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POLYMORPHIC 𝜆-CALCULUS: STATIC



POLYMORPHIC TYPES

Given a set 𝕍 of type variables, the judgement 𝐴 ∶ Type is defined
by defined by

(tvar), if 𝑋 ∈ 𝕍𝑋 ∶ Type

𝐴 ∶ Type 𝐵 ∶ Type
(fun)𝐴 → 𝐵 ∶ Type

𝐴 ∶ Type 𝑋 ∈ 𝕍
(universal)∀𝑋.𝐴 ∶ Type

where 𝑋 may or may not occur in 𝐴.
The polymorphic type ∀𝑋.𝐴 provides a universal type for every
type 𝐵 by instantiating 𝑋 for 𝐵, i.e. 𝐴[𝐵/𝑥].
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EXAMPLES

For example, the polymorphic type allows us to express terms that
should work on arbitrary types, such as

• id ∶ ∀𝑋.𝑋 → 𝑋
• proj1 ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑋
• proj2 ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑌
• length ∶ ∀𝑋.list 𝑋 → nat
• singleton ∶ ∀𝑋.𝑋 → list(𝑋)

2



FREE AND BOUND VARIABLES, AGAIN

Definition 1
The free variable FV(𝐴) of 𝐴 is defined inductively by

FV(𝑋) = 𝑋
FV(𝐴 → 𝐵) = FV(𝐴) ∪ FV(𝐵)
FV(∀𝑋.𝐴) = FV(𝐴) − {𝑋}

For convenience, the function extends to contexts:

FV(Γ) = {𝑋 ∈ 𝕍 ∣ ∃(𝑥 ∶ 𝐴) ∈ Γ ∧ 𝑋 ∈ FV(𝐴) }.

Exercise

1. FV(∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋)
2. FV(𝑥 ∶ 𝑋1, 𝑦 ∶ 𝑋2, 𝑧 ∶ ∀𝑋.𝑋)
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CAPTURE-AVOIDING SUBSTITUTION FOR TYPE

Permutation of type variables and 𝛼-equivalence between types are
defined similarly.

In particular, the substitution is also defined to avoid any capture of
free type variables:

Definition 2
The capture-avoiding substitution of a type 𝐴 for a type
variable 𝑋 is defined on types by

𝑋[𝐴/𝑋] = 𝐴
𝑌 [𝐴/𝑋] = 𝑌 if 𝑋 ≠ 𝑌

(𝐵 → 𝐶)[𝐴/𝑋] = (𝐵[𝐴/𝑋]) → (𝐶[𝐴/𝑋])
(∀𝑌 .𝐵)[𝐴/𝑋] = ∀𝑌 .𝐵[𝐴/𝑋] if 𝑌 ≠ 𝑋, 𝑌 ∉ FV(𝐴)
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TYPED TERMS

Terms in polymorphic 𝜆-calculus are extended with types. We
define the set of terms from scratch here:
Definition 3
The set Λ∀(𝑉 , 𝕍) of terms in polymorphic 𝜆-calculus is defined
inductively:

variable 𝑥 ∈ Λ∀(𝑉 , 𝕍) if 𝑥 is in 𝑉
application 𝑡@𝑢 ∈ Λ∀(𝑉 , 𝕍) if 𝑡, 𝑢 ∈ Λ∀(𝑉 , 𝕍)
abstraction 𝜆(𝑥 ∶𝐴). 𝑡 if 𝑥 ∈ 𝑉 , 𝐴 is a type, and 𝑡 ∈ Λ∀(𝑉 , 𝕍)

type abstraction 𝜆𝑋. 𝑡 is in Λ∀(𝑉 , 𝕍) if 𝑋 is in 𝕍 and 𝑡 is in Λ∀(𝑉 , 𝕍)
type application 𝑡 𝐴 is in Λ∀(𝑉 , 𝕍) if 𝑡 is in Λ∀(𝑉 , 𝕍) and 𝐴 is a type.

N.B. 𝜆(𝑥 ∶𝐴). 𝑡 includes the type of 𝑥 as part of term. We have
additionally a substitution 𝑡[𝐴/𝑋] of a type 𝐴 for a type variable 𝑋
in 𝑡.
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TYPING JUDGEMENT: OVERVIEW

Polymorphic 𝜆-calculus has two kinds of typing judgements.

• Δ ⊢ 𝐴 stands for a type 𝐴 under the type context Δ;
• Δ;Γ ⊢ 𝑡 ∶ 𝐴 stands for a term 𝑡 of type 𝐴 under the context Γ
and the type context Δ

where a type context is a sequence of type variable 𝑋1, 𝑋2,… ,𝑋𝑛.

The new context Δ is used to keep track of type variables available
within the term, as they may be introduced by type abstraction.
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TYPE FORMATION

The judgement Δ ⊢ 𝐴 is constructed inductively by following rules.

if Δ ∋ 𝑋Δ ⊢ 𝑋 Δ ⊢ 𝑋 Δ ⊢ 𝑌
Δ ⊢ 𝑋 → 𝑌

Δ,𝑋 ⊢ 𝐴
Δ ⊢ ∀𝑋.𝐴

Exercise
Derive the judgement

𝑋 ⊢ 𝑋 → 𝑋
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TYPING RULES

The judgement Δ;Γ ⊢ 𝑡 ∶ 𝐴 is defined inductively by following rules.

if Γ ∋ 𝑥 ∶ 𝐴Δ;Γ ⊢ 𝑥 ∶ 𝐴

Δ;Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Δ;Γ ⊢ 𝑢 ∶ 𝐴
Δ;Γ ⊢ 𝑡 𝑢 ∶ 𝐵

Δ ⊢ 𝐴 Δ;Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Δ;Γ ⊢ 𝜆(𝑥 ∶𝐴). 𝑡 ∶ 𝐴 → 𝐵

Δ,𝑋; Γ ⊢ 𝑡 ∶ 𝐴
(∀-intro)Δ;Γ ⊢ 𝜆𝑋. 𝑡 ∶ ∀𝑋.𝐴

Δ;Γ ⊢ 𝑡 ∶ ∀𝑋.𝐴 Δ ⊢ 𝐵
(∀-elim)Δ;Γ ⊢ 𝑡 𝐵 ∶ 𝐴[𝐵/𝑥]

Theorem 4 (Type safety)
Suppose Δ;Γ ⊢ 𝑡 ∶ 𝐴. Then,

1. 𝑡 ⟶𝛽 𝑢 implies Δ;Γ ⊢ 𝑢 ∶ 𝐴;
2. 𝑡 is in normal form or there exists 𝑢 such that 𝑡 ⟶𝛽 𝑢
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UNDECIDABILITY OF TYPE INFERENCE

Theorem 5 (Wells, 1999)
It is undecidable whether, given a closed term 𝑡 of the untyped
𝑙𝑎𝑚𝑏𝑑𝑎-calculus, there is a well-typed term 𝑡′ in polymorphic
𝜆-calculus such that |𝑡′| = 𝑡.

Two ways to retain decidable type inference:

1. Limit the expressiveness so that type inference remains
decidable. For example, Hindley-Milner type system adapted by
Haskell 98, Standard ML, etc. supports only a limited form of
polymorphism but type inference is decidable.

2. Adopt partial type inference so that type annotations can be
used for, e.g. top-level definitions and local definitions.

Check out bidirectional type synthesis.
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TYPING DERIVATION

The typing judgement ⊢ 𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥 ∶ ∀𝑋.𝑋 → 𝑋 is derivable

𝑋 ⊢ 𝑋 𝑋;𝑥 ∶ 𝑋 ⊢ 𝑥 ∶ 𝑋
𝑋; ⋅ ⊢ 𝜆(𝑥 ∶𝑋). 𝑥 ∶ 𝑋 → 𝑋

⊢ 𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥 ∶ ∀𝑋.𝑋 → 𝑋

Convention 6
⊢ 𝑡 ∶ 𝐴 stands for ⋅; ⋅ ⊢ 𝑡 ∶ 𝜏 where both contexts are empty.
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EXERCISE

Derive the following judgements:

1. ⊢ (𝜆𝑋 𝑌 . 𝜆(𝑥 ∶𝑋). 𝜆(𝑦 ∶ 𝑌 ). 𝑥) ∶ ∀𝑋.∀𝑌 .𝑋 → 𝑌 → 𝑋
2. ⊢ 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓 (𝑓 𝑥) ∶ ∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋

Hint. polymorphic 𝜆-calculus F is syntax-directed, so the type
inversion holds.
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POLYMORPHIC 𝜆-CALCULUS:
DYNAMICS AND PROGRAMMING



REDUCTION

𝛽-reduction for polymorphic 𝜆-calculus has two rules apart from
other structural rules:

(𝜆(𝑥 ∶𝐴). 𝑡) 𝑢 ⟶𝛽 𝑡[𝑢/𝑥] and (𝜆𝑋. 𝑡) 𝐴 ⟶𝛽 𝑡[𝐴/𝑋]

For example,

(𝜆𝑋. 𝜆(𝑥 ∶𝑋). 𝑥) 𝐴 𝑡 ⟶𝛽 (𝜆(𝑥 ∶𝑋). 𝑥)[𝐴/𝑋] 𝑡 ≡ (𝜆𝑥 ∶ 𝐴. 𝑥) 𝑡 ⟶𝛽 𝑡

Similarly, 𝛽-reduction extends to subterms of a given term,
introducing relations ⟶𝛽 and −↠𝛽 in the same way.
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EMPTY TYPE

Definition 7
The empty type is defined by

⊥ ⋅⋅= ∀𝑋.𝑋

No closed term 𝑡 has this type! (Why?)

Exercise
Suppose that ⊢ 𝑡 ∶ ∀𝑋.𝑋. Can we derive a contradiction?

13



SUM TYPE

Definition 8
The sum type is defined by

𝐴+𝐵 ⋅⋅= ∀𝑋.(𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝑋

It has two injection functions: the first injection is defined by

left𝐴+𝐵 ⋅⋅= 𝜆(𝑥 ∶𝐴). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝑋). 𝜆(𝑔 ∶𝐵 → 𝑋). 𝑓 𝑥
right𝐴+𝐵 ⋅⋅= 𝜆(𝑦 ∶𝐵). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝑋). 𝜆(𝑔 ∶𝐵 → 𝑋). 𝑔 𝑦

Exercise
Define

either ∶ ∀𝑋. (𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝐴+𝐵 → 𝑋
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PRODUCT TYPE

Definition 9 (Product Type)
The product type is defined by

𝐴×𝐵 ⋅⋅= ∀𝑋. (𝐴 → 𝐵 → 𝑋) → 𝑋

The pairing function is defined by

⟨_, _⟩𝐴,𝐵 ⋅⋅= 𝜆(𝑥 ∶𝐴). 𝜆(𝑦 ∶𝐵). 𝜆𝑋. 𝜆(𝑓 ∶𝐴 → 𝐵 → 𝑋). 𝑓 𝑥 𝑦

Exercise
Define projections

proj1 ∶ 𝐴 × 𝐵 → 𝐴 and proj2 ∶ 𝐴 × 𝐵 → 𝐵
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NATURAL NUMBERS I

The type of Church numerals is defined by

nat ⋅⋅= ∀𝑋. (𝑋 → 𝑋) → 𝑋 → 𝑋

Church numerals

c𝑛 ∶ nat
c𝑛 ⋅⋅= 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓𝑛 𝑥

Successor

suc ∶ nat → nat
suc ⋅⋅= 𝜆(𝑛 ∶nat). 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋). 𝑓 (𝑛 𝑋 𝑓 𝑥)
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NATURAL NUMBERS II

Addition

add ∶ nat → nat → nat
add ⋅⋅= 𝜆(𝑛 ∶nat). 𝜆(𝑚 ∶nat). 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑥 ∶𝑋).

(𝑚 𝑋 𝑓) (𝑛 𝑋 𝑓 𝑥)

Multiplication

mul ∶ nat → nat → nat
mul ⋅⋅= ?

Conditional

ifz ∶ ∀𝑋.nat → 𝑋 → 𝑋 → 𝑋
ifz ⋅⋅= ?
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NATURAL NUMBERS III

Polymorphic 𝜆-calculus allows us to define recursor like fold in
Haskell.

foldnat ∶ ∀𝑋. (𝑋 → 𝑋) → 𝑋 → nat → 𝑋
foldnat ⋅⋅= 𝜆𝑋. 𝜆(𝑓 ∶𝑋 → 𝑋). 𝜆(𝑒0 ∶ 𝑋). 𝜆(𝑛 ∶nat). 𝑛 𝑋 𝑓 𝑒0

Exercise
Define add and mul using foldnat and justify your answer.

1. add′ ⋅⋅= ? ∶ nat → nat → nat
2. mul′ ⋅⋅= ? ∶ nat → nat → nat
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LISTS

Definition 10
For any type 𝐴, the type of lists over 𝐴 is

list(𝐴) ⋅⋅= ∀𝑋.𝑋 → (𝐴 → 𝑋 → 𝑋) → 𝑋

with list constructors:

nil𝐴 ⋅⋅= 𝜆𝑋. 𝜆(ℎ ∶𝑋). 𝜆(𝑓 ∶𝐴 → 𝑋 → 𝑋). ℎ

and cons𝐴 of type 𝐴 → list(𝐴) → list(𝐴) defined as

𝜆(𝑥 ∶𝐴). 𝜆(𝑥𝑠 ∶list(𝐴)). 𝜆𝑋. 𝜆(ℎ ∶𝑋). 𝜆(𝑓 ∶𝐴 → 𝑋 → 𝑋). 𝑓 𝑥 (𝑥𝑠 𝑋 ℎ 𝑓)
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IMPREDICATIVE ENCODINGS OF INDUCTIVE TYPES

Inductive types can be defined in polymorphic
𝜆-calculus [Böhm and Berarducci, 1985], including the empty type,
the types of sums, natural numbers, and lists.

The Church encoding shows the expressiveness of polymorphic
𝜆-calculus but is not efficient [Koopman et al., 2014]. Other styles of
encoding have been proposed [Firsov et al., 2018] to improve the
efficiency and the size and used in implementations.
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REASONING WITH TYPES



WHAT CAN TYPES TELL?

The type discipline of a language does not only check if a program
makes sense but also enforce safety properties such as type safety
and strong normalisation.

In fact, types can be used to tell what functions are definable or
what equations a term should satisfy with respect to a given type.

What terms can be defined for the following types?

1. ∀𝑋.𝑋
2. ∀𝑋.𝑋 → 𝑋
3. ∀𝑋𝑌 .𝑋 → 𝑌 → 𝑋
4. ∀𝑋.𝑋 → nat

Let’s start with functions definable in simply typed 𝜆-calculus first.
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𝜆-DEFINABILITY IN SIMPLY TYPED 𝜆-CALCULUS I

Idea
Each term Γ ⊢ 𝑡 ∶ 𝐴 can be interpreted as a set-theoretic function 𝑓
to ⟦𝐴⟧, a designated interpretation of 𝐴, from ⟦Γ⟧ = ∏𝑥∶𝐴∈Γ⟦𝐴⟧.

In detail, we assign a set 𝑂𝑋 to each 𝑋 ∈ 𝕍 and then extend the
interpretation to all types:

⟦𝑋⟧ = 𝑂𝑋

⟦𝐴 → 𝐵⟧ = ⟦𝐴⟧ → ⟦𝐵⟧

as well as contexts Γ:

⟦⋅⟧ = {∗}
⟦Γ, 𝑥 ∶ 𝐴⟧ = ⟦Γ⟧ × ⟦𝐴⟧.
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𝜆-DEFINABILITY IN SIMPLY TYPED 𝜆-CALCULUS II

Each term Γ ⊢ 𝑡 ∶ 𝐴 is interpreted as a set-theoretic function

⟦𝑡⟧ ∶ ⟦Γ⟧ → ⟦𝐴⟧

defined inductively (modulo 𝛼-equivalence) by

⟦Γ ⊢ 𝑥𝑖 ∶ 𝐴⟧(𝜌) = 𝜌(𝑖)
⟦Γ ⊢ 𝑡 𝑢 ∶ 𝐵⟧(𝜌) = ⟦Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵⟧(𝜌) (⟦Γ ⊢ 𝑢 ∶ 𝐴⟧(𝜌))

⟦Γ ⊢ 𝜆𝑥. 𝑡 ∶ 𝐴 → 𝐵⟧(𝜌) = (𝑣 ↦ ⟦Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡⟧(𝜌, 𝑣))

where 𝜌 ∈ ⟦Γ⟧ is called an environment.

N.B. For ⟦⋅ ⊢ 𝑡 ∶ 𝐴⟧(∗) we simply write ⟦𝑡⟧.
Definition 11
A set-theoretic function 𝑓 ∶ 𝑋 → 𝑌 is 𝜆-definable w.r.t. some
interpretation if there is a closed term 𝑡 ∶ 𝐴 → 𝐵 such that 𝑓 = ⟦𝑡⟧.

23



QUIZ TIME

Suppose that there is only one type variable 𝑋 and 𝑂𝑋 = {t, f}.
Which of the following functions 𝑓 ∶ 𝑂𝑋 → 𝑂𝑋 are 𝜆-definable?

1. the identity function 𝑓(𝑥) = 𝑥
2. the constant function 𝑓(𝑥) = t
3. the constant function 𝑓(𝑥) = f
4. the negation function 𝑓(t) = f and 𝑓(f) = t
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LOGICAL RELATION

Idea
If 𝑣1 and 𝑣2 are related, ⟦𝑡⟧(𝑣1) and ⟦𝑡⟧(𝑣2) should also be related.

A family {𝑅𝐴 ⊆ ⟦𝐴⟧ × ⟦𝐴⟧}𝐴∶Type of binary relations is logical if

𝑅𝐴→𝐵(𝑓1, 𝑓2) iff ∀𝑥1𝑥2. 𝑅𝐴(𝑥1, 𝑥2) ⟹ 𝑅𝐵(𝑓1(𝑥1), 𝑓2(𝑥2)).

N.B. A logical relation is determined by 𝑅𝑋 for type variables 𝑋.

Exercise
What is 𝑅𝑋→𝑋, if …

1. 𝑅𝑋 = ∅?
2. 𝑅𝑋 = 𝑂𝑋 ×𝑂𝑋?
3. 𝑅𝑋 = {(t, f)}?
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THE FUNDAMENTAL THEOREM OF LOGICAL RELATIONS

Theorem 12 (Fundamental Theorem of Logical Relations)

Let {𝑅𝐴}𝐴∶Type be a logical relation. Then,

𝑅𝐴(⟦Γ ⊢ 𝑡 ∶ 𝐴⟧(𝜌1), ⟦Γ ⊢ 𝑡 ∶ 𝐴⟧(𝜌2))

for every Γ ⊢ 𝑡 ∶ 𝐴 and environments 𝜌1, 𝜌2 ∈ ⟦Γ⟧ satisfying
𝑅𝐴𝑖(𝜌1(𝑖), 𝜌2(𝑖)) for every 𝑥𝑖 ∶ 𝐴𝑖 ∈ Γ.

Proof sketch.
By induction on the typing derivation of Γ ⊢ 𝑡 ∶ 𝐴.

In particular, 𝑅𝐴(⟦𝑡⟧, ⟦𝑡⟧) for any closed term 𝑡 of type 𝐴.
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QUIZ, REVISITED

Consider 𝑂𝑋 = {t, f} and the logical relation {𝑅𝐴}𝐴 determined by

𝑅𝑋 = {(f, t)}.

1. Suppose that the constant function 𝑓(𝑥) = t is 𝜆-definable,
then 𝑅𝑋→𝑋(⟦𝑡⟧, ⟦𝑡⟧) by the fundamental theorem. By definition
of being logical 𝑅𝑋(⟦𝑡⟧(f), ⟦𝑡⟧(t)), i.e. 𝑅𝑋(t, t)—a contradiction.
That is, 𝑓(𝑥) = t is not 𝜆-definable.

Exercise

1. Show that the constant function 𝑓(𝑥) = f is not 𝜆-definable.
2. Show that the negation function ¬ is not 𝜆-definable.
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NO SET-THEORETIC MODEL FOR POLYMORPHIC 𝜆-CALCULUS

We would like to apply the same approach of arguing 𝜆-definability
to polymorphic 𝜆-calculus, but it is apparently circular:

1. the universal quantification ∀𝑋.𝐴 is impredicative and
2. ⟦∀𝑋.𝐴⟧ should depend on ⟦𝐴[𝐵/𝑋]⟧ for any 𝐵 ∶ Type,
3. including 𝐵 = ∀𝑋.𝐴.

In fact, there is no set-theoretic interpretation for polymorphic
𝜆-calculus [Reynolds, 1984] in classical set theory, due to the
cardinality issue.

Thus, we have to consider other models rather than sets, some
constructive set theory [Pitts, 1987], or a weaker but predicative
version of parametric polymorphism [Leivant, 1991].
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PARAMETRICITY IN POLYMORPHIC 𝜆-CALCULUS

Following Girard’s reducibility candidate [Girard et al., 1989], assume
𝒰 a set of relation candidates in some model.

A family of {𝑅𝐴
Φ}Δ⊢𝐴 is logical if

𝑅𝑋
Φ (𝑥1, 𝑥2) iff Φ(𝑋)(𝑥1, 𝑥2)

𝑅𝐴→𝐵
Φ (𝑓1, 𝑓2) iff ∀𝑥1𝑥2. 𝑅𝐴

Φ(𝑥1, 𝑥2) ⟹ 𝑅𝐵
Φ(𝑓1(𝑥1), 𝑓2(𝑥2))

𝑅∀𝑋.𝐴
Φ (𝑥1, 𝑥2) iff ∀𝑈 ∈ 𝒰.𝑅𝐴

Φ;𝑋↦𝑈(𝑥1, 𝑥2)

where Φ∶ Δ → 𝒰 is a map and Φ;𝑋 ↦ 𝑈 means a map s.t. 𝑌 is
mapped to 𝑈 if 𝑌 = 𝑋 or Φ(𝑌 ) otherwise.
If Δ is empty, then the subscript Φ in 𝑅𝐴

Φ is omitted, i.e. 𝑅𝐴 instead.

Theorem 13
The fundamental theorem holds for logical relations i.e. 𝑅𝐴(⟦𝑡⟧, ⟦𝑡⟧)
holds for any closed term 𝑡 of type 𝐴 in polymorphic 𝜆-calculus.
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EXAMPLES: ∀𝑋.𝑋

The type ∀𝑋.𝑋 is not inhabited.

Suppose that ⊢ 𝑡 ∶ ∀𝑋.𝑋. Then, by the fundamental theorem,

𝑅∀𝑋.𝑋(⟦𝑡⟧, ⟦𝑡⟧).

By definition, 𝑅∀𝑋.𝑋(⟦𝑡⟧, ⟦𝑡⟧) if and only if

∀𝑈 ∈ 𝒰.𝑅𝑋
𝑋↦𝑈(⟦𝑡⟧, ⟦𝑡⟧) or equivalently, ∀𝑈 ∈ 𝒰.𝑈(⟦𝑡⟧, ⟦𝑡⟧)

Choosing 𝑈 to be the empty relation ∅,

(⟦𝑡⟧, ⟦𝑡⟧) ∈ ∅,

a contradiction. Hence, there is no closed term of type ∀𝑋.𝑋.
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THEOREMS FOR FREE

Consider the case that 𝑅𝑋 is instantiated as { (𝑥, 𝑓(𝑥)) ∣ 𝑥 ∈ 𝐴} of
some 𝑓 ∶ 𝐴 → 𝐵 and apply the fundamental theorem to derive, e.g.,

• the following equation for any 𝑡 ∶ ∀𝑋.list(𝑋) → list(𝑋):

⟦list(𝐴)⟧ ⟦𝑡⟧𝐴 //

map 𝑓
��

⟦list(𝐴)⟧
map 𝑓
��

⟦list(𝐵)⟧
⟦𝑡⟧𝐵

// ⟦list(𝐵)⟧

N.B. The equation is derived in the working model, not necessarily
implying =𝛽 between 𝜆-terms.

The fundamental theorem is well known for this specialised form,
dubbed as free theorems [Wadler, 1989].
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HOMEWORK

1. (2.5%) Define length𝜎 ∶ list 𝜎 → nat calculating the length
of a list in polymorphic 𝜆-calculus.

2. (5%) Prove Theorem 12.
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