An Introduction to Functional Program Derivation

Shin-Cheng Mu

Institute of Information Science, Academia Sinica, Taiwan

2007 Formosan Summer School on Logic, Language, and Computation July 2–13, 2007

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

1/101

So I Was Asked...

"So, you write programs, right? Then what happens?"

So I Was Asked...

- "So, you write programs, right? Then what happens?"
- I had to explain that my research is more about how to construct correct programs.

So I Was Asked...

- "So, you write programs, right? Then what happens?"
- I had to explain that my research is more about how to construct correct programs.
- Correctness: that a program does what it is supposed to do.

So I Was Asked...

- "So, you write programs, right? Then what happens?"
- I had to explain that my research is more about how to construct correct programs.
- Correctness: that a program does what it is supposed to do.
- "What do you mean? Doesn't a program always does what it is told to do?"

Maximum Segment Sum

 Given a list of numbers, find the maximum sum of a consecutive segment.

▶
$$[-1,3,3,-4,-1,4,2,-1] \Rightarrow 7$$

▶
$$[-1,3,1,-4,-1,4,2,-1] \Rightarrow 6$$

▶
$$[-1, 3, 1, -4, -1, 1, 2, -1] \Rightarrow 4$$

Maximum Segment Sum

 Given a list of numbers, find the maximum sum of a consecutive segment.

▶
$$[-1,3,3,-4,-1,4,2,-1] \Rightarrow 7$$

▶
$$[-1, 3, 1, -4, -1, 4, 2, -1] \Rightarrow 6$$

▶
$$[-1, 3, 1, -4, -1, 1, 2, -1] \Rightarrow 4$$

▶ Not trivial. However, there is a linear time algorithm.

Maximum Segment Sum

 Given a list of numbers, find the maximum sum of a consecutive segment.

▶
$$[-1,3,3,-4,-1,4,2,-1] \Rightarrow 7$$

▶ $[-1,3,1,-4,-1,4,2,-1] \Rightarrow 6$
▶ $[-1,3,1,-4,-1,1,2,-1] \Rightarrow 4$

A Simple Program Whose Proof is Not

► The specification: max { sum (i, j) | 0 ≤ i ≤ j ≤ N }, where sum (i, j) = a[i] + a[i + 1] + ... + a[j].

The program:

```
s = 0; m = 0;
for (i=0; i<=N; i++) {
   s = max(0, a[j]+s);
   m = max(m, s);
}
```

They do not look like each other at all!

Moral: even "simple" programs are not that simple!

A Simple Program Whose Proof is Not

► The specification: max { sum (i, j) | 0 ≤ i ≤ j ≤ N }, where sum (i, j) = a[i] + a[i + 1] + ... + a[j].

The program:

```
s = 0; m = 0;
for (i=0; i<=N; i++) {
   s = max(0, a[j]+s);
   m = max(m, s);
}
```

- They do not look like each other at all!
- Moral: even "simple" programs are not that simple!
- When we are given only the specification, can we construct the program?

Verification v.s. Derivation

How do we know a program is correct with respect to a specification?

- Verification: given a program, prove that it is correct with respect to some specification.
- Derivation: start from the specification, and attempt to construct *only* correct programs!

Theoretical development of one side benefits the other.

Program Derivation

- Wikipedia: program derivation is the derivation a program from its specification, by mathematical means.
- To write a formal specification (which could be non-executable), and then apply mathematically correct rules in order to obtain an executable program.
- The program thus obtained is correct by construction.

A Typical Derivation

 $max \, \{ \, sum \, (i,j) \, | \, 0 \leq i \leq j \leq N \, \}$

= {Premise 1}

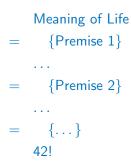
max · *map sum* · *concat* · *map inits* · *tails*

= {Premise 2}

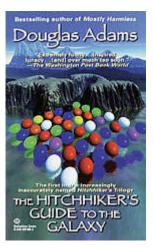
. . .

= {...} The final program!

It's How We Get There That Matters!



The answer may be simple. It is how we get there that matters.



Prelude

Preliminaries

Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

ヘロン 人間 とくほと くほとう

3

9/101

Functions

- For the purpose of this lecture, it suffices to assume that functional programs actually denote functions from sets to sets.
 - The reality is more complicated. But that is out of the scope of this course.
- Functions can be viewed as sets of pairs, each specifies an input-output mapping.
 - E.g. the function square is specified by $\{(1,1), (2,4), (3,9) \dots\}$.
 - ► Function application is denoted by juxtaposition, e.g. square 3.
- Given $f :: \alpha \to \beta$ and $g :: \beta \to \gamma$, their composition $g \cdot f :: \alpha \to \gamma$ is defined by $(g \cdot f) a = g(f a)$.

Recursively Defined Functions

► Functions (or total functions) can be recursively defined:

 $\begin{array}{lll} \textit{fact 0} & = & 1, \\ \textit{fact } (n+1) & = & (n+1) \times \textit{fact n}. \end{array}$

As a simplified view, we take *fact* as the *least* set satisfying the equations above.

- As a result, any total function satisfying the equations above is fact. This is a long story cut short, however!
- Applying *fact* to a value:

fact 3 $= 3 \times fact 2$ $= 3 \times 2 \times fact 1$ $= 3 \times 2 \times fact 1$ $= 3 \times 2 \times 1 \times 1$

Functions Data Structures

Natural Numbers and Lists

• Natural numbers: $N = 0 \mid 1 + N$.

• E.g. 3 can be seen as being composed out of 1 + (1 + (1 + 0)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- ▶ Lists: *data* [*a*] = [] | *a*: [*a*].
 - ► A list with three items 1, 2, and 3 is constructed by 1: (2: (3: [])), abbreviated as [1, 2, 3].
 - hd(x:xs) = x.
 - tl(x:xs) = xs.
- Noticed some similarities?

Binary Trees

For this course, we will use two kinds of binary trees: internally labelled trees, and externally labelled ones:

- data iTree α = Null | Node α (iTree α) (iTree α).
 - E.g. Node 3 (Node 2 Null Null) (Node 1 Null (Node 4 Null Null)).
- data eTree α = Tip a | Bin (eTree α) (eTree α).
 - E.g. Bin(Bin(Tip 1)(Tip 2))(Tip 3).

Some Notes on Notations

In this lecture we use a Haskell-like notation. In OCaml, the function *fact* is defined as:

```
let rec fact = function
    | 0 -> 1
    | n -> n * fact(n - 1);;
```

The two types for trees would be defined as:

```
type 'a iTree =
    Null | Node of 'a * 'a iTree * 'a iTree
type 'a eTree =
    Tip of 'a | Bin of 'a eTree * 'a eTree
Lists are denoted by 1::(2::(3::[])) = [1;2;3].
```

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Prelude

- Preliminaries
 - Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Functional Programming

- In program derivation, programs are entities we manipulate. Procedural programs (e.g. C programs), however, are difficult to manipulate because they lack nice properties.
- ▶ In C, we do not even have $f(3) + f(3) = 2 \times f(3)$.
- In functional programming, programs are viewed as mathematical functions that can be reasoned algebraically.

Sum and Map

▶ The function *sum* adds up the numbers in a list.

 $\begin{array}{rcl} sum & :: & [Int] \rightarrow Int \\ sum[] & = & 0 \\ sum(x:xs) & = & x + sumxs \end{array}$

- ▶ E.g. *sum* [7,9,11] = 27.
- The function map f takes a list and builds a new list by applying f to every item in the input.

 $\begin{array}{ll} map & :: & (\alpha \to \beta) \to [\alpha] \to [\beta] \\ map f [] & = & [] \\ map f (x : xs) & = & f \, x : map \, f \, xs \end{array}$

• E.g. *map square* [3, 4, 6] = [9, 16, 36].

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Prelude

Preliminaries

Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares

Proof by Induction Accumulating Parameter Tupling

- ► Given a sequence a₁, a₂,..., a_n, compute a₁² + a₂² + ... + a_n². Specification: sumsq = sum · map square.
- > The spec. builds an intermediate list. Can we eliminate it?
- ▶ The input is either empty or not. When it is empty:

sumsq []

- ► Given a sequence a₁, a₂,..., a_n, compute a₁² + a₂² + ... + a_n². Specification: sumsq = sum · map square.
- > The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

sumsq []

= { Definition of *sumsq* }

 $(sum \cdot map \ square)[]$

- ► Given a sequence a₁, a₂,..., a_n, compute a₁² + a₂² + ... + a_n². Specification: sumsq = sum · map square.
- > The spec. builds an intermediate list. Can we eliminate it?
- ▶ The input is either empty or not. When it is empty:

sumsq []

- = { Definition of *sumsq* }
 - $(sum \cdot map \ square)[]$
- $= \{ Function composition \}$

 $\textit{sum}\,(\textit{map square}\,[\,])$

- ► Given a sequence a₁, a₂,..., a_n, compute a₁² + a₂² + ... + a_n². Specification: sumsq = sum · map square.
- > The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

sumsq []

- = { Definition of *sumsq* }
 - $(sum \cdot map \ square)[]$
- = { Function composition }

sum(map square[])

= { Definition of map }
sum[]

- ► Given a sequence a₁, a₂,..., a_n, compute a₁² + a₂² + ... + a_n². Specification: sumsq = sum · map square.
- > The spec. builds an intermediate list. Can we eliminate it?
- ▶ The input is either empty or not. When it is empty:

sumsq []

- $= \{ \text{ Definition of } sumsq \}$
 - $(sum \cdot map \ square)[]$
- $= \{ Function composition \}$
 - sum(map square[])
- = { Definition of map }
 sum[]
- $= \quad \{ \text{ Definition of } sum \}$
 - 0

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Sum of Squares, the Inductive Case

Consider the case when the input is not empty:

sumsq(x:xs)

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Sum of Squares, the Inductive Case

Consider the case when the input is not empty:

sumsq(x:xs)

= { Definition of *sumsq* } *sum*(*map square*(x : xs))

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Sum of Squares, the Inductive Case

Consider the case when the input is not empty:

sumsq(x:xs)

- = { Definition of *sumsq* }
 - sum(map square(x : xs))
- $= \{ \text{ Definition of } map \}$

sum(square x : map square xs)

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Sum of Squares, the Inductive Case

- Consider the case when the input is not empty:
 - sumsq(x:xs)
 - = { Definition of *sumsq* }
 - sum(map square(x : xs))
 - = { Definition of *map* }
 - sum(square x : map square xs)
 - = { Definition of sum } square x + sum (map square xs)

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Sum of Squares, the Inductive Case

Consider the case when the input is not empty:

sumsq(x:xs)

- = { Definition of *sumsq* }
 - sum(map square(x : xs))
- $= \{ \text{ Definition of } map \}$
 - sum(square x : map square xs)
- = { Definition of *sum* }
 - square x + sum (map square xs)
- = { Definition of *sumsq* }

square x + sumsq xs

We have therefore constructed a recursive definition of *sumsq*: *sumsq*[] = 0 *sumsq*(x : xs) = *square* x + *sumsq* xs

Unfold/Fold Transformation

- Perhaps the most intuitive, yet still handy, style of functional program derivation.
- Keep unfolding the definition of functions, apply necessary rules, and finally fold the definition back.
- It works under the assumption that a function satisfying the derived equations is the function defined by the equations.
- In this course, we use the terms "fold" and "unfold" for another purpose. Therefore we refer to this technique as the expand/reduce transformation.

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Prelude

Preliminaries

Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Proving Auxiliary Properties

- Our pattern of program derivation:
 - expression

. . .

= {some property}

- Some of the properties are rather obvious. Some needs to be proved separately.
- In this section we will practice perhaps the most fundamental proof technique, which is still very useful.

The Induction Principle

- Recall the so called "mathematical induction". To prove that a property p holds for all natural numbers, we need to show:
 - that p holds for 0, and
 - if *p* holds for *n*, it holds for n + 1 as well.
- We can do so because the set of natural numbers is an inductive type.
- The type of *finite* lists is an inductive types too. Therefore the property p holds for all finite lists if
 - property p holds for [], and
 - if p holds for xs, it holds for x: xs as well.

Appending Two Lists

▶ The function (++) appends two lists into one.

 $(++) \qquad :: \quad [a] \to [a] \to [a]$ $[] + ys \qquad = \qquad ys$ $(x: xs) + ys \qquad = \qquad x: (xs + ys)$

E.g.

- [1,2] + [3,4] = 1: ([2] + [3,4]) = 1: (2: ([] + [3,4])) = 1: (2: [3,4]) = 1: (2: [3,4]) = [1,2,3,4]
- The time it takes to compute xs ++ ys is proportional to the length of x.

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append

Example: let us show that sum(xs + ys) = sum xs + sum ys, for finite lists xs and ys. Case []:

sum[] + sum ys

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append

Example: let us show that sum(xs + ys) = sum xs + sum ys, for finite lists xs and ys. Case []:

sum[] + sum ys
= { Definition of sum }
0 + sum ys

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append

Example: let us show that sum(xs + ys) = sum xs + sum ys, for finite lists xs and ys. Case []:

sum[] + sum ys

- = { Definition of *sum* }
 - $0 + \mathit{sum ys}$
- = { Arithmetic }
 - sum ys

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append

Example: let us show that sum(xs + ys) = sum xs + sum ys, for finite lists xs and ys. Case []:

sum[] + sum ys

- = { Definition of *sum* }
 - $0 + \mathit{sum ys}$
- = { Arithmetic }
 - sum ys
- = { By definition of (++), [] ++ ys = ys }
 sum([] ++ ys)

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys= { Definition of sum} (x + sum xs) + sum ys

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys

- = { Definition of *sum*}
 - (x + sum xs) + sum ys
- $= \{ (+) \text{ is associative: } (a+b) + c = a + (b+c) \}$ x + (sum xs + sum ys)

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys

- = { Definition of *sum*}
 - (x + sum xs) + sum ys
- $= \{ (+) \text{ is associative: } (a+b) + c = a + (b+c) \}$ x + (sum xs + sum ys)
- = { Induction Hypothesis }

x + sum(xs + ys)

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys

- = { Definition of *sum*}
 - (x + sum xs) + sum ys
- $= \{ (+) \text{ is associative: } (a+b) + c = a + (b+c) \}$
 - x + (sum xs + sum ys)
- = { Induction Hypothesis }
 - x + sum(xs + ys)
- = { Definition of sum } sum(x: (xs + ys))

Sum Distributes into Append, the Inductive Case Case x: xs:

sum(x: xs) + sum ys

- = { Definition of *sum*}
 - (x + sum xs) + sum ys
- $= \{ (+) \text{ is associative: } (a+b) + c = a + (b+c) \}$ x + (sum xs + sum ys)
- = { Induction Hypothesis }

x + sum(xs + ys)

- = { Definition of sum } sum(x: (xs + ys))
- $= \{ \text{ Definition of } (\#) \}$ sum((x: xs) # ys)

Some Properties to be Proved

The following properties are left as exercises for you to prove. We will make use of some of them in the lecture.

Concatenation is associative:

(xs + ys) + zs = xs + (ys + zs).

(Note that the right-hand side is in general faster than the left-hand side.)

The function concat concatenates a list of lists: concat[] = [], concat (xs : xss) = xs ++ concat xss.

E.g. concat [[1, 2], [3, 4], [5]] = [1, 2, 3, 4, 5]. We have $sum \cdot concat = sum \cdot map sum$.

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Inductive Proofs on Trees

Recall the datatype:

```
data iTree \alpha = Null | Node \alpha (iTree \alpha) (iTree \alpha)
```

What is the induction principle for *iTree*? A property *p* holds for all finite *iTrees* if

Example: Sum of Squares **Proof by Induction** Accumulating Parameter Tupling

Inductive Proofs on Trees

Recall the datatype:

```
data iTree \alpha = Null | Node \alpha (iTree \alpha) (iTree \alpha)
```

What is the induction principle for *iTree*?

A property *p* holds for all finite *iTrees* if ...

- the property p holds for Null, and
- ▶ for all a,t,and u, if p holds for t and u, then p holds for Node a t u.

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Prelude

Preliminaries

Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Example: Reversing a List

 ► The function reverse is defined by: reverse [] = [], reverse (x: xs) = reverse xs ++ [x].
 E.g. reverse [1, 2, 3, 4] = (((([]++[4])++[3])++[2])++[1] = [4, 3, 2, 1].

But how about its time complexity? Since (++) is O(n), it takes O(n²) time to revert a list this way.

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Introducing an Accumulating Parameter

Let us consider a generalisation of *reverse*. Define:

```
rcat xs ys = reverse xs + ys.
```

If we can construct a fast implementation of *rcat*, we can implement *reverse* by:

reverse xs = rcat xs [].

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation. Consider the case when xs is []:

rcat [] ys

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation. Consider the case when xs is []:

rcat [] ys
= { definition of rcat }
reverse [] ++ ys

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation. Consider the case when xs is []:

rcat[] ys
= { definition of rcat }
reverse[] ++ ys
= { definition of reverse }
[] ++ ys

Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation. Consider the case when xs is []:

rcat [] ys

 $= \{ \text{ definition of } rcat \}$

reverse [] ++ *ys*

- $= \{ \text{ definition of } reverse \}$
 - [] # ys
- $= \{ \text{ definition of } (\texttt{++}) \}$

ys

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Inductive Case

Case x: xs:

rcat(x: xs) ys

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Inductive Case

Case x: xs:

rcat (x: xs) ys
= { definition of rcat }
reverse (x: xs) ++ ys

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Inductive Case

Case x: xs:

 $\mathit{rcat}(x: \mathit{xs}) \mathit{ys}$

- = { definition of *rcat* } *reverse* (x: xs) ++ ys
- $= \{ \text{ definition of } reverse \} \\ (reverse xs + [x]) + ys \}$

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Inductive Case

Case x: xs:

rcat(x:xs)ys

- = { definition of rcat }
 reverse (x: xs) ++ ys
- = { definition of reverse }
 (reverse xs ++ [x]) ++ ys
- $= \{ since (xs + ys) + zs = xs + (ys + zs) \}$ reverse xs + ([x] + ys)

Example: Sum of Squares Proof by Induction Accumulating Parameter Tupling

Reversing a List, Inductive Case

Case x: xs:

 $\mathit{rcat}(x: \mathit{xs}) \mathit{ys}$

- = { definition of *rcat* } *reverse* (x: xs) ++ ys
- = { definition of reverse }
 (reverse xs ++ [x]) ++ ys
- = { since (xs + ys) + zs = xs + (ys + zs) } reverse xs + ([x] + ys)
- = { definition of *rcat* } *rcat xs* (x: ys)

Linear-Time List Reversal

▶ We have therefore constructed an implementation of *rcat*:

rcat[]ys = ysrcat(x:xs)ys = rcatxs(x:ys)

which runs in linear time!

- A generalisation of *reverse* is easier to implement than *reverse* itself? How come?
- If you try to understand *rcat* operationally, it is not difficult to see how it works.
 - The partially reverted list is accumulated in ys.
 - The initial value of ys is set by reverse xs = rcat xs [].
 - Hmm... it is like a loop, isn't it?

Tracing Reverse

reverse [1, 2, 3, 4]

- = *rcat* [1, 2, 3, 4] []
- = *rcat* [2, 3, 4] [1]
- = rcat [3, 4] [2, 1]
- = *rcat* [4] [3, 2, 1]
- = *rcat* [] [4, 3, 2, 1]

= [4, 3, 2, 1]

reverse xs = rcat xs[]
rcat[]ys = ys
rcat (x: xs) ys = rcat xs (x: ys)

Tail Recursion

 Tail recursion: a special case of recursion in which the last operation is the recursive call.

> $f x_1 \dots x_n = \{ \text{base case} \}$ $f x_1 \dots x_n = f x'_1 \dots x'_n$

- To implement general recursion, we need to keep a stack of return addresses. For tail recursion, we do not need such a stack.
- ► Tail recursive definitions are like loops. Each x_i is updated to x'_i in the next iteration of the loop.
- The first call to f sets up the initial values of each x_i .

Accumulating Parameters

To efficiently perform a computation (e.g. reverse xs), we introduce a generalisation with an extra parameter, e.g.:

rcat xs ys = reverse xs + ys.

- Try to derive an efficient implementation of the generalised function. The extra parameter is usually used to "accumulate" some results, hence the name.
 - To make the accumulation work, we usually need some kind of associativity.
- A technique useful for, but not limited to, constructing tail-recursive definition of functions.

Loop Invariants

To implement *reverse*, we introduce *rcat* such that:

```
rcat xs ys = reverse xs + ys.
```

```
Functional:
```

We initialise *rcat* by:

```
reverse xs = rcat xs[],
```

and try to derive a faster version of rcat satisfying (1).

rcat[]ys = ysrcat(x:xs)ys = rcatxs(y:ys)

Procedural:

We initialise the loop, and try to derive a loop body maintaining a *loop invariant* related to (1).

 $\begin{array}{l} xs, ys \leftarrow XS, [];\\ \{reverse \ XS = reverse \ xs \ +ys\}\\ while \ xs \ \neq [] \ do\\ xs, ys \ \leftarrow \ tl \ xs, hd \ xs \ :ys;\\ return \ ys; \end{array}$

(1)

Accumulating Parameter: Another Example

• Recall the "sum of squares" problem:

sumsq[] = 0
sumsq(x : xs) = square x + sumsq xs

The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

- Introduce ssp xs n =
- Initialisation: sumsq xs =
- Construct ssp:

Accumulating Parameter: Another Example

• Recall the "sum of squares" problem:

sumsq[] = 0
sumsq(x : xs) = square x + sumsq xs

The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs =
- Construct ssp:

Accumulating Parameter: Another Example

• Recall the "sum of squares" problem:

sumsq[] = 0
sumsq(x : xs) = square x + sumsq xs

The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs = ssp xs 0.
- Construct ssp:

Accumulating Parameter: Another Example

• Recall the "sum of squares" problem:

sumsq[] = 0
sumsq(x : xs) = square x + sumsq xs

The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs = ssp xs 0.
- Construct ssp:

$$ssp[]n = 0 + n = n$$

$$ssp(x:xs)n = (square x + sumsq xs) + n$$

$$= sumsq xs + (square x + n)$$

$$= ssp xs (square x + n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Notes on Compatibility with OCaml

Some of the functions we've mentioned, or will mention, have their equivalents defined in module List:

```
val hd : 'a list -> 'a
val tl : 'a list -> 'a list
val length : 'a list -> int
val append : 'a list -> 'a list -> 'a list
val concat : 'a list list -> 'a list
val map : ('a -> 'b) -> 'a list -> 'b list
```

Prelude Preliminaries The Expand/Reduce Transformation Example: Sum of Squares Proof by Induction Accumulating Parameter **Tupling**

Prelude

Preliminaries

Functions Data Structures

The Expand/Reduce Transformation

Example: Sum of Squares Proof by Induction Accumulating Parameter **Tupling**

Steep Lists

A steep list is a list in which every element is larger than the sum of those to its right.

> steep[] = true $steep(x: xs) = steep xs \land x > sum xs$

- The definition above, if executed directly, is an O(n²) program. Can we do better?
- Just now we learned to construct a generalised function which takes more input. This time, we try the dual technique: to construct a function returning more results.

Generalise by Returning More

- Recall that fst(a, b) = a and snd(a, b) = b.
- It is hard to quickly compute steep alone. But if we define
 steepsum xs = (steep xs, sum xs),

and manage to synthesise a quick definition of *steepsum*, we can implement *steep* by *steep* = $fst \cdot steepsum$.

We again proceed by case analysis. Trivially,

steepsum[] = (true, 0).

Prelude Preliminaries The Expand/Reduce Transformation Example: Sum of Squares Proof by Induction Accumulating Parameter **Tupling**

Deriving for the Non-Empty Case For the case for non-empty inputs.

steepsum(x: xs)

Prelude Preliminaries The Expand/Reduce Transformation Example: Sum of Squares Proof by Induction Accumulating Parameter **Tupling**

Deriving for the Non-Empty Case For the case for non-empty inputs.

steepsum(x: xs)
= { definition of steepsum }
(steep(x: xs), sum(x: xs))

Deriving for the Non-Empty Case For the case for non-empty inputs.

steepsum(x: xs)

- = { definition of *steepsum* } (*steep* (x: xs), *sum* (x: xs))
- $= \{ \text{ definitions of steep and sum } \}$ $(steep xs \land x > sum xs, x + sum xs)$

Deriving for the Non-Empty Case For the case for non-empty inputs.

steepsum(x: xs)

- = { definition of *steepsum* } (*steep* (x: xs), *sum* (x: xs))
- $= \{ \text{ definitions of } steep \text{ and } sum \} \\ (steep xs \land x > sum xs, x + sum xs) \}$
- = { extracting sub-expressions involving xs } let (b, y) = (steep xs, sum xs)in $(b \land x > y, x + y)$

Deriving for the Non-Empty Case For the case for non-empty inputs.

steepsum(x: xs)

- = { definition of *steepsum* } (*steep* (x: xs), *sum* (x: xs))
- $= \{ \text{ definitions of steep and sum } \}$ $(steep xs \land x > sum xs, x + sum xs)$
- = { extracting sub-expressions involving xs } let (b, y) = (steep xs, sum xs)in $(b \land x > y, x + y)$
- $= \{ \text{ definition of steepsum } \}$ let (b, y) = steepsum xs $\text{in } (b \land x > y, x + y)$

Synthesised Program

We have thus come up with:

steep	=	fst · steepsum
steepsum []	=	(<i>true</i> , 0)
steepsum(x: xs)	=	let $(b, y) = steepsum xs$
		in $(b \land x > y, x + y)$

which runs in O(n) time.

- Again we observe the phenomena that a more general function is easier to implement.
- It is actually common in indutive proofs, too. To prove a theorem, we sometimes have to generalise it so that we have a stronger inductive hypothesis.
- Now that we are talking about inductive proofs again, let us see a general pattern for induction.

Summary for the First Day

- Program derivation: constructing programs from their specifications, through formal reasoning.
- Expand/reduce transformation: the most fundamental kind of program derivation — expand the definitions of functions, and reduce them back when necessary.
- Most of the properties we need during the reasoning, for this course, can be proved by induction.
- Accumulating parameters: sometimes a more general program is easier to construct.
 - Sometimes used to construct loops. Closely related to loop invariants in procedural program derivation.
 - Usually relies on some associtivity property to work.
- Tupling: a dual technique often used to generalise a function so that we can derive a quicker recursive definition.
- Like it so far? More fun tomorrow!

Part II

Fold, Unfold, and Hylomorphism

From Yesterday...

- Expand/reduce transformation: the most basic kind of program derivation. Expand the definitions of functions, and reduce them back when necessary.
- Proof by induction.
- Accumulating parameter: a handy technique for, among other purposes, deriving tail recursive functions.
- Tupling: a dual technique often used to generalise a function so that we can derive a quicker recursive definition.
- Today we will be dealing with slightly abstract concepts.

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
Hylomorphism	Finally, Solving Maximum Segment Sum
Wrapping Up	Folds on Trees

A Common Pattern We've Seen Many Times...

sum[] = 0 sum(x: xs) = x + sum xs length[] = 0 length(x: xs) = 1 + length xs map f[] = [] map f(x: xs) = f x: map f xsThis pattern is extracted and called foldr:

> foldr f e[] = e,foldr f e(x: xs) = f x (foldr f e xs).

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
ylomorphism	Finally, Solving Maximum Segment Sum
Nrapping Up	Folds on Trees

Replacing Constructors

- $\begin{array}{rcl} \textit{foldr f e}[] &= e \\ \textit{foldr f e}(x:xs) &= f x (\textit{foldr f e} xs) \end{array}$
- One way to look at *foldr* (⊕) *e* is that it replaces [] with *e* and (:) with (⊕).
 - $\begin{array}{rl} \textit{foldr} (\oplus) \ e \ [1,2,3,4] \\ = & \textit{foldr} (\oplus) \ e \ (1:(2:(3:(4:[])))) \\ = & 1 \oplus (2 \oplus (3 \oplus (4 \oplus e))) \end{array}$
- sum = foldr(+)0
- $length = foldr (\lambda x n.1 + n) 0$
- map $f = foldr (\lambda x xs.f x: xs) []$
- One can see that id = foldr(:)[].

Folds Unfolds	The Fold-Fusion Theorem More Useful Functions Defined as Folds
lomorphism	Finally, Solving Maximum Segment Sum
Vrapping Up	Folds on Trees

Notes on Notation

- ▶ Both f x y and x ⊕ y denote a function applied to x and y successively. We use the prefix and infix notation alternatively whenever appropriate.
- ► The notation \u03c6 x.expr denotes an anonymous function. In OCaml it may be written fun x -> expr.

Hy

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
Hylomorphism	Finally, Solving Maximum Segment Sum
Wrapping Up	Folds on Trees

Notes on Compatibility with OCaml

In module List there is a function fold_right, but the order of arguments is different. Our *foldr* can be defined by:

```
let rec foldr f a lst = match lst with
    [] -> a
    | x::xs -> f x (foldr f a xs);;
```

Some example usage:

let sum = foldr (fun x y -> x + y) 0;; let len = foldr (fun x y -> 1 + y) 0;; let map f = foldr (fun x lst -> (f x)::lst) [];;

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
Hylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

Function max returns the maximum element in a list:

 $\max \begin{bmatrix} 1 & max \\ max \\ max \\ (x: xs) & max \\ xs. \end{bmatrix} = -\infty,$

Function prod returns the product of a list:

prod [] = 1, $prod (x: xs) = x \times prod xs.$

Function and returns the conjunction of a list:

and [] = true, and $(x: xs) = x \land and xs$.

Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

$$id (x: xs) = x: id xs$$

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
lylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

- Function max returns the maximum element in a list:
 - $max[] = -\infty,$ $max(x:xs) = x \uparrow max xs.$
 - $max = foldr(\uparrow) -\infty$.
- Function prod returns the product of a list:
 - prod[] = 1, $prod(x: xs) = x \times prod xs.$
- Function and returns the conjunction of a list:

and [] = true, and $(x: xs) = x \land and xs$.

Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

$$id (x: xs) = x: id xs$$

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
lylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

Function max returns the maximum element in a list:

 $max[] = -\infty,$ $max(x: xs) = x \uparrow max xs.$

• $max = foldr(\uparrow) - \infty$.

Function prod returns the product of a list:

 prod [] = 1, prod (x: xs) = x × prod xs.
 prod = foldr (×) 1.

Function *and* returns the conjunction of a list:

and [] = true, and $(x: xs) = x \land and xs$.

Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

$$id (x: xs) = x: id xs$$

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
lylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

Function max returns the maximum element in a list:

 $max[] = -\infty,$ $max(x:xs) = x \uparrow max xs.$

• $max = foldr(\uparrow) - \infty$.

Function prod returns the product of a list:

prod[] = 1, $prod(x: xs) = x \times prod xs.$

• prod = foldr (\times) 1.

Function and returns the conjunction of a list:

and [] = true, and (x: xs) = x ∧ and xs.
and = foldr (∧) true.
Lets emphasise again that *id* on lists is a fold: *id* [] = [], *id* (x: xs) = x: *id* xs.

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
lylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

Function max returns the maximum element in a list:

 $max[] = -\infty,$ $max(x:xs) = x \uparrow max xs.$

• $max = foldr(\uparrow) -\infty$.

Function prod returns the product of a list:

prod[] = 1, $prod(x: xs) = x \times prod xs.$

• prod = foldr (\times) 1.

Function and returns the conjunction of a list:

 and [] = true, and (x: xs) = x \lapha and xs.
 and = foldr (\lapha) true.
 Lets emphasise again that *id* on lists is a fold:

 id [] = [], *id* (x: xs) = x: *id* xs.
 id = foldr (:) [].

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Folds

The Fold-Fusion Theorem

More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Why Folds?

- The same reason we kept talking about *patterns* in design.
- Control abstraction, procedure abstraction, data abstraction,...can programming patterns be abstracted too?
- Program structure becomes an entity we can talk about, reason about, and reuse.
 - We can describe algorithms in terms of fold, unfold, and other recognised patterns.
 - We can prove properties about folds,
 - and apply the proved theorems to all programs that are folds, either for compiler optimisation, or for mathematical reasoning.
- Among the theorems about folds, the most important is probably the *fold-fusion* theorem.

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

The Fold-Fusion Theorem

The theorem is about when the composition of a function and a fold can be expressed as a fold.

Theorem (Fold-Fusion)

Given $f :: \alpha \to \beta \to \beta$, $e :: \beta$, $h :: \beta \to \gamma$, and $g :: \alpha \to \gamma \to \gamma$, we have:

 $h \cdot foldr f e = foldr g (h e),$

if $h(f \times y) = g \times (h y)$ for all x and y.

For program derivation, we are usually given h, f, and e, from which we have to construct g.

Folds
Unfolds
Hylomorphism
Wrapping Up

Tracing an Example

Let us try to get an intuitive understand of the theorem.

 $= \begin{array}{l} h\left(foldr \ f \ e \ [a, b, c]\right) \\ = \left\{ \begin{array}{l} \text{definition of } foldr \end{array} \right\} \\ h\left(f \ a \ (f \ b \ (f \ c \ e))\right) \end{array}$

Folds	The
Unfolds	Moi
Hylomorphism	Fina
Wrapping Up	Fol

Tracing an Example

Let us try to get an intuitive understand of the theorem.

h(foldr f e [a, b, c])

- $= \{ \text{ definition of } foldr \}$
 - h(fa(fb(fce)))
- = { since h(f x y) = g x (h y) } g a (h (f b (f c e)))

The Fo
More U
Finally,
Folds o

Tracing an Example

Let us try to get an intuitive understand of the theorem.

h(foldr f e [a, b, c])

- $= \{ \text{ definition of } foldr \}$
 - h(fa(fb(fce)))
- = { since h(f x y) = g x (h y) } g a (h (f b (f c e)))

= { since
$$h(f x y) = g x (h y)$$
 }
g a (g b (h (f c e)))

The Fol
More U
Finally,
Folds or

Tracing an Example

Let us try to get an intuitive understand of the theorem.

h(foldr f e [a, b, c])

- $= \{ \text{ definition of } foldr \}$
 - h(fa(fb(fce)))
- = { since h(f x y) = g x (h y) } g a (h (f b (f c e)))

$$= \{ \text{ since } h(f \times y) = g \times (h y) \}$$

ga(gb(h(fce)))

= { since h(f x y) = g x (h y) } g a (g b (g c (h e)))

Folds	The Fo
Unfolds	More U
lylomorphism	Finally,
Wrapping Up	Folds o

Tracing an Example

Let us try to get an intuitive understand of the theorem.

h(foldr f e [a, b, c])

- $= \{ \text{ definition of } foldr \}$
 - h(fa(fb(fce)))
- = { since h(f x y) = g x (h y) } g a (h (f b (f c e)))

$$= \{ \text{ since } h(f \times y) = g \times (h y) \}$$
$$g a (g b (h(f c e)))$$

- $= \{ \text{ since } h(f \times y) = g \times (h y) \}$ g a (g b (g c (h e)))
- $= \{ \text{ definition of } foldr \} \\ foldr g (h e) [a, b, c]$

3

Folds
Unfolds
Hylomorphism
Wrapping Up

Sum of Squares, Again

- ► Consider sum · map square again. This time we use the fact that map f = foldr (mf f) [], where mf f x xs = f x: xs.
- sum · map square is a fold, if we can find a ssq such that sum (mf square x xs) = ssq x (sum xs). Let us try:

sum (mf square x xs)

= { definition of *mf* }

sum(square x: xs)

= { definition of sum }

square x + sum xs

= { let ssq x y = square x + y } ssq x (sum xs)

Therefore, $sum \cdot map \ square = foldr \ ssq 0$.

イロト 不得下 イヨト イヨト 二日

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

More on Folds and Fold-fusion

- Compare the proof with the one yesterday. They are essentially the same proof.
- Fold-fusion theorem abstracts away the common parts in this kind of inductive proofs, so that we need to supply only the "important" parts.
- Tupling can be seen as a kind of fold-fusion. The derivation of steepsum, for example, can be seen as fusing:

 $steepsum \cdot id = steepsum \cdot foldr(:)[].$

Not every function can be expressed as a fold. For example, tl is not a fold!

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Folds

The Fold-Fusion Theorem

More Useful Functions Defined as Folds

Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
/lomorphism	Finally, Solving Maximum Segment Sum
Vrapping Up	Folds on Trees

Longest Prefix

The function call takeWhile p xs returns the longest prefix of xs that satisfies p:

> takeWhile p[] = [],takeWhile p(x: xs) = if p x then x: takeWhile p xselse [].

- E.g. *takeWhile* (≤ 3) [1, 2, 3, 4, 5] = [1, 2, 3].
- It can be defined by a fold:

takeWhile p = foldr (tke p) [],tke p x xs = if p x then x : xs else [].

► Its dual, *dropWhile* (≤ 3) [1, 2, 3, 4, 5] = [4, 5], is not a fold.

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
/lomorphism	Finally, Solving Maximum Segment Sum
Vrapping Up	Folds on Trees

64 / 101

All Prefixes

The function *inits* returns the list of all prefixes of the input list:

inits [] = [[]],inits (x: xs) = []: map(x:) (inits xs).

• E.g. *inits* [1,2,3] = [[],[1],[1,2],[1,2,3]].

Hy

It can be defined by a fold:

inits = foldr ini [[]],ini x xss = [] : map(x:) xss.

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
lylomorphism	Finally, Solving Maximum Segment Sum
Wrapping Up	Folds on Trees

All Suffixes

The function tails returns the list of all suffixes of the input list:

$$\begin{array}{rcl} tails [] & = & [],\\ tails (x: xs) & = & \operatorname{let} (ys: yss) = tails xs\\ & & \operatorname{in} (x: ys) : ys : yss. \end{array}$$

• E.g. tails [1,2,3] = [[1,2,3], [2,3], [3], []].

It can be defined by a fold:

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
ylomorphism Wrapping Up	Finally, Solving Maximum Segment Sum Folds on Trees

Scan

• scanr $f e = map(foldr f e) \cdot tails.$

► E.g.

- $\textit{scanr}\left(+\right)0\left[1,2,3\right]$
- = map sum (tails [1, 2, 3])
- $= map\,sum\,[[1,2,3],[2,3],[3],[\,]]$
- = [6, 5, 3, 0]
- Of course, it is slow to actually perform map (foldr f e) separately. By fold-fusion, we get a faster implementation:

scanr f e = foldr (sc f) [e],sc f x (y: ys) = f x y : y : ys.

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Specifying Maximum Segment Sum

- Finally we have introduced enough concepts to tackle the maximum segment sum problem!
- A segment can be seen as a prefix of a suffix.
- ▶ The function *segs* computes the list of all the segments.

 $segs = concat \cdot map inits \cdot tails.$

► Therefore, *mss* is specified by:

 $mss = max \cdot map sum \cdot segs.$

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

The Derivation!

We reason:

max · *map sum* · *concat* · *map inits* · *tails*

 Folds
 The Fold-Fusion Theorem

 Unfolds
 More Useful Functions Defined as Folds

 Hylomorphism
 Finally, Solving Maximum Segment Sum

 Wrapping Up
 Folds on Trees

The Derivation!

We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails

 Folds
 The Fold-Fusion Theorem

 Unfolds
 More Useful Functions Defined as Folds

 Hylomorphism
 Finally, Solving Maximum Segment Sum

 Wrapping Up
 Folds on Trees

The Derivation!

We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails

 Folds
 The Fold-Fusion Theorem

 Unfolds
 More Useful Functions Defined as Folds

 Hylomorphism
 Finally, Solving Maximum Segment Sum

 Wrapping Up
 Folds on Trees

The Derivation!

We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails
= { since map f · map g = map (f · g) }
max · map (max · map sum · inits) · tails

Recall the definition scanr $f e = map (foldr f e) \cdot tails$. If we can transform $max \cdot map sum \cdot inits$ into a fold, we can turn the algorithm into a scan, which has a faster implementation.

Folds	
Unfolds	
Hylomorphism	
Wrapping Up	

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Maximum Prefix Sum

Concentrate on *max* · *map* sum · *inits*:

max · map sum · inits

 $= \{ \text{ definition of } init, ini \times xss = [] : map(x:) \times ss \} \\ max \cdot map sum \cdot foldr ini [[]] \}$

Folds Unfolds Hylomorphism Wrapping Up	The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees
Aaximum Prefix Sum Concentrate on <i>max · map sum · i</i>	nits:
<pre>max · map sum · inits = { definition of init, i max · map sum · foldr i = { fold fusion, see be max · foldr zplus [0]</pre>	2233
The fold fusion works because:	
<pre>map sum (ini x xss) = map sum ([] : map (x:</pre>) <i>xss</i>)

- $= 0: map(sum \cdot (x:)) xss$
- = 0: map(x+)(map sum xss)

Define zplus x xss = 0 : map(x+) xss.

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
Hylomorphism	Finally, Solving Maximum Segment Sum
Wrapping Up	Folds on Trees

Maximum Prefix Sum, 2nd Fold Fusion

Concentrate on *max* · *map sum* · *inits*:

 $max \cdot map \ sum \cdot inits$

- $= \{ \text{ definition of } init, ini \times xss = [] : map(x:) \times ss \} \\ max \cdot map sum \cdot foldr ini [[]] \}$
- $= \{ \text{ fold fusion, } zplus \times xss = 0 : map(x+) \times ss \} \\ max \cdot foldr zplus [0] \}$
- $= \{ \text{ fold fusion, let } zmax x y = 0 \uparrow (x + y) \}$ foldr zmax 0

The fold fusion works because \uparrow distributes into (+):

max (0: map (x+) xs)

- $= 0 \uparrow max (map (x+) xs)$
- $= 0 \uparrow (x + max xs)$

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Back to Maximum Segment Sum We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails
= { since map f · map g = map (f · g) }
max · map (max · map sum · inits) · tails

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Back to Maximum Segment Sum We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails
= { since map f · map g = map (f · g) }
max · map (max · map sum · inits) · tails
= { reasoning in the previous slides }

 $max \cdot map (foldr zmax 0) \cdot tails$

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Back to Maximum Segment Sum We reason:

max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
max · concat · map (map sum) · map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails
= { since map f · map g = map (f · g) }
max · map (max · map sum · inits) · tails
= { reaconing in the previous clides }

- = { reasoning in the previous slides }
 max · map (foldr zmax 0) · tails
- = { introducing *scanr* } *max* · *scanr zmax* 0

Maximum Segment Sum in Linear Time!

- ▶ We have derived $mss = max \cdot scanr zmax 0$, where $zmax x y = 0 \uparrow (x + y)$.
- The algorithm runs in linear time, but takes linear space.
- A tupling transformation eliminates the need for linear space.
 mss = fst · maxhd · scanr zmax 0
 where maxhd xs = (max xs, hd xs). We omit this last step in

the lecture.

The final program is mss = fst · foldr step (0,0), where step x (m, y) = ((0 ↑ (x + y)) ↑ m, 0 ↑ (x + y)).

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Folds

Folds on Trees

Hyld

Unfolds

Hylomorphism

Wrapping Up

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
Hylomorphism	Finally, Solving Maximum Segment Sum
Wrapping Up	Folds on Trees

Folds on Trees

- Folds are not limited to lists. In fact, every datatype with so-called "regular based functors" induces a fold.
- Recall some datatypes for trees:

 $\begin{array}{lll} \textit{data iTree } \alpha & = & \textit{Null} \mid \textit{Node a} (\textit{iTree } \alpha) (\textit{iTree } \alpha); \\ \textit{data eTree } \alpha & = & \textit{Tip a} \mid \textit{Bin} (\textit{eTree } \alpha) (\textit{eTree } \alpha). \\ \end{array}$

► The fold for *iTree*, for example, is defined by:

 $\begin{array}{lll} \textit{foldiT f e Null} &= e, \\ \textit{foldiT f e (Node a t u)} &= f a (\textit{foldiT f e t}) (\textit{foldiT f e u}). \end{array}$

► The fold for *eTree*, is given by:

 $\begin{array}{rcl} \textit{foldeT} f g (\textit{Tip } x) &= g x, \\ \textit{foldeT} f g (\textit{Bin } t u) &= f (\textit{foldeT} f g t) (\textit{foldeT} f g u). \end{array}$

Folds	The Fold-Fusion Theorem
Unfolds	More Useful Functions Defined as Folds
morphism	Finally, Solving Maximum Segment Sum
apping Up	Folds on Trees

Some Simple Functions on Trees

to compute the size of an *iTree*: sizeiTree = foldiT (λx m n.m + n + 1) 0.

Ŵr:

To sum up labels in an eTree: sumeTree = foldeT (+) id.

To compute a list of all labels in an *iTree* and an *eTree*: *flatteniT* = foldiT (λx xs ys.xs ++ [x] ++ ys)[], *flatteneT* = foldeT (++) (λx.[x]).

Unfold on Lists Folds v.s. Unfolds

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

Unfold on Lists Folds v.s. Unfolds

Unfolds Generate Data Structures

- While folds consumes a data structure, *unfolds* builds data structures.
- Unfold on lists is defined by:

unfoldr p f s = if p s then [] elselet <math>(x, s') = f s in x: unfoldr p f s'.

The value s is a "seed" to generate a list with. Function p checkes the seed to determines whether to stop. If not, function f is used to generate an element and the next seed.

Unfold on Lists Folds v.s. Unfolds

Some Useful Functions Defined as Unfolds

For brevity let us introduce the "split" notation. Given functions f :: α → β and g :: α → γ, ⟨f,g⟩ :: α → (β,γ) is a function defined by:

 $\langle f,g\rangle a = (f a,g a).$

- ► The function call fromto m n builds a list [n, n + 1,..., m]: fromto m = unfoldr (≥ m) ⟨id, (1+)⟩.
- The function tails⁺ is like tails, but returns non-empty tails only:

 $tails^+ = unfoldr null \langle id, tl \rangle$, where null xs yields true iff xs = [].

Unfold on Lists Folds v.s. Unfolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

80 / 101

Unfolds May Build Infinite Data Structures

► The function call *from n* builds the infinitely long list [n, n + 1, ...]:

from = unfoldr (const false) $\langle id, (1+) \rangle$.

► More generally, *iterate f x* builds an infinitely long list [x, f x, f (f x)...]:

iterate f = unfoldr (const false) $\langle id, f \rangle$.

We have *from* = *iterate* (1+).

Unfold on Lists Folds v.s. Unfolds

Merging as an Unfold

Given two sorted lists (xs, ys), the call merge (xs, ys) merges them into one sorted list:

merge	=	unfoldr null2 mrg
null2 (xs, ys)	=	null xs \land null ys
mrg ([], y : ys)	=	(y, ([], ys))
mrg(x: xs, [])	=	(x, (xs, []))
mrg(x: xs, y: ys)	=	if $x \leq y$ then $(x, (xs, y : ys))$
		else(y, (x: xs, ys))

C 1 1

110

Unfold on Lists Folds v.s. Unfolds

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

Unfold on Lists Folds v.s. Unfolds

Folds and Unfolds

- Folds and unfolds are dual concepts. Folds consume data structure, while unfolds build data structures.
- ▶ List constructors have types: (:) :: $\alpha \to [\alpha] \to [\alpha]$ and [] :: [α]; in *fold* f e, the arguments have types: f :: $\alpha \to \beta \to \beta$ and e :: β .
- List deconstructors have types: ⟨hd, tl⟩ :: [α] → (α, [α]); in unfoldr p f, the argument f has type β → (α, β).
- They do not look exactly symmetrical yet. But that is just because our notations are not general enough.

Unfold on Lists Folds v.s. Unfolds

Folds v.s. Unfolds

- Folds are defined on inductive datatypes. All inductive datatypes are finite, and emit inductive proofs. Folds basically captures induction on the input.
- As we have seen, unfolds may generate infinite data structures.
 - They are related to coinductive datatypes.
 - Proof by induction does not (trivially) work for coinductive data in general. We need to instead use *coinductive proof*.

Unfold on Lists Folds v.s. Unfolds

A Sketch of A Coinductive Proof

To prove that $map f \cdot iterate f = iterate f (f x)$, we show that for all possible *observations*, the *lhs* equals the *rhs*.

- $hd \cdot map f \cdot iterate f = hd \cdot iterate f (f x)$. Trivial.
- $tl \cdot map f \cdot iterate f = tl \cdot iterate f (f x)$:

tl (*map f* (*iterate f x*))

- = tl (f x : map f (iterate f (f x)))
- $= \{ hypothesis \}$
 - tl(fx: iterate f(f(x)))

= tl (iterate f (f x))

The hypothesis looks a bit shaky: isn't it circular reasoning? We need to describe it in a more rigourous setting to establish its validity. This is out of the scope of this lecture.

Unfold on Lists Folds v.s. Unfolds

Unfolds on Trees

Unfolds can also be extended to trees. For internally labelled binary trees we define:

unfoldiT p f s = if p s then Null else $let (x, s_1, s_2) = f s$ $in Node x (unfoldiT p f s_1)$ $(unfoldiT p f s_2).$

And for externally labelled binary trees we define:

 $unfoldeT \ p \ f \ g \ s = if \ p \ s \ then \ Tip \ (g \ s) \ else \\ let \ (s_1, s_2) = f \ s \\ in \ Bin \ (unfoldeT \ p \ f \ g \ s_1) \\ (unfoldeT \ p \ f \ g \ s_2).$

A Museum of Sorting Algorithms Hylomorphism and Recursion

Unflattening a Tree

- ► Recall the function *flatteneT* :: eTree α → [α], defined as a fold, flattening a tree into a list. Let us consider doing the reverse.
- Assume that we have the following functions:
 - single xs = true iff xs contains only one element.
 - half :: [α] → ([α], [α]) split a list of length n into two lists of lengths roughly half of n.
- ► The function unflatteneT builds a tree out of a list: unflattenT :: $[\alpha] \rightarrow eTree[\alpha],$ unflattenT = unfoldeT single half id.

A Museum of Sorting Algorithms Hylomorphism and Recursion

Mergesort as a Hylomorphism

- Recall the function merge merging a pair of sorted lists into one sorted list. Assume that it has a curried variant mergec.
- What does this function do?

msort = foldeT merge_c id · unflatteneT

This is mergesort!

A Museum of Sorting Algorithms Hylomorphism and Recursion

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms

Hylomorphism and Recursion

Wrapping Up

A Museum of Sorting Algorithms Hylomorphism and Recursion

Quicksort as a Hylomorphism

Let *partition* be defined by:

 $partition(x : xs) = (x, filter(\le x) xs, filter(> x) xs).$

- Recall the function *flatteniT* flattening an *iTree*, defined by a fold.
- Quicksort can be defined by:

qsort = flatteniT · unfoldiT null partition.

Compare and notice some symmetricity:

 $qsort = flatteniT \cdot partitioniT$, $msort = mergeeT \cdot unflatteneT$.

Both are defined as a fold after an unfold.

A Museum of Sorting Algorithms Hylomorphism and Recursion

Insertion Sort and Selection Sort

Insertion sort can be defined by an fold:

isort = *foldr insert* [],

where *insert* is specified by

insert x xs = takeWhile (< x) xs + [x] + dropWhile (< x) xs.

イロト 不同下 イヨト イヨト

91/101

Selection sort, on the other hand, can be naturally seen as an unfold:

ssort = *unfoldr null select*,

where *select* is specified by

select xs = (max xs, xs - [max xs]).

A Museum of Sorting Algorithms Hylomorphism and Recursion

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

Hylomorphism

- A fold after an unfold is called a *hylomorphism*.
- The unfold phase expands a data structure, while the fold phase reduces it.
- The divide-and-conquer pattern, for example, can be modelled by hylomorphism on trees.

To avoid generating an intermediate tree, the fold and the unfold can be fused into a recursive function. E.g. let hyloiT f e p g = foldiT f e · unfoldiT p g, we have
 hyloiT f e p g s = if p s then e else
 let (x, s₁, s₂) = g s
 in f x (hyloiT f e p g s₁)

(hyloiT $f e p g s_2$).

Hylomorphism and Recursion

Okay, we can express hylomorphisms using recursion. But let us look at it the other way round.

- Imagine a programming in which you are *not* allowed to write explicit recursion. You are given only folds and unfolds for algebraic datatypes¹.
- When you do need recursion, define a datatype capturing the pattern of recursion, and split the recursion into a fold and an unfold.
- > This way, we can express any recursion by hylomorphisms!

Therefore, the hylomorphism is a concept as expressive as recursive functions (and, therefore, the Turing machine) — if we are allowed to have hylomorphisms, that is.

A Museum of Sorting Algorithms Hylomorphism and Recursion

Folds Take Inductive Types

- So far, we have assumed that it is allowed to write fold · unfold. However, let us not forget that they are defined on different types!
- Folds takes inductive types.
 - If we use folds only, everything terminates (a good property!).
 - Recall that we assume a simple model of functions between sets.
 - On the downside, of course, not every program can be written in terms of folds.

A Museum of Sorting Algorithms Hylomorphism and Recursion

Unfolds Return Coinductive Types

Unfolds returns coinductive types.

- We can generate infinite data structure.
- But if we are allowed to use only unfolds, every program still terminates because there is no "consumer" to infinitely process the infinite data.
- Not every program can be written in terms of unfolds, either.

Hylomorphism, Recursion and Termination

- If we allow *fold* · *unfold*,
 - we can now express *every* program computable by a Turing machine.
 - But, we need a model assuming that inductive types and coinductive types coincide.
 - Therefore, Folds must prepare to accept infinite data.
 - Therefore, some programs may fail to terminate!
 - ▶ Which means that *partial functions* have emerged.
 - Recursive equations may not have unique solutions.
 - And everything we believe so far are not on a solid basis anymore!

Termination, Type Theory, Semantics ...

- One possible way out: instead of total function between sets, we move to *partial functions* between *complete partial orders*, and model what recursion means in this setting.
- There are also alternative approaches staying with functions and sets, but talk about when an equation has a unique solution.
- This is where all the following concepts and fields meet each other: unique solutions, termination, type theory, semantics, programming language theory, computability theory ... and a lot more!

Folds

The Fold-Fusion Theorem More Useful Functions Defined as Folds Finally, Solving Maximum Segment Sum Folds on Trees

Unfolds

Unfold on Lists Folds v.s. Unfolds

Hylomorphism

A Museum of Sorting Algorithms Hylomorphism and Recursion

Wrapping Up

What have we learned?

- To derive programs from specification, functional programming languages allows the expand/reduce transformation.
- A number of properties we need can be proved by induction.
- To capture recurring patterns in reasoning, we move to structural recursion: folds captures induction, while unfolds capture coinduction.
 - We gave lots of examples of the fold-fusion rule.
 - Unfolds are equally important, unfortunately we ran out of space.
- Hylomorphism is as expressive as you can get. However, it introduces non-termination. And that opens rooms for plenty of related research.

Where to Go from Here?

- The Functional Pearls column in Journal of Functional Proramming has lots of neat example of derivations.
- Procedural program derivation (basing on the weakest precondition calculus) is another important branch we did not talk about.
- There are plenty of literature about folds, and
- more recently, papers about unfolds and coinduction.
- You may be interested in theories about inductive types, coinductive types, and datatypes in general,
- and semantics, denotational and operational,
- which may eventually lead you to category theory!