
turn out to be, they will surely be
variants of lambda calculus.”

\(Landin 1966)

~Lambda calculus with constants

06/30~-07/04 FP & Types 216

Lambda Calculus: Variants

language composed entirely of functions

06/30~-07/04 FP & Types

The pure lambda calculus (LC) is a untyped

The simply typed lambda calculus (SLC)

AOLAA

2008

The polymorphic typed lambda calculus (PLC)

217

Pure Untyped A-calculus Q’%%i%

« Syntax is simple: *M,N are called r-terms or r-expressions

— MN ::= x | >xM | MN

+ + +

variable abstraction application

* No types: e.g., (Ax.xX)y; (AX.x)(AX.X)

* No numbers or operations

 can be added
« values are function abstractions

* Functions are nameless
— No “letf =2 x.M in N”

06/30~-07/04 FP & Types 218

Syntax of A-Terms %%ii%@

 Examples:
— Ax.X : the identity function
—(Ay. Ax. xX) f g: discards the first argument

* Notational conventions:
— applications associate to the left (like in Haskell):
cyzx' is (yz)X
— the body of a lambda extends as far as possible to the

right:
* AXXAZX Z X is “AX.(X AZ.(X Z X))”

'

— “AX. AY. X Y often abbreviates to “AX Y. X Y’

06/30~-07/04 FP & Types 219

Terminology Q’%%i%

Bound variables (parameters)
Free variables
Example:

. K>T<.xy
T

X IS bound
In the term Ax.x y

y is free in the term Ax.x y

06/30~-07/04 FP & Types 220

Terminology

e X.M

'\

AOLAA

2008

the scope of x is the term M

¢ AX.XY
X IS bound
In the term Ax.x y

06/30~-07/04

y is free in the term Ax.x y

FV() = {x}
FVOAWX - M) =

X}

FV(M) \

rraTyplY (M N) = FV(M) U

FV(N)

AOLAA

Open Closed 2008
- FV(E) = {} - FV(E) = {}
— XZ — AX.X
— AX.XZ — AX.AY.XY
— (AX.X)y — (AX.X)(AY.Y)
— (AY.(AX.X2)y)wW — MAg.AXT X (g X)

 Ex. Underline the bound variables

06/30~-07/04 FP & Types

222

Evaluating A- Terms

* Function application is straightforward:

(AX.(F X))y -—>Ty
substitute y for xin (f X)

*Reduce all applications (Ax.L)N

Until none can be found

06/30~-07/04 FP & Types

AOLAA

2008

223

AOLAA

Evaluating A- Terms 2008

* 5 -reduction

(AX. X X) (LY. Y)

-->5 X X [Ay.y [X]
== (Ay. y) (Ay.y)
>y [hy-y /vl
==Ly. Y

M [N/X] is the term in which
all free occurrences of x in M
are replaced with N.

This replacement operation
Is called substitution. we
will define it carefully later in

06/30~-07/04

the appendix

FP & Types 224

. 30
Examples of B-reduction Q’zoi%

1. (Ax.x)a —; a
[a/X]

2.(AX. Ay .x)ab —5 (ly.a)b —; a
[a/X] [bly]

3.(AXx.Xxa)(AX.X) =>4 (AX.X)a —4 a
[Ax.x/X] [a/x]

N\

4. (AX. Ay .XY)y =>4 (Ay.yYy) yBecome bound
[y/X] Name capturing error!

06/30~-07/04 FP & Types 225

A Similar Example in C Macro

AOLAA

2008

 Name capturing problem in macro expansion

#define swap(X,Y) [Int tmp=X; X=Y; Y=tmp,;]

1N
a
b

1 -

a, b;
S;
10;

swap(a, b);

int a, tmp;
a=95;
tmp = 10;

swap(a, tmp);

=>

[Int tmp=b; b=a;
a=tmp;]

OK

06/30~-07/04

== oops! tmp got trapped
[Int tmp=a; a=tmp;

tmp=tmp;]

FP & Types

226

Renaming Bound & 0L4 A
Variables “00

- Names of bound variables (parameters) do not
matter.

- Example: Ax. x=_, Ay.y =, AZ. Z
— But NOT:

« This is called a conversion in lambda calculus
A LCE =, Az . E[z/X] (z is not free in E)

Ay. X y[x/ly] will make the “free” x captured.

06/30~-07/04 FP & Types 227

. 30
Example Revisited Q’zoi%

A\
4. (AX. Ay .XYy)y > AY.YY

@Renaming the bounded y

y Become bound

4. (AX.AYy . XY)y >, (AX.AZ2.X2)y
—>5 (42.Yy 2)

[y/Z]

06/30~-07/04 FP & Types 228

0
Normal Forms Q’zoff@

» Evaluation via B-reduction
« Terms (AX.L)N are called B-redexes

* B-normal form = no B-redexes

(X . XX)y < a B-redex

—5 VY < B-normal form

* Not all A-terms have B-nf

06/30~-07/04 FP & Types 229

An example with no NF

(AX. X X) (AX. X X) Q = (AX. X X)

AOLAA

2008

-2 X X [AX. X X/X] QQ has no B-nf

== (AX. X X) (AX. X X)

--> ... looping, no normal form

* |n other words, it is simple to write

non-terminating computations in the lambda

calculus

06/30~-07/04 FP & Types

230

Evaluation Strategy (Order)

* A term may have many redexes:

(AX-(Ay-y)z) ((AZ.Z)W)

« Which application first?
* Does it matter?

* Yes:
— Full Beta Reduction
— Normal Order
— Call-By-Name (CBN)
— Call-By-Value (CBV) (Applicative Order), etc.

06/30~-07/04 FP & Types

AOLAA

2008

231

Full Beta Reduction

* Any redex can be chosen, and evaluation

proceeds until no more redexes found.
* For example,

(Ax.(ry-y)z) ((Az-Z)w)
-->; (Ax-2) ((Az.zZ)w)
__>B Z

06/30~-07/04 FP & Types

AOLAA

2008

232

Normal Order Reduction Q%%;%

* Deterministic strategy which chooses the
leftmost, outermost redex, until no more redexes.

 Example:

(AMX.(Ay-y)z) ((AZ.Z)W)

-=>3 (MY .Y)Z
__>B Z

06/30~-07/04 FP & Types 233

Why Not Normal Order? Q’%%i%

* In most (all?) programming languages, functions
are considered values (fully evaluated)

 Thus, no reduction is done inside of functions
(under the lambda)

AX. M is a value‘, not reducible

* No popular programming language uses normal
order

06/30~-07/04 FP & Types 234

0
Call by Name: Call by Value | o0

Consider the application: (A X. E) e,

Call by value: evaluate the argument e, to a
value before 5 reduction

Call by name: reduce the application, without
evaluating e,

In both cases: a lambda abstraction: Ax. E
IS a value.

06/30~-07/04 FP & Types 235

e
Call-By-Name/Call-By-Value Q’zoff@

 CBN example « CBV example

id (id (1z. id 2)) (id (id (Az. id 2))

—, id (1z. id 2) — id (Az. id 2)

—>5 Az. 1d zZ — Az. 1d z

where 1d = AX.X

06/30~-07/04 FP & Types 236

Order of Evaluation May GOLA A
Matter Much 2008

 CBV (Inner redex):
(Ay . A2.2) (AX . XX) (AX.XX))—>
Ay . AZ2.2Z) (AX . XX)(AX.XX))—>p ...

 CBN (Outer redex):
AY . AZ2.2) ((AX . XX) (AX.XX))—>
(Az.2)

1st sequence is infinite. 2nd has normal form.

06/30~-07/04 FP & Types 237

Normalization Theorem

If a A-expression E has a normal form, then
the normal order strategy will terminate in a
normal form. (Curry & Feys, 1958)

Church-Rosser Corollary

The normal form of a A-expression,

If it exists, is unique.

06/30~-07/04 FP & Types

AOLAA

2008

/N
N

238

Comparison A0 4o

2008

* The call-by-value strategy is strict

* The arguments to functions are always

evaluated, whether or not they are used by the
body of the function

* Non-strict (or lazy) strategies evaluate only the
arguments that are actually used

— call-by-name
— call-by-need

06/30~-07/04 FP & Types 239

LC and Type Theories Q’%%i:%

*Russell’s paradox:
R={ X | XgX}, s

*Russell developed type theory,
attempting to solve the paradox.

Church encounters similar
iIssues in pure LC:

Q= (Ax.x x), QQ has no NF

*Church proposed the
simply typed LC (1941)

06/30~-07/04 FP & Types 240

AOLAA

2008

Lambda Calculus and
Programming Languages

Programming in the Lambda Calculus

06/30~-07/04 FP & Types 241

We can do everything Q’\fi%

* The lambda calculus can be used as an
“assembly language”

* We can show how to compile useful, high-level
operations and language features into the
lambda calculus

— Result = adding high-level operations is convenient
for programmers, but not a computational necessity

— Result = make your compiler intermediate language
simpler

06/30~-07/04 FP & Types 242

Compile the Let Expressions

AOLAA

2008

» Given the let expressions in Haskell

let x = el 1in e?2

« Question: can we implement this construct in the

lambda calculus?

source = lambda calculus + let

@ translate/compile

target = lambda calculus

06/30~-07/04 FP & Types

243

AOLAA

Compile the Let Expressions 2008

» Given the let expressions in Haskell

let x = el 1in e?2

« Question: can we implement this construct in the
lambda calculus?

Example: let £ = \x.xz 1in \y.f (f v)

1

U

(NEA\y.£ (£ y)) (\x.xz)

06/30~-07/04 FP & Types 244

Compile the Let Expressions

» Given the let expressions in Haskell

let x

el 1n e’

AOLAA

2008

« Question: can we implement this construct in the

lambda calculus?

Rule:

let £ = Ax.M in N

U

(Af.N) (Ax.M)

*The let-expr is a kind of syntactic sugar

06/30~-07/04

FP & Types

245

Encoding Booleans in LC Q’%%i%

« We will represent “true” and “false” as functions
named “true” and “false”

— how do we define these functions?
— think about how “true” and “false” can be used

— they can be used by a testing:
if b then x else y or as a function: if b x y

!f true xy =X :> if =Atorf.Ax. Ay .torfxy
if false xy=y @

true Xy =X

false xy =y
06/30~-07/04 FP & Types 246

AOLAA

Encoding Booleans 2008
* the encoding:
if true (Ax.t1) (Ax.t2)
true = At. Af. t
= (Ax. Athen. Aelse. x then else)
(At Af. 1) (Wx.t1) (Wx.t2)
false = At. Af. f
—->" (At AL 1) (Ax.t1) (Ax.12)
If = AX. Athen. Aelse. % Ayt
X then else
-->/;f Zero or more steps of beta
reduction

06/30~-07/04 FP & Types 247

Encoding Booleans @fi%

true = At. Af. t false = At. Af. f
and = Ab. Ac. b ¢ false

and true true and false true
-->* true true false -->* fals true false
_>* trye -->* false

5 omitted

06/30~-07/04 FP & Types 248

Encoding Natural Numbers
In Lambda Calculus

- A natural number is a function that given an

AOLAA

2008

operation f and a starting value s, applies f a

number of times to s:

0= ;Af.As.s
1=, M As. fs Church numerals
of M. AS.

2=gs M.2s.f(FS) > [n =, AMis. fs

06/30~-07/04 FP & Types

249

Computing with Natural
Numbers

AOLAA

2008

- The successor function
succ n =g Af. As. f(nfs)

- Addition

add n,; n, =4, N, SUCC N,
- Multiplication

mult n, n, =4, N4 (@dd n,) 0
- Testing equality with O

ISzero n =4 n (Ab. false) true

06/30~-07/04 FP & Types

250

Computing with Natural SOL4e
Numbers. Example 2008

Given: succ n =4 Af. As. f(nfs)
0 =4 M. AS. S
1 =4t M. AS. TS

succ 0 =

(AnAf. As. f(nfs)) 0=

(An.Af. As. f(nfs)) (Af. As.s) >
(M. As. f((AMf. As.s)fs) >

(M. As. f((As.s)s) >

M.As. fs=1

06/30~-07/04 FP & Types 251

Computing with Natural
Numbers. Example

mult22 —

2(add 2) 0 —»

(add 2) ((add 2) 0) —>

2 succ (add 2 0) —»

2 succ (2 succ 0) >

succ (succ (succ (succ 0))) —»

succ (succ (succ (Af. As. T (0 fs)))) —

succ (succ (succ (Af. As. fs))) —>

succ (succ (Ag. Ay. g ((AMf. As. fs)gy)))
(

AOLAA

2008

succ (succ (Ag-Ay. g (gy)) - Ag.Ay. g (g (g (gy) =4

06/30~-07/04 FP & Types

252

Encoding pairs

« would like to encode the operations

— mkPair el e2
— fstp
—sndp

 pairs will be functions

AOLAA

2008

— when the function is used in the fst or snd operation it

should reveal its first or second component

respectively

06/30~-07/04

FP & Types

253

Encoding Pairs Q%fi%

- A pair is a function that given a Boolean returns
the left or the right element

mkpair Xy =4sA b. Xy

fst p =4ef P true

snd p = 4o P false
- Example:

fst (mkpair x y) —» (mkpair x y) true — true x y — x

06/30~-07/04 FP & Types 254

and we can go on...

* lists, trees and other datatypes
* recursion, ...

* the general trick:

AOLAA

2008

— values will be functions — construct these functions so
that they return the appropriate information when

called by an operation

Lambda calculus with predefined constants

06/30~-07/04 FP & Types

255

Recursion In the
Lambda Calculus

06/30~-07/04 FP & Types

AOLAA

2008

256

Recursion in the LC

The Y combinator

Y = AF.(AX-F(X X)) (AX.T(X X))

Y F = F(Y F)

06/30~-07/04 FP & Types

Y has the property: for every function F,

In other words, (Y F) is the fixed point of F
We can use Y to implement recursion in the LC.

AOLAA

2008

257

| (Ol
Solution o8

Y F
= (M. (X T(X X)) X F(X xX))) F

—>5 (MX-F(X X)) (AX-F(X X))
—>5 F C OX-F(X X)) (AX-F(X X)))

— F (OF.Ox-F(x x)) x.F(x x))) F)
=F (Y F)

So,ifwelet X = Y F then this tells us
X =FX
In other words, X is afixed point of F.

06/30~-07/04 FP & Types 258

. Q\\J@M@
Recursion 2008

 Factorial in Haskell:
fact = \n -> 1if (n==0) then
1

else
(n* (fact (n-1)))

— Ex. Write fact in A-calculus by using the
Y combinator.

* Hint: consider the term
e F= Af.An_1F (1sZero n) 1 (n*Ff (pred n))
 Ex. Evaluate fact 0, fact 1 and fact 2.

06/30~-07/04 FP & Types 259

| (Ol
Solution o8

fact = Y F
=Y (AF.An_1f (1sZero n) 1 (n*(F (pred

=Y F 2

F (Y F) 2

(AfF.an_1f (1sZero n) 1 (n*(f (pred n)))) (Y F) 2
(An_af (1sZero n) 1 (n*((Y F) (pred n)))) 2

iIT (isZero 2) 1 (2*((Y F) (pred 2)))

2*(Y F (pred 2))

2*(Y F 1)

2*(fact 1) and so on...

06/30~-07/04 FP & Types 260

AOLAA

2008

Appendix: Formal Treatment of
Substitutions

06/30~-07/04 FP & Types 261

Name Capturing
— (AX.AY.X)Yy —pAY.Y X

» Replacing doesn’t always work
« But if we a-convert first

— (AXAYX)Y =, (XY . X)Y
— gAYy

 Now define substitution mgnsx] to do this

06/30~-07/04 FP & Types

AOLAA

2008

262

Substitution M[N/x] Q%fff@

— X[N/X] =
— y[N/x] = (y#X)
— (PQ)[N/x] =
— (AX.L)[N/X] =
— (2y.L)[N/X] = (y#X)

« Hint: Take care with (Ay.L). Consider the cases

— y¢FV(L) and y¢FV(N) and only rename y when
necessary.

06/30~-07/04 FP & Types 263

Substitution M[N/x]

— We assume that y=x throughout.
— The first three cases are easy.

— X[N/X] =N
— y[N/x] =y
— (PQ)[N/x] = P[x:=N] Q[x:=N]

AOLAA

2008

— In the next case the Ax guarantees that x does not
appear free in the term (Ax.L), so there are no free

occurences to substitute for.

— (AX.L)[N/x] =ax.L

06/30~-07/04 FP & Types

264

Substitution M[N/x] Q%fff@

— The final case is the tricky one.

— (2y.L)[N/X] =ay.L , if xeFV(L)
— ny.L[N/X] , If yeFV(N)
— Ay .LIY'TY][IN/X] , otherwise
— where y'¢FV(L)u FV(N)

— If xgFV(L) then there are no x’s to replace with

— N’s, so the term stays the same. If yeFV(N)then
there will be no y’'s accidentally captured by the iy
so we can keep ay. But otherwise we must find a
fresh variable y’ and replace L.y by iy'.

06/30~-07/04 FP & Types 265

AOLAA

2008

Lambda Calculus with
Constants and Types

06/30~-07/04 FP & Types 266

Example: Extended LC

AOLAA

2008

[ambda calculus with Booleans and natural numbers

E ::= constants: 1, 2, 3, ..
succ, I1Szero

true, false,

&&(and), |](or), (not),
variable: x, vy, z, .
AX.E

E1l E2

1T E1 then E2 else E3

06/30~-07/04 FP & Types

267

Evaluation Rules for the AL~

Extended LC 2008
Some extended rules:
« Based on B-reduction Iszero (2 N z]’Erllle
1SZero SUcCC n alse
« Extended to Booleans
and numbers pred O >0
d S
« Reduced to values: pred (succ n) "
-0,1, 2, ... iT true then el else e2
— true, false] ~> el
o E 1T false then el else e2
- ' > e2
 Values are normal
forms el > e2

succ el = succ e2
06/30~-07/04 FP & Types 268

Evaluation Rules for the S OL4A
Extended LC ... 2008

* Not all normal forms are values
- E.g., (Xy)
* So, reduction (evaluation) may get stuck
— Got a normal form, but not a value. For example:

(AX. succ xX) true > succ true —>??

Reproduce it in LC:

= (N AfAs. T (n T s))(ht. T 1)
2> AMF.As. T (Ot f.t) T 95)
2> AF.As. T £ --Not a number!

06/30~-07/04 FP & Types 269

Introducing Types

AOLAA

2008

« Def: aterm is stuck if itis in normal form and

not a value

e Stuck terms model runtime errors

— “succ true”
 It's a kind of type error!

* A key goal of types and type systems will be to

remove such runtime errors

- Int=10,1, 2, ...], succ, pred, ...

— Bool = [true, false], and, or, not

— We cannot mix Int with Bool values arbitrarily.

06/30~-07/04 FP & Types

270

AOLAA

2008

Lambda Calculus with
Constants and Types

Based on the Simply Typed
Lambda Calculus (SLC)

06/30~-07/04 FP & Types 271

| (OL4,
Function Types o8

We introduce function types: A — B is the type of functions with
a parameter of type A and a result of type B.

Types are defined by this grammar:
T = Int

| Bool

| T>T

By convention, — associates to the right, so that
A—->B—>C means A— (B — C).

Examples: Int — Int — Int curried function of two arguments

(Int — Int) - Int function which is given a function

06/30~-07/04 FP & Types 272

Types and Type Errors

AOLAA

2008

We type the succ function and Boolean value true as

succ - Int -> Int
true : Bool

Then T

““succ true”

f:oT1 -> T2

IS not acceptable!

We’'ll introduce typing rules to filter out

(type checking) such expressions.

06/30~-07/04 FP & Types

273

Lambda Calculus SOL4A
with Types 2008

To make it easier to define the typing rules, we will modify the
syntax so that a A-abstraction explicitly specifies the type of its

parameter. «And more operators, such
aS ‘+1’ ‘::‘, ‘&&1

values | v ::= integer literal
| true | faEe// Type declaration
) | Ax:T.e for parameters
expressions e:=v

| X

le+e|le==e|e&&e|ifetheneeclsee

le e
types Int

| Bool
|IT>T

06/30~-07/04

Examples of Expressions Q’\%‘;%

2, true, X

X+20-y*5

x>y) |l (y>10 && z==1)
1T x==2 then 10 else 20

succ (1T x==2 then 10 else 20)
(if (x==0) then T else g) (yt+H)

06/30~-07/04 FP & Types 275

Examples of Functions Q’\fi%

AX:Int.ox+2
Ab-Bool . Ax:Int.1f b then x else -Xx

AfF-Int->Int.AxZInt.f (F X)
(AF-Int-—>Int.Ax:Int.f (f X)) succ

AXZInt.Af:Int->Int.Ag:Int->Int.
IT (x==0) then T else ¢

06/30~-07/04 FP & Types 276

Type Checking for & OL4n
Function Application 2008

* |In function application, the type of the argument
must be the same with that of the parameter.

el : T1 -> T2 (premises, or
e2 - T1 assumptions)
el e2 : T2 (conclusion)

O Int->Int.ax:Int. T (F x)): (nt->Int)->Int
succ: Int->Int

O Int->Int.Ax:Int.f (f X)) succ : Int

06/30~-07/04 FP & Types 277

AOLAA

2008

Determining the Type of an
Expression

Type Checking: Does e has a type t?

T-:= Int
| Bool
| 11 & 1

*T IS @ meta-variable
representing a type

06/30~-07/04 FP & Types 278

Type Judgments

AOLAA

2008

* A type judgment has the form

['|-exp:t

I" is a typing environment

“exp has type tunder TE I

— Supplies the types of variables and functions
— TI'isalistoftheform [x: 1, ..]

“satisfies”)

exp Is a program expression
T 1S a type to be assigned to exp

|- pronounced “turnstyle”, or “entails” (or

06/30~-07/04 FP & Types 279

Example Valid Type GOLA A

Judgments

* []

e [X:Int]

 [p:Int->String]

2008

- true or false : Bool
-X+ 3:Int

- (p 9) : String

*Type judgments are derived via typing rules.

06/30~-07/04

FP & Types 280

Format of Typing Rules

AOLAA

2008

Assumptions:
[y|-expyity ..., |-exp,: 1,
Conclusion: [|-exp:r

 |dea: Type of expression determined by type of

its syntactic components

* Rule without assumptions is called an axiom

* I may be omitted when not needed

06/30~-07/04 FP & Types

281

Axioms - Constants @ﬁ%@

l-n:Int (assuming nis an integer constant)

|- true : Bool |- false : Bool

* These rules are true with any typing
environment

* N IS a meta-variable

06/30~-07/04 FP & Types 282

Typing Environment Q’%%i%

*A typing environment I'"keeps track of the types of
free identifiers occurred in expressions

' = [., x:Int, f:Int->Int, .]

‘We view a TE as a finite fun from identifiers to types
[':lde - Type

So, given I" as above, I'(x) = Int

*No multiple bindings for any id:
I''=[., xInt, f:Int->Int, x:%ol, o]

06/30~-07/04 FP & Types 283

Axioms - Variables Q’\fi%

*Typing rule for variables: (Var)

if IT'(X) =1

' |- x -+«

*\We can also include the types for pre-defined
identifiers (functions) in I'". For example:

«I'=[.., succ:Int->Int, .]

06/30~-07/04 FP & Types 284

Simple Rules - & OL4A
Arithmetic 2008

Primitive operators (® <{ +, -, *, ...}):

Relations (~ € {<,>, = <=, >=})
['|-e,~ e, :Bool

06/30~-07/04 FP & Types 285

Simple Rules - Booleans

Logical Connectives:

['|-e,:Bool T |-e,:Bool

['|-e, && e, : Bool

['|-e,:Bool T |-e,:Bool

I'|-e,]|e,:Bool

06/30~-07/04 FP & Types

AOLAA

2008

286

Simple Example Q’\ﬁi%

e LetI = x:Int; y:Bool]

e ShowI' |-y || (x+ 3 >6) : Bool

« Start building the proof tree from the
bottom up

?
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types Source: Prof. E. Gunter 287

Simple Example

e LetI = x:Int; y:Bool]
e ShowTI |-y || (x + 3> 06) : Bool

AOLAA

2008

 Which rule has this as a conclusion?

f?

I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types

288

Simple Example

e LetI = x:Int; y:Bool]
e ShowTI |-y || (x + 3> 06) : Bool

* Booleans: ||

AOLAA

2008

[" |-y : Bool ['|-x+3>6:Bool

I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types

289

Simple Example

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove

?

AOLAA

2008

I' |-y : Bool ['|-x+3>6:Bool

I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types

290

Simple Example

e LetI = x:Int; y:Bool]
e ShowTI |-y || (x + 3> 06) : Bool

AOLAA

2008

 Which rule has this as a conclusion?

I?

I' |-y : Bool ['|-x+3>6:Bool

I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types

291

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
« Axiom for variables

I' |-y : Bool [I'|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 292

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove

?
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 293

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
 \Which rule has this as a conclusion?

?
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 294

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
« Arithmetic relations

[[|-x+3:Int T'|-6:Int
I' |-y : Bool [I'|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 295

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove

?
[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 296

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
 \Which rule has this as a conclusion?

?
[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 297

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
« Axiom for constants

[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 298

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove

?
[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 299

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
 \Which rule has this as a conclusion?

?
[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 300

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Arithmetic operations

['|-x:Int T |-3: Int
['|[-x+3:Int T']-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 301

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove
?
['|-x:Int T"]- 3 : Int
[[|-x+3:Int T'|-6:Int
I'|-vy: Bool ['|-x+3>06:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 302

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Which rule has this as a conclusion?
?
['|-x:Int T"]- 3 : Int
['|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 303

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
« Axiom for constants

['|-x:Int T |-3: Int
['|[-x+3:Int T']-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 304

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Pick an assumption to prove
?
['-x:Int T |-3: Int
['[-x+3:Int I'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 305

Simple Example Q’\fi%

e LetI = x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* Which rule has this as a conclusion?
?
['|-x:Int T"]- 3 : Int
[[|-x+3:Int T'|-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 306

Simple Example Q’\fi%

e LetI =[x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
« Axiom for variables

[-x:Int T]-3:int
['|[-x+3:Int T']-6:Int
I' |-y : Bool ['|-x+3>6:Bool
I'l-y]l(x+3>06):Bool

06/30~-07/04 FP & Types 307

Simple Example Q’\fi%

e LetI =[x:Int; y:Bool]
e ShowI' |-y || (x+ 3 >6) : Bool
* No more assumptions! DONE!

['|-x:Int T |-3: Int
['|-x+3:Int T'|-6:Int
I' |-y : Bool I'[-x+3>6:Bool
I'|l-y||(x+3>6):Bool

06/30~-07/04 FP & Types 308

If-Expressions @ﬁ%@

+ If then else rule: /\‘

'|-e,:Bool T|-e,:1 T'|\e3:71
[" |- (if e, then e, else e;) T

* 1is atype variable (meta-variable)
— it can take any type at all
— All instances in a rule application must get same type

* |.e., the Then branch, Else branch and
if _then_else must all have same type

06/30~-07/04 FP & Types 309

Examples of IF @\fi%

iIT x==2 then 10 else 20 V

IT x==2 then 10 else false x

06/30~-07/04 FP & Types 310

Function Application @\fi%

* Application rule: (App)

[']-(eje): 1,

» |f you have a function expression e, of type
T, = T, applied to an argument of type 1., the
resulting expression has type 1,

06/30~-07/04 FP & Types 311

Application Examples Q’\ﬁ%@

|-AFzInt->Int.AxzInt.f (F x)): (Int->Int)->Int->Int
I |- succ : Int->Int

'[- AfF:Int->Int.AX:Int.f (f X)) succ :Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- 1¥ b then T else g : Int->Int

[f:Int->Int, g:Int->Int, b:Bool] |- (1 b then T else g) 5 :Int

06/30~-07/04 FP & Types 312

Function Rule

AOLAA

2008
* Rules describe types, but also how the
environment I" may change
« A-fun rule: (Abs)
[XZT1]UF|-6 T2
['|-Ax.€e 1ty —> 1,
We often write| I'.X:T = I'U [X:T] |--extends I

Iff X € dom(I'), then I"'.x-T means that the
new binding of x will replace the original one.

06/30~-07/04 FP & Types

313

Function Example

AOLAA

2008
[y:intJuT |-y + 3 :int
['-Ay.y+3:int—int
[succ:Int->Int].x:Int |- succ: Int->Int
[succ:Int->Int].x:Int |- X: Int
——— App
[succ:Int->Int].x:Int |- (succ x) : Int
[succ:Int->Int] |- Ax.(succ x) : In->Int
06/30~-07/04 FP & Types 314

AOLAA

Anther Fun Example 2008

I |- Af:Int->Int.Ax:Int.f (f x)): ?
‘Move fand xto I

r.f:int->Int.x:Int |- f:Int->Int (Var)
.f:int->Int.x:Int |- x:Int (Var)
(App)

C.f:Int->Int.x:Int |- T x: Int
I'.f:Int->Int.x:Int |- f:Int->Int
(App)
' f:int->Int.x:Int |- T (F x)): Int
(Abs)

Int->Int

. f:Int->Int |- Ax:Int. ¥ (f X)):
| (f x)) (AbS)

' |- Af-Int->Int.Ax:Int.f (F x)):
(Int->Int)->Int->Int

315

06/30~-07/04 FP & Types

Typing Rules for the LC

AOLAA

. 2008
with Constants & Types
I' |- 1 - Int ifiisaninteger literal
I' |- true : Bool I' |- false : Bool
X:T e T I |- x:T typejudgement
r |-- x T
I'|- E1:Int TI]- E2:Int I'|l- E1:Bool TI'|- E2:Bool
I'|- E1 + E2 : Int I'|- E1 && E2 : Bool
I'|- El:Int TJ]- E2:Int I'|-E1:Bool T |-E2:T TI|-E3:T
I'|- E1 == E2 : Bool I'|- 1f E1 the E2 else E3 :T
I'.x:T1 |- E: T2 I'|- E1:T1->T2 TI'|- E2:T1
|- AX:T1.E : T1->T2 I'|- E1 E2 : T2
06/30~-07/04 FP & Types 316

Typing Built-in Operators/Fun

AOLAA

2008

*Alternative: treat built-in operators like literal

constants, and include their types in I

r |- && - Bool->Bool->Bool
r |- + > Int->Int->Int
I' |- succ : Int->Int

*Then, no need to have special rules for them

06/30~-07/04 FP & Types

317

Type Safety @ﬁfﬂ?@

* Well-typed programs won't get stuck!

 Theorem: If e is a closed expression of type T
(|[-e:T), thenforall e such thate ->*¢€', itis
the case that either

(A) e'is a value (say, v')and |- V' : t, or
(B) exists e" such that e' -> e".

If |-ey: T, then g,->e,->e,->...->V

06/30~-07/04 FP & Types 318

The Simply Typed Lambda SOL4A
Calculus A™ 2008

*The extended lambda calculus is based on the
simply typed lambda calculus.

*The SLC was originally introduced by
Alonzo Church in 1940 as an attempt to avoid
paradoxical uses of the untyped lambda calculus.

In the SLC, /5 -reduction is Strong normalizing:
all terms will be evaluated to a normal form.

06/30~-07/04 FP & Types 319

Limitations of the SLC @fi%

* Types are monomorphic.
|-- Ax:Int.x+1 : Int->Int is OK

But what is the type for the identity function?

|- AXZ?. x - 7

|-- Ax:Int. X :© Int->Int?
|-- Ax:Bool. x : Bool->Bool?

|-- AXx:Int-—>Int. x - (Int->Int)->(Int->Int)?

06/30~-07/04 FP & Types 320

Parametric Polymorphism

AOLAA

2008

* Polymorphism: allow many types for a value

(hence also for variable, expression)

* Introducing type variables and V¥ quantification to

express parametric polymorphism.

Let o be a type variables representing any types.

We can type the id function as follows.

|- AXZa.X - Va.o -> «o

06/30~-07/04 FP & Types

321

Parametric Polymorphism...

Polymorphic type: Va.o -> o

The a can be instantiated to any types:

Int -> Int

Bool -> Bool

(Int->Int)->(Int->Int)

06/30~-07/04 FP & Types

AOLAA

2008

322

AOLAA

2008

The Polymorphic Lambda
Calculus (PLC)

AK.A
Second-Order Lambda Calculus

System F

06/30~-07/04 FP & Types 323

. .0
Motivating PLC Q’zoff@

* Like SLC, use explicit typing for fun parameters
— M T.E

* Extend types with generic type variables and
guantification
— Vo.a -> o

* Enhance terms with types
— Type generalization: Aa.AX:a..E , @ polymorphic term
— Type application: (Aa. Ax:a. E) (Int->Int)

* Replace a with Int->Int

06/30~-07/04 FP & Types 324

Types of the PLC

AOLAA

2008
Syntax:
Types |t z:= T type constannts, (Int, Bool,...)
| o type variables
| © 2 t function types
| Va.t polymorphic types
Examples:

Int, Int->Bool, Int->Int->Bool, ..
oa=2>f Vo .o—>a
Va.oo 2 VB.B Va.Vp.(a 2> B) 2> Vy.y

06/30~-07/04 FP & Types

325

3 O0L4~
Terms of the PLC o8
Terms M:= cC constants
| X variables
| \x:t. M function
MM function application
Aa(M) type generalization =~ Aa-M
Mz type application
Examples:
ld = AOL(KXZOL.X) --type generalization (abstraction)

(Ao AX-o.X)(Int->Int) --type application (specialization)
_/

06/30~-07/04 FP & Types 326

Functions on Types

AOLAA

2008

* In PLC, Aa (M) is an anonymous notation for
the function F mapping each type t to the value

of M[t/ al.

 |l.e., computation in PLC involves B-reduction for

such functions on types.
(Aa(W)) © = M[t/c]

e.g., (Aa(Ax:a.x)) (Int->Int) - Ax:Int->Int.x

as well as the usual form of B-reduction from A -calculus

(AX:T.M1) M2 > M1[M2/x]

06/30~-07/04 FP & Types

327

Reduction in the PLC

AOLAA

2008

In summary, we apply substitution on terms

as well as types explicitly.

(Ax: 7 (My)) Mo — My{[Ms/x]
(A (M)) T — M|T/x].

06/30~-07/04 FP & Types

328

Ne
PLC vs. SLC A0 4o

In this system of PLC:

« Two new kinds of terms (expressions):
— Ao (M) (typically, o is used in M)
— Application with type operand: M t (t a type)

* The first kind of expression is also a value

* To the type language we add:
— Type variables — a
— Universal types of the form V

06/30~-07/04 FP & Types 329

Polymorphism in PLC, 1

Example: the identity function

AOLAA

2008

ld = Ao (AX:0..X) has type Va.a->a

We can apply Id to many kinds of arguments:

> ldInt5 = Ao (AX:a.X) Int 5 =2 (Ax:Int.x) 52> 5

» |d Bool true = Aa (Ax:a.x) Bool true = true

06/30~-07/04 FP & Types

330

Polymorphism in PLC, 2 Q’%%i%

Example: applying a function twice

twice = Aa (Af:a—a. AX:a. T (f X)))
has type Va. (a—a)—a—>a

and can be applied to arguments of different types:

a) twice Int (Ax:Int.x+2) 5 -[Int/a(]

> (Af:Int->Int.ax:Int.f (f X)) (Ax:Int.x+2) 5
-2 ((Ax:int. x+2) ((Ax:int. x+2) 5))
2>* 9

b) twice Bool (Ax:Bool. x) false —->* false

06/30~-07/04 FP & Types 331

L 1.0
Polymorphism in PLC, 3 oni‘ﬂ@

*Polymorphic function parameters
*Consider the following function application in LC:

(Af. (F5, f True)) (Ax.Xx) --(,) is a pair

Here the function parameter f is applied to
two types of arguments: Int and Bool

In PLC, (Ax.X) is Ao.AX:o.X with type Vo.o->a,
so we let f has the polymorphic type: AMf:Va. a->a

And rewrite the above example as:
(AMf:Va.a->a.(f Int 5, f Bool True)) (Ao.AX:o.X)

06/30~-07/04 FP & Types 332

L 1.0
Polymorphism in PLC, 3 oni‘ﬂ@

*Polymorphic function parameters
*Consider the following function application in LC:

(Af. (F 5, f True)) (AXx.Xx) --(,) is a pair

Write it in the PLC:

(AMf:Va.o->a.(f Int 5, f Bool True)) (Ao.AX:o.X)

>... > (5, true)

06/30~-07/04 FP & Types 333

Polymorphism in PLC, 4

Re-visit the identity function

AOLAA

2008

ld = Ao (AX:0..X) has type Va.a->a

We can apply Id to Id in a similar way:

>(Id (Vo.a->a)) Id = (Ao(Ax:a.X) (Vo.o->a)) (Ao(AX:o.X))
\/

-2 (AX:Vo.a->a.X) (Aa(Ax:o.X)

-2 Ao(Ax:a.x) =1Id

06/30~-07/04 FP & Types

(
)

I

has type Voa.o->o

334

AOLAA

2008

Formal Typing Rules of PLC

06/30~-07/04 FP & Types 335

e
Syntax of PLC @ o

Types |t z:= T type constannts, (Int, Bool,...)
| o type variables

| © 2 t function types

| Va.t polymorphic types

Terms |[M:= c constants
| X variables
| \x:t. M function
MM function application
Ao .M type generalization
M7 type application

06/30~-07/04 FP & Types 336

Generic (Bound) vs. Free AL~

Type Variables 2008
T=Va.a =2 VB.B t=Va.o. 2 B
fev(®) =[] ftv(x) = [B]

‘Free type variables stand for some types;
*Generic type variables stand for any types.

06/30~-07/04 FP & Types 337

IS
Type Judgements of PLC 2008

takes the form | I" = M : 7 |where

e the fyping environment1’ is a finite function from variables to PLC
types.
Wewrite I' = {@x1 : T1,..., %, : T,} toindicate that I" has
domain of definiton dom(I') = {x1...., T, } and maps each
a; to the PLC type 7; fore = 1..n.)

e [\ is a PLC expression

e T isaPLC type. ftv(I") = U ftv(t))

Source: Prof. A. Pitts
06/30~-07/04 FP & Types 338

PLC Typing Rules

AOLAA

2008

(var) I'-x:7 fxtel

(fn) ' Xty |-M:r,
['-Axt,. Mt ->r1,

(app) F-Myty->1 T|-Myit
'-M; M, :r,

(gen) [-M:z If o ¢ ftv(I)
['|- Aa.M: Vot

(ty_app) [']-M:Voa.t,
'-Mr, - 221,/

06/30~-07/04 FP & Types

339

The Side-Condition I1n Gen

AOLAA

2008

Tl io,Ty I E Xyl Q

(var)

Ty Arg

o (rg) o — «

(fn)

i oF Aa(Axy i a(x)) Va(la— a)

(wrong!)

il

If oo ¢ ftv(I')

S

Ty, T o Fae

. (Y !

i,

r|a— AT

."

ol (29) 1l — o

"

(var)

Ky

(fn)

- "

ri:a-Aa (Axry:a’ (x2))

i,

L A A A /e
o (a6 —

(gen)

Ky

06/30~-07/04

FP & Types

340

PLC Typing Exercise

twice = Aa.Af.a—o.AX:a f (f X))

06/30~-07/04 FP & Types

AOLAA

2008

341

Type Inference SPOL4G
(Type Reconstruction) 2008

« Languages like Haskell differ somewhat from the
pure polymorphic lambda calculus.
— No type annotation for fun parameters
— No need to declare types and put in the “V"

— Not required to put in explicit type abstractions (A) or
type specialization (applications).

 |Instead, the compiler figures those out for you
through the process of type inference.

— I' |-- E : Tt where E has no type annotation at all

06/30~-07/04 FP & Types 342

Type Reconstruction @ﬁfﬂ?@

* We can define a function erase on well-typed
expressions, that removes all type-related
information :

erase(Ax:t.-M) = erase(AX.M)--remove parameter type

erase(Aa(M)) = erase(M) --remove type abs

erase(M t) = erase(M) --remove type app

This brings us back to extended LC (ELC without
types)

06/30~-07/04 FP & Types 343

Type reconstruction @ﬁfﬂ?@

The type reconstruction (inference) problem:

Given M without type information (in, say, ELC),
find:
— M’ with type information (annotations, abstractions,
applications)
— I for freevars(M) (= freevars(M’))
—atyper

s.t. Erase(M)=M and T'|-M :t

We thensaythat T'|-M: 1

06/30~-07/04 FP & Types 344

Example of Type S04
Reconstruction 2008

Erase

((AMf:Yo.a->o.(f Int 5, f Bool True)) (Ao.AX:a.X))

~
(Af. (F5, f True)) (AXx.Xx) --(,) is a pair

06/30~-07/04 FP & Types 345

Type reconstruction

Theorem:

Given M w/o type info, it is undecidable if well-
typed M’ in PLC s.t. erase(M’) = M exists

Corollary:

AOLAA

2008

Type reconstruction in PLC is impossible

So, how is it done in Haskell or SML?

Let us proceed to the Hindley-Milner Type System.

06/30~-07/04 FP & Types

346

AOLAA

2008

The Hindley-Milner Type
System

We'll use the Damas-Milner version

Damas and Milner, POPL 82,
Principal type-schemes for functional programs

06/30~-07/04 FP & Types 347

. 0
Let-Polymorphism onff@

 The HMTS is weaker than the PLC, but admits a
type reconstruction algorithm.

« Parametric polymorphism is achieved via let-
expressions

let id=\x->x V
in (id 5, id True)

* Function parameters are monomorphic only.

(f->(f 5, f True)) (x->x)| K

06/30~-07/04 FP & Types 348

Mini-Haskell Expression

AOLAA

2008

E ::= constants: 1, 2, 3, ...
‘a,’b, ...,

True, False, &&, ||, !

+ - % ..., > <
variable: x,vy, z, ...
—1—\X->E

E1E2

If E1 then E2 else E3

let x =E1in E2

pairs lists

(E1, E2) | [l | [E1, ..., En] |fst| snd | : | head | tail

J

Function abstraction
Function application
If-expr

Let-expr

cons

06/30~-07/04 FP & Types

349

Expression Examples

3+5, x>y+3, not(x>y) || z>0
(1,'a’) fst(a,b d) --pair
[True, False] x:xs tail xs --list
\x -> if x>0 then x*x else 1

(\X -> x*Xx) (4+5)

\f ->\x ->f (f x)

let f =\x-> xin (f True, f‘a’) --pair

06/30~-07/04 FP & Types

AOLAA

2008

350

Types in Mini-Haskell

Simple types
— Int, Bool, Char, ...
Functional types

AOLAA

2008

— Int=>Int, (Int=>Bool)->Int, (Int>Bool)-=> (Int=>Int),...

Pair types

— (Int, Bool), (Int, (Bool, Char)),...

List types

— [Int], [Bool], [[Int]], [(Int, Bool)], ...

* Generalized types T: adding type variables ¢
—t:=Int|Bool|...| a|lB...|t1 2 12] (t1, ©2) | [1]

06/30~-07/04 FP & Types

351

Types Iin the HMTS

AOLAA

2008

* No more general polymorphic types of PLC.

X

Nested quantification

« Adopts a two-layered types

— Types with variables, but no quantifiers
— Type Schemes that support only

outermost quantification

/—/H

Va.VB. (a->B)->[al->[f]|

06/30~-07/04 FP & Types

352

Types & Type Schemes

AOLAA

2008
. Types T: (mono) two-layered types
— 1 ::=Int| Bool | ... primitive types
o B ... type variables
11 2 12 function types (Right-associative)
(t1, 12) pair (tuple) types
[7] list types

« Type schemes c: (poly)

c:i= 1| Va_.o

generic type variable

06/30~-07/04 FP & Types

353

AOLAA

Examples of Type Schemes | 2008

[Int], Bool, Char->Bool
(Char, Int) - Bool

[Int] = (Int->Bool) = Bool

[Int] = B - Bool

Vo.a
Va.[o] 2 a = Bool

Vo. VB.(a=2B)2[a] =2 B

Vo.o2p

*Qutermost quantification only

Invalid type schemes

Int 2 Vo.a Vo.o =2 VB. x

06/30~-07/04

FP & Types

354

Generic (Bound) vs. Free

Type Variables

c=Vo.V.p.oo 2
ftv(s) = {}

AOLAA

2008

ftv(a=2B)= {o,p}

*Free type variables

Notation: omit inner v/

c=Va.a =2
ftv(c) = {B}

stand for some types;
*Generic type variables stand for any types.

Va. B.(a>B)>[a] 2 B =Va.VB. (a2B) 2 [a] P

06/30~-07/04

FP & Types

355

Typing in Mini-Haskell SRS

2008

* A type judgment has the form
['|-exp:t --not ¢
* exp Is a Mini-Haskell expression
* 11s a Mini-Haskell type to be assigned to exp

the typing environment 1" is a finite function from variables to type
schemes.

(WewriteI' = {x1 : 01,..., %y : 0y} toindicate that I" has
domain of definiton dom (I') = {x1,...,x,} and maps each
x; to the type scheme o; forz = 1..n.)

06/30~-07/04 FP & Types 356

Example Valid Type PL4n

Judgments o
e [] |- True or False : Bool

* [x:int] l-x+ 3 :int

* [len: Va.[o]->Int]|-len [1,3,5,7] : Int

e [len: Va.[a]->Int] |- len [True, False] : Int

* [len: Va.[a]->Int] |-len :[[B]] ->Int via [[B]/o]

06/30~-07/04 FP & Types 357

AOLAA

Typing in Mini-Haskell 2008

(Int) T |-n:Int
(Bool) T |- True : Boo
(nil) -1

(assuming n is an Integer constant)

: [7]

I'|- False : Bool
--any type t
[|-e2 :[t1]

I'|-(e1:e2): [t1]

Note: [e1, €2, €3] is a syntactic sugar of (e1:(e2:e3))

(Pair) I |- el : t1

['|-e2 :12

I'|-(e1, e2):(t1,12)

06/30~-07/04

FP & Types 358

Typing in Mini-Haskell, 1 Q’%%i%

*A major change lies in typing a function
ln PLC, we need to specify the type of a
function’s parameter.
(fn) I'.xt, |-M: 1,
I'-xt Mt ->1,

In the HTMS, We guess a type for x. No type
annotation for parameters.

R "A type, not a type scheme,
(Abs) Xty |-e:1 such as Va.a, because fun
I |_ AX.e . T—>1, Parameters are monomorphic.

06/30~-07/04 FP & Types 359

Typing in Mini-Haskell, 2 Q’Zoff@

*Guess as general as possible
*Consider the following two type derivations:

['Xo|-X:a - ['.x:Int |- x : Int
[']- AX.X: a->a [|- AX.X : Int->Int

Obviously, the one on the left is better for type
reconstruction — it is the most general.

‘We can define some kind of order (>~) between
a type scheme and type

06/30~-07/04 FP & Types 360

Orders between Types and SOL4A
Type Schemes, 1 2008

« Specialization order between types and type
schemes:

Va.a2a - B=2P via [B/a]
Va.a=2o - |Int=>Int via [Int/a]

Vo.pB.a=2p=2p = Int—-> (Bool->Bool)
via [Int/a,Bool/f]

06/30~-07/04 FP & Types 361

Order between a Type Scheme | 0L4»
and a Type, 2 2008

We say a type scheme o0 = V a1, ..., Qp (T’) generalises a type
T, and write| o > T |if T can be obtained from the type 7’ by

simultaneously substituting some types 7; for the type variables «;
(e =1,...,n):

T =711/t ..., Tn/an].

(N.B. The relation is unaffected by the particular choice of names of bound type
variables in o .)

*Also called instantiation of a type scheme to a type.
Vo.oo2o >~ B-2>P via [B/a]

06/30~-07/04 FP & Types 362

Orders between Type AL~
Schemes and Types, 3 2008

* Not all type variables are equal!
» (Generic type variables vs. free type variables

__Yoa.o2o B=2PB

*Generic type variables can be instantiated to
any types z, but free types variables are not!

*Generalization order between a type scheme and
atype: o> 1, thisis required in typing rules

*Specialization between two types is derived
during type reconstruction as interim results.

06/30~-07/04 FP & Types 363

Typing in Mini-Haskell, 2 Q’Zoff@

* |Instantiate a type scheme to a type by guessing
— From Vo.[a]->Int to [[B]] ->Int

* Only when typing a variable:

if I'(X)=oc and o >
(Var) T X < (X)
Example:
[len: Va.[a]->Int] |-len : [B] ->Int
In PLC,

[len: Va.[a]->Int] |-len B :[B] ->Int

06/30~-07/04 FP & Types 364

30
PLC vs. HTMS %ﬁ‘l‘@

 Recall that PLC has:

— General polymorphic types: t = Vo.t
— Application with type operand: M 1t (t a type)
— Type generalization: Aa. (M)

* By contrast, the HMTS

— types t and type schemes ¢

— Instantiate a type scheme to a type
 From Va.[a]->Int to [[B]] ->Int

— Generalize a type to a type scheme
 From [B] ->Int to V. [B] ->Int

06/30~-07/04 FP & Types 365

Typing

In Mini-Haskell, 3

AOLAA

2008

*Function application remains the same, except that
only monomorphic arguments (7).

(App) I'-el1:11—>12 T |[-e2 :11
['|-(e1e2):12
Example:
len : Ya.[a]->Int] |- len . [Bool] ->Int
[len : Va.[a]->Int] |- [True,False] : [Bool]
len : Va.[a]->Int] |- len [True,False] : Int

(If) ['|-e1:Bool T |-e2:t TI'[|-e3:71

['|-ifelthene2elseeld:t

06/30~-07/04

FP & Types

366

. 3.0
A Function Example onff@

I |- \F->\x->F (F x)): ?
‘Move fand xto I”

I'.F:o0->a.X-a |— f: a->a
fla->a.XIa |- X: a
(App)
. f:a->a.X:a |- f x: a
I''flo->a.XIa |- f: a->a (App)
. fia->a.XIa |- f (fF X)): a (Abs)
[.fla->a]- \x->F (f X)): a->a (Abs)

I' |- \F->\x->F (F x)): (a->0a)->a->a

06/30~-07/04 FP & Types 367

Typing in Mini-Haskell, 4 Q’Zoff@

*Generalizing a type to a type scheme via LET-expr

' |- \F->\x->F (f X)): (o0->a)->a->a
!

Va.(a->a)->o->a

' [-e1:7l
(Let) [Xol|-e2:1

d r
[-letx=eline2:t x & domi(T)

c=Gen(t1,I') = Val...an.tl.
where [au1,...,an] = ftv(t1) - ftv(I')

06/30~-07/04 FP & Types 368

Generalization aka Closing

AOLAA

2008

Gen(I',t) = Voq... a4 T

where [oy4... a,] = ftv(r) - ftv()

* Generalization introduces polymorphism

* Quantify type variables that are free in

but not free in the type environment (TE)

« Captures the notion of new type variables

of t (introduced via the Var > rule)

06/30~-07/04 FP & Types

369

Example of Let-Polymorphism @2

2008

E = let id=\x->x in (id 5, id True)

(1) T'|-\X->x:a->a ois afreshvar, Gen called

ehrI.id:Vo.ao — a |-id : Int->Int I id:Va.oo > o [-5: Int

I'.id:Va.oo > o [-1d 5 : Int

2.2) I'. id:Va.a—a |- 1d : Bool->Bool T'. id:Va.a—a |- True : Bool

I'.id:Va.oo = a |- 1d True : Bool
(2.1), (2.2) Pair

I'.id:Va.oo. > a |- (id 5, id True) : (Int, Bool)

Let
[|- letid=\x->x in (id 5, id True) : (Int, Bool) ©

06/30~-07/04 FP & Types 370

. . 30
Exercises of Let-Polymorphism onffl@

1. We can also have “id id” in the let-body:
let 1d = \x->x In 1id id

2. Derive the type for the following lambda function:

\x.|let T = \y->x B A
in (f 1, T True)

=[x (1) TalyBll-x:a
Fa=lxzol Fi|-\y->x:B9a

06/30~-07/04 FP & Types 371

HM Type Inference Rules

AOLAA

2008

(App) I Fe, :1->7 I Fe,it
I F(ere)
(Abs) C+[x:1 Fe:"7

I Faxe:t->1

(Var) X:o0)el o221
I Fx:1
(Const) typeof(c) =t
I Fc:r
(Let) [+[x:1] Fe it TI+[x:Gen(TE,1)] fe,:

Syntax-Directed

[F(etx=e,ine,) : 7

06/30~-07/04 FP & Types

372

Limitations of the HMTS: @fi%

A—-bound (monomorphic) vs Let-bound Variables

*Only let-bound identifiers can be instantiated differently.

E1=letid=\x->x in (id 5, i1d True) | semantically
vs. E2 = (M->(f 5, f True))(\x->x) E1=E2, but

E2=\f->(f 5, f True) is not typable: ~Recallthe (Abs) rule
I' xX:t1|-e :12
'-x->e :11 > 12

[f:?2]]-(f5, f True) : (Int, Bool)

a type only, not a type scheme to instantiate

06/30~-07/04 FP & Types 373

Good Properties of the SOL4A
HMTS 2008

e The HMTS for Mini-Haskell is sound.

— Well-typed programs won'’t get stuck!.

* The typeabillity problem of the HMTS is decidable:
there is a type reconstruction algorithm which
computes the principal type scheme for any Mini-
Haskell expression.

— The W algorithm using unification

06/30~-07/04 FP & Types 374

Principle Type Schemes for
Closed Expressions, 1

*What type for “\f->\x->f x?

AOLAA

2008

[f:Int—>Bool, x:Int] |- f: Int>Bool [f:Int>Bool, x:Int] |- x : Int

[f:Int—>Bool, x:Int] |- f x : Bool

[f:Int—>Bool] |- \x->f x : Int - Bool

[]]|- \F->\x->f x : (Int »> Bool) — (Int —> Bool)

App

Can we derive a more “general” type for this expression?

06/30~-07/04 FP & Types

375

Principle Type Schemes for A POLY A
Closed Expressions, 2 2008

A more general type for “\f->\x->f x?

[f.o—B, X:a]|-f:a—>B [f:oa=B, X:a]|-X:a
[f:o—>B, x:a]|- Tx:PB
[f:a—>B] |- X->fx: (o —>P)
[1|-\F->\X->fXx: (a—B) > (oc—>9)

™~ Y
Most general type

Any instance of (o —) — (oo —) is a valid type.
E.g., (Int > Bool) —(Int —> Bool)

06/30~-07/04 FP & Types 376

Principle Type Schemes for
Closed Expressions

AOLAA

2008

* A type scheme o is the principal type scheme of a

closed Mini-Haskell expression E if

(a) |- E: 7 is provable and ¢ = Gen(r, {})

(b) for all 7, if |- E : 7 is provable and ¢’ = Gen(7, {})

then o > o’

where by definition o > o' if 0" = Va,...,.7 @nd

FV(o) N {a,.a,}={and o > 7 .

E.g., \l->\x->f x has the PTS of Va.3.(a=2 ()2 (a2 1)

and Va.3.(a=23)2(a=2>06) = Vv .(y 2Bool)>(y -=>Bool)

06/30~-07/04 FP & Types

377

AOLAA

2008

Type Reconstruction Algorithm
Based on Unification

The W Algorithm by Damas and Milner

06/30~-07/04 FP & Types 378

Type Inference Q’%Si%

= Type inference is typically presented in two different forms:

— Type inference rules: Rules define the type of each

expression
» Clean and concise; needed to study the semantic properties, i.e.,
soundness of the type system

— Type inference (reconstruction) algorithm: Needed by the
compiler writer to deduce the type of each subexpression
or to deduce that the expression is ill typed.

e Often it is nontrivial to derive an inference algorithm for a
given set of rules. There can be many different algorithms
for a set of typing rules.

06/30~-07/04 FP & Types 379

AOLAA

The W Algorithm (Damas&Milner 82) | 2008

W(T, e) returns (S,t) such that S(I') }e: =

" is a typing environment recording the most
general type of each identifier that may occur in e

e IS an expression

* 1lis atype, may contain type variables to be
generalized

S is a type substitution recording the changes in
the free type variables in T, if any.

06/30~-07/04 FP & Types 380

| $Plo
The W Algorithm 2008

W(T, e) returns (S,t) such that SI') |e:

Example: Open expression
I'= [f:a->a, X:B], e

W', e) = ([o/Bl, B) and
[e/B](T) - x : P

T X

06/30~-07/04 FP & Types 381

| $Plo
The W Algorithm 2008

W(T, e) returns (S,t) such that SI') |e:

Example: closed expression
= L1, e = let 1d=\x->x 1n (1d 1d)

w(, e) = ([p->p/a], p—>P) and
[B->p/a](T) | e : p->B

06/30~-07/04 FP & Types 382

The W Algorithm:
Syntax-Directed

AOLAA

2008

W(T, e) returns (S,t) such that S(I') |e: =

The W algorithm is defined in terms of the syntactic

structure of the expression to type.

Def W(', e) =
Case e of
X
AX.€
(e; &)
let Xx =e;In e,

Syntax-directed

06/30~-07/04 FP & Types

383

The W Algorithm: Variables

AOLAA

2008

Def W(T, e) =
Case e of
X —

1. When e is a variable:

Recall the inference rule (axiom) for variables:

X:0)el o2=r1

(Var)

' |- x:71

We do not yet know which t to instantiate!

Let Va.a->a = I'(x), we simply replace o with
fresh (new) type variable, say 3; and determine

the type for 3 later when x is applied via unification.

06/30~-07/04 FP & Types

384

The W Algorithm: Variables

AOLAA

2008

1. When e is a variable:

Recall the inference rule (axiom) for variables:

We do not yet know which t to instantiate!

(Var)

X:0)el o=

' - x:71

Def W(T', e) =
Case e of
X = 1f (x ¢ Dom(I')) then Fall
else let Va,... a,.1 = T'(X);
in ({3} [B/o]7)
06/30~-07/04 FP & Types

B’'s

represent
new type
variables

385

The W Algorithm: Application

AOLAA

2008

Def W(T, e) =
Case e of

(e €,)

2. When e is an application:

Recall the inference rule for fun application:

F }7 61 . T_>T, F }‘ 62 .

(App) . ' - (e &) : 1/

We have to ensure that the type of parameter is the same

as the type of the argument (e,)!

We apply the unification algorithm to compute a
Type substiution to unify them..

06/30~-07/04 FP & Types

386

The W Algorithm: Application

2. When e is a function application:

AOLAA

2008

B represents
a new type
variable

A
Def W(T', e) =
Case e of

(e;e,) et (Sy, 1) = W(T, e,);
(Sz, 1) = W(S,(IN), €y);

in (S3S,S;, S;(B))

S; = Unify(S,(ty), 1o ->B);

06/30~-07/04 FP & Types

387

Unification: Unify(tq, T,)

AOLAA

2008

*Unify(t4, 1,) = fail or a type substitution S
such that St = St..

Unify (a->a,
Unify(a->a.,

Int->Bool) = fail
Int->Int) = [Int/a] =S
Then S(a->a) = S(Int->Int)

Unify(Ja]->B, [y]->Int) = [y/a, INnt/B]=S

Let

*And compute the Most General Unifier (MGU)

S’ = [Bool/a, Int/p].
S'([ad->B) = S'([y1->Int)

and S >~ S’

06/30~-07/04

FP & Types

388

0
Unification: Unify(t,, T,) Q’zoff@

def Unify(t, , 7,) =
case (t, , 1,)of
(1., o) =[ry/a]
(@, 1) =[r/a]
(C,,C,) =if(eq? C,,C,)then[] else falil
(T197> T12, To1 = Tp0)
=let S1=Unify(t,,, 1t,,)
S2 =Unify(S1 (t,,), S1 (t,,))
in S2° S1
otherwise = fail

——C, constant type

«Composition of substitution: S2°S1
Ex: [Int/B]°[B/a]=[Int/B, Int/a]

06/30~-07/04 FP & Types 389

- : W OL4 A
The W Algorithm: Function o
3. When e is a lambda function:| °¢' W(g, €)=
ase e of
\Xx->e =

Recall the inference rule for lambda function:

I'+[x: 1] e :

(Abs) I F \x.e : t->1/

We have to guess a type for the parameter!

We use a new type variable to represent the type of the
parameter and get a type for it later when the function is applied.

06/30~-07/04 FP & Types 390

The W Algorithm: Function

AOLAA

2008
3. When e is a lambda function:
I'+[x: 1] e : =’
(ADS) I F \x.e : t=>1’
Def W(T', e) =
Case e of
x->e = let (S, 1) = W + [x:B], e);
in (Sy, Si(B) -> 1)
B IS new

06/30~-07/04 FP & Types

391

30
The W Algorithm: Let onff@

4. When e is a let expression; |Pef W', &) =
Case e of

let x=e;ine, =...

Recall the inference rule for let expression:

[+[x:1] Fe, it TI'+[x:Gen(TE,0)] Fe,:7

(Let) I' Flet x=eline2: 7

Def W(T, e) =
Case e of
let x=eqIne, = let (S,, r;) = W(, €,);
o} = Gen(S, (), 11);
(S5, 1) = W(ES (D) + [Xx: o], e,);
N (S,S;, 1)
06/30~-07/04 FP & Types 392

AOLAA

The W Algorithm 2008
Def W', e) = Case e of B's new
X = if (x ¢ Dom(T")) then Fail type vars
else let Vvt,...t,.t = T'(X);
n ({3} [Bi/t]ln)
AX.e = let (S, 7)) =W + [x:B], e);
in (S, S;(P) -> 1,)
(e;e,) = let (S;, 1) = W(T, e,);
(S, 1) = W(S (), e,);
S; = Unify(Sy(ty), 1> B);
in (S3S,S;, S3(u))
let x =e;In e,
= let (S,, 1) =W, e,));
c = Gen(S;(T), 11);
(Sz, 1) = W(S () + [X : cl, e);
in (S,S;, 1)
06/30~-07/04 FP & Types 393

The W Algorithm: Example @\fi%

AX. | let T = Ay.X B
in (f 1, T True)

WD, A)y= ([1,u; -> (ug,uy))
WHEx :u}, B = (L], (ug,uyp))
WHEX :u, frur Ay x)=(C[]1,u; > u;)
WHEXx u, fru,yiusb, X)= ([],u;)
Unify(u,, uz -> uy)) = [(uz > uy) 7/ u,]
Gen({X : U}, Uuz;-> u;) = Vusz.U; -> Uy
TE={x:uy, f:Vuzu; -> u}
W(TE, (F 1)) = (L1, u;)
W(TE, f) = ([1.,u, -> uy)
W(TE, 1) = ([]., Int)
06/30~:Q7!Hnify(u4 —> Uy, Int -3 &uﬁ)pes: LInt /u,, U /us] 5,

Important Observations

AOLAA

2008

e Do not generalize over type variables used

elsewhere

e Let is the only way of defining polymorphic

constructs

e (Generalize the types of let-bound identifiers

only after processing their definitions

06/30~-07/04 FP & Types

395

Properties of HM Type @GPl

2008

_Inference (W) |

* It is sound with respect to the type system.
An inferred type is verifiable using I-.

* It generates most general types of expressions.
called Principal Type Scheme.
Any verifiable type is inferred.

« Complexity
PSPACE-Hard
DEXPTIME-Complete
Nested let blocks

06/30~-07/04 FP & Types 396

. SPLAn,
Extensions 2008

e Type Declarations
Sanity check; can relax restrictions

e Incremental Type checking
The whole program is not given at the same
time, sound inferencing when types of some
functions are not known

e Typing references to mutable objects
Hindley-Milner system is unsound for a
language with refs (mutable locations)

e Overloading Resolution

06/30~-07/04 FP & Types 397

Puzzle: Another set of Inference ‘%\ﬁfi“f@
rules Not syntax-directed

(Gen) TE Fe: 1 a¢ FV(TE)
TE }— e : Voa.t

(Spec) TE Fe: Vot SOUSF’ but
: , no direct
TE [-e:t[r/o] inference
algorithm !
(Var) (x:1) € TE
TE F X It
(Let) TE+{x:t} et TEH{xit1} |e,r

TE [(letx=e,ine,) : 7

(App) and (Abs) rules remain unchanged.

06/30~-07/04 FP & Types 398

Appendix: Haskell's
Type Classes

06/30~-07/04 FP & Types

AOLAA

2008

399

Polymorphism

AOLAA

2008
Polymorphism
I 4& |
Universal Ad Hoc
Polymorphism Polymorphism
AN /S
Parametric Subtyping Overloading Coercion

S

06/30~-07/04

FP & Types

400

When Overloading Meets S OL4A
Parametric Polymorphism 2008

* Overloading: some operations can be defined
for many different data types
-==, /=, <, <=, >, >=, defined for many types
-+, -, *, defined for numeric types

*Consider the double function: | double = \x-> x+x

*\What should be the proper type of double?
Int -> Int -- too specific
*Va.a->a -- too general

Indeed, this double function is not typeable in (earlier) SML!

06/30~-07/04 FP & Types 401

Type Classes—a "middle”
way

- What should be the proper type of double?

Va.a ->a --too general

AOLAA

2008

- It seems like we need something "in between”,
that restricts "a" to be from the set of all types that

admit addition operation, say

Num = {Int, Integer, Float, Double, etc.}.—type class

double:: (Vae Num)a->a

- Qualified types generalize this by qualifying the

type variable, as in (VaeNum)a->a,

which in Haskell we write as |Num a => a -> 3

*Note thatthe type signature a-> a

is really shorthand for Va.a -> a

06/30~-07/04 FP & Types

402

Type Classes @ﬁ%@

- "Num” in the previous example is called a type
class, and should not be confused with a type
constructor or a value constructor.

- "Num T" should be read "T is a member of (or an
instance of) the type class Num".

- Haskell's type classes are one of its most
iInnovative features.

- This capability is also called "overloading”,
because one function name is used for potentially
very different purposes.

- There are many pre-defined type classes, but you
can also define your own.

06/30~-07/04 FP & Types 403

Defining Type Classes In

AOLAA

2008
Haskell, 1
*In Haskell, we use type classes and instance
declarations to support parametric overloading
SyStematlca”y' A type is made an instance of a class by
an instance declaration
class Num a where Instance Declaration:
(+), (), () “a->a->a instance Num Int where
negate :la->a (+) = IntAdd --primitive
(*) = IntMul -- primitive
= IntSub -- primitive

*Type a belongs to class Num <>

if it has ‘+',’-",)"*", ...of proper

signature defined. *Type Int is an instance

of class Num

06/30~-07/04 FP & Types

404

Defining Type Classes In GOLA A
Haskell, 2 2008

In Haskell, the qualified type for double

type predicate
double x = V

Ya. Num a => a->a

|.e.,

we can apply double to only types which

are instances of class Num.

doub
doub
doub

06/30~-07/04

e 12 --OK
e34 --OK
e “abc” --Error unless String is an instance

--of class Num,
FP & Types 405

. . 0
Constrained polymorphism onff@

» Ordinary parametric polymorphism
f::a->a
"f is of type a -> a for any type a"

- Overloading using gualified types
f:Ca=> a->a
"f is of type a -> a for any type a belonging to the type
class C"

*Think of a Qualified Type as a type with a Predicate set,
also called context in Haskell.

06/30~-07/04 FP & Types 406

.| A0
Type Classes and Overloadin ‘%zoff@

double :: V a. Num a => a->a

The type predicate “Num a” will be supported
by an additional (dictionary) parameter.

In Haskell, the function double is translated into
double NumDict x =
(select (+) from NumDict) x x

Similar to
double add x = x 'add x -- add x x

06/30~-07/04 FP & Types 407

Type Classes and GOLA A
Overloading 2008

Dictionary for (type class, type) is created by the
Instance declaration.

Instance Num Int where
(+) = IntAdd --primitive
(*) = IntMul -- primitive
(-) = IntSub -- primitive

Create a dictionary called IntNumDict, and
“double 3” will be translated to
double intNumDlct 3

06/30~-07/04 FP & Types 408

Another Example: Equality

AOLAA

2008

- Like addition, equality is not defined on all types
(how do we test the equality of two functions, for

example?).

- So the equality operator (==) in Haskell has type

Eqa=>a->a->Bool. Forexample:

42 == 42 = True
‘a =='a = True
‘a ==42 = << type error! >>

(types don't match)
(+1) == (\x->x+1) = << type error! >>

((->) is not an instance of EqQ)

- Note: the type errors occur at compile time!

06/30~-07/04 FP & Types

409

. \ 10
Equality, cont'd Q’zoff@

- Eq is defined by this type class declaration:
class Eqg a where
(==), (/=) ..a->a->Bool
= not (x ==vy)
X ==Yy = not (x/=y)

+ The last two lines are default methods for the
operators defined to be in this class.

- So the instance declarations for Eq only needs to
define the "==" method.

06/30~-07/04 FP & Types 410

Defining class instances (1)

AOLAA

2008

 Make pre-existing classes instances of type class:

Instance
X ==
Instance
X ==

Eq Integer where

y = X IntegerEq vy
Eqg Float where

y = x TloatEq vy

e (assumes 1Integerkq and floatEq functions

exist)

06/30~-07/04

instance Eq Bool
True == True
False == False

where

= True
= True

= False

T X TypoO

411

Defining class instances (2)

AOLAA

2008

e Do same for composite data types, such as tuples

(pairs).

instance (Eq a, Eq b)=> Eq (a, b) where
(X1, yl1) == (X2, y2) = (X1==x2) &&

(yl==y2)

 Note the context: (Eq a, Eq b) => ..

06/30~-07/04 FP & Types

412

Defining class instances (3) @fi%

Do same for composite data types, such as lists.

instance Eqa => Eq [a] where

[1==11 = True
(X:xs) == (y:ys) = x==y && XS==yS
== = False

 Note the context: EqQ a => ...

06/30~-07/04 FP & Types 413

Functions Requiring Context
Constraints

AOLAA

2008

«Consider the following list element testing function:

elem :: Eqa=>a->[a] -> Bool

elem x [] False

elem x (y.ys)

>elem 5 [1, 3, 5, 7]
True

>elem ‘a’ “This is an example”
False

06/30~-07/04 FP & Types

(x ==vy) || elem x ys

414

Context Constraints (cont’d) $0

2008

succ :-: Int -> Int
succ = (+1)

elem succ [succ] causes an error

ERROR - TIllegal Haskell 98 class constraint
in inferred type

*** Expression : elem succ [succ]

**x Type : Fg (Int -> Int) => Bool

which conveys the fact that Int->Int is not an instance of
the Eq class.

06/30~-07/04 FP & Types 415

Other useful type
classes

e Comparable types:
Oord 2 < <= > >=

e Printable types:
Show - show where

show :-: (Show a) => a -> String
e Numeric types:
Num = + - * negate abs etc.

06/30~-07/04 FP & Types

AOLAA

2008

416

Show — Showable Types

AOLAA

2008

* This class contains all those types whose values
can be converted into character strings using

show :: a -> String

* Bool, Char, String, Int, Integer and Float, are
part of this class, as well as list and tuple types
whose elements and components are part of the

class

06/30~-07/04 FP & Types

417

Show — Showable Types

> Show True
“True”

> show ’a’
11’a’11

> show 42
114211

> show (g, 13)
11(7q1, 13)11

06/30~-07/04 FP & Types

AOLAA

2008

418

Read — Readable Types

AOLAA

2008

* This class contains all those types whose values
can be converted from character strings using

read :: String -> a

* Bool, Char, String, Int, Integer and Float, are
part of this class, as well as list and tuple types
whose elements and components are part of the

class

06/30~-07/04 FP & Types

419

Read — Readable Types

> read ’True” :: Bool
False

> read ’’a’” :: Char
’a’

> read 742” :: Int
42

> read "(Cq, 13)”
Cq”, 13)

> read ’[1,2,3]” :: [Int]
[1.2,3]

06/30~-07/04 FP & Types

AOLAA

2008

420

Super/Subclasses

AOLAA

2008

*Subclasses in Haskell are more a syntactic mechanism.

Class Ord is a subclass of Eq.

class Eq a => Ord a where
(<), (), (=), (>=) :: a -> a -> Bool
max, min :: a —-» a —-> a

x < y=x<=yk&kx /=y
:{}=y=}r{=:{
x >y=y<=xk&kx /=y

max x y | x <=y =y
| otherwise = x
min x y | x <=y X
| otherwise =y

“=>"|s misleading!

Note: If type T belongs to Ord, then T must also belong to Eq

06/30~-07/04 FP & Types

421

AOLAA

Class hierarchies

" o Classes can be hierarchically structured

class Eq a where
class Eq a => Ord a where ...

class UOrd a => Bounded a where
minBound, maxBound :: a

class (Eq a, Show a) => Num a where
(+), (=), () :: a->a ->a

class (Num a, Ord a) => Real a where
toRational :: a —-> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a

Source: D. Basin
06/30~-07/04 FP & Types 422

Recommended Readings $ Mo

2008

Luca Cardelli, Basic Polymorphic Typechecking.

http://research.microsoft.com/users/luca/Papers/BasicTypechecking.pdf

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional programs. Pro-
ceedings of the 8th annual ACM symposium on Principles of Programming languages,
Albuquerque, New Mexico, January 1982.
http://portal.acm.org/citation.cfm?id=582176

[CDK86] Dominique Clément, Joélle Despeyroux, Thierry Despeyroux and Gilles Kahn. A
simple applicative language: Mini-ML. ACM symposium on LISP and functional
programming, 1986.
http://hal.inria.fr/inria-00076025/en/

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc.

Proceedings of the 16th annual ACM symposium on Principles of Programming Lan-

guages, Austin, Texas, January 1989.
http://portal.acm.org/citation.cfm?id=75283&dI=ACM&coll=GUIDE

06/30~-07/04 FP & Types 423

Acknowledgements

AOLAA

2008

« Parts of the materials presented here are taken

from the slides prepared by :

 Dr. A.C. Daniels and Dr. S. Kahrs, Univ. of Kent,

UK

* Professor. A. Pitts, Cambridge Univ., UK
 Professor E. Gunter, CS421, UIUC USA
* Professor Arvind, 6.827/F2006, MIT, USA

06/30~-07/04 FP & Types

424

