
2007/07 FLOLAC '07--Type Systems 1

Type Systems
for Programming Languages

Kung Chen (陳 恭)
Department of Computer Science

National Chengchi University
Taipei, Taiwan

2007 Formosan Summer School on Logic, Language, and Computation
July 02, 2007 ~ July 13, 2007

2007/07 FLOLAC '07--Type Systems 2

Paradoxes and
Russell's Type Theories

R = { X | X ∉ X }

2007/07 FLOLAC '07--Type Systems 3

Some history
• 1870s: formal logic (Frege), set theory (Cantor)

• 1910s: ramified types (Whitehead and Russell)

• 1930s: untyped lambda calculus (Church)

• 1940s: simply typed lambda calc. (Church)

• 1960s: Automath (de Bruijn); Curry-Howard isomorphism;
Curry-Hindley type inference; Lisp, Simula, ISWIM

• 1970s: Martin-Löf type theory; System F (Girard);
polymorphic lambda calc. (Reynolds); polymorphic type
inference (Milner), ML, CLU

Source: D. MacQueen

2007/07 FLOLAC '07--Type Systems 4

Some History (cont)
• 1980s: NuPRL, Calculus of Constructions, ELF,

linear logic; subtyping (Reynolds, Cardelli, Mitchell),
bounded quantification; dependent types, modules
(Burstall, Lampson, MacQueen)

• 1990s: higher-order subtyping, OO type systems,
object calculi; typed intermediate languages, typed
assembly languages

Source: D. MacQueen

2007/07 FLOLAC '07--Type Systems 5

Objectives
•Introduce the development of type systems for
modern programming languages with emphasis on
functional and object-oriented languages

(subtyping)

•Help students get familiar with the basic forms of
polymorphism in PL’s

2007/07 FLOLAC '07--Type Systems 6

Agenda
• Introduction to Type Systems
• Polymorphic Type Systems

– The Hindley-Milner Type System
• Parametric polymorphism in functional languages

– Type Classes in Haskell
– The Polymorphic Lambda Calculus (PLC)

• Subtyping Polymorphism for OOPL
– Basics of Subtyping
– Inheritance and Subtyping
– F-Bounded polymorphism

2007/07 FLOLAC '07--Type Systems 7

Introduction to
Type Systems

2007/07 FLOLAC '07--Type Systems 8

Type Systems for PL, 1

• What are “type systems” and what are they good
for?

• “A type system is that part of a programming
language (definition and implementation) that
concerns itself with making sure that no operations
are performed on inappropriate arguments.”

--Kris De Volder

•Determine types for program phrases
•Detect type errors: “abc” * “xyz”

•Type checking

2007/07 FLOLAC '07--Type Systems 9

Static vs Dynamic Typing

Static type systems do static checking:
verify the a program text __________ the program runs.

Dynamic type systems do runtime checking:
verify the actual execution of operations ________ the program
runs.

Dynamic checking requires that type information is present in the
runtime representation of values. (This is called ________ typing)

before

while

latent

Our focus
•When to type check?

2007/07 FLOLAC '07--Type Systems 10

Type Systems for PL, 2

• “A type system is a tractable syntactic method for
proving the absence of certain program behaviours
by classifying phrases according to the kinds of
values they compute”
– B. Pierce, Types and Programming Languages (MIT, 2002)

•“A type system can be regarded as calculating a
kind of static approximation to the run-time
behaviors of the terms in a program.” (J. Reynolds)

2007/07 FLOLAC '07--Type Systems 11

Motivation of Static Typing
– Safety: Early detection of certain kinds of errors.

– Type checker can guarantee before running a program that certain
kinds of errors will not happen while the program is running.

– Efficiency: Optimization
– Type declarations document static properties that can be used as

safe assumptions for runtime optimizations.

– Readability/Specification: Documentation of “what type of
thing is that?”

– Type declarations provide information to a programmer reading the
code. This information is never outdated (assuming the program
compiles/type-check without errors).

Q: We said that “nothing is for free”… so what’s the price for
static types?

2007/07 FLOLAC '07--Type Systems 12

Related Notion: Strong Typing

1. A type system of a language is called Strong if it is
impossible for any application of an operation on
inappropriate arguments to go undetected.

2. When no application of an operator to arguments can lead
to a run-time type error, the language is strongly typed.

Strong typing vs. Static typing

•It depends on the definition of “type errors”.
•Yet the def of type errors is programming language specific.

In C, the phrase int i = 4.5 + 2; is acceptable.
But in Ada, Real r = 4.5 + 2; is not allowed.

•Most mainstream PL’s do not have a formalized def of
type errors! Consult the language manual?

2007/07 FLOLAC '07--Type Systems 13

General Language Classification

Weak typing

Strong typing

Dynamic checkingStatic checking

SML, Haskell Scheme

C/C++

•Where does Java fit?

2007/07 FLOLAC '07--Type Systems 14

Mixed Type Checking
• Static type checking must be overly conservative

– May reject programs that will run without type errors
• Languages like Java uses both (mostly) static and

(a bit) dynamic type checking to make a balance.
(class casting and array index bounds)

class B extends A { … }
A a = new B();
B b = (B) a;

Compiler inserts code to do the dynamic check

2007/07 FLOLAC '07--Type Systems 15

Formal Type Systems
Static ones

2007/07 FLOLAC '07--Type Systems 16

Formal Type Systems
• Type: a type t defines a set of possible data values

– E.g. short in C is {x| 215 - 1 ≥ x ≥ -215}
– A value in this set is said to have type t

• Type system: for classifying program phrases according to
the kinds (types) of values they compute

true : Bool //means true ∈ Bool
false : Bool
v : Int if v is an Integer literal

Basic:

Composite: if e : Int and f : Int then e+f : Int

as an inference rule:

conclusion
hypothesishypothesis 21e : Int f : Int

e+f : Int

2007/07 FLOLAC '07--Type Systems 17

Types and Type Systems

Similarly:
boolfe

boolfboole
:&

::
boolfe

intfinte
:

::
==

•What about expressions with variables
such as “x+1”?

We want to typecheck expressions like x+1 before substituting
values for variable x. We can say:

if x:Int then x+1:Int

and we write this as:
=> typing judgementx:Int > x+1 : Int

2007/07 FLOLAC '07--Type Systems 18

Typical type system “judgement”

Γ > e : τ

is a relation between typing environments (Γ), program
phrases (e) and type expressions (τ) that we write as

and read as “given the assignment of types to free
identifiers of e specified by type environment Γ, then e
has type τ.

E.g.,

x:Int, y:Int > x+y : Int
is a valid judgment in SML.

Γ ├ e : τor
nn TxTx :,,: 11 K=Γ

2007/07 FLOLAC '07--Type Systems 19

Formal (Static) Type Systems
• Constitute the precise, mathematical characterization of

informal type systems (such as occur in the manuals of most
typed languages.)

• Basis for type soundness theorems (for a type system):
“well-typed programs won’t produce run-time errors

(of some specified kind)”

Γ > e : τIf then e will evaluate to a value belongs to τ
as long as the evaluation terminates.

2007/07 FLOLAC '07--Type Systems 20

Two Kinds of Static Type Systems
Type Checking

• Requires the programmer to provide explicit type
declarations for variables, procedures, etc.

• Type checker verifies consistency of annotations with how
the variables, procedures, etc. are being used.

Type Inference
• Does not require explicit type declarations.

• Type inferencer “infers” types of variables, procedures, etc. from
how they are defined and used in the program.

Source: Kris De Volder
(Type reconstruction)

2007/07 FLOLAC '07--Type Systems 21

Type Checking

Int f(Int x)
{

return 2*x+1;
}

• Explicit type declarations provide types for key poInts:
f : Integer -> Integer
x : Integer

• Types of expressions deduced from type of subexpressions
and operations performed on them

Example: (Java)

2 * x : Integer
2 * x + 1 : Integer

Source: Kris De Volder

2007/07 FLOLAC '07--Type Systems 22

f x = 2*x + 1

• No explicit type declarations are required
• Types of expressions and variables are “inferred”

Example: SML/Haskell, types are completely statically checked,
but type declarations are optional

All this is done statically!!!
I.e. at compile time, *before* the program
runs!

Type Inference

1 :: Int
2 :: Int
2*x :: Int
x :: Int
2*x + 1 :: Int
f :: Int -> Int Source: Kris De Volder

2007/07 FLOLAC '07--Type Systems 23

Type Checking, Typeability and Type Inference

Source: Prof. A. Pitts

2007/07 FLOLAC '07--Type Systems 24

Summary: Kinds of Type Systems
Typed Untyped

Static Checking Dynamic Checking

Type Checking Type Inference

requires latent types

types at key poInts
declared by programmer

types of variables
inferred by type system

•Monomorphic vs. polymorphic type systems

Source: Kris De Volder

2007/07 FLOLAC '07--Type Systems 25

Examples of Formal Type Systems

• The simply typed lambda calculus

• The Hindley-Milner type system (HMTS)
– Support parametric polymorphism
– Typeability is decidable

• The polymorphic lambda calculus
– System F

2007/07 FLOLAC '07--Type Systems 26

Polymorphism = “has many types”
•Kinds of polymorphism (Cardelli & Wegner, 85):

•Parametric polymorphism (“generics”): same expression
belongs to a family of structurally related types. (E.g. in Haskell,
list length function:

length [] = 0
length (x:xs) = 1 + length xs

(subtyping)

length has type [τ] Int,
for all type τ[]: empty list in Haskell,

And List type constructor.

2007/07 FLOLAC '07--Type Systems 27

Type Variables and Type Schemes
• To formalize statements like

“length has type [τ] Int, for all type τ”

it is natural to Introduce type variables α (i.e. variables
for which types may be substituted), and write

length :: ∀α. [α] Int

An example of type scheme in the HMTS

[Int] Int, [Char] Int, [Bool] Int, [[Float]] Int, [[[Bool]]] Int, …

2007/07 FLOLAC '07--Type Systems 28

Polymorphism of let-bound variables

let length = λ l. if l == nil 0 else 1 + length (tail l)
in length [1, 3, 5] + length [True, False]

length has type scheme ∀α. [α] Int,
a polymorphic type which can be instantiated
to different types:

--in (length [1,3,5]), length has type [Int] Int

--in (length [True, Flase]), length has type [Bool] Int

Example:

2007/07 FLOLAC '07--Type Systems 29

Ad-hoc Polymorphism
• Also known as (AKA) Overloading.

The same name denotes different functions.
E.g., + :: Int Int Int, Integer addition

+ :: Float Float Float, Float addition

• Parametric polymorphism:
The same function with different types.
E.g, the list length function ∀α. [α] Int,

2007/07 FLOLAC '07--Type Systems 30

Mini-Haskell
Lambda Calculus with Constants

Haskell Curry (1900-1982)

Haskell is a lazy and
purely functional language.
http://www.haskell.org

2007/07 FLOLAC '07--Type Systems 31

Mini-Haskell Expression
E ::= constants: 1, 2, 3, …

‘a’, ’b’, …,
True, False, &&(and), ||(or), !(not)
+, -, *, …, >, <. =,

| variable: x, y, z, …
| \ x -> E
| E1 E2
| if E1 then E2 else E3
| let x = E1 in E2
| (E1, E2) | [] | [E1, …, En] | fst | snd | : | head | tail

pairs lists cons

Function abstraction
Function application
If-expr
Let-expr

2007/07 FLOLAC '07--Type Systems 32

Mini-Haskell Expression Examples
3+5, x>y+3, not (x>y) || z>0

(1, ‘a’) fst (‘a’, 5)

[True, False] x:xs tail xs

\x -> if x>0 then x*x else 1

(\x -> x*x) (4+5)

\f -> \x -> f (f x)

let f = \x-> x in (f True, f ‘a’) --tuple

2007/07 FLOLAC '07--Type Systems 33

Mini-Haskell Types & Type Schemes
• Types τ:

– τ ::= Int | Bool | … primitive types
| α| β| … type variables
| τ1 τ2 function types
| (τ1, τ2) pair (tuple) types
| [τ] list types

• Type schemes σ:
σ ::= τ | ∀α . σ

(Right-associative)

generic type variable

2007/07 FLOLAC '07--Type Systems 34

Examples of Type Schemes

(Char, Int) Bool ∀α.[α] α Bool

[Int] (Int->Bool) Bool

[Int] β Bool

∀α.β.(α β) [α] β

Invalid type schemes

[Int], Bool, Char Bool

free type variable

∀α.α β

Int ∀α.α

∀α.α

∀α.α ∀β.β

•Outermost quantification only

≡∀α.∀β. …

2007/07 FLOLAC '07--Type Systems 35

The “generalize” relation between
types schemes and types

(instantiations)

2007/07 FLOLAC '07--Type Systems 36

Examples of Type Specialization

∀α.α α f β β

Int Int

(Int Int) (Int Int)

f

f

via [β/α]

via [Int/α]

via [Int Int/α]

BTW, τ f τ

2007/07 FLOLAC '07--Type Systems 37

Format of Type Judgments
• A type judgment has the form

Γ |- exp : τ
• exp is a Mini-Haskell expression
• τ is a Mini-Haskell type to be assigned to exp

Γ0 is the initial type environment containing types for all built-in
functions, e.g., fst : ∀α.β.(α,β) α, (:) : ∀α.α [α] [α]

2007/07 FLOLAC '07--Type Systems 38

Format of Typing Rules
Assumptions

Γ |- exp1 : τ1 . . . Γ |- expn : τn
Γ |- exp : τ

Conclusion
• Idea: Type of an expression determined by type of

its components—Syntax-directed
• Rule without assumptions is called an axiom
• Γ may be omitted when not needed

2007/07 FLOLAC '07--Type Systems 39

Mini-Haskell Typing Rules, I (Axioms)

Γ |- n : Int

Γ |- True : Bool Γ|- False : Bool

(Int)

(Bool)

(assuming n is an Integer constant)

(Var f) Γ |- x : τ if Γ(x) = σ and σ f τ

Examples:
Γ0 |- fst : (Int, Char) Int

{ f : ∀α.α α } |- f : (Int Int) (Int Int)

Γ0(fst)=∀α.β.(α,β) α

2007/07 FLOLAC '07--Type Systems 40

Mini-Haskell Typing Rules, II

Γ |- e1 : τ1 Γ |- e2 : τ2
Γ |- (e1, e2) : (τ1 ,τ2)

(Pair)

Γ |- [] : [τ](nil)

Γ |- e1 : τ1 Γ |- e2 : [τ1]
Γ |- (e1:e2) : [τ1]

(cons)

Note: [e1, e2, e3] is a syntactic sugar of (e1:(e2:e3))

2007/07 FLOLAC '07--Type Systems 41

Mini-Haskell Typing Rules, III

Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1
Γ |- (e1 e2) : τ2

(App)

(Abs) Γ .x :τ1 |- e : τ2
Γ |- \x -> e : τ1 → τ2

x ∉ dom(Γ)
or Γx

Γ |- isEven: Int→ Bool Γ |- 5 : Int
Γ |- (isEven 5) : Bool

{y : α } |- (y, y): (α, α)
|- \y -> (y, y) : α → (α, α)

Examples:

2007/07 FLOLAC '07--Type Systems 42

Mini-Haskell Typing Rules, IV

Γ |- e1 : Bool Γ |- e2 : τ Γ |- e3 : τ
Γ |- if e1 then e2 else e3 : τ

(If)

E.g., if (x>0) then True else [] is not typable.

Γ |- e1 : τ1

Γ |- let x=e1 in e2 : τ
(Let) x ∉ dom(Γ)

σ = Gen(τ1, Γ) = ∀α1…αn.τ1. 　

where {α1,…,α n} = FV(τ1) - FV(Γ)
Generalization introduces polymorphism.

Γ. x:σ |- e2 : τ

2007/07 FLOLAC '07--Type Systems 43

Example of Let-Polymorphism

(1) Γ |- \x->x : α → α α is a fresh var, Gen called

(2.1) Γ. id:∀α.α → α |- id : Int->Int Γ. id:∀α.α → α |- 5 : Int
Γ. id:∀α.α → α |- id 5 : Int

(2.2) Γ. id:∀α.α→α |- id : Bool->Bool Γ. id:∀α.α→α |- True : Bool
Γ. id:∀α.α → α |- id True : Bool

Γ. id:∀α.α → α |- (id 5, id True) : (Int, Bool)

Γ |- let id=\x->x in (id 5, id True) : (Int, Bool)

Pair

Let

(2.1), (2.2)

Exercise: We can also have “id id” in the let-body!

E ≡ let id=\x->x in (id 5, id True)

2007/07 FLOLAC '07--Type Systems 44

Exercise of Let-Polymorphism

\x. let f = \y->x
in (f 1, f True)

AB

ΓA = { x : α } (1) ΓA.{ y:β } |- x : α
ΓA |- \y->x : β α

Derive the type for the following lambda function:

2007/07 FLOLAC '07--Type Systems 45

HMTS Limitations:
λ-bound (monomorphic) vs Let-bound Variables

E1 ≡ let id=\x->x in (id 5, id True)
vs E2 ≡ (\f->(f 5, f True))(\x->x)

•Consider \f->(f 5, f True) :
Γ .x :τ1 |- e : τ2

Γ |- \x -> e : τ1 → τ2

Recall the (Abs) rule

{ f : ? } |- (f 5, f True) : (Int, Bool)

•Only let-bound identifiers can be instantiated differently.

a type only, not a type scheme to instantiate

Semantically
E1 = E2, but

2007/07 FLOLAC '07--Type Systems 46

Good Properties of the HMTS
• The HMTS for Mini-Haskell is sound.

– Define a operational semantics for Min-Haskell
expressions: Eval(expr) value or get stuck (or looping)

– Prove that if an expression e is typable under the HMTS,
then Eval(e) will not stuck, and if Eval(e) v then v is a
value of the type of e.

• The typeability problem of the HMTS is decidable:
there is an inference algorithm which computes the
principal type scheme for any Mini-Haskell
expression.
– The W algorithm using unification

•Complexity
--PSPACE-Hard
--DEXPTIME-Complete

2007/07 FLOLAC '07--Type Systems 47

Principle Type Schemes for
Closed Expressions, 1

{ f:Int→Bool, x:Int} |- f : Int→Bool {f:Int→Bool, x:Int} |- x : Int

•What type for “\f->\x->f x”?

{ f:Int→Bool, x:Int} |- f x : Bool

{ f:Int→Bool} |- \x->f x : Int → Bool

{ } |- \f->\x->f x : (Int → Bool) → (Int → Bool)

Can we derive a more “general” type for this expression?

App

Abs

Abs

2007/07 FLOLAC '07--Type Systems 48

Principle Type Schemes for
Closed Expressions, 2

{ f: α→β, x :α} |- f : α→β {f : α→β, x : α} |- x : α
{f : α→β, x : α} |- f x : β

{f : α →β} |- \x -> f x : (α →β)
{ } |- \f -> \x -> f x : (α→β) → (α→β)

Any instance of (α →β) → (α →β) is a valid type.
E.g., (Int → Bool) →(Int → Bool)

•What general type for “\f->\x->f x”?

Most general type

2007/07 FLOLAC '07--Type Systems 49

Principle Type Schemes for Closed
Expressions

• A type scheme σ is the principal type scheme of a
closed Mini-Haskell expression E if
(a) |- E : τ is provable and σ = Gen(τ, {})
(b) for all τ’, if |- E : τ’ is provable and σ’ = Gen(τ’, {})

then σ Â σ’

where by definition σ Â σ’ if σ’ = ∀α1…αn.τ’ and
FV(σ) ∩{ α1…αn } = {} and σ Â τ’ .

E.g., \f->\x->f x has the PTS of ∀α.β.(α β) (α β)
and ∀α.β.(α β) (α β) Â ∀γ.(γ Bool) (γ Bool)

2007/07 FLOLAC '07--Type Systems 50

History
• Type checking has traditionally been done

"bottom up" – if you know the types of all
arguments to a function you know the type of
the result.

• 1958: Haskell Curry and Robert Feys develop
a type inference algorithm for the simply typed
lambda calculus.

• 1969: Roger Hindley extends this work and
proves his algorithm infers the most general
type.

• 1978: Robin Milner, independently of Hindley's
work, develops equivalent algorithm

• 2004: Java 5 Adopts the H-M algorithm and
type inference becomes respectable

Source: Daniel Tuck

2007/07 FLOLAC '07--Type Systems 51

Appendix: Another form of the HMTS
Not syntax-directed

[Damas&Milner 82]

Γ |- exp : σ

2007/07 FLOLAC '07--Type Systems 52

Haskell’s Type Classes
Parametric Overloading

2007/07 FLOLAC '07--Type Systems 53

When Overloading Meets
Parametric Polymorphism

• Overloading: some operations can be defined
for many different data types
– ==, /=, <, <=, >, >=, defined for many types
– +, -, *, defined for numeric types

•Consider the following function: double = \x-> x+x

•What should be the proper type of double?
•Int -> Int -- too specific
• ∀a.a -> a -- too general

Indeed, this double function is not typeable in (earlier) SML!

2007/07 FLOLAC '07--Type Systems 54

Type Classes—a “middle” way
• What should be the proper type of double?

∀a.a -> a -- too general
• It seems like we need something “in between”,

that restricts “a” to be from the set of all types that
admit addition operation, say
Num = {Int, Integer, Float, Double, etc.}.—type class

double :: (∀ a ∈ Num) a -> a
• Qualified types generalize this by qualifying the

type variable, as in (∀ a ∈ Num) a -> a ,
which in Haskell we write as Num a => a -> a

•Note that the type signature a -> a
is really shorthand for ∀a.a -> a

2007/07 FLOLAC '07--Type Systems 55

Type Classes
• “Num” in the previous example is called a type

class, and should not be confused with a type
constructor or a value constructor.

• “Num T” should be read “T is a member of (or
an instance of) the type class Num”.

• Haskell’s type classes are one of its most
innovative features.

• This capability is also called “overloading”,
because one function name is used for
potentially very different purposes.

• There are many pre-defined type classes, but
you can also define your own.

2007/07 FLOLAC '07--Type Systems 56

Defining Type Classes in Haskell, 1
•In Haskell, we use type classes and instance
declarations to support parametric overloading
systematically.

class Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
…

•Type a belongs to class Num
if it has ‘+’,’-’,’*’, …of proper
signature defined.

Instance Declaration:
instance Num Int where

(+) = IntAdd --primitive
(*) = IntMul -- primitive
(-) = IntSub -- primitive
…

•Type Int is an instance
of class Num

A type is made an instance of a class by
an instance declaration

2007/07 FLOLAC '07--Type Systems 57

Defining Type Classes in Haskell, 2
In Haskell, the qualified type for double

double x = x + x ::
∀a. Num a => a->a

I.e., we can apply double to only types which
are instances of class Num.

double 12 --OK
double 3.4 --OK
double “abc” --Error unless String is an instance

--of class Num,

type predicate

2007/07 FLOLAC '07--Type Systems 58

Constrained polymorphism

• Ordinary parametric polymorphism
f :: a -> a

"f is of type a -> a for any type a"

• Overloading using qualified types
f :: C a => a -> a

"f is of type a -> a for any type a belonging to the type
class C"

•Think of a Qualified Type as a type with a Predicate set,
also called context in Haskell.

2007/07 FLOLAC '07--Type Systems 59

Type Classes and Overloading

In Haskell, the function double is translated into
double NumDict x =

(select (+) from NumDict) x x

double :: ∀ a. Num a => a->a
The type predicate “Num a” will be supported
by an additional (dictionary) parameter.

Similar to
double add x = x `add` x -- add x x

2007/07 FLOLAC '07--Type Systems 60

Type Classes and Overloading
Dictionary for (type class, type) is created by the
Instance declaration.

instance Num Int where
(+) = IntAdd --primitive
(*) = IntMul -- primitive
(-) = IntSub -- primitive
…

Create a dictionary called IntNumDict, and
“double 3” will be translated to

double intNumDIct 3

2007/07 FLOLAC '07--Type Systems 61

Another Example: Equality
• Like addition, equality is not defined on all types

(how do we test the equality of two functions, for
example?).

• So the equality operator (==) in Haskell has type
Eq a => a -> a -> Bool. For example:

42 == 42 True
`a` == `a` True
`a` == 42 << type error! >>

(types don’t match)
(+1) == (\x->x+1) << type error! >>

((->) is not an instance of Eq)
• Note: the type errors occur at compile time!

2007/07 FLOLAC '07--Type Systems 62

Equality, cont’d
• Eq is defined by this type class declaration:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

• The last two lines are default methods for the
operators defined to be in this class.

• So the instance declarations for Eq only needs to
define the “==“ method.

2007/07 FLOLAC '07--Type Systems 63

Defining class instances (1)
• Make pre-existing classes instances of type class:
instance Eq Integer where

x == y = x `integerEq` y
instance Eq Float where

x == y = x `floatEq` y

• (assumes integerEq and floatEq functions
exist)

2007/07 FLOLAC '07--Type Systems 64

Defining class instances (2)
• Do same for composite data types, such as tuples

(pairs).

instance Eq (a, b) where
(x1, y1) == (x2, y2) = (x1==x2) &&

(y1==y2)

• Note the context: (Eq a, Eq b) => ...

(Eq a, Eq b) =>

2007/07 FLOLAC '07--Type Systems 65

Defining class instances (3)

• Do same for composite data types, such as lists.

instance Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

• Note the context: Eq a => ...

Eq a =>

2007/07 FLOLAC '07--Type Systems 66

Functions Requiring Context
Constraints

•Consider the following list element testing function:

elem x [] = False
elem x (y:ys) = (x == y) || elem x ys

elem :: Eq a => a -> [a] -> Bool

>elem 5 [1, 3, 5, 7]
True

>elem ‘a’ “This is an example”
False

2007/07 FLOLAC '07--Type Systems 67

Context Constraints (cont’d)
succ :: Int -> Int
succ = (+1)

elem succ [succ] causes an error

ERROR - Illegal Haskell 98 class constraint
in inferred type

*** Expression : elem succ [succ]
*** Type : Eq (Int -> Int) => Bool

which conveys the fact that Int -> Int is not an instance
of the Eq class.

2007/07 FLOLAC '07--Type Systems 68

Other useful type classes

• Comparable types:
Ord < <= > >=

• Printable types:
Show show where
show :: (Show a) => a -> String

• Numeric types:
Num + - * negate abs etc.

2007/07 FLOLAC '07--Type Systems 69

Super/Subclasses
•Subclasses in Haskell are more a syntactic mechanism.
•Class Ord is a subclass of Eq.

Note: If type T belongs to Ord, then T must also belong to Eq

“=>” is misleading!

2007/07 FLOLAC '07--Type Systems 70
Source: D. Basin

2007/07 FLOLAC '07--Type Systems 71

Appendix: Typing Rules for Qualified Types

[Jones 92]

2007/07 FLOLAC '07--Type Systems 72

Appendix: Entailment Rules

Source: B. Heeren

2007/07 FLOLAC '07--Type Systems 73

Appendix: Syntax-Directed Typing Rules for
Qualified Types

[Jones 92]

2007/07 FLOLAC '07--Type Systems 74

Agenda
• Introduction to Type Systems
• Polymorphic Type Systems

– The Hindley-Milner Type System
• Parametric polymorphism in functional languages

– Type Classes in Haskell
– The Polymorphic Lambda Calculus (PLC)

• Subtyping Polymorphism for OOPL
– Basics of Subtyping
– Inheritance and Subtyping
– F-Bounded polymorphism

2007/07 FLOLAC '07--Type Systems 75

Explicitly versus Implicitly Typed
Languages

Implicitly typed version: λf.λx.f x

Explicitly typed version:
Λα.Λβ.λ f:α->β.λ x:β.f x --Type generalization and type parameters

λx:Int. x+1

2007/07 FLOLAC '07--Type Systems 76

Explicitly Typed Languages

• The Simply Typed Lambda Calculus
– Curry-Howard Isomorphism

• The Polymorphic Lambda Calculus

2007/07 FLOLAC '07--Type Systems 77

The Simply Typed Lambda Calculus λ→

•The simply typed lambda calculus was originally introduced by
Alonzo Church in 1940 as an attempt to avoid paradoxical uses
of the untyped lambda calculus.
•Types are “simple,” meaning not polymorphic

Type τ
τ ::= α | β | …

| τ →τ

Expression e
e ::= x | y | …

| λx:τ.e
| e1 e2

•β-reduction is Strong normalizing

2007/07 FLOLAC '07--Type Systems 78

Appendix: Curry-Howard Isomorphism

Haskell Curry (1900-1982) William Howard

2007/07 FLOLAC '07--Type Systems 79

Appendix: Curry-Howard Isomorphism

• Curry-Howard Isomorphism
– First noticed by Curry in 1960
– First published by Howard in 1980

• Fundamental ideas:
– Proofs are programs
– Formulas are types
– Proof rules are type checking rules
– Proof simplification is operational semantics
– Ideas and observations about logic are ideas and

observations about programming languages

2007/07 FLOLAC '07--Type Systems 80

Appendix: (Simple) Curry-Howard
Isomorphism

term (expression)
λ x:α. e

Proof
φ → ψ

Type
α, β, ...

Proposition
φ, ψ, …

Type SystemLogic

Γ |-- φ → ψ Γ |-- E : φ → ψ

2007/07 FLOLAC '07--Type Systems 81

Appendix: Curry-Howard Isomorphism
• Formulae (Propositions) as types,
• Proofs are programs

intuitionistic logic Typed Lambda Calculus

Γ |- A => B Γ |- A
------------------------------- (=>E)

Γ |- B

Γ, x:A |- e : B
--------------------------(Fun)
Γ |- λx:A.e : A → B

Γ, A |- B
----------------------- (=> I)
Γ |- A → B

Γ |- e1 : A → B Γ |- e2 : A
---------------------------------- (App)

Γ |- e1 e2 : B

2007/07 FLOLAC '07--Type Systems 82

Appendix: Curry-Howard Isomorphism

intuitionistic logic Typed Lambda Calculus

Γ |- A ∧ B
------------- (∧E1)

Γ |- A

Γ |- e1 : A Γ |- e2 : B
------------------------------(Pair)

Γ |- (e1, e2) : (A, B)

Γ |- A Γ |- B
------------------- (∧ I)

Γ |- A ∧ B

Γ |- A ∧ B
------------- (∧E2)

Γ |- B

Γ |- e : A ∧ B
----------------- (∧E1)

Γ |- fst e : A

Γ |- e : A ∧ B
----------------- (∧E2)

Γ |- snd e: B

A ∧ B ~~> pair type (A, B)

2007/07 FLOLAC '07--Type Systems 83

An Example

A ∧ B → B ∧ A

[x: A ∧ B]
B

[x: A ∧ B]
A

B ∧ A

A ∧ B → B ∧ A

(snd x) : (fst x) :

(snd x, fst x) :

λ x: (A, B).(snd x, fst x) :

λ x:(A, B) .(snd x, fst x)

(→Ix)

2007/07 FLOLAC '07--Type Systems 84

Appendix: Curry-Howard Isomorphism

2nd-order intuitionistic logic

(formula variable) a
(implication) A => B
(conjunction) A ∧ B
(disjunction) A ∨ B
(truth) True
(falsehood) False
(universal quant) ∀a.A
(existential quant) ∃a.A

Polymorphic Lambda Calculus

(type variable) a
(function type) A → B
(pair type) A * B or (A, B)
(sum type) A + B
(unit) unit
(void) void
(universal poly) ∀a.A
(existential poly) ∃a.A

2007/07 FLOLAC '07--Type Systems 85

The Polymorphic Lambda
Calculus (PLC)

•Second-Order Lambda Calculus
•System F

A.K.A

2007/07 FLOLAC '07--Type Systems 86

PLC Syntax

Source: Prof. A. Pitts

2007/07 FLOLAC '07--Type Systems 87

Examples of Types and Expressions of
PLC

∀α.α ∀β.βα β ∀α.β.(α β) ∀γ.γ

•Type specialization (application):

•Explicitly typed expressions:

Id = Λα.λx:α.x : ∀α.α->α

Type generalization (abstraction)

(Λα.λx:α.x)(Int->Int) => λx:Int->Int.x
Replace α with Int->Int

2007/07 FLOLAC '07--Type Systems 88

Computations (Reduction) in PLC

Source: Prof. A. Pitts

2007/07 FLOLAC '07--Type Systems 89

Polymorphism in PLC, 1
Id = Λα.λx:α.x has type ∀α.α->α

Implicit version: Id Id

Explicit version: (Id (β->β)) (Id β)

Example:
twice = Λα . λf:α→α. λx:α. f (f x))

has type ∀α. (α→α)→α→α

which can be instantiated as required:
twice int (λx:int. x+2) 2
twice bool (λx:bool. x) False

Example:

2007/07 FLOLAC '07--Type Systems 90

Polymorphism in PLC, 2
•Lambda-bound identifiers can be polymorphic.

(λ f:∀α.α->α.(f Int 5, f Bool True)) (Λα.λx:α.x)

Recall the example of (\f->(f 5, f True))(\x->x)
Now Id = Λα.λx:α.x has type ∀α.α->α

In PLC, we can define it as follows:

((Λα.λx:α.x) Int 5, (Λα.λx:α.x) Bool True)

2007/07 FLOLAC '07--Type Systems 91

Type Judgements of PLC

Source: Prof. A. Pitts

2007/07 FLOLAC '07--Type Systems 92

PLC Typing Rules

Source: Prof. A. Pitts

2007/07 FLOLAC '07--Type Systems 93

PLC Typing Exercise

twice = Λα . λf:α→α. λx:α. f (f x))

2007/07 FLOLAC '07--Type Systems 94

PLC Typeability and Type-checking

Source: Prof. A. Pitts

Explicit typing, not type inference

2007/07 FLOLAC '07--Type Systems 95

Recommended Readings

http://hal.inria.fr/inria-00076025/en/

http://portal.acm.org/citation.cfm?id=582176

http://portal.acm.org/citation.cfm?id=75283&dl=ACM&coll=GUIDE

2007/07 FLOLAC '07--Type Systems 1

Subtyping Polymorphism for
Statically-Typed OOPL

•Subtyping Basics
•Objects as Records: Record Subtyping

2007/07 FLOLAC '07--Type Systems 2

Subtyping, 1
• Recall that a data type is a set of values

(and a set of operations).
• Denote "A is a subtype of B" by A ≤ B

if A is a subset of B
– Since Int ⊆ Real, Int ≤ Real

• Any integers can be safely converted to a
real numbers. So in any context that
requires a real number, we can supply an
integer.

: Real)f(100

2007/07 FLOLAC '07--Type Systems 3

Subtyping, 2

• A is a subtype of B if
any expression of type A is allowed in every
context requiring an expression of type B

• Substitution principle
subtype polymorphism provides extensibility

• Property of types, not implementations

4

Principle of Substitutability in OOPL

• 代父出征--An object of
a subclass can always
be used in any context
in which an object of its
superclass was
expected.

anAnimal

•Most statically typed OOPL treat classes as types,
and subclasses as subtypes. (Inheritance = Subtyping)

Java ex: (Bird, Tiger inherit Animal)
Animal anAnimal;
anAnimal = new Bird();
anAnimal = new Tiger();

2007/07 FLOLAC '07--Type Systems 5

Dynamic Method Binding in OOP

anObject . methodName (arg_1, …, arg_n)

•Which method is invoked?
•It depends on the actual type (class) of “anObject”,
not its declared type (class).

C++ virtual functions.

Ex: anAnimal.eat()

2007/07 FLOLAC '07--Type Systems 6

Inheritance in Java
• New classes derived from existing classes

– Can add fields and methods
– Can use ancestor’s non-private fields and

methods
– Can hide (override) ancestor’s methods

•Overriding: A class replacing an ancestor's implementation of
a method with an implementation of it own. But
Signature and return type must be the same*. (no-variant rule)

•Why such a restriction?
*Since Java 1.5, this has been relaxed for return type.

2007/07 FLOLAC '07--Type Systems 7

An Inheritance Example in Java

// execute
// this version

class Main {
public static void main(String args[]) {
Point genpt, point;
ColorPoint cpt;

point = new Point(3,5);
cpt = new ColorPoint(3,5, “GREEN”);
genpt = cpt;

System.out.println(genpt.toString()
+ "is " + (genpt.equals(point) ? "" :
"not ") +
"the same as " + point); }

}

class Point {
private int x_, y_;
Point(int x, int y) { x_ = x; y_ = y; }
int getX() { return x_; }
int getY() { return y_; }
boolean equals(Point other) {

return (this.getX() == other.getX())
&& (this.getY() == other.getY());

}
}

class ColorPoint extends Point {
private String c_ = “WHITE”;
ColorPoint(int x, int y) { super(x,y);

c_=“RED” }
String getColor() { return c_; }
boolean equals(ColorPoint other) {

return super.equals(other) &&
(this.getCOlor() == other.getColor());

}
}

What’s the result?

2007/07 FLOLAC '07--Type Systems 8

The Example: Key point
class Point {

private int x_, y_;
Point(int x, int y) { x_ = x; y_ = y; }
int getX() { return x_; }
int getY() { return y_; }
boolean equals(Point other) {

return (this.getX() == other.getX())
&& (this.getY() == other.getY());

}
}

class ColorPoint extends Point {
private String c_ = “WHITE”;
ColorPoint(int x, int y) { super(x,y);

c_=“RED” }
String getColor() { return c_; }
boolean equals(ColorPoint other) {

return super.equals(other) &&
(this.getColor() == other.getColor());

}
}

Overloading!

Not overriding!

2007/07 FLOLAC '07--Type Systems 9

Overloading vs Overriding

• In choosing which “equals” methods to execute
for genpt.equals(point)

• We need to decide whether the
“equals(ColorPoint)” in ColorPoint overrides the
“equals(Point)” of the Point?

• If equals(ColorPoint) in ColorPoint could
override instead of overload equals(Point), then
we would instead have a run-time type error (cf.
Eiffel catcalls)

2007/07 FLOLAC '07--Type Systems 10

The Example Continued

// execute
// this version

class Main {
public static void main(String args[]) {
Point genpt, point;
ColorPoint cpt;

point = new Point(3,5);
cpt = new ColorPoint(3,5, “GREEN”);
genpt = cpt;

System.out.println(genpt.toString() +
"is " + (genpt.equals(point) ? "" :
"not ") +
"the same as " + point);

}
}ColorPoint@901887 is the same as

Point@3a6727

class Point {
private int x_, y_;
Point(int x, int y) { x_ = x; y_ = y; }
int getX() { return x_; }
int getY() { return y_; }
boolean equals(Point other) {

return (this.getX() == other.getX())
&& (this.getY() == other.getY());

}
}

class ColorPoint extends Point {
private String c_ = “WHITE”;
ColorPoint(int x, int y) { super(x,y);

c_=“RED” }
String getColor() { return c_; }
boolean equals(ColorPoint other) {

return super.equals(other) &&
(this.getCOlor() == other.getColor());

}
} No runtime error!

2007/07 FLOLAC '07--Type Systems 11

Why Restricting
Method Overriding with

such a strict rule?

Signature and return type of the
overriding method must be the
same as those of the overridden
method .

2007/07 FLOLAC '07--Type Systems 12

Objects As Records

A Record Subtyping Approach to Model
OO Polymorphism:

1. Simple Record Subtyping
2. Bounded Quantification [CW 85]
3. Inheritance and Subtyping
4. F-Bounded Polymorphism [Canning et al. 89]

2007/07 FLOLAC '07--Type Systems 13

Simple Records

Source: F. Negele

2007/07 FLOLAC '07--Type Systems 14

Motivation for Record Subtyping
Polymorphism

•Consider the following (explicitly typed) function
on records:

getName = λr:{name:String}. r.name

•Problem: Simply typed lambda calculus (with records)
is often too restrictive.

(getName { name=“John”, age=25 })
is not well typed because

•Solution: making
{ name:String, age:Int } a subtype of { name:String }

{ name=“John”, age=25 } : { name: String, age: Int }

2007/07 FLOLAC '07--Type Systems 15

Subtyping for Records
• Width subtyping

{ m_1 : τ_1, ..., m_k : τ_k, n: σ }
≤ { m_1 : τ_1, ..., m_k : τ_k }

• Depth subtyping
σ_1 ≤ τ_1, ..., σ_k ≤ τ_k

{m_1 : σ_1, ..., m_k :σ_k } ≤ { m_1 : τ_1, ..., m_k : τ_k}

Combined:

2007/07 FLOLAC '07--Type Systems 16

Simple Record Subtyping Examples

•Nested records:

{ member: student, group: String } ≤ { member: person }

2007/07 FLOLAC '07--Type Systems 17

The Subsmption Rule

Γ |- e : τ τ ≤ τ’
Γ |- e : τ’

This rule introduces subtyping polymorphism.

(λr:{name:String}. r.name) ({ name=“John”, age=25 })

The following function application is now well-typed.

Because { name=“John”, age=25 } : { name: String }

2007/07 FLOLAC '07--Type Systems 18

A Subtype Relation

(Top) τ ≤ Top

•Intuition: τ ≤ σ if an element of τ may be safely used
wherever an element of σ is expected.

-- τ is “better” than σ
　 -- τ is a subset of σ
　 -- τ is more informative/richer than σ.

(Reflexivity) τ ≤ τ

(Transitivity) σ ≤ τ τ ≤ φ
σ ≤ φ

•What about subtype between other types such as pair and function types?

2007/07 FLOLAC '07--Type Systems 19

The Subtype for Structured Types

(Pair)

(List) τ ≤ τ’
[τ] ≤ [τ’]

τ1 ≤ σ1 τ2 ≤ σ2
(τ1, τ2) ≤ (σ1, σ2)

σ1 ≤ τ1 τ2 ≤ σ2

Covariant: τ ≤ σ
T[τ] ≤ T[σ]

(Fun)
τ1 -> τ2 ≤ σ1 -> σ2

Contravariant: τ ≤ σ
T[σ] ≤ T[τ]

(contravariant) for the argument types

or τ1 × τ2

2007/07 FLOLAC '07--Type Systems 20

Subtyping Function Types

•Intuition: if we have a function f of type τ1 → τ2,
then we know f accepts elements of any subtype σ1 ≤ τ1 .
Since f returns elements of type τ2, these results belong to
any supertype σ2 of τ2 (τ2 ≤ σ2).

τ1 → τ2 ≤ σ1 → σ2

•It is not safe to say that Int → Int ≤ Real→Real
But OK for Real Int ≤ Int Real

More examples:
Real → Int ≤ Int → Int
Real → Int ≤ Int → Real
(Int → Real) → Int ≤ (Real → Int) → Real

2007/07 FLOLAC '07--Type Systems 21

Exercise: Subtyping function types
Example: (assume “sqrt” : Real Real)

f = λx:Int→Real. sqrt (x 2) so f : (Int→Real)→Real

which types of function can safely be given to f ?

(1) If g : Int→Real then of course f(g) is safe.

(2) If g : Int→int then is f(g) safe?

(3) If g : Real→Int then is f(g) safe?

(4) If g : Real→Real then is f(g) safe?

2007/07 FLOLAC '07--Type Systems 22

Bounded Quantification for
OOPL

2007/07 FLOLAC '07--Type Systems 23

Bounded Quantification

•Explicit typing and Type generalization (abstractoion)

getName = Λt ≤ {name:String}.λr:t. r.name

getName {name:String, age:Int} {name=“John”, age=25}
(λr: {name:String, age:Int}. r.name) {name=“John”, age=25}
{name=“John”, age=25}.name
John

•Type specialization (application) and reduction

2007/07 FLOLAC '07--Type Systems 24

Motivating Bounded Quantification

• Consider the type
– SimplePoint = { x : Real, y : Real }

• and the function
– move(sp:SimplePoint, dx:Real, dy:Real) = {

newp:=copy(sp); newp.x += dx; newp.y += dy;
return newp; }

• What is the type of move?
– move : SimplePoint x Real x Real

SimplePoint ?
• Consider

– ColorPoint = { x : Real y : Real c : Color }

x: tuple type
constructor

2007/07 FLOLAC '07--Type Systems 25

Bounded Quantification & Subtyping
•What does move(cp, 1, 1) return?
How to get a proper return type of ColorPoint?

•Use Bounded quantification:

move : ∀t ≤ SimplePoint. t x Real x Real -> t

move ColorPoint cp
(λsp:ColorPoint.λdx:Real.λdy:Real. { newp:=copy(sp); newp.x += dx;

newp.y += dy; return newp; }) cp
… cp

move= Λt ≤ SimplePoint. λsp:t.λdx:Real.λdy:Real. {
newp:=copy(sp); newp.x += dx; newp.y += dy; return newp; }

2007/07 FLOLAC '07--Type Systems 26

But Objects are Recursive Records!
• It is not practical to use the type

– SimplePoint = { x : Real, y : Real }
• “move” is usually also part of SimplePoint!

type

Point type is a recursive type!

2007/07 FLOLAC '07--Type Systems 27

Recursive Record Types
•Recursive types: T = μt.F[t],

F is function of types.

type

•Recursive recorde types

//Rec pnt ≡ μ pnt

2007/07 FLOLAC '07--Type Systems 28

Inheritance and Subtyping

2007/07 FLOLAC '07--Type Systems 29

Subtyping for Recursive Types
• We need to extend the subtype relation to

include recursive (record) types.
• Basic rule

If s ≤ t implies A(s) ≤ B(t)
Then μs.A(s) ≤ μt.B(t)

• Example
– A(s) = { x : int, y : int, m : int --> s, c : color }
– B(t) = { x : int, y : int, m : int --> t}

μt.A(t) ≤ μt.B(t)

2007/07 FLOLAC '07--Type Systems 30

Inheritance and Subtyping

Is ColoredPoint ≤ Point ?

P(t) = { x : Real, y : Real, move : Real x Real -> t, eq: t->Bool }
•Point = μt. P(t) where

•ColoredPoint = μt. CP(t) where
CP(t) = { x : Real, y : Real, c: String,

move : Real x Real -> t, eq: t->Bool }

No! Because of the contravariant property of the
argument type to the eq method.

2007/07 FLOLAC '07--Type Systems 31

Subtyping vs. Inheritance
• In theory, “Inheritance Is Not Subtyping”

– W. Cook et al, Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, Jan. 1990.

– There are type safety issues.

• In practice, languages such as C++ and Java
derives subtyping relation from inheritance.
– Subclasses are subtypes

• How to guarantee type safety? Stricter rules for
the types of overriding virtual functions.

• Signature conformance: no-variant rule

2007/07 FLOLAC '07--Type Systems 32

Revisit the Inheritance Example in Java
class Point {

private int x_, y_;
Point(int x, int y) { x_ = x; y_ = y; }
int getX() { return x_; }
int getY() { return y_; }
boolean equals(Point other) {

return (this.getX() == other.getX())
&& (this.getY() == other.getY());

}
}

class ColorPoint extends Point {
private String c_ = “WHITE”;
ColorPoint(int x, int y) { super(x,y);

c_=“RED” }
String getColor() { return c_; }
boolean equals(ColorPoint other) {

return super.equals(other) &&
(this.getColor() == other.getColor());

}
}

Overloading!

Not overriding!

no-variant rule

2007/07 FLOLAC '07--Type Systems 33

Covariant in Parameter Type is Dangerous

// execute
// this version

class Main {
public static void main(String args[]) {
Point genpt, point;
ColorPoint cpt;

point = new Point(3,5);
cpt = new ColorPoint(3,5, “GREEN”);
genpt = cpt;

System.out.println(genpt.toString() +
"is " + (genpt.equals(point) ? "" :
"not ") +
"the same as " + point);}

}

class Point {
private int x_, y_;
Point(int x, int y) { x_ = x; y_ = y; }
int getX() { return x_; }
int getY() { return y_; }
boolean equals(Point other) {

return (this.getX() == other.getX())
&& (this.getY() == other.getY());

}
}

class ColorPoint extends Point {
private String c_ = “WHITE”;
ColorPoint(int x, int y) { super(x,y);

c_=“RED” }
void toggle() { on_ = !on_; }
String getColor() { return c_; }
boolean equals(ColorPoint other) {

return super.equals(other) &&
(this.getCOlor() == other.getColor());

}
}

If this is a legal overriding,

Runtime error!

2007/07 FLOLAC '07--Type Systems 34

Contravariance in Return Type is
Dangerous

class Parent {
Animal test () {

return new Cat();
}

}
class Child extends Parent {

Mammal test () {
return new Human();

}
}
Parent aParent = new Child();
Animal result = aParent.test(); // Error!

assume
Animal < Mammal

// Return a mammal object.

2007/07 FLOLAC '07--Type Systems 35

Safe Change in C++ and Java 5

class Parent {
public:
Parent * clone () { return new Parent(); }

};

class Child : public Parent {
public:
Child * clone () { return new Child(); }

};

Covariant in return type is OK.

2007/07 FLOLAC '07--Type Systems 36

Signature Rule for Function Overriding
class A {

public RA m (PA p) ;
}

class B extends A {
public RB m (PB p) ;

}

•RB must be a subtype of RA: RB ≤ RA
•PB must be a supertype of PA: PA ≤ PB

•covariant for results, contravariant for parameters

2007/07 FLOLAC '07--Type Systems 37

Summary
• An override occurs when a method in the sub-

classes uses the same name:
– In dynamically typed languages such as Smalltalk, we

may run into message “doesNotUnderstand” errors.
– In languages with static typing such as Java, we need

to impose further constraints on the method’s signature
and return type.

• Novariant: the type can neither be strengthened nor
weakened.
– Java before JDK 1.5

• Covariant in method return type. (subtype)
– C++, Java 1.5

• Contravariant in the type of an argument.
(supertype)

2007/07 FLOLAC '07--Type Systems 38

F-Bounded Polymorphism

Bounded quantification cannot
handle recursive records well.

2007/07 FLOLAC '07--Type Systems 39

Goal: Understand Java Generics Better

Source: A. Igrashi

2007/07 FLOLAC '07--Type Systems 40

An Example of Recursive Record Type
• Consider the type

– Movable = μm.{ move: Real x Real -> m }
• and the function

– translate(m: Movable) =
{ return m.move(1.0, 1.0); }

• What type can we assign to translate?
– ∀t ≤ Movable. t -> Movable

• Aside: The type Movable is an example of an "interface" (a la Java) of
an object.
– The primary purpose of an interface is to set an expectation of the

operational behavior of an object).
– It is called Abstract Base Class (ABC) with “pure virtual functions” in C++

2007/07 FLOLAC '07--Type Systems 41

Subtyping and Recursion
• Given subtyping, can translate be passed the

parameter p, where
– p: Point and
– Point = μp.{ x: Real, y: Real, move: Real x Real -> p }.

• To answer the question, first we need to answer,
is Point ≤ Movable?
– Movable = μm.{ move: Real x Real -> m }

If p ≤ m then
.{x: Real, y: Real, move: Real x Real -> p }.≤ {move: Real x Real -> m}

Point ≤ Movable

2007/07 FLOLAC '07--Type Systems 42

Bounded Quantification – Issues 1
• Having proven that Point ≤ Movable, we

know that if p:Point then translate(p) is valid.
• But what is the type of the return value in this

case?
– Is it Movable or is it Point?

• As the type of translate is
– ∀t ≤ Movable. t -> Movable

it is Movable!
• Although we would like it to be Point via the

typing
� ∀t ≤ Movable. t -> t instead of ∀t ≤ Movable. t ->

translate(m: Movable) =
{ return m.move(1.0, 1.0); }

2007/07 FLOLAC '07--Type Systems 43

Bounded Quantification – Issues 1
• If we accept it as t Movable,

– then we are losing information on the return value; i.e.,
we may have to implement another translate anyway.

• So, this is a limitation of bounded quantification
with recursive types.
– There are solutions to this.
– But common OO languages do not solve them.
– In Java, or C++

• You have to live with the type of Move as t Movable

– i.e. they have a rule:
• Thou shalt not change the return type of a subtyped function!

2007/07 FLOLAC '07--Type Systems 44

Bounded Quantification – Issues 2
• Now consider the type

– Comparable = { compare : Comparable -> Bool }
• compare function operates on two objects of

type Comparable
– one that is explicitly passed and
– another that is accessible through the notion

of "self"

•Consider the
type Complex = {x: Real, y: Real, compare: Complex->Bool}

•Is Complex ≤ Comparable?

2007/07 FLOLAC '07--Type Systems 45

Bounded Quantification – Issues 2
• Is Complex ≤ Comparable? Apply the subtyping

rule for recursive types:
– Assume Complex ≤ Comparable and (try to) prove that

{ x : Real, y : Real, compare : Complex -> Bool }
≤ { compare : Comparable -> Bool }

--which means that we only need to prove that
Complex -> Bool ≤ Comparable -> Bool

--Apply the subtyping rule for function types:
Since, Bool ≤ Bool we only need to prove that
Comparable ≤ Complex

which contradicts the assumption unless Comparable
= Complex which in turn is not true by definition.

2007/07 FLOLAC '07--Type Systems 46

Bounded Quantification – Issues, 2

• Can we still obtain some kind of polymorphism
to achieve code sharing/re-use ?

•Consider the sorting function:
sort(l : [Comparable]) = …

If Complex is not a subtype of Comparable, we
can not pass a list of complex numbers to sort.

sort : ∀ t ≤[Comparable]. t -> [Comparable]

2007/07 FLOLAC '07--Type Systems 47

Similar Issues in Java

•Bounded quantification

//Dynamic type check and type castSource: K. Bruce

interface Comparable {
boolean lessThan(Comparable other);

}

class SortedList<T extends Comparable> {
List<T> aList;
T current;
void insert(T newElt) {

...
if (newElt.lessThan(current)){...}
else {...}

}
}

class Calendar implements Comparable {
int month, day, year;
boolean calendarLessThan (Calendar other)

{
return (month < other.month || ...);

}
public boolean lessThan(Comparable other)

{
if (other instanceof Calendar) {

return
calendarLessThan((Calendar)other);

} else {
raise new BadCalComparison(...);

}
}

}

•Implementation

2007/07 FLOLAC '07--Type Systems 48

F-Bounded Quantification
• From the recursive type

– Comparable = { compare : Comparable -> Bool }
• Derive a type function:

– FComparable(t) = { compare: t->Bool }
• Then we get

– Comparable = FComparable(Comparable)
• Now any type S satisfying

– S ≤ FComparable(S)
can be used with functions defined on Comparable.

2007/07 FLOLAC '07--Type Systems 49

F-Bounded Quantification
• For example,

– Complex = {x: Real, y: Real, compare: Complex->Bool}
• we can derive

– Complex ≤ FComparable(Complex)
• Now fiven a function defined as with type

– copy: ∀t ≤ FComparable(t). t -> t

• can be invoked as
– copy(cx) where cx:Complex and

• will return a value of type Complex.

using a recursive inequality instead of a recursive equation

2007/07 FLOLAC '07--Type Systems 50

F-Bounded Quantification in Java

Implement FComparable

No dynamic type check!
No type cast!

Source: K. Bruce

interface FComparable<T> {
boolean lessThan(T other);

}
class SortedList<T extends FComparable<T>> {
List<T> aList;
T current; ...
void insert(T newElt) {

...
if (newElt.lessThan(current)){...}
else {...}

}
}

class Calendar implements FComparable<Calendar> {
int month, day, year; ...
boolean lessThan(Calendar other) {

return (month < other.month || ...);
}

}

2007/07 FLOLAC '07--Type Systems 51

The Translate Function Revisited

• From the type of Movable, we define
– F(t) = { move : Real x Real -> t}

• Clearly
– Point ≤ F(Point)

• Now, if we type translate by
– translate : ∀t ≤F-movable(t).t -> t

• then we get translate(p) to return a value of type
Point.

2007/07 FLOLAC '07--Type Systems 52

Recommended Readings

http://portal.acm.org/citation.cfm?id=99392

http://portal.acm.org/citation.cfm?id=6042

2007/07 FLOLAC '07--Type Systems 53

Advanced Topics
• Static analysis using extensions of the HMTS

– Type and Effect Systems

Example: Control Flow Analysis (CFA) using Annotated Types

Ref: Text book: Principles of Program Analysis, by F. Nielson, H. Nielson. C. Hankin

2007/07 FLOLAC '07--Type Systems 54

Advanced Topics
• Abstract Data Types and Existential Types

– Ex: Counter ADT
{a = 0, f = λx : Int.succ(x)} – term component
has type {∃X.{a : X, f : X→Nat}} – type annotation

• Recursive Types

• Higher-Order Types: kinds, constructor classes in Haskell
• Module Systems and Dependent Types

– mix types and expressions.
• [0 .. size(A)], λ x:int λ a:array[x]….

– Types involve values, so type equality involves expression
equality. Undecidable for realistic languages.

2007/07 FLOLAC '07--Type Systems 55

A Textbook

Types and Programming Languages
Benjamin C. Pierce

The MIT Press
http://mitpress.mit.edu
ISBN 0-262-16209-1

http://www.cis.upenn.edu/~bcpierce/tapl/

	Type Systems-Flolac07-1.pdf
	Type Systems-Flolac07-2.pdf

