
𝜆-CALCULUS
PARAMETRIC POLYMORPHISM

陳亮廷 Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation 2024

Institute of Information Science
Academia Sinica

POLYMORPHIC 𝜆-CALCULUS: STATIC

POLYMORPHIC TYPES

Given a set 𝕍 of type variables, the judgement 𝐴 ∶ Type is defined
by defined by

(tvar), if 𝑋 ∈ 𝕍𝑋 ∶ Type

𝐴 ∶ Type 𝐵 ∶ Type
(fun)𝐴 → 𝐵 ∶ Type

𝐴 ∶ Type 𝑋 ∈ 𝕍
(universal)∀𝑋.𝐴 ∶ Type

where 𝑋 may or may not occur in 𝐴.
The polymorphic type ∀𝑋.𝐴 provides a universal type for every
type 𝐵 by instantiating 𝑋 for 𝐵, i.e. 𝐴[𝐵/𝑥].

1

EXAMPLES

For example, the polymorphic type allows us to express terms that
should work on arbitrary types, such as

• id ∶ ∀𝑋.𝑋 → 𝑋
• proj1 ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑋
• proj2 ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑌
• length ∶ ∀𝑋.list 𝑋 → nat
• singleton ∶ ∀𝑋.𝑋 → list(𝑋)

2

FREE AND BOUND VARIABLES, AGAIN

Definition 1
The free variable FV(𝐴) of 𝐴 is defined inductively by

FV(𝑋) = 𝑋
FV(𝐴 → 𝐵) = FV(𝐴) ∪ FV(𝐵)
FV(∀𝑋.𝐴) = FV(𝐴) − {𝑋}

For convenience, the function extends to contexts:

FV(Γ) = {𝑋 ∈ 𝕍 ∣ ∃(𝑥 ∶ 𝐴) ∈ Γ ∧ 𝑋 ∈ FV(𝐴) }.

Exercise

1. FV(∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋)
2. FV(𝑥 ∶ 𝑋1, 𝑦 ∶ 𝑋2, 𝑧 ∶ ∀𝑋.𝑋)

3

CAPTURE-AVOIDING SUBSTITUTION FOR TYPE

Permutation of type variables and 𝛼-equivalence between types are
defined similarly.

In particular, the substitution is also defined to avoid any capture of
free type variables:

Definition 2
The capture-avoiding substitution of a type 𝐴 for a type
variable 𝑋 is defined on types by

𝑋[𝐴/𝑋] = 𝐴
𝑌 [𝐴/𝑋] = 𝑌 if 𝑋 ≠ 𝑌

(𝐵 → 𝐶)[𝐴/𝑋] = (𝐵[𝐴/𝑋]) → (𝐶[𝐴/𝑋])
(∀𝑌 .𝐵)[𝐴/𝑋] = ∀𝑌 .𝐵[𝐴/𝑋] if 𝑌 ≠ 𝑋, 𝑌 ∉ FV(𝐴)

4

TYPED TERMS

Terms in polymorphic 𝜆-calculus are extended with types. We
define the set of terms from scratch here:
Definition 3
The set Λ∀(𝑉 , 𝕍) of terms in polymorphic 𝜆-calculus is defined
inductively:

variable 𝑥 ∈ Λ∀(𝑉 , 𝕍) if 𝑥 is in 𝑉
application 𝑡@𝑢 ∈ Λ∀(𝑉 , 𝕍) if 𝑡, 𝑢 ∈ Λ∀(𝑉 , 𝕍)
abstraction 𝜆(𝑥 ∶𝐴). 𝑡 if 𝑥 ∈ 𝑉 , 𝐴 is a type, and 𝑡 ∈ Λ∀(𝑉 , 𝕍)

type abstraction 𝜆𝑋. 𝑡 is in Λ∀(𝑉 , 𝕍) if 𝑋 is in 𝕍 and 𝑡 is in Λ∀(𝑉 , 𝕍)
type application 𝑡 𝐴 is in Λ∀(𝑉 , 𝕍) if 𝑡 is in Λ∀(𝑉 , 𝕍) and 𝐴 is a type.

N.B. 𝜆(𝑥 ∶𝐴). 𝑡 includes the type of 𝑥 as part of term. We have
additionally a substitution 𝑡[𝐴/𝑋] of a type 𝐴 for a type variable 𝑋
in 𝑡.

5

TYPING JUDGEMENT: OVERVIEW

Polymorphic 𝜆-calculus has two kinds of typing judgements.

• Δ ⊢ 𝐴 stands for a type 𝐴 under the type context Δ;
• Δ;Γ ⊢ 𝑡 ∶ 𝐴 stands for a term 𝑡 of type 𝐴 under the context Γ
and the type context Δ

where a type context is a sequence of type variable 𝑋1, 𝑋2,… ,𝑋𝑛.

The new context Δ is used to keep track of type variables available
within the term, as they may be introduced by type abstraction.

6

TYPE FORMATION

The judgement Δ ⊢ 𝐴 is constructed inductively by following rules.

if Δ ∋ 𝑋Δ ⊢ 𝑋 Δ ⊢ 𝑋 Δ ⊢ 𝑌
Δ ⊢ 𝑋 → 𝑌

Δ,𝑋 ⊢ 𝐴
Δ ⊢ ∀𝑋.𝐴

Exercise
Derive the judgement

𝑋 ⊢ 𝑋 → 𝑋

7

TYPING RULES

The judgement Δ;Γ ⊢ 𝑡 ∶ 𝐴 is defined inductively by following rules.

if Γ ∋ 𝑥 ∶ 𝐴Δ;Γ ⊢ 𝑥 ∶ 𝐴

Δ;Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Δ;Γ ⊢ 𝑢 ∶ 𝐴
Δ;Γ ⊢ 𝑡 𝑢 ∶ 𝐵

Δ ⊢ 𝐴 Δ;Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Δ;Γ ⊢ 𝜆(𝑥 ∶𝐴). 𝑡 ∶ 𝐴 → 𝐵

Δ,𝑋; Γ ⊢ 𝑡 ∶ 𝐴
(∀-intro)Δ;Γ ⊢ 𝜆𝑋. 𝑡 ∶ ∀𝑋.𝐴

Δ;Γ ⊢ 𝑡 ∶ ∀𝑋.𝐴 Δ ⊢ 𝐵
(∀-elim)Δ;Γ ⊢ 𝑡 𝐵 ∶ 𝐴[𝐵/𝑥]

Theorem 4 (Type safety)
Suppose Δ;Γ ⊢ 𝑡 ∶ 𝐴. Then,

1. 𝑡 ⟶𝛽 𝑢 implies Δ;Γ ⊢ 𝑢 ∶ 𝐴;
2. 𝑡 is in normal form or there exists 𝑢 such that 𝑡 ⟶𝛽 𝑢

8

UNDECIDABILITY OF TYPE INFERENCE

Theorem 5 (Wells, 1999)
It is undecidable whether, given a closed term 𝑡 of the untyped
𝑙𝑎𝑚𝑏𝑑𝑎-calculus, there is a well-typed term 𝑡′ in polymorphic
𝜆-calculus such that |𝑡′| = 𝑡.

Two ways to retain decidable type inference:

1. Limit the expressiveness so that type inference remains
decidable. For example, Hindley-Milner type system adapted by
Haskell 98, Standard ML, etc. supports only a limited form of
polymorphism but type inference is decidable.

2. Adopt partial type inference so that type annotations can be
used for, e.g. top-level definitions and local definitions.

Check out bidirectional type synthesis.

9

TYPING DERIVATION

The typing judgement ⊢ 𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥 ∶ ∀𝑋.𝑋 → 𝑋 is derivable

𝑋 ⊢ 𝑋 𝑋;𝑥 ∶ 𝑋 ⊢ 𝑥 ∶ 𝑋
𝑋; ⋅ ⊢ 𝜆(𝑥 ∶𝑋). 𝑥 ∶ 𝑋 → 𝑋

⊢ 𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥 ∶ ∀𝑋.𝑋 → 𝑋

Convention 6
⊢ 𝑡 ∶ 𝐴 stands for ⋅; ⋅ ⊢ 𝑡 ∶ 𝜏 where both contexts are empty.

10

EXERCISE

Derive the following judgements:

1. ⊢ (𝜆𝑋 𝑌 . 𝜆(𝑥 ∶𝑋). 𝜆(𝑦 ∶ 𝑌). 𝑥) ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑋
2. ⊢ 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓 (𝑓 𝑥) ∶ ∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋

Hint. polymorphic 𝜆-calculus F is syntax-directed, so the type
inversion holds.

11

POLYMORPHIC 𝜆-CALCULUS:
DYNAMICS AND PROGRAMMING

REDUCTION

𝛽-reduction for polymorphic 𝜆-calculus has two rules apart from
other structural rules:

(𝜆(𝑥 ∶𝐴). 𝑡) 𝑢 ⟶𝛽 𝑡[𝑢/𝑥] and (𝜆𝑋. 𝑡) 𝐴 ⟶𝛽 𝑡[𝐴/𝑋]

For example,

(𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥) 𝐴 𝑡 ⟶𝛽 (𝜆(𝑥 ∶𝑋). 𝑥)[𝐴/𝑋] 𝑡 ≡ (𝜆𝑥 ∶ 𝐴. 𝑥) 𝑡 ⟶𝛽 𝑡

Similarly, 𝛽-reduction extends to subterms of a given term,
introducing relations ⟶𝛽 and −↠𝛽 in the same way.

12

EMPTY TYPE

Definition 7
The empty type is defined by

⊥ ⋅⋅= ∀𝑋.𝑋

No closed term 𝑡 has this type! (Why?)

Exercise
Suppose that ⊢ 𝑡 ∶ ∀𝑋.𝑋. Can we derive a contradiction?

13

SUM TYPE

Definition 8
The sum type is defined by

𝐴+𝐵 ⋅⋅= ∀𝑋.(𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝑋

It has two injection functions: the first injection is defined by

left𝐴+𝐵 ⋅⋅= 𝜆(𝑥 ∶𝐴). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝑋). 𝜆(𝑔 ∶𝐵 → 𝑋). 𝑓 𝑥
right𝐴+𝐵 ⋅⋅= 𝜆(𝑦 ∶𝐵). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝑋). 𝜆(𝑔 ∶𝐵 → 𝑋). 𝑔 𝑦

Exercise
Define

either ∶ ∀𝑋. (𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝐴+𝐵 → 𝑋

14

PRODUCT TYPE

Definition 9 (Product Type)
The product type is defined by

𝐴×𝐵 ⋅⋅= ∀𝑋. (𝐴 → 𝐵 → 𝑋) → 𝑋

The pairing function is defined by

⟨_, _⟩𝐴,𝐵 ⋅⋅= 𝜆(𝑥 ∶𝐴). 𝜆(𝑦 ∶𝐵). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝐵 → 𝑋). 𝑓 𝑥 𝑦

Exercise
Define projections

proj1 ∶ 𝐴 × 𝐵 → 𝐴 and proj2 ∶ 𝐴 × 𝐵 → 𝐵

15

NATURAL NUMBERS I

The type of Church numerals is defined by

nat ⋅⋅= ∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋

Church numerals

c𝑛 ∶ nat
c𝑛 ⋅⋅= 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓𝑛 𝑥

Successor

suc ∶ nat → nat
suc ⋅⋅= 𝜆(𝑛 ∶nat). 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓 (𝑛 𝑋 𝑓 𝑥)

16

NATURAL NUMBERS II

Addition

add ∶ nat → nat → nat
add ⋅⋅= 𝜆(𝑛 ∶nat). 𝜆(𝑚 ∶nat). 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋).

(𝑚 𝑋 𝑓) (𝑛 𝑋 𝑓 𝑥)

Multiplication

mul ∶ nat → nat → nat
mul ⋅⋅= ?

Conditional

ifz ∶ ∀𝑋.nat → 𝑋 → 𝑋 → 𝑋
ifz ⋅⋅= ?

17

NATURAL NUMBERS III

Polymorphic 𝜆-calculus allows us to define recursor like fold in
Haskell.

foldnat ∶ ∀𝑋. (𝑋 → 𝑋) → 𝑋 → nat → 𝑋
foldnat ⋅⋅= 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑒0 ∶ 𝑋). 𝜆(𝑛 ∶nat). 𝑛 𝑋 𝑓 𝑒0

Exercise
Define add and mul using foldnat and justify your answer.

1. add′ ⋅⋅= ? ∶ nat → nat → nat
2. mul′ ⋅⋅= ? ∶ nat → nat → nat

18

LISTS

Definition 10
For any type 𝐴, the type of lists over 𝐴 is

list(𝐴) ⋅⋅= ∀𝑋.𝑋 → (𝐴 → 𝑋 → 𝑋) → 𝑋

with list constructors:

nil𝐴 ⋅⋅= 𝜆𝑋. 𝜆(ℎ ∶𝑋). 𝜆(𝑓 ∶𝐴 → 𝑋 → 𝑋). ℎ

and cons𝐴 of type 𝐴 → list(𝐴) → list(𝐴) defined as

𝜆(𝑥 ∶𝐴). 𝜆(𝑥𝑠 ∶list(𝐴)). 𝜆𝑋. 𝜆(ℎ ∶𝑋). 𝜆(𝑓 ∶𝐴 → 𝑋 → 𝑋). 𝑓 𝑥 (𝑥𝑠 𝑋 ℎ 𝑓)

19

IMPREDICATIVE ENCODINGS OF INDUCTIVE TYPES

Inductive types can be defined in polymorphic
𝜆-calculus [Böhm and Berarducci, 1985], including the empty type,
the types of sums, natural numbers, and lists.

The Church encoding shows the expressiveness of polymorphic
𝜆-calculus but is not efficient [Koopman et al., 2014]. Other styles of
encoding have been proposed [Firsov et al., 2018] to improve the
efficiency and the size and used in implementations.

20

REASONING WITH TYPES

WHAT CAN TYPES TELL?

The type discipline of a language does not only check if a program
makes sense but also enforce safety properties such as type safety
and strong normalisation.

In fact, types can be used to tell what functions are definable or
what equations a term should satisfy with respect to a given type.

What terms can be defined for the following types?

1. ∀𝑋.𝑋
2. ∀𝑋.𝑋 → 𝑋
3. ∀𝑋𝑌 .𝑋 → 𝑌 → 𝑋
4. ∀𝑋.𝑋 → nat

Let’s start with functions definable in simply typed 𝜆-calculus first.

21

𝜆-DEFINABILITY IN SIMPLY TYPED 𝜆-CALCULUS I

Idea
Each term Γ ⊢ 𝑡 ∶ 𝐴 can be interpreted as a set-theoretic function 𝑓
to ⟦𝐴⟧, a designated interpretation of 𝐴, from ⟦Γ⟧ = ∏𝑥∶𝐴∈Γ⟦𝐴⟧.

In detail, we assign a set 𝑂𝑋 to each 𝑋 ∈ 𝕍 and then extend the
interpretation to all types:

⟦𝑋⟧ = 𝑂𝑋

⟦𝐴 → 𝐵⟧ = ⟦𝐴⟧ → ⟦𝐵⟧

as well as contexts Γ:

⟦⋅⟧ = {∗}
⟦Γ, 𝑥 ∶ 𝐴⟧ = ⟦Γ⟧ × ⟦𝐴⟧.

22

𝜆-DEFINABILITY IN SIMPLY TYPED 𝜆-CALCULUS II

Each term Γ ⊢ 𝑡 ∶ 𝐴 is interpreted as a set-theoretic function

⟦𝑡⟧ ∶ ⟦Γ⟧ → ⟦𝐴⟧

defined inductively (modulo 𝛼-equivalence) by

⟦Γ ⊢ 𝑥𝑖 ∶ 𝐴⟧(𝜌) = 𝜌(𝑖)
⟦Γ ⊢ 𝑡 𝑢 ∶ 𝐵⟧(𝜌) = ⟦Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵⟧(𝜌) (⟦Γ ⊢ 𝑢 ∶ 𝐴⟧(𝜌))

⟦Γ ⊢ 𝜆𝑥. 𝑡 ∶ 𝐴 → 𝐵⟧(𝜌) = (𝑣 ↦ ⟦Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡⟧(𝜌, 𝑣))

where 𝜌 ∈ ⟦Γ⟧ is called an environment.

N.B. For ⟦⋅ ⊢ 𝑡 ∶ 𝐴⟧(∗) we simply write ⟦𝑡⟧.
Definition 11
A set-theoretic function 𝑓 ∶ 𝑋 → 𝑌 is 𝜆-definable w.r.t. some
interpretation if there is a closed term 𝑡 ∶ 𝐴 → 𝐵 such that 𝑓 = ⟦𝑡⟧.

23

QUIZ TIME

Suppose that there is only one type variable 𝑋 and 𝑂𝑋 = {t, f}.
Which of the following functions 𝑓 ∶ 𝑂𝑋 → 𝑂𝑋 are 𝜆-definable?

1. the identity function 𝑓(𝑥) = 𝑥
2. the constant function 𝑓(𝑥) = t
3. the constant function 𝑓(𝑥) = f
4. the negation function 𝑓(t) = f and 𝑓(f) = t

24

LOGICAL RELATION

Idea
If 𝑣1 and 𝑣2 are related, ⟦𝑡⟧(𝑣1) and ⟦𝑡⟧(𝑣2) should also be related.

A family {𝑅𝐴 ⊆ ⟦𝐴⟧ × ⟦𝐴⟧}𝐴∶Type of binary relations is logical if

𝑅𝐴→𝐵(𝑓1, 𝑓2) iff ∀𝑥1𝑥2. 𝑅𝐴(𝑥1, 𝑥2) ⟹ 𝑅𝐵(𝑓1(𝑥1), 𝑓2(𝑥2)).

N.B. A logical relation is determined by 𝑅𝑋 for type variables 𝑋.

Exercise
What is 𝑅𝑋→𝑋, if …

1. 𝑅𝑋 = ∅?
2. 𝑅𝑋 = 𝑂𝑋 ×𝑂𝑋?
3. 𝑅𝑋 = {(t, f)}?

25

THE FUNDAMENTAL THEOREM OF LOGICAL RELATIONS

Theorem 12 (Fundamental Theorem of Logical Relations)

Let {𝑅𝐴}𝐴∶Type be a logical relation. Then,

𝑅𝐴(⟦Γ ⊢ 𝑡 ∶ 𝐴⟧(𝜌1), ⟦Γ ⊢ 𝑡 ∶ 𝐴⟧(𝜌2))

for every Γ ⊢ 𝑡 ∶ 𝐴 and environments 𝜌1, 𝜌2 ∈ ⟦Γ⟧ satisfying
𝑅𝐴𝑖(𝜌1(𝑖), 𝜌2(𝑖)) for every 𝑥𝑖 ∶ 𝐴𝑖 ∈ Γ.

Proof sketch.
By induction on the typing derivation of Γ ⊢ 𝑡 ∶ 𝐴.

In particular, 𝑅𝐴(⟦𝑡⟧, ⟦𝑡⟧) for any closed term 𝑡 of type 𝐴.

26

QUIZ, REVISITED

Consider 𝑂𝑋 = {t, f} and the logical relation {𝑅𝐴}𝐴 determined by

𝑅𝑋 = {(f, t)}.

1. Suppose that the constant function 𝑓(𝑥) = t is 𝜆-definable,
then 𝑅𝑋→𝑋(⟦𝑡⟧, ⟦𝑡⟧) by the fundamental theorem. By definition
of being logical 𝑅𝑋(⟦𝑡⟧(f), ⟦𝑡⟧(t)), i.e. 𝑅𝑋(t, t)—a contradiction.
That is, 𝑓(𝑥) = t is not 𝜆-definable.

Exercise

1. Show that the constant function 𝑓(𝑥) = f is not 𝜆-definable.
2. Show that the negation function ¬ is not 𝜆-definable.

27

NO SET-THEORETIC MODEL FOR POLYMORPHIC 𝜆-CALCULUS

We would like to apply the same approach of arguing 𝜆-definability
to polymorphic 𝜆-calculus, but it is apparently circular:

1. the universal quantification ∀𝑋.𝐴 is impredicative and
2. ⟦∀𝑋.𝐴⟧ should depend on ⟦𝐴[𝐵/𝑋]⟧ for any 𝐵 ∶ Type,
3. including 𝐵 = ∀𝑋.𝐴.

In fact, there is no set-theoretic interpretation for polymorphic
𝜆-calculus [Reynolds, 1984] in classical set theory, due to the
cardinality issue.

Thus, we have to consider other models rather than sets, some
constructive set theory [Pitts, 1987], or a weaker but predicative
version of parametric polymorphism [Leivant, 1991].

28

PARAMETRICITY IN POLYMORPHIC 𝜆-CALCULUS

Following Girard’s reducibility candidate [Girard et al., 1989], assume
𝒰 a set of relation candidates in some model.

A family of {𝑅𝐴
Φ}Δ⊢𝐴 is logical if

𝑅𝑋
Φ (𝑥1, 𝑥2) iff Φ(𝑋)(𝑥1, 𝑥2)

𝑅𝐴→𝐵
Φ (𝑓1, 𝑓2) iff ∀𝑥1𝑥2. 𝑅𝐴

Φ(𝑥1, 𝑥2) ⟹ 𝑅𝐵
Φ(𝑓1(𝑥1), 𝑓2(𝑥2))

𝑅∀𝑋.𝐴
Φ (𝑥1, 𝑥2) iff ∀𝑈 ∈ 𝒰.𝑅𝐴

Φ;𝑋↦𝑈(𝑥1, 𝑥2)

where Φ∶ Δ → 𝒰 is a map and Φ;𝑋 ↦ 𝑈 means a map s.t. 𝑌 is
mapped to 𝑈 if 𝑌 = 𝑋 or Φ(𝑌) otherwise.
If Δ is empty, then the subscript Φ in 𝑅𝐴

Φ is omitted, i.e. 𝑅𝐴 instead.

Theorem 13
The fundamental theorem holds for logical relations i.e. 𝑅𝐴(⟦𝑡⟧, ⟦𝑡⟧)
holds for any closed term 𝑡 of type 𝐴 in polymorphic 𝜆-calculus.

29

EXAMPLES: ∀𝑋.𝑋

The type ∀𝑋.𝑋 is not inhabited.

Suppose that ⊢ 𝑡 ∶ ∀𝑋.𝑋. Then, by the fundamental theorem,

𝑅∀𝑋.𝑋(⟦𝑡⟧, ⟦𝑡⟧).

By definition, 𝑅∀𝑋.𝑋(⟦𝑡⟧, ⟦𝑡⟧) if and only if

∀𝑈 ∈ 𝒰.𝑅𝑋
𝑋↦𝑈(⟦𝑡⟧, ⟦𝑡⟧) or equivalently, ∀𝑈 ∈ 𝒰.𝑈(⟦𝑡⟧, ⟦𝑡⟧)

Choosing 𝑈 to be the empty relation ∅,

(⟦𝑡⟧, ⟦𝑡⟧) ∈ ∅,

a contradiction. Hence, there is no closed term of type ∀𝑋.𝑋.

30

THEOREMS FOR FREE

Consider the case that 𝑅𝑋 is instantiated as { (𝑥, 𝑓(𝑥)) ∣ 𝑥 ∈ 𝐴} of
some 𝑓 ∶ 𝐴 → 𝐵 and apply the fundamental theorem to derive, e.g.,

• the following equation for any 𝑡 ∶ ∀𝑋.list(𝑋) → list(𝑋):

⟦list(𝐴)⟧ ⟦𝑡⟧𝐴 //

map 𝑓
��

⟦list(𝐴)⟧
map 𝑓
��

⟦list(𝐵)⟧
⟦𝑡⟧𝐵

// ⟦list(𝐵)⟧

N.B. The equation is derived in the working model, not necessarily
implying =𝛽 between 𝜆-terms.

The fundamental theorem is well known for this specialised form,
dubbed as free theorems [Wadler, 1989].

31

HOMEWORK

1. (2.5%) Define length𝜎 ∶ list 𝜎 → nat calculating the length
of a list in polymorphic 𝜆-calculus.

2. (5%) Prove Theorem 12.

32

REFERENCES I

Böhm, C. and Berarducci, A. (1985).
Automatic synthesis of typed Λ-programs on term algebras.
Theoretical Computer Science, 39:135–154.

Firsov, D., Richard, B., and Stump, A. (2018).
Efficient Mendler-style lambda-encodings in Cedille.
In Avigad, J. and Mahboubi, A., editors, Interactive Theorem Proving (ITP), volume
10895 of Lecture Notes in Computer Science, pages 235–252. Springer, Cham.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989).
Proofs and Types.
Number 7 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

Koopman, P., Plasmeijer, R., and Jansen, J. M. (2014).
Church encoding of data types considered harmful for implementations:
Functional pearl.
In Implementation and Application of Functional Languages (IFL), New York, NY,
USA. Association for Computing Machinery.

33

REFERENCES II

Leivant, D. (1991).
Finitely stratified polymorphism.
Information and Computation, 93(1):93–113.

Pitts, A. M. (1987).
Polymorphism is set theoretic, constructively.
In Pitt, D. H., Poigné, A., and Rydeheard, D. E., editors, Category Theory and
Computer Science, volume 283 of Lecture Notes in Computer Science, pages
12–39. Springer, Berlin, Heidelberg.

Reynolds, J. C. (1984).
Polymorphism is not set-theoretic.
In Kahn, G., MacQueen, D. B., and Plotkin, G., editors, Semantics of Data Types
(SDT), volume 173 of Lecture Notes in Computer Science, pages 145–156.

Wadler, P. (1989).
Theorems for free!
In 4th International Conference on Functional Programming Languages and
Computer Architecture (FPCA), pages 347–359, New York, NY, USA. ACM Press.

34

	Polymorphic λ-Calculus: Static
	Polymorphic λ-Calculus: Dynamics and Programming
	Reasoning with Types

