1.1

2008 Formosan Summer School on Logic, Language, and Computation

Program Construction and Reasoning
Exercises for Day 2

Shin-Cheng Mu
July 7th, 2008

In-Class Exercises

Folds and Fold-Fusion

. Given functions f : @« — B and g :: a« — 7, splitfg :: a — (8,7) is a

function defined by:

splitf ga=(fa,ga).

Recall the definition of steep and sum. The definition of steepsum can be
re-written as:

steepsum = split steep sum.

Also recall that the identity function id on lists is a fold: id = foldr (:) [].
Use the fold-fusion theorem to fuse steepsum - id into one fold.

Ans:

We reason:

steepsum
= {since f =f-id }
steepsum - id
{ since id = foldr (:)[] }
steepsum - foldr (:) []

{ foldr-fusion, see below }
foldr step (true, 0).

To perform foldr-fusion, we construct a function step such that:

steepsum ((:) zzs) = step x (steepsum xs).

We reason:

steepsum (z:1s)

{ def. of steepsum and split }
(steep (z:xs), sum (z:2s))

{ def. of steep and sum }
(steep xs N x> sum xs, T + sum xs)

{ introducing local identifiers }
let (st, ss) = (steep zs, sum xs)
in(st A x> ss,z+ ss)

{ let step x (st,ss) = (st N\ x> ss,z+ ss) }
step x (steep xs, sum xs)

{ def. of steepsum }

step z (steepsum xs).

We have thus derived:

steepsum = foldr step (true,0)

where step x (st, ss) = (st N & > ss,z + ss).

2. Recall the definition of scanr from the lecture:

scanrfe = map (foldrfe) - tails

and its implementation as a fold:

scanr f e = foldr (sc f)[e]

where scfz (y:ys) =fzy:y:ys

(a) Expand scanr (+)0]1,2, 3] step by step:

Ans:

scanr (+)0[1,2, 3]
= foldr (sc(+))[0][1,2,3]

sc (+) 1 (foldr (sc (+)) [0] [2, 3])
= sc(+)1(sc(+)2(foldr (sc(+))[0][3]))
= sc(+)1(sc(+)2(sc(+)3(foldr (sc (+)) [0][])))
= sc(+)1(sc(+)2(sc(+)3]0]))
= sc(+)1(sc(+)2[3,0])
= sc(+)1]5,3,0]
[6,5,3,0]

(b) Derive the implementation of scanr f e by fusing map (foldr f e)-tails
into one fold.
Ans:

map (foldr f e) - tails
= { since tails is a fold }
map (foldr f e) - foldr til [[]]
{ foldr-fusion, see below }
foldr (sc f) [[e]].
Recall the definition of til:

til x (ys:yss) = (x : ys) : ys : yss.
This fusion condition is proved below:
map (foldr f e) (til x (ys : yss))
= { def. of til }
map (foldr f e) ((x : ys) : ys : yss)
= { def. of map }
foldr f e (x : ys) : foldr f e ys : map (foldr f e) yss
= { def. of foldr }
fa(foldr f eys) : foldr f e ys : map (foldr f e) yss
= { introducing local identifiers }
let (ys, yss) = (foldr f e ys, map (foldr f e) yss)
infzys:ys: yss
= {let scfx(ys:yss) =fxys:ys:yss}
scfx(fold f eys: map (foldr f e) yss)
= { def. of map }
scfx (map (foldr f e) (ys : yss)).

We have therefore derived:
scanr f e = foldr (sc f)[[€]],
where scf x (ys:yss) = fxys : ys: yss.

2 Take-Home Exercise (Due Date: July 10th)

You do not have to do the exercises below if you have completed any of the
exercises from Day 1. Exercise 1 is worth 40 points while exercise 2 is worth 50
points.

1. The function filter p selects from a list all elements satisfying a predicate
p. For example, filter even [1,2,3,4] = [2,4].

(a) Give a recursive definition of filter:

fitter p (] =
filter p (z:zs) =

Ans:
filter p[] = 1
fliter p (z:zs) = if px then z:filter p zs else filter p xs
(b) Define filter p in terms of foldr.
Ans:
fliterpxs = foldr (flt p)[] zs
fitpzys = if pz then z:ys else ys

(¢) Prove, by fold-fusion, that

filterp-mapf = mapf - filter (p-f).

Hint: apply fold-fusion on both sides, and show that they are equal
to the same fold.
Ans:
Consider the left-hand side:

filter p - map f

= { since map is a fold }
filter p - foldr mp [] where mp x zs = f x:xs

We now attempt to construct a function fitf that satisfies the fusion
condition:

filterp (mf fxas) = fltf = (filter p xs)
We reason:
fliter p (f z:xs)
{ def. of filter }
let ys = filter pxs in if p (f x) then f z:ys else ys
{ let fitf x ys = if p(f z) then f z:ys else ys }
fitf x (filter p xs)
We have thus shown that:
filter p - map f = foldr fitf (filter p []) = foldr fitf []
where fltf is defined by fitf z ys = if p (f z) then f z:ys else ys.

Now consider the right-hand side:

map f - filter (p - f)
= { write fliter as a fold }

map f - foldr (fitf (p - f))[]
= { fold fusion (see below) and map f[] =] }
foldr fltf []
This fold fusion condition is proved below:
map f (fitf « ys)
{ def. of fitf }
map f (if p (f) then z:ys else ys)

= { since map distributes into if }

if pz then map f (z:ys) else map f ys
= { def. of map }

if p(fx) then fz: mapf ys else map f ys
= { def. of fitf }

fitf z (map f ys)

2. Given two functions hy and hg, the function split hy ho computes the pair
of their results:

split hy haxs = (hy @s, hy xs).
In the special case when both hy and hy are defined by foldr:

hy = foldr fi e1,
hy = foldr f; ez,

the following “banana-split” rule allows us to express split hy hy using one
single foldr:

split hy hy = foldr g (e1, e2),
where gz (y,2) = (izy, z2).

It optimises two traversal through the list to only one traversal. It is

called “banana-split” because folds used to be written using a notation
called “banana brackets”.

(a) The function split sum length return the pair of sum and length of
the input list. Use the banana-split rule to express split sum length

by a fold.
Ans:
Since
sum = foldr (+)0
length = foldr(Azz.(z+1))0

let i=(+),e=Azz.(2+1)),e1 = e2 =0, we have:
split sum length = foldr g (0,0)
9z (y,2) = (z+y,2+1)
Prove the banana-split rule by fold fusion. Hint: recall that split hy hy =

split hy hs - id, and id is a fold.
Ans:

split hy hy = split hy hy - id
{ write id as a fold }
split by hg - foldr (:) []
Now we try to fuse split hy hy - foldr () [] into one fold. We have to
show that ¢ satisfies:
split hy ho ((:)z xs) = g (split hy hy 5)
which is proved below:
split hy hy (z:28)
{ def. of split-- }
(b (z:28), he (z:25))
= { def. of hy and hy }
(foldr fi e1 (z:xs), foldr fa es (x:xs))
= { def. of foldr }
(fi z (foldr fr ex xs), f x (foldr fo €2 s))
= { by def., gz (y,2) = (fizy, oz 2) }
gz (foldr fy ey xs, foldr fo es xs)
= { def. of hy and hy }
gz (hy xs, hg xs)
= { def. of split-- }
gz (split hy ho xs)
Back to split hy ho:
split hy hy
{ reasoning above }
foldr g (split hy ho [])
{ def. of hy, ho }
foldr g (e1, e2)

