
2008 Formosan Summer School on Logic, Language, and Computation

Program Construction and Reasoning

Exercises for Day 1

Shin-Cheng Mu

July 4th, 2008

1 In-Class Exercises

1.1 The Expand/Reduce Transformation

1. (a) What does this function do?

descend 0 = []
descend (n + 1) = (n + 1):descend n

(b) Consider the definition f = sum · descend , synthesise a recursive
definition of f .

2. Recall the datatype definition for internally labelled binary trees:

data ITree α = Null |Node α (ITree α) (ITree α).

(a) Consider the function mapiTree defined below:

mapiTree f Null = Null ,
mapiTree f (Node x t u) =

Node (f x) (mapiTree f t) (mapiTree f u).

What does this function do?

(b) Define a function sumiTree computing the sum of all node values in
an iTree.

(c) The function one x = 1 returns 1, what ever the input is. The func-
tion sizeiTree is specified by:

sizeiTree = sumiTree ·mapiTree one.

What does this function do? Derive a definition of sizeiTree which
does not construct an intermediate tree.

1

3. Recall the datatype definition for externally labelled binary trees:

data ETree α = Tip α |Bin (ETree α) (ETree α).

(a) What does this function do?

mineTree (Tip x) = x
mineTree (Bin t u) = mineTree t ↓mineTree u

(b) What does this function do?

repeTree x (Tip y) = Tip x
repeTree x (Bin t u) = Bin (repeTree x t) (repeTree x u)

(c) What does this function do?

repbymin t = let m = mineTree t
in repeTree m t

How many times does this program traverse the input tree?
(d) Consider this definition:

repmin x t = (repeTree x t ,mineTree t)

Construct a recursive definition of repmin that traverses the tree only
once.

(e) Redefine repbymin as:

repbymin ′ t = let (t ′,m) = repmin m t
in t ′.

How many times does this definition of repbymin traverse the tree?

1.2 Proof by Induction

1. Prove (xs ++ ys) ++ zs = xs ++ (ys ++ zs). Hint: induction on xs.

2. The function concat concatenates a list of lists:

concat [] = [],
concat (xs : xss) = xs ++ concat xss.

E.g. concat [[1, 2], [3, 4], [5]] = [1, 2, 3, 4, 5]. Prove that:

sum · concat = sum ·map sum.

Hint: you may need one of the properties proved in the lecture.

3. Prove that map f ·map g = map (f · g).

4. The function swapTree is defined by:

swapiTree Null = Null ,
swapiTree (Node a t u) = Node a (swapiTree u) (swapiTree t).

Prove that swapiTree (swapiTree t) = t for all t .

2

1.3 Accumulating Parameters

1. Recall the standard definition of factorial:

fact 0 = 1,
fact (n + 1) = (n + 1)× fact n.

This program also implicitly uses space linear to n in the call stack.

(a) Introduce factit n m = . . . where m is an accumulating parameter.

(b) Express fact in terms of factit .

(c) Construct a space efficient implementation of factit .

2. Recall the standard definition of Fibonacci:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

(a) Given the definition fibit n x y = fib n × x + fib (n + 1) × y . Express
fib using fibit .

(b) Derive a linear-time version of fibit .

2 Take-Home Exercise (Due Date: July 10th)

You need to complete only one of the two exercises. Exercise 1 is worth 35
points while exercise 2 is worth 40 points.

1. Given an iTree, the following function flatten returns a list of all labels in
the tree, in left-to-right order:

flatten Null = [],
flatten (Node x t u) = flatten t ++ [x] ++ flatten u.

Unfortunately, flatten is slow. Let us try to improve it. Introduce flatcat t xs =
flatten t ++ xs.

(a) Express flatten in terms of flatcat .

(b) Construct an efficient implementation of flatten. You will need some
properties of (++) proved in one of the exercises.

Hint:

(a) To see the specification running, load mu-code.hs into Hugs or GHCi,
and try flatten testTree1 1. Run your derived program to check
whether it produces the same output as the specification.

3

(b) The derivation works in a way similar to how revcat was constructed
in the class. You may need to perform some steps more than once.

2. This problem considers labelling an internally-labelled binary tree:

data iTree α = Null |Node α (iTree α) (iTree α).

Given such a tree, for example (the labels in the tree does not matter, so
let us assume they are just ()):

t = Node () (Node () (Node () Null Null)
(Node () Null Null))

(Node () Null
(Node () (Node () Null Null)

Null)),

the task is to number the nodes, in depth-first order:

t = Node 1 (Node 2 (Node 3 Null Null)
(Node 4 Null Null))

(Node 5 Null
(Node 6 (Node 7 Null Null)

Null)).

The following function label specifies how to label a tree, starting from a
given initial number n:

label Null n = Null ,
label (Node t u) n = Node n (label t (1 + n))

(label u (1 + n + sizeiTree t)),

where size is defined by:

sizeiTree Null = 0,
sizeiTree (Node x t u) = 1 + sizeiTree t + sizeiTree u.

Due to repeated call to size, the above definition of label is rather ineffi-
cient. Define:

labeltl t n = (label t n,n + size t),

derive a recursive definition for labeltl that runs in time linear to the size
of the tree. Hint:

(a) To see the specification running, load mu-code.hs into Hugs or GHCi,
and try label testTree2 1. Run your derived program to check
whether it produces the same output as the specification.

(b) labeltl may need to call itself more than once in the recursive defini-
tion. You may need to introduce let in the definition, perhaps more
than once.

4

