
𝜆-CALCULUS
UNTYPED 𝜆-CALCULUS

陳亮廷 Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation 2024

Institute of Information Science
Academia Sinica

UNTYPED 𝜆-CALCULUS:
INTRODUCTION

THE IDEA OF ANONYMOUS FUNCTIONS

Anonymous functions can be defined in many languages, e.g.,

HASKELL \x f -> f x
OCAML fun x f -> f x

This type of expression is inspired by the 𝜆-notation introduced by
Alan Turing’s supervisor, Alonzo Church, who was seeking a
foundational framework for mathematics.

In 𝜆-notation
𝜆𝑥. 𝑒

means ‘a function that maps the argument 𝑥 to expression 𝑒’ where
𝑥 may appear in 𝑒. E.g., the above examples can be expressed as

𝜆𝑥 𝑓. 𝑓 𝑥

1

AN EXAMPLE OF 𝜆-NOTATION

The idea of function application in 𝜆-notation is straightforward.

For example, in high school we may say a function 𝑓(𝑥) ⋅⋅= 𝑥2 with
the variable 𝑥 and write

𝑓(3) = 32 = 9

In 𝜆-notation, we write

(𝜆𝑥. 𝑥2) 3 = 𝑥2[3/𝑥] = 32 = 9

where 𝑥2[3/𝑥] means ‘the substitution of 3 for 𝑥 in the expression
𝑥2’.

2

WHAT IS 𝜆-CALCULUS

𝜆-calculus is a language of functions in 𝜆-notation consisting of
three constructs:

abstraction functions can be introduced 𝜆𝑥. 𝑡
application functions can be applied to an argument 𝑡 𝑢

variable variables are terms

where a term means a minimal unit of expression.

That is, every term in 𝜆-calculus is in one and only one of the above
forms.

𝜆-calculus can be understood as a programming language without
any built-in data types and suffices to define every computable
function.

3

WHY SHOULD WE STUDY 𝜆-CALCULUS?

𝜆-calculus itself is a fruitful subject but it is also useful:

• it serves as a prototype of programming languages which can
be reasoned about mathematically and rigorously;

• the methodology we develop to understand 𝜆-calculus can be
used to study and design other programming languages.

The common practice in PL research is to start with a variant of
typed 𝜆-calculus and a language feature in question and
investigate properties of this prototype language.

Moreover, 𝜆-calculus has a strong connection with logic and
mathematics which is a topic for another day.

4

WHAT TO EXPECT NEXT?

For 𝜆-calculus, we will consider following topics in programming
language in a style of mathematical formalism.

1. How programs can be identified up to variable renaming? E.g.,
𝜆𝑥. 𝑥 should be ‘equal’ to 𝜆𝑦. 𝑦.

2. How do programs compute? E.g., the application (𝜆𝑥. 𝑥) 3 of the
identity to 3 should compute to 3.

3. How programs can be identified computationally? E.g.,

(𝜆𝑥. 𝑥) 3 and (𝜆𝑦. 3) 10

should be ‘computationally equal’ as they should compute to
the same term (but not each other).

4. How to write programs in 𝜆-calculus?

5

UNTYPED 𝜆-CALCULUS: STATICS

SYNTAX OF 𝜆-CALCULUS

To define the language of 𝜆-calculus, we need a primitive notion of
variables first. Let us fix a countably infinite set 𝑉 for variables.

The set Λ(𝑉) of 𝜆-terms over 𝑉 is defined inductively as

variable 𝑥 ∈ Λ(𝑉) if 𝑥 is in 𝑉
application 𝑡@𝑢 ∈ Λ(𝑉) if 𝑡, 𝑢 ∈ Λ(𝑉)
abstraction 𝜆𝑥. 𝑡 if 𝑥 ∈ 𝑉 and 𝑡 ∈ Λ(𝑉)

Each construct can be represented as a node in a tree where
variables are leafs, e.g.,

𝑥

@

𝑡 𝑢
𝜆𝑥

𝑡

for a variable 𝑥, an application 𝑡@𝑢, and an abstraction 𝜆𝑥. 𝑡.
6

REPRESENTING A TERM AS AN ABSTRACT SYNTAX TREE

The expression 𝜆𝑥. (𝜆𝑦. ((𝑥@𝑦)@𝑧)) can be represented as

𝜆𝑥

𝜆𝑦

@

@

𝑥 𝑦

𝑧

Important
Brackets ‘(’ and ‘)’ are not part of a term but are used for grouping
a subterm.

7

FORMAL JUSTIFICATION

The validity of the expression can be justified by its very definition:

𝜆𝑥. (𝜆𝑦. ((𝑥@𝑦)@𝑧))

1. 𝑥, 𝑦, and 𝑧 are in 𝑉 , so 𝑥, 𝑦, 𝑧 are terms;
2. 𝑥 and 𝑦 are terms, so 𝑥@𝑦 is a term;
3. (𝑥@𝑦)@𝑧 is a term since 𝑥@𝑦 is a term and 𝑧 is a term;
4. 𝜆𝑦. ((𝑥@𝑦)@𝑧) is a term since (𝑥@𝑦)@𝑧 is a term and 𝑦 is a variable;
5. 𝜆𝑦. ((𝑥@𝑦)@𝑧) is a term and 𝑥 is a variable, so 𝜆𝑥. (𝜆𝑦. ((𝑥@𝑦)@𝑧)) is a term.

Convention
@ is omitted if a term is written as a sequence of symbols, so we
write

𝑡 𝑢 instead of 𝑡@𝑢

8

THE NEED FOR SOME CONVENTIONS

For arithmetic expressions, we typically write

3 ∗ 4 + 7 ∗ 2 to mean (3 ∗ 4) + (7 + 2)
by the typical precedence convention.

We’d also like to have some conventions to omit brackets without
any ambiguity. E.g., one should be able to write

𝜆𝑥𝑦. 𝑥 𝑦 𝑧 to mean 𝜆𝑥. (𝜆𝑦. ((𝑥 𝑦) 𝑧))
since

1. multiple abstractions means a function with multiple
arguments;

2. applying a function to multiple arguments can be achieved via
applying a function to a single argument and get another
function which is applied to the next argument;

3. applications occur more often than abstractions in a body.
9

CONVENTIONS

Consecutive abstractions

𝜆𝑥1 𝑥2 …𝑥𝑛.𝑀 ≡ 𝜆𝑥1. (𝜆𝑥2. (… (𝜆𝑥𝑛.𝑀)…))

Consecutive applications

𝑀1 𝑀2 𝑀3 … 𝑀𝑛 ≡ (… ((𝑀1 𝑀2) 𝑀3)…) 𝑀𝑛

Function body extends as far right as possible
𝜆𝑥.𝑀 𝑁 means 𝜆𝑥. (𝑀 𝑁) instead of (𝜆𝑥.𝑀) 𝑁 .

1. (𝑥 𝑦) 𝑧 ≡ 𝑥 𝑦 𝑧
2. 𝜆𝑠. (𝜆𝑧. (𝑠 𝑧)) ≡ 𝜆𝑠 𝑧. 𝑠 𝑧
3. 𝜆𝑎. (𝜆𝑏. (𝑎 (𝜆𝑐. 𝑎 𝑏))) ≡ 𝜆𝑎 𝑏. 𝑎 (𝜆𝑐. 𝑎 𝑏)
4. (𝜆𝑥. 𝑥) (𝜆𝑦. 𝑦) ≡ (𝜆𝑥. 𝑥) 𝜆𝑦. 𝑦

10

MORE EXAMPLE

Exercise
Draw the corresponding abstract syntax tree for each of the
following terms:

1. 𝑥 (𝑦 𝑧)
2. 𝑥 𝑦 𝑧
3. 𝜆𝑠𝑧. 𝑠 𝑧
4. (𝜆𝑥. 𝑥) (𝜆𝑦. 𝑦)
5. 𝜆𝑎𝑏. 𝑎 (𝜆𝑐. 𝑎 𝑏)

11

VARIABLE BINDING

Let’s discuss an important notion of syntax: variable binding.

In the expression 𝑓(𝑥) = 𝑥2, the variable 𝑥 in the expression 𝑥2 is
bound to 𝑥 of 𝑓 and the meaning of 𝑓(𝑥) is the same as 𝑓(𝑦) = 𝑦2.
Similarly, following expressions demonstrate the variable binding in
various forms:

1. ∑𝑛
𝑥=0 𝑥

2. ∫1
0 𝑒𝑦 d𝑦

3. 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2
4. …
5. 𝜆𝑦. (𝜆𝑥. 𝑦) means a function that takes an argument 𝑦 returns a

constant function at 𝑦
6. 𝜆𝑥. (𝜆𝑦. 𝑦) means a constant function that always returns an

identity function

12

BINDING STRUCTURE IN AN ABSTRACT SYNTAX TREE

The binding structure can be visualised in an abstract syntax tree:

𝜆𝑥

𝜆𝑦

@

@

𝑥 𝑦

𝑧

13

𝛼-EQUIVALENCE: RENAMING OF BOUND VARIABLES

It is common sense that renaming variables of a program should
not alter its meaning: the point of having a name for a variable to
look for where it applies to.

Intuitively, two terms 𝑡 and 𝑢 are 𝛼-equivalent, written as

𝑡 =𝛼 𝑢

if 𝑡 and 𝑢 have the same binding structure, regardless of their
variable names, in their abstract syntax trees.

Quest
How to define 𝛼-equivalence formally?

14

FIRST SOLUTION: DE BRUIJN REPRESENTATION

Idea
The problem of variable renaming is the name, so we may discard
names and use indices 𝑖′ to represent variable bindings.

The index 𝑖′ points to the 𝑖-th innermost 𝜆-node from the variable:

𝜆𝑥
𝜆𝑦

@

@
𝑥 𝑦

𝑧

becomes

𝜆

𝜆

@

@

1′ 0′
3′

This representation is invented by a Dutch mathematician, N. G. de
Bruijn, while implementing a language for formalising mathematics.

15

PROS AND CONS OF DE BRUIJN REPRESENTATION

Good This representation does solve many problems:
1. 𝛼-equivalence coincides with syntactic equality,

i.e.
𝑡 =𝛼 𝑢 ⟺ 𝑡 = 𝑢.

2. Machine-readable.
3. No variable renaming is involved.

Bad ‘Don’t throw the baby out with the bathwater’.

16

SECOND SOLUTION: CAPTURE-AVOIDANCE RENAMING

Idea
Using the nominal representation, we define 𝑡 =𝛼 𝑢 if variables 𝑡
and 𝑢 can be renamed ‘suitably’ to exactly the same term.

The problem with naive renaming is that a renamed variable might
be captured by another 𝜆, breaking the binding structure.

E.g., 𝑦 can be renamed to anything but 𝑥 in

𝜆𝑥. (𝜆𝑦. 𝑥 𝑦)
to retain the same binding structure.

Hence, variable renaming has to be constrained to variables that do
not occur in the term to avoid changing the binding structure.
Quest
How to define the occurrence of a variable and variable renaming?

17

STRUCTURAL RECURSION OVER 𝜆-TERMS

To define a function from 𝜆-terms, we may use the ’fold’:

Theorem
Given a target set 𝑋 and functions

𝑓1 ∶ 𝑉 → 𝑋
𝑓2 ∶ 𝑋 ×𝑋 → 𝑋
𝑓3 ∶ 𝑉 × 𝑋 → 𝑋

there exists a unique 𝑓 ∶ Λ(𝑉) → 𝑋 such that

𝑓 𝑥 = 𝑓1 𝑥
𝑓(𝑡 𝑢) = 𝑓2(𝑓 𝑡, 𝑓 𝑢)

𝑓(𝜆𝑥. 𝑡) = 𝑓3(𝑥, 𝑓 𝑡)

18

VARIABLE OCCURRENCES

We define the set Var(𝑡) of variables in a term 𝑡 by structural
recursion with the target set 𝒫𝑉 and

Var1(𝑥) = {𝑥}
Var2(𝑆1, 𝑆2) = 𝑆1 ∪ 𝑆2

Var3(𝑥, 𝑆) = {𝑥} ∪ 𝑆

That is, Var is a function from Λ(𝑉) to 𝒫𝑉 such that

Var(𝑥) = {𝑥}
Var(𝑡 𝑢) = Var(𝑡) ∪ Var(𝑢)

Var(𝜆𝑥. 𝑡) = {𝑥} ∪ Var(𝑡)

We say 𝑥 occurs in 𝑡 if 𝑥 ∈ Var(𝑡), i.e. 𝑥 appear in 𝑡 somewhere.

19

VARIABLE PERMUTATION

A transposition (𝑥 𝑦) is a function that swaps 𝑥 and 𝑦 but fixes
everything else, i.e.

(𝑥 𝑦) 𝑧 =
⎧{{
⎨{{⎩

𝑦 𝑧 = 𝑥
𝑥 𝑧 = 𝑦
𝑧 otherwise

The variable permutation by a transportation 𝜋 = (𝑦 𝑧) is defined by

𝜋 ⋅ 𝑥 = 𝜋 𝑥
𝜋 ⋅ (𝑡 𝑢) = (𝜋 ⋅ 𝑡) (𝜋 ⋅ 𝑢)

𝜋 ⋅ (𝜆𝑥. 𝑡) = 𝜆(𝜋 𝑥). (𝜋 ⋅ 𝑡)

E.g.,
(𝑧 𝑦) ⋅ 𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) = 𝜆𝑥. (𝜆𝑧. 𝑧 𝑧)

20

RENAMING OF BOUND VARIABLES

Now we are ready to formulate what we mean by 𝛼-equivalence
Definition 1 (𝛼-equivalence)
𝛼-equivalence is a relation 𝑡 =𝛼 𝑢 between terms 𝑡 and 𝑢 defined
inductively as

if 𝑥 ∈ 𝑉𝑥 =𝛼 𝑥
𝑡1 =𝛼 𝑡2 𝑢1 =𝛼 𝑢2

𝑡1 𝑢1 =𝛼 𝑡2 𝑢2

(𝑧 𝑥) ⋅ 𝑡 =𝛼 (𝑧 𝑦) ⋅ 𝑢
if 𝑧 ∉ Var(𝑡, 𝑢)𝜆𝑥. 𝑡 =𝛼 𝜆𝑦. 𝑢

The third case is the interesting one: 𝜆𝑥. 𝑡 and 𝜆𝑦. 𝑢 are equal up to
renaming bound variables if the variables 𝑥 and 𝑦 can be swapped
with a variable 𝑧 that does not exist in 𝑡 and 𝑢.

21

AN EXAMPLE OF 𝛼-EQUIVALENT TERMS

Example 2
Show that (𝜆𝑦. 𝑦) 𝑧 =𝛼 (𝜆𝑥. 𝑥) 𝑧.

Proof.
By definition

(𝑦 𝑦) ⋅ 𝑦 =𝛼 (𝑦 𝑥) ⋅ 𝑥
𝜆𝑦. 𝑦 =𝛼 𝜆𝑥. 𝑥 𝑧 =𝛼 𝑧

(𝜆𝑦. 𝑦) 𝑧 =𝛼 (𝜆𝑥. 𝑥) 𝑧

where (𝑦 𝑦) ⋅ 𝑦 = () ⋅ 𝑦 = 𝑦 and (𝑦 𝑥) ⋅ 𝑥 = 𝑦, so it follows that
(𝜆𝑦. 𝑦) 𝑧 =𝛼 (𝜆𝑥. 𝑥) 𝑧.

22

𝛼-EQUIVALENCE IS AN EQUIVALENCE

𝛼-equivalence satisfies the following properties

reflexivity 𝑡 =𝛼 𝑡 for any term 𝑡;
symmetry 𝑢 =𝛼 𝑡 if 𝑡 =𝛼 𝑢;
transitivity 𝑡 =𝛼 𝑣 if 𝑡 =𝛼 𝑢 and 𝑢 =𝛼 𝑣.

Easy to prove reflexivity and symmetry (try it!) but tricky to prove
transitivity.

We are mainly in interested in terms up to 𝛼-equivalence, as the
name of a bound variable does not matter. Hence, we consider
𝜆-terms modulo 𝛼-equivalence, i.e.

[𝑡]𝛼 = {𝑢 ∈ Λ(𝑉) ∣ 𝑡 =𝛼 𝑢 }
as well as the (quotient) set:

Λ(𝑉)/=𝛼 ⋅⋅= { [𝑡]𝛼 ∣ 𝑡 ∈ Λ(𝑉) }.

23

EXERCISE

Which of the following pairs are 𝛼-equivalent? If so, prove it.

1. 𝑥 and 𝑦 if 𝑥 ≠ 𝑦
2. 𝜆𝑥 𝑦. 𝑦 and 𝜆𝑧 𝑦. 𝑦
3. 𝜆𝑥 𝑦. 𝑥 and 𝜆𝑦 𝑥. 𝑦
4. 𝜆𝑥 𝑦. 𝑥 and 𝜆𝑥 𝑦. 𝑦

Challenge
Is it true that 𝛼-equivalent terms have the same de Bruijn
representation?

Can you come up with a strategy to prove your conjecture?

24

UNTYPED 𝜆-CALCULUS: DYNAMICS

EVALUATION, INFORMALLY

The evaluation of 𝜆-calculus is of this form

⋯(𝜆𝑥. 𝑡) 𝑢⏟
𝛽-redex

⋯ ⟶𝛽1 ⋯ 𝑡 [𝑢/𝑥]⏟
substitution of 𝑁 for 𝑥 in 𝑀

⋯

In 𝜆-calculus, defining substitution is subtle:
Variable 𝑥 in 𝑢may be captured by an abstraction 𝜆𝑥. 𝑡, if the
substitution [𝑢/𝑥](𝜆𝑥. 𝑡) is naively carried out.

How to evaluate the following terms? Remember that we shall not
discriminate 𝛼-variants.

1. (𝜆𝑥.𝑥) 𝑧
2. (𝜆𝑥 𝑦. 𝑦) 𝑥
3. (𝜆𝑥 𝑦. 𝑦) (𝑥 𝑦)

25

FREE VARIABLES

A notion of the scope of a variable is needed to know which variable
is available in scope to be substituted.

We use the notion of free variable: a variable 𝑦 is free if 𝑦 ∈ FV(𝑡)
where FV(𝑡) is defined by

FV(𝑥) = {𝑥}
FV(𝑡 𝑢) = FV(𝑡) ∪ FV(𝑢)

FV(𝜆𝑥. 𝑡) = FV(𝑡) − {𝑥}

A variable 𝑦 is bound in 𝑡 if it occurs in 𝑡 but is not free.

Proposition 3
FV respects 𝛼-equivalence, i.e. if 𝑡 =𝛼 𝑢, then FV(𝑡) = FV(𝑢).

26

FREE VARIABLES: EXERCISE

Compute the set FV(𝑡) of free variables for each subtree 𝑡 of the
following abstract syntax tree:

𝜆𝑥

𝜆𝑦

@

@

𝑥 𝑦

𝑧

27

CAPTURE-AVOIDING SUBSTITUTION

Given a term 𝑡 and a variable 𝑥, the capture-avoiding substitution

_[𝑡/𝑥] ∶ Λ → Λ

of 𝑡 for 𝑥 is defined on terms by

𝑦[𝑡/𝑥] = {
𝑡 if 𝑥 = 𝑦
𝑦 otherwise

(𝑡1 𝑡2)[𝑡/𝑥] = (𝑡1[𝑡/𝑥]) (𝑡2[𝑡/𝑥])

(𝜆𝑦. 𝑢)[𝑡/𝑥] = {
𝜆𝑦. (𝑢[𝑡/𝑥]) if 𝑥 ≠ 𝑦 and 𝑦 ∉ FV(𝑡)
? otherwise

If the clause ? is reached, then rename the bound variable 𝑦 to
some variable fresh for 𝑥 and 𝑡, i.e. some 𝑧 such that 𝑧 ≠ 𝑦 and
𝑧 ∉ FV(𝑡), before proceeding.

28

SINGLE-STEP 𝛽-REDUCTION

A 𝛽-redex is a term of the form (𝜆𝑥. 𝑡) 𝑢 where computation can be
performed upon and the application can be reduced to 𝑡[𝑢/𝑥].
Definition 4
The one-step (full) 𝛽-reduction is a relation between terms defined
inductively by following rules:

(𝜆𝑥. 𝑡) 𝑢 ⟶𝛽 𝑡[𝑢/𝑥]

𝑡1 ⟶𝛽 𝑡2
𝜆𝑥. . 𝑡1 ⟶𝛽 𝜆𝑥. 𝑡2

𝑡1 ⟶𝛽 𝑡2
𝑡1 𝑢 ⟶𝛽 𝑡2 𝑢

𝑢1 ⟶𝛽 𝑢2
𝑡 𝑢1 ⟶𝛽 𝑡 𝑢2

For example, ((𝜆𝑥 𝑦. 𝑥) 𝑡) 𝑢 ⟶𝛽 (𝜆𝑦. 𝑡) 𝑢 ⟶𝛽 𝑡[𝑢/𝑦].

29

EXERCISE

Write down a sequence of 𝛽-reductions and circle all 𝛽-redexes
while reducing a term:

1. (𝜆𝑥. 𝑥) 𝑧
2. ((𝜆𝑥. 𝑥) 𝑦) ((𝜆𝑧. 𝑧) 𝑥)
3. 𝜆𝑛𝑥 𝑦. 𝑛 (𝜆𝑧. 𝑦) 𝑥
4. (𝜆𝑛𝑥 𝑦. 𝑛 (𝜆𝑧. 𝑦) 𝑥) 𝜆𝑓 𝑥. 𝑥

30

MULTI-STEP FULL 𝛽-REDUCTION

It is convenient to represents a sequence of 𝛽-reductions

𝑡 ⟶𝛽 𝑡1 ⟶𝛽 … ⟶𝛽 𝑢

by a single relation 𝑡 −↠𝛽 𝑢.

Definition 5
The multi-step (full) 𝛽-reduction is a relation defined inductively
by

(0-step)𝑡 −↠𝛽 𝑡

𝑡 ⟶𝛽 𝑢 𝑢 −↠𝛽 𝑣
(𝑛 + 1-step)𝑡 −↠𝛽 𝑣

31

𝑡 −↠𝛽 𝑢 IS TRANSITIVE

Lemma 6
For every derivations of 𝑡 −↠𝛽 𝑢 and 𝑢 −↠𝛽 𝑣, there is a derivation
of 𝑡 −↠𝛽 𝑣.

We often say “if 𝑡 −↠𝛽 𝑢 and 𝑢 −↠𝛽 𝑣 then 𝑡 −↠𝛽 𝑣” instead.

Proof.
By induction on the derivation 𝑑 of 𝑡 −↠𝛽 𝑢:

1. If 𝑑 is given by (0-step), then 𝑡 =𝛼 𝑢.
2. If 𝑑 is given by (n+1-step), i.e. there is 𝑢′ s.t. 𝑡 ⟶𝛽 𝑢′ and

𝑢′ −↠𝛽 𝑢.
By induction hypothesis, every derivation 𝑢′ −↠𝛽 𝑢 gives rise
to a derivation of 𝑢′ −↠𝛽 𝑣, so by (n+1-step) 𝑡 −↠𝛽 𝑣.

32

𝛽-EQUALITY

The reduction relation 𝑡 ⟶𝛽 𝑢 is directed, i.e. 𝑡 ⟶𝛽 𝑢 does not
imply 𝑢 ⟶𝛽 𝑡. We may consider a notion of undirected equality
based on 𝛽-reduction, while arguing the computational equality:
Definition 7
We say that 𝑡 and 𝑢 are 𝛽-equal, written 𝑡 =𝛽 𝑢, if

𝑡 ⟶𝛽 𝑢
𝑡 =𝛽 𝑢

𝑡 =𝛽 𝑡

𝑡 =𝛽 𝑢
𝑢 =𝛽 𝑡

𝑡 =𝛽 𝑢 𝑢 =𝛽 𝑣
𝑡 =𝛽 𝑣

It is clear that 𝑡 −↠𝛽 𝑢 implies 𝑡 =𝛽 𝑢 (why?). How about the
converse?

33

SUMMARY

SUMMARISE HERE ALL THE RELATIONS WE HAVE SEEN SO FAR.

34

PROGRAMMING IN 𝜆-CALCULUS

CHURCH ENCODING OF BOOLEAN VALUES

Boolean and conditional can be encoded as combinators.

Boolean

True ⋅⋅= 𝜆𝑥 𝑦. 𝑥
False ⋅⋅= 𝜆𝑥 𝑦. 𝑦

Conditional

if ⋅⋅= 𝜆𝑏 𝑥 𝑦. 𝑏 𝑥 𝑦
if True 𝑀 𝑁 −↠𝛽 𝑀
if False 𝑀 𝑁 −↠𝛽 𝑁

for any two 𝜆-terms 𝑀 and 𝑁 .

35

CHURCH ENCODING OF NATURAL NUMBERS I

Natural numbers as well as arithmetic operations can be encoded
in untyped lambda calculus.

Church numerals

c0 ⋅⋅= 𝜆𝑓 𝑥. 𝑥
c1 ⋅⋅= 𝜆𝑓 𝑥. 𝑓 𝑥
c2 ⋅⋅= 𝜆𝑓 𝑥. 𝑓 (𝑓 𝑥)
c𝑛+1 ⋅⋅= 𝜆𝑓 𝑥. 𝑓𝑛+1 (𝑥)

where 𝑓1(𝑥) ⋅⋅= 𝑓 𝑥 and 𝑓𝑛+1(𝑥) ⋅⋅= 𝑓 (𝑓𝑛(𝑥)).

36

CHURCH ENCODING OF NATURAL NUMBERS II

Successor

succ ⋅⋅= 𝜆𝑛. 𝜆𝑓 𝑥. 𝑓 (𝑛 𝑓 𝑥)
succ c𝑛 −↠𝛽 c𝑛+1

for any natural number 𝑛 ∈ ℕ.
Addition

add ⋅⋅= 𝜆𝑛𝑚. 𝜆𝑓 𝑥. 𝑛 𝑓 (𝑚 𝑓 𝑥)
add c𝑛 c𝑚 −↠𝛽 c𝑛+𝑚

Conditional

ifz ⋅⋅= 𝜆𝑛 𝑥 𝑦. 𝑛 (𝜆𝑧. 𝑦) 𝑥
ifz c0 𝑀 𝑁 −↠𝛽 𝑀
ifz c𝑛+1 𝑀 𝑁 −↠𝛽 𝑁

37

EXERCISE

1. Define Boolean operations not, and, and or.
2. Evaluate succ c0 and add c1 c2.
3. Define the multiplication mult over Church numerals.

38

GENERAL RECURSION VIA SELF-REFERENCE

The summation ∑𝑛
𝑖=0 𝑖 for 𝑛 ∈ ℕ is usually described by

self-reference in mathematics as follows.

sum(𝑛) = {0 if 𝑛 = 0
𝑛 + sum(𝑛 − 1) otherwise.

This cannot be done in 𝜆-calculus directly. (Why?)
Observation
If sum is unfolded as many times as it requires, then

sum(𝑛) =

⎧{{{
⎨{{{⎩

0 if 𝑛 = 0
1 + sum(0) 𝑛 = 1
⋯
𝑛 + sum(𝑛 − 1) otherwise.

39

CURRY’S PARADOXICAL COMBINATOR

The Y combinator is defined as a term

Y ⋅⋅= 𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥)).

Proposition 8
Y is a fixed-point operator, i.e.

Y𝐹 ⟶𝛽 (𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑥. 𝐹 (𝑥 𝑥))
⟶𝛽 𝐹 ((𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑥. 𝐹 (𝑥 𝑥)))

for every 𝜆-term 𝐹 . In particular, Y𝐹 =𝛽 𝐹(Y𝐹).

Intuitively, Y𝐹 defines recursion where 𝐹 describes each iteration.

40

SUMMATION VIA Y

We encode the following recursion

sum(𝑛) = {0 if 𝑛 = 0
𝑛 + sum(𝑛 − 1) otherwise.

by generalising each iteration 𝐺 with an additional function 𝑓
𝐺 ⋅⋅= 𝜆𝑓 𝑛.ifz 𝑛 c0 (add 𝑛 (𝑓 (pred 𝑛)))

so that sum ⋅⋅= Y𝐺. For example,

sum c1 ⟶𝛽 𝐺′ c1

⟶𝛽 𝐺 𝐺′ c1

⟶𝛽 (𝜆𝑛.ifz 𝑛 c0 (add 𝑛 (𝐺′ (pred 𝑛)))) c1

⟶𝛽 ifz c1 c0 (add c1 (𝐺′ (pred c1)))
⟶𝛽 …

where 𝐺′ ⋅⋅= ((𝜆𝑥.𝐺 (𝑥 𝑥)) (𝜆𝑥.𝐺 (𝑥 𝑥))).
41

EXERCISE

1. Evaluate sum c1 to its normal form in detail.
2. Define the factorial 𝑛! with Church numerals.

42

HOMEWORK

Theorem 9 (Church-Rosser)
Given 𝑢1 and 𝑢2 with 𝑡 −↠𝛽 𝑢1 and 𝑡 −↠𝛽 𝑢2, there is 𝑣 such that
𝑢1 −↠𝛽 𝑣 and 𝑢2 −↠𝛽 𝑣.

𝑡
𝛽
�� ��
@@

@@
@@

@
𝛽
����~~
~~
~~
~

𝑢1

𝛽
AA

AA
AA

𝑢2

𝛽~~~~}}
}}
}}

𝑣

1. (2.5%) Show that 𝑡 −↠𝛽 𝑢 implies 𝑡 =𝛽 𝑢.
2. (2.5%) Suppose that the Church-Rosser property holds. Then,

𝑡 =𝛼 𝑢 implies that there exists a confluent term 𝑣 of 𝑡 and 𝑢,
i.e. 𝑡 −↠𝛽 𝑣 and 𝑢 −↠𝛽 𝑣.

43

APPENDIX: EVALUATION STRATEGY

EVALUATION STRATEGIES I

An evaluation strategy is a procedure of selecting 𝛽-redexes to
reduce. It is a subset ⟶ev of the full 𝛽-reduction ⟶𝛽.

Innermost 𝛽-redex does not contain any 𝛽-redex.
Outermost 𝛽-redex is not contained in any other 𝛽-redex.

EVALUATION STRATEGIES II

the leftmost-outermost (normal order) strategy reduces the
leftmost outermost 𝛽-redex in a term first. For
example,

(𝜆𝑥. (𝜆𝑦. 𝑦) 𝑥) (𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥)
⟶𝛽(𝜆𝑦. 𝑦) (𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥)
⟶𝛽𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥
⟶𝛽(𝜆𝑥. 𝑥 𝑥)
⟶̸𝛽

EVALUATION STRATEGIES III

the leftmost-innermost strategy reduces the leftmost innermost
𝛽-redex in a term first. For example,

(𝜆𝑥. (𝜆𝑦. 𝑦) 𝑥) (𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥)
⟶𝛽(𝜆𝑥. 𝑥) (𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥)
⟶𝛽(𝜆𝑥. 𝑥) (𝜆𝑥. 𝑥 𝑥)
⟶𝛽(𝜆𝑥. 𝑥 𝑥)
⟶̸𝛽

the rightmost-innermost/outermost strategy are defined similarly
where terms are reduced from right to left instead.

CBV VERSUS CBN

Call-by-value strategy rightmost-outermost but not under any
abstraction

Call-by-name strategy leftmost-outermost but not under any
abstraction

Proposition 10 (Determinacy)
Each of evaluation strategies is deterministic, i.e. if 𝑀 ⟶𝛽 𝑁1 and
𝑀 ⟶𝛽 𝑁2 then 𝑁1 = 𝑁2.

NORMALISATION

Definition 11

1. 𝑀 is in normal form if 𝑀 ⟶̸𝛽 𝑁 for any 𝑁 .
2. 𝑀 is weakly normalising if 𝑀 −↠𝛽 𝑁 for some 𝑁 in normal

form.

1. Ω is not weakly normalising.
2. K1 is normal and thus weakly normalising.
3. K1 𝑧 Ω is weakly normalising.

Theorem 12
The normal order strategy reduces every weakly normalising term
to a normal form.

APPENDIX: TAKAHASHI’S PROOF OF
CONFLUENCE

TAKAHASHI’S PROOF OF CONFLUENCE

Proving the Church-Rosser property (or confluence) can be quite
tricky. This section presents a straightforward strategy based on a
notion of complete development, which unfolds as many 𝛽-redexes
as possible statically.

The complete development 𝑀∗ of a 𝜆-term 𝑀 is defined by

𝑥∗ = 𝑥
(𝜆𝑥.𝑀)∗ = 𝜆𝑥.𝑀∗

((𝜆𝑥.𝑀) 𝑁)∗ = 𝑀∗[𝑁 ∗/𝑥]
(𝑀 𝑁)∗ = 𝑀∗ 𝑁 ∗ if 𝑀 ≢ 𝜆𝑥.𝑀 ′

CONFLUENCE: PARALLEL REDUCTION

Let 𝑀 ⟹𝛽 𝑁 denote the parallel reduction defined by

𝑥 ⟹𝛽 𝑥

𝑀 ⟹𝛽 𝑁
𝜆𝑥.𝑀 ⟹𝛽 𝜆𝑥.𝑁

𝑀 ⟹𝛽 𝑀 ′ 𝑁 ⟹𝛽 𝑁 ′

𝑀 𝑁 ⟹𝛽 𝑀 ′ 𝑁 ′

𝑀 ⟹𝛽 𝑀 ′ 𝑁 ⟹𝛽 𝑁 ′

(𝜆𝑥.𝑀) 𝑁 ⟹𝛽 𝑀 ′[𝑁 ′/𝑥]

For example,

(𝜆𝑥. (𝜆𝑦. 𝑦) 𝑥) ((𝜆𝑥. 𝑥) false) ⟹𝛽 false

because (𝜆𝑦. 𝑦) 𝑥 ⟹𝛽 𝑥 and (𝜆𝑥. 𝑥) false ⟹𝛽 false.

CONFLUENCE: PROPERTIES OF PARALLEL REDUCTION

Lemma 13

1. 𝑀 ⟹𝛽 𝑀 holds for any term 𝑀 ,
2. 𝑀 ⟶𝛽 𝑁 implies 𝑀 ⟹𝛽 𝑁 , and
3. 𝑀 ⟹𝛽 𝑁 implies 𝑀 −↠𝛽 𝑁 .

In particular, 𝑀 ⟹∗
𝛽 𝑁 if and only if 𝑀 −↠𝛽 𝑁 .

Lemma 14 (Substitution respects parallel reduction)
𝑀 ⟹𝛽 𝑀 ′ and 𝑁 ⟹𝛽 𝑁 ′ imply 𝑀[𝑁/𝑥] ⟹𝛽 𝑀 ′[𝑁 ′/𝑥].

Theorem 15 (Triangle property)
If 𝑀 ⟹𝛽 𝑁 , then 𝑁 ⟹𝛽 𝑀∗.

Proof sketch.
By induction on 𝑀 ⟹𝛽 𝑁 .

STRIP LEMMA

Theorem 16
If 𝐿 ⟹∗

𝛽 𝑀1 and 𝐿 ⟹𝛽 𝑀2, then there exists 𝑁 satisfying that
𝑀1 ⟹𝛽 𝑁 and 𝑀2 ⟹∗

𝛽 𝑁 , i.e.

𝐿

�$
BB

BB
BB

B

BB
BB

BB
B

∗
𝛽 z� ||

||
||
|

||
||
||
|

𝑀1

�$
BB

BB
BB

B

BB
BB

BB
B

𝑀2

∗
𝛽 z� ||

||
||
|

||
||
||
|

𝑁

Proof sketch.
By induction on 𝐿 ⟹∗

𝛽 𝑀1.

CONFLUENCE

Theorem 17
If 𝐿 ⟹∗

𝛽 𝑀1 and 𝐿 ⟹∗
𝛽 𝑀2, then there exists 𝑁 such that

𝑀1 ⟹∗
𝛽 𝑁 and 𝑀2 ⟹∗

𝛽 𝑁 .

𝐿

∗
𝛽
�$
BB

BB
BB

B

BB
BB

BB
B

∗
𝛽 z� ||

||
||
|

||
||
||
|

𝑀1

∗
𝛽
�$
BB

BB
BB

B

BB
BB

BB
B

𝑀2

∗
𝛽 z� ||

||
||
|

||
||
||
|

𝑁

Corollary 18
The confluence of −↠𝛽 holds.

	Untyped λ-Calculus: Introduction
	Untyped λ-Calculus: Statics
	Untyped λ-Calculus: Dynamics
	Programming in λ-Calculus
	Appendix
	Appendix: Evaluation strategy
	Appendix: Takahashi's Proof of Confluence

