Functional Program Derivation
Exercises for Day 2

Shin-Cheng Mu Shu-Chun Weng (TA)

2007 Formosan Summer School on
Logic, Language, and Computation
July 5th, 2007

This exam sheet is worth 20 points in total.

2.1 Folds and Fold-Fusion

1. (1 points) The function filter p selects from a list all elements satisfying
a predicate p. For example, filter even [1,2,3,4] = [2,4].

(a) Give a recursive definition of filter:

filter p ] =
filter p (z:zs) =

(b) Define filter p in terms of foldr.

2. (2 points) Prove, by fold-fusion, that

filterp-mapf = mapf - filter (p-f).
Hint: apply fold-fusion on both sides, and show that they are equal to the
same fold.

3. (3 points) Given functions f :: « — fand g : . — v, {f,g9) =t aa — (5,7)
is a function defined by:

(fr9)a=(fa,ga).

Recall the definition of steep and sum. The definition of steepsum can be
re-written as:

steepsum = (steep, sum).

Also recall that the identity function id on lists is a fold: id = foldr (:) [].
Use the fold-fusion theorem to fuse steepsum - id into one fold.



4. (4 points) Recall the definition of scanr from the lecture:
scanrfe = map (foldrfe) - tails

and its implementation as a fold:

scanr f e foldr (scf) [e€]
scfz(yys) = fay:y:ys
(a) Expand scanr (+)0]1,2,3] step by step:
scanr (+) 01,2, 3]
= foldr (sc(+4))[0][1,2,3]

(b) Derive the implementation of scanr f e by fusing map (foldr f e)- tails
into one fold.

5. (4 points) Given two functions hy and hy, the function (hy, hy) (pro-
nounced “split of h; and he”) computes the pair of their results:

(h1,he)xs = (hy xs, hg xs).
In the special case when both hy and hy are defined by foldr:

hl = fOld’I‘fl €1,
hy = foldr fz €2,

the following “banana-split” rule allows us to express (hy, hy) using one
single foldr:

<h17 h2> fOld?”g (617 62)7
gr(y.2) = (hzy fzz).

It optimises two traversal through the list to only one traversal. It is
called “banana-split” because folds used to be written using a notation
called “banana brackets”.

(a) The function (sum, length) return the pair of sum and length of the

input list. Use the banana-split rule to express (sum, length) by a
fold.

(b) Prove the banana-split rule by fold fusion. Hint: (hq, he) = (h1, ho) -
id, and id is a fold.



2.2 Unfolds and Hylomorphism
1. (2 points) Let hyloeT f gp h k = foldeT f g - unfoldeT p h k.

(a) Express msort using hyloeT.

(b) Given a recursive definition of hyloeT, like that of hyloiT in the
lecture.

2. (4 points)

(a) The function indexFrom :: (N,[a]) — [(N,«a)] assigns an index to
each element in the give list. E.g.

indezFrom (0,[a, b, c]) = [(0,qa),(1,0),(2,¢)].
Define indexFrom by unfoldr. Hint: the answer may probably look
like:
indexFrom = wunfoldr p idn,
p (?7 ?) =

idn (n,z:x8) =

(b) The function call Isearch z xs performs a linear search for z in the
list s and returns its index. If the z is not in zs, it returns —1. E.g.

Isearch b[(0, a), (1, ), (2, ¢)] 1,
Isearch d[(0, a), (1, b), (2, ¢)] —1.

Define Isearch by a foldr.

If you are able to complete (a) and (b), you have constructed, as a hy-
lomorphism, a function posxr = lIsearchz - indexFrom searching for the
position of z in ws.



