
Functional Program Derivation

Exercises for Day 2

Shin-Cheng Mu Shu-Chun Weng (TA)

2007 Formosan Summer School on
Logic, Language, and Computation

July 5th, 2007

This exam sheet is worth 20 points in total.

2.1 Folds and Fold-Fusion

1. (1 points) The function filter p selects from a list all elements satisfying
a predicate p. For example, filter even [1, 2, 3, 4] = [2, 4].

(a) Give a recursive definition of filter :

filter p [ ] = . . .
filter p (x :xs) = . . .

(b) Define filter p in terms of foldr .

2. (2 points) Prove, by fold-fusion, that

filter p ·map f = map f · filter (p · f ).

Hint: apply fold-fusion on both sides, and show that they are equal to the
same fold.

3. (3 points) Given functions f :: α → β and g :: α → γ, 〈f , g〉 :: α → (β, γ)
is a function defined by:

〈f , g〉 a = (f a, g a).

Recall the definition of steep and sum. The definition of steepsum can be
re-written as:

steepsum = 〈steep, sum〉.

Also recall that the identity function id on lists is a fold: id = foldr (:) [ ].
Use the fold-fusion theorem to fuse steepsum · id into one fold.

1



4. (4 points) Recall the definition of scanr from the lecture:

scanr f e = map (foldr f e) · tails

and its implementation as a fold:

scanr f e = foldr (sc f ) [e]
sc f x (y :ys) = f x y : y : ys

(a) Expand scanr (+) 0 [1, 2, 3] step by step:

scanr (+) 0 [1, 2, 3]
= foldr (sc (+)) [0] [1, 2, 3]
= . . .

(b) Derive the implementation of scanr f e by fusing map (foldr f e)·tails
into one fold.

5. (4 points) Given two functions h1 and h2, the function 〈h1, h2〉 (pro-
nounced “split of h1 and h2”) computes the pair of their results:

〈h1, h2〉 xs = (h1 xs, h2 xs).

In the special case when both h1 and h2 are defined by foldr :

h1 = foldr f1 e1,
h2 = foldr f2 e2,

the following “banana-split” rule allows us to express 〈h1, h2〉 using one
single foldr :

〈h1, h2〉 = foldr g (e1, e2),
g x (y , z ) = (f1 x y , f2 x z ).

It optimises two traversal through the list to only one traversal. It is
called “banana-split” because folds used to be written using a notation
called “banana brackets”.

(a) The function 〈sum, length〉 return the pair of sum and length of the
input list. Use the banana-split rule to express 〈sum, length〉 by a
fold.

(b) Prove the banana-split rule by fold fusion. Hint: 〈h1, h2〉 = 〈h1, h2〉 ·
id , and id is a fold.

2



2.2 Unfolds and Hylomorphism

1. (2 points) Let hyloeT f g p h k = foldeT f g · unfoldeT p h k .

(a) Express msort using hyloeT .

(b) Given a recursive definition of hyloeT , like that of hyloiT in the
lecture.

2. (4 points)

(a) The function indexFrom :: (N , [α]) → [(N , α)] assigns an index to
each element in the give list. E.g.

indexFrom (0, [a, b, c]) = [(0, a), (1, b), (2, c)].

Define indexFrom by unfoldr . Hint: the answer may probably look
like:

indexFrom = unfoldr p idn,
p (?, ?) = . . .
idn (n, x :xs) = . . .

(b) The function call lsearch x xs performs a linear search for x in the
list xs and returns its index. If the x is not in xs, it returns −1. E.g.

lsearch b [(0, a), (1, b), (2, c)] = 1,
lsearch d [(0, a), (1, b), (2, c)] = −1.

Define lsearch by a foldr .

If you are able to complete (a) and (b), you have constructed, as a hy-
lomorphism, a function posx = lsearchx · indexFrom searching for the
position of x in xs.

3


