
Functional Programming

Shin-Cheng Mu

FLOLAC 2024

0 To Begin With…
Prerequisites

If you have done the homework requested before
this summer school, you should have familiarised
yourself with

• values and types, and basic list processing,

• basics of type classes,

• defining functions by pattern matching,

• guards, case, local definitions by where and let,

• recursive definition of functions,

• and higher order functions.

Recommanded Textbooks

• Introduction to Functional Programming using
Haskell [Bir98]. My recommended book. Covers
equational reasoning very well.

• Programming in Haskell [Hut16]. A thin but com-
plete textbook.

• Learn You a Haskell for Great Good! [Lip11], a
nice tutorial with cute drawings!

• Real World Haskell [OSG98].

• Algorithm Design with Haskell [BG20].

1 Definition and Proof by Induc-
tion

Total Functional Programming

• The next few lectures concerns inductive defini-
tions and proofs of datatypes and programs.

• While Haskell provides allows one to define non-
terminating functions, infinite data structures, for
now we will only consider its total, finite frag-
ment.

• That is, we temporarily

– consider only finite data structures,

– demand that functions terminate for all
value in its input type, and

– provide guidelines to construct such func-
tions.

• Infinite datatypes and non-termination can be
modelled with more advanced theory, which we
cannot cover in this course.

1.1 Induction on Natural Numbers
Recalling “Mathematical Induction”

• Let P be a predicate on natural numbers.

– What is a predicate? Such a predicate can
be seen as a function of type Nat→ Bool.

– So far, we see Haskell functions as simple
mathematical functions too.

– However, Haskell functions will turn out to
be more complex than mere mathematical
functions later. To avoid confusion, we do
not use the notation Nat → Bool for predi-
cates.

• We’ve all learnt this principle of proof by induc-
tion: to prove that P holds for all natural num-
bers, it is sufficient to show that

– P 0 holds;

– P (1 + n) holds provided that P n does.

1.1.1 Proof by Induction

Proof by Induction on Natural Numbers

• We can see the above inductive principle as a re-
sult of seeing natural numbers as defined by the
datatype 1

data Nat = 0 | 1+ Nat .

• That is, any natural number is either 0, or 1+ n
where n is a natural number.

1Not a real Haskell definition.

1

• In this lecture, 1+ is written in bold font to em-
phasise that it is a data constructor (as opposed
to the function (+), to be defined later, applied to
a number 1).

A Proof Generator
Given P 0 and P n ⇒ P (1+ n), how does one

prove, for example, P 3?

P (1+ (1+ (1+ 0)))
⇐ { P (1+ n)⇐ P n }

P (1+ (1+ 0))
⇐ { P (1+ n)⇐ P n }

P (1+ 0)
⇐ { P (1+ n)⇐ P n }

P 0 .

Having done math. induction can be seen as having
designed a program that generates a proof — given any
n :: Nat we can generate a proof of P n in the manner
above.

1.1.2 Inductively Definition of Functions

Inductively Defined Functions

• Since the type Nat is defined by two cases, it is
natural to define functions on Nat following the
structure:

exp :: Nat → Nat → Nat
exp b 0 = 1
exp b (1+ n) = b× exp b n .

• Even addition can be defined inductively

(+) :: Nat → Nat → Nat
0 + n = n
(1+ m) + n = 1+ (m+ n) .

• Exercise: define (×)?

A Value Generator
Given the definition of exp, how does one compute

exp b 3?

exp b (1+ (1+ (1+ 0)))
= { definition of exp }

b× exp b (1+ (1+ 0))
= { definition of exp }

b× b× exp b (1+ 0)
= { definition of exp }

b× b× b× exp b 0
= { definition of exp }

b× b× b× 1 .

It is a program that generates a value, for any n ::
Nat . Compare with the proof of P above.

Moral: Proving is Programming
An inductive proof is a program that generates a

proof for any given natural number.
An inductive program follows the same structure of

an inductive proof.
Proving and programming are very similar activi-

ties.

Without the n+ k Pattern

• Unfortunately, newer versions of Haskell aban-
doned the “n + k pattern” used in the previous
slides:

exp :: Int → Int → Int
exp b 0 = 1
exp b n = b× exp b (n− 1) .

• Nat is defined to be Int in MiniPrelude.hs.
Without MiniPrelude.hs you should use Int .

• For the purpose of this course, the pattern 1 +
n reveals the correspondence between Nat and
lists, and matches our proof style. Thus we will
use it in the lecture.

• Remember to remove them in your code.

Proof by Induction

• To prove properties about Nat , we follow the
structure as well.

• E.g. to prove that exp b (m + n) = exp b m ×
exp b n.

• One possibility is to preform induction onm. That
is, prove P m for all m :: Nat , where P m ≡
(∀n :: exp b (m+ n) = exp b m× exp b n).

Case m := 0. For all n, we reason:

exp b (0 + n)
= { defn. of (+) }

exp b n
= { defn. of (×) }

1× exp b n
= { defn. of exp }

exp b 0× exp b n .

We have thus proved P 0.

2

Case m := 1+ m. For all n, we reason:

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1+ (m+ n))
= { defn. of exp }

b× exp b (m+ n)
= { induction }

b× (exp b m× exp b n)
= { (×) associative }

(b× exp b m)× exp b n
= { defn. of exp }

exp b (1+ m)× exp b n .

We have thus proved P (1+ m), given P m.

Structure Proofs by Programs

• The inductive proof could be carried out
smoothly, because both (+) and exp are defined
inductively on its lefthand argument (of type
Nat).

• The structure of the proof follows the structure of
the program, which in turns follows the structure
of the datatype the program is defined on.

Lists and Natural Numbers

• We have yet to prove that (×) is associative.

• The proof is quite similar to the proof for associa-
tivity of (++), which we will talk about later.

• In fact, Nat and lists are closely related in struc-
ture.

• Most of us are used to think of numbers as atomic
and lists as structured data. Neither is necessarily
true.

• For the rest of the course we will demonstrate in-
duction using lists, while taking the properties for
Nat as given.

1.1.3 A Set-Theoretic Explanation of Induction

An Inductively Defined Set?

• For a set to be “inductively defined”, we usually
mean that it is the smallest fixed-point of some
function.

• What does that maen?

Fixed-Point and Prefixed-Point

• A fixed-point of a function f is a value x such that
f x = x.

• Theorem. f has fixed-point(s) if f is a monotonic
function defined on a complete lattice.

– In general, given f there may be more than
one fixed-point.

• A prefixed-point of f is a value x such that f x ⩽
x.

– Apparently, all fixed-points are also
prefixed-points.

• Theorem. the smallest prefixed-point is also the
smallest fixed-point.

Example: Nat

• Recall the usual definition: Nat is defined by the
following rules:

1. 0 is in Nat ;

2. if n is in Nat , so is 1+ n;

3. there is no other Nat .

• If we define a function F from sets to sets: F X =
{0}∪{1+ n | n ∈ X}, 1. and 2. above means that
F Nat ⊆ Nat . That is, Nat is a prefixed-point of
F .

• 3. means that we want the smallest such prefixed-
point.

• Thus Nat is also the least (smallest) fixed-point of
F .

Least Prefixed-Point
Formally, let F X = {0} ∪ {1+ n | n ∈ X}, Nat is

a set such that

F Nat ⊆ Nat , (1)

(∀X : F X ⊆ X ⇒ Nat ⊆ X) , (2)

where (1) says that Nat is a prefixed-point of F , and
(2) it is the least among all prefixed-points of F .

Mathematical Induction, Formally

• Given property P , we also denote by P the set of
elements that satisfy P .

• That P 0 and P n ⇒ P (1+n) is equivalent to
{0} ⊆ P and {1+ n | n ∈ P} ⊆ P ,

• which is equivalent to F P ⊆ P . That is, P is a
prefixed-point!

3

• By (2) we have Nat ⊆ P . That is, all Nat satisfy
P !

• This is “why mathematical induction is correct.”

Coinduction?
There is a dual technique called coinduction where,

instead of least prefixed-points, we talk about greatest
postfixed points. That is, largest x such that x ⩽ f x.

With such construction we can talk about infinite
data structures.

1.2 Induction on Lists
Inductively Defined Lists

• Recall that a (finite) list can be seen as a datatype
defined by: 2

data List a = [] | a : List a .

• Every list is built from the base case [], with ele-
ments added by (:) one by one: [1, 2, 3] = 1 : (2 :
(3 : [])).

All Lists Today are Finite
But what about infinite lists?

• For now let’s consider finite lists only, as having
infinite lists make the semantics much more com-
plicated. 3

• In fact, all functions we talk about today are total
functions. No ⊥ involved.

Set-Theoretically Speaking…
The type List a is the smallest set such that

1. [] is in List a;

2. if xs is in List a and x is in a, x : xs is in List a
as well.

Inductively Defined Functions on Lists

• Many functions on lists can be defined according
to how a list is defined:

sum :: List Int → Int
sum [] = 0
sum (x : xs) = x+ sum xs .

map :: (a→ b)→ List a→ List b
map f [] = []
map f (x : xs) = F X : map f xs .

– sum [1..10] = 55

– map (1+) [1, 2, 3, 4] = [2, 3, 4, 5]
2Not a real Haskell definition.
3What does that mean? Other courses in FLOLAC might cover

semantics in more detail.

1.2.1 Append, and Some of Its Properties

List Append

• The function (++) appends two lists into one

(++) :: List a→ List a→ List a
[] ++ ys = ys
(x : xs)++ ys = x : (xs ++ ys) .

• Compare the definition with that of (+)!

Proof by Structural Induction on Lists

• Recall that every finite list is built from the base
case [], with elements added by (:) one by one.

• To prove that some property P holds for all finite
lists, we show that

1. P [] holds;
2. forall x and xs , P (x : xs) holds provided

that P xs holds.

For a Particular List…
Given P [] and P xs ⇒ P (x : xs), for all x and xs ,

how does one prove, for example, P [1, 2, 3]?

P (1 : 2 : 3 : [])
⇐ { P (x : xs)⇐ P xs }

P (2 : 3 : [])
⇐ { P (x : xs)⇐ P xs }

P (3 : [])
⇐ { P (x : xs)⇐ P xs }

P [] .

Appending is Associative
To prove that xs ++(ys ++ zs) = (xs ++ ys)++ zs .
Let P xs = (∀ys, zs :: xs ++(ys ++ zs) =

(xs ++ ys)++ zs), we prove P by induction on xs .
Case xs := []. For all ys and zs , we reason:

[] ++(ys ++ zs)
= { defn. of (++) }

ys ++ zs
= { defn. of (++) }

([] ++ ys)++ zs .

We have thus proved P [].
Case xs := x : xs . For all ys and zs , we reason:

(x : xs)++(ys ++ zs)
= { defn. of (++) }

x : (xs ++(ys ++ zs))
= { induction }

x : ((xs ++ ys)++ zs)
= { defn. of (++) }

(x : (xs ++ ys))++ zs
= { defn. of (++) }

((x : xs)++ ys)++ zs .

4

We have thus proved P (x : xs), given P xs.

DoWe Have To Be So Formal?

• In our style of proof, every step is given a reason.
Do we need to be so pedantic?

• Being formal helps you to do the proof:

– In the proof of exp b (m + n) = exp b m ×
exp b n, we expect that we will use induction
to somewhere. Therefore the first part of the
proof is to generate exp b (m+ n).

– In the proof of associativity, we were work-
ing toward generating xs ++(ys ++ zs).

• By being formal we can work on the form, not the
meaning. Like how we solved the knight/knave
problem

• Being formal actually makes the proof easier!

• Make the symbols do the work.

Length

• The function length defined inductively:

length :: List a→ Nat
length [] = 0
length (x : xs) = 1+ (length xs) .

• Exercise: prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys

Concatenation

• While (++) repeatedly applies (:), the function
concat repeatedly calls (++):

concat :: List (List a)→ List a
concat [] = []
concat (xs : xss) = xs ++ concat xss .

• Compare with sum .

• Exercise: prove sum · concat = sum ·map sum .

1.2.2 More Inductively Defined Functions

Definition by Induction/Recursion

• Rather than giving commands, in functional pro-
gramming we specify values; instead of perform-
ing repeated actions, we define values on induc-
tively defined structures.

• Thus induction (or in general, recursion) is the
only “control structure” we have. (We do identify
and abstract over plenty of patterns of recursion,
though.)

• Note Terminology: an inductive definition, as
we have seen, define “bigger” things in terms of
“smaller” things. Recursion, on the other hand, is
a more general term, meaning “to define one en-
tity in terms of itself.”

• To inductively define a function f on lists, we
specify a value for the base case (f []) and, assum-
ing that f xs has been computed, consider how to
construct f (x : xs) out of f xs .

Filter

• filter p xs keeps only those elements in xs that
satisfy p.

filter :: (a→ Bool)→ List a→ List a
filter p [] = []
filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs .

Take and Drop

• Recall take and drop, which we used in the previ-
ous exercise.

take :: Nat → List a→ List a
take 0 xs = []
take (1+ n) [] = []
take (1+ n) (x : xs) = x : take n xs .

drop :: Nat → List a→ List a
drop 0 xs = xs
drop (1+ n) [] = []
drop (1+ n) (x : xs) = drop n xs .

• Prove: take n xs ++ drop n xs = xs , for all n and
xs .

TakeWhile and DropWhile

• takeWhile p xs yields the longest prefix of xs such
that p holds for each element.

takeWhile :: (a→ Bool)→ List a→ List a
takeWhile p [] = []
takeWhile p (x : xs) | p x = x : takeWhile p xs

| otherwise = [] .

• dropWhile p xs drops the prefix from xs .

dropWhile :: (a→ Bool)→ List a→ List a
dropWhile p [] = []
dropWhile p (x : xs) | p x = dropWhile p xs

| otherwise = x : xs .

• Prove: takeWhile p xs ++ dropWhile p xs = xs .

5

List Reversal

• reverse [1, 2, 3, 4] = [4, 3, 2, 1].

reverse :: List a→ List a
reverse [] = []
reverse (x : xs) = reverse xs ++[x] .

All Prefixes and Suffixes

• inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]]

inits :: List a→ List (List a)
inits [] = [[]]
inits (x : xs) = [] : map (x :) (inits xs) .

• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []]

tails :: List a→ List (List a)
tails [] = [[]]
tails (x : xs) = (x : xs) : tails xs .

Totality

• Structure of our definitions so far:

f [] = . . .
f (x : xs) = . . . f xs . . .

– Both the empty and the non-empty cases
are covered, guaranteeing there is a match-
ing clause for all inputs.

– The recursive call is made on a “smaller” ar-
gument, guranteeing termination.

• Together they guarantee that every input is
mapped to some output. Thus they define total
functions on lists.

1.2.3 Other Patterns of Induction

Variations with the Base Case

• Some functions discriminate between several
base cases. E.g.

fib :: Nat → Nat
fib 0 = 0
fib 1 = 1
fib (2 + n) = fib (1+n) + fib n .

• Some functions make more sense when it is de-
fined only on non-empty lists:

f [x] = . . .
f (x : xs) = . . .

• What about totality?

– They are in fact functions defined on a dif-
ferent datatype:

data List+ a = Singleton a | a : List+ a .

– We do not want to define map, filter again
for List+ a. Thus we reuse List a and pre-
tend that we were talking about List+ a.

– It’s the same with Nat . We embedded Nat
into Int .

– Ideally we’d like to have some form of sub-
typing. But that makes the type system
more complex.

Lexicographic Induction

• It also occurs often that we perform lexicographic
induction on multiple arguments: some argu-
ments decrease in size, while others stay the
same.

• E.g. the function merge merges two sorted lists
into one sorted list:

merge :: List Int → List Int → List Int
merge [] [] = []
merge [] (y : ys) = y : ys
merge (x : xs) [] = x : xs
merge (x : xs) (y : ys) | x ⩽ y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys .

Zip
Another example:

zip :: List a→ List b→ List (a, b)
zip [] [] = []
zip [] (y : ys) = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys .

Non-Structural Induction

• In most of the programs we’ve seen so far, the re-
cursive call are made on direct sub-components
of the input (e.g. f (x : xs) = ..f xs..). This is
called structural induction.

– It is relatively easy for compilers to recog-
nise structural induction and determine that
a program terminates.

• In fact, we can be sure that a program terminates
if the arguments get “smaller” under some (well-
founded) ordering.

6

Mergesort

• In the implemenation of mergesort below, for ex-
ample, the arguments always get smaller in size.

msort :: List Int → List Int
msort [] = []
msort [x] = [x]
msort xs = merge (msort ys) (msort zs) ,
where n = length xs ‘div ‘ 2

ys = take n xs
zs = drop n xs .

– What if we omit the case for [x]?

• If all cases are covered, and all recursive calls are
applied to smaller arguments, the program de-
fines a total function.

A Non-Terminating Definition

• Example of a function, where the argument to the
recursive does not reduce in size:

f :: Int → Int
f 0 = 0
f n = f n .

• Certainly f is not a total function. Do such defini-
tions “mean” something? We will talk about these
later.

1.3 User Defined Inductive Datatypes
Internally Labelled Binary Trees

• This is a possible definition of internally labelled
binary trees:

data ITree a = Null | Node a (ITree a) (ITree a) ,

• on which we may inductively define functions:

sumT :: ITree Nat → Nat
sumT Null = 0
sumT (Node x t u) = x+ sumT t+ sumT u .

Exercise: given (↓) :: Nat → Nat → Nat , which
yields the smaller one of its arguments, define the fol-
lowing functions

1. minT :: Tree Nat → Nat , which computes the
minimal element in a tree.

2. mapT :: (a → b) → Tree a → Tree b, which
applies the functional argument to each element
in a tree.

3. Can you define (↓) inductively on Nat? 4

4In the standard Haskell library, (↓) is called min .

Induction Principle for Tree

• What is the induction principle for Tree?

• To prove that a predicate P on Tree holds for ev-
ery tree, it is sufficient to show that

1. P Null holds, and;

2. for every x, t, and u, if P t and P u holds,
P (Node x t u) holds.

• Exercise: prove that for all n and t,
minT (mapT (n+) t) = n + minT t. That is,
minT ·mapT (n+) = (n+) ·minT .

Induction Principle for Other Types

• Recall that data Bool = False | True . Do we
have an induction principle for Bool?

• To prove a predicate P on Bool holds for all
booleans, it is sufficient to show that

1. P False holds, and

2. P True holds.

• Well, of course.

• What about (A×B)? How to prove that a pred-
icate P on (A×B) is always true?

• One may prove some property P1 on A and some
property P2 on B, which together imply P .

• That does not say much. But the “induction prin-
ciple” for products allows us to extract, from a
proof of P , the proofs P1 and P2.

• Every inductively defined datatype comes with its
induction principle.

• We will come back to this point later.

2 Program Derivation

2.1 Some Comments on Efficiency
Data Representation

• So far we have (surprisingly) been talking about
mathematics without much concern regarding ef-
ficiency. Time for a change.

• Take lists for example. Recall the definition:
data List a = [] | a : List a.

• Our representation of lists is biased. The left most
element can be fetched immediately.

7

– Thus. (:), head , and tail are constant-time
operations, while init and last takes linear-
time.

• In most implementations, the list is represented
as a linked-list.

List Concatenation Takes Linear Time

• Recall (++):

[] ++ ys = ys
(x : xs)++ ys = x : (xs ++ ys)

• Consider [1, 2, 3]++[4, 5]:

(1 : 2 : 3 : [])++(4 : 5 : [])
= 1 : ((2 : 3 : [])++(4 : 5 : []))
= 1 : 2 : ((3 : [])++(4 : 5 : []))
= 1 : 2 : 3 : ([] ++(4 : 5 : []))
= 1 : 2 : 3 : 4 : 5 : []

• (++) runs in time proportional to the length of its
left argument.

Full Persistency

• Compound data structures, like simple values, are
just values, and thus must be fully persistent.

• That is, in the following code:

let xs = [1, 2, 3]
ys = [4, 5]
zs = xs ++ ys

in . . . body . . .

• The body may have access to all three values.
Thus ++ cannot perform a destructive update.

Linked v.s. Block Data Structures

• Trees are usually represented in a similar manner,
through links.

• Fully persistency is easier to achieve for such
linked data structures.

• Accessing arbitrary elements, however, usually
takes linear time.

• In imperative languages, constant-time random
access is usually achieved by allocating lists (usu-
ally called arrays in this case) in a consecutive
block of memory.

• Consider the following code, where xs is an array
(implemented as a block), and ys is like xs , apart
from its 10th element:

let xs = [1..100]
ys = update xs 10 20

in . . . body . . .

• To allow access to both xs and ys in body , the
update operation has to duplicate the entire ar-
ray.

• Thus people have invented some smart data
structure to do so, in around O(log n) time.

• On the other hand, update may simply overwrite
xs if we can somehow make sure that nobody
other than ys uses xs .

• Both are advanced topics, however.

Another Linear-Time Operation

• Taking all but the last element of a list:

init [x] = []
init (x : xs) = x : init xs

• Consider init [1, 2, 3, 4]:

init (1 : 2 : 3 : 4 : [])
= 1 : init (2 : 3 : 4 : [])
= 1 : 2 : init (3 : 4 : [])
= 1 : 2 : 3 : init (4 : [])
= 1 : 2 : 3 : []

Sum, Map, etc

• Functions like sum , maximum , etc. needs to tra-
verse through the list once to produce a result. So
their running time is definitely O(n), where n is
the length of the list.

• If f takes time O(t), map f takes time O(n × t)
to complete. Similarly with filter p.

– In a lazy setting, map f produces its first re-
sult in O(t) time. We won’t need lazy fea-
tures for now, however.

2.2 Expand/Reduce Transformation
Sum of Squares

• Given a sequence a1,a2,. . . ,an, compute a21 +
a22 + . . . + a2n. Specification: sumsq = sum ·
map square.

• The spec. builds an intermediate list. Can we
eliminate it?

8

1

: :

2

:

3

[] :

4

:

5

[]xs ys

: : :zs

Figure 1: How (++) allocates new (:) cells in the heap.

• The input is either empty or not. When it is
empty:

sumsq []
= { definition of sumsq }

(sum ·map square) []
= { function composition }

sum (map square [])
= { definition of map }

sum []
= { definition of sum }

0

Sum of Squares, the Inductive Case

• Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)
= { definition of sum }

square x+ sum (map square xs)
= { definition of sumsq }

square x+ sumsq xs

Alternative Definition for sumsq

• From sumsq = sum · map square, we have
proved that

sumsq [] = 0
sumsq (x : xs) = square x+ sumsq xs

• Equivalently, we have shown that
sum ·map square is a solution of

f [] = 0
f (x : xs) = square x+ f xs

• However, the solution of the equations above is
unique.

• Thus we can take it as another definition of
sumsq. Denotationally it is the same function;
operationally, it is (slightly) quicker.

• Exercise: try calculating an inductive definition of
count .

Remark: Why Functional Programming?

• Time to muse on the merits of functional pro-
gramming. Why functional programming?

– Algebraic datatype? List comprehension?
Lazy evaluation? Garbage collection? These
are just language features that can be mi-
grated.

– No side effects.5 But why taking away a lan-
guage feature?

• By being pure, we have a simpler semantics in
which we are allowed to construct and reason
about programs.

– In an imperative language we do not even
have f 4 + f 4 = 2× f 4.

• Ease of reasoning. That’s the main benefit we get.

Example: Computing Polynomial
Given a list as = [a0, a1, a2 . . . an] and x :: Int, the

aim is to compute:

a0 + a1x+ a2x
2 + ...+ anx

n.

This can be specified by

poly x as = sum (zipWith (×) as (iterate (×x) 1)) ,

where iterate can be defined by

iterate :: (a → a)→ a → List a
iterate f x = x :map f (iterate f x) .

Iterating a List
To get some intuition about iterate let us try ex-

panding it:

5Unless introduced in disciplined ways. For example, through a
monad.

9

iterate f x
= { definition of iterate }
x :map f (iterate f x)

= { definition of map }
x :map f (x :map f (iterate f x))

= { map fusion }
x : f x :map (f · f) (iterate f x)

= { definitions of iterate and map }
x : f x : f (f x) :map (f · f) (map f (iterate f x))

= { map fusion }
x : f x : f (f x) :map (f · f · f) (iterate f x) . . .

Zipping with a Binary Operator
While iterate generate a list, it is immediately trun-

cated by zipWith :

zipWith :: (a → b → c)→
List a → List b → List c

zipWith (⊕) [] = []
zipWith (⊕) (x : xs) [] = []
zipWith (⊕) (x : xs) (y : ys) =

x ⊕ y : zipWith (⊕) xs ys .

Running the Specification
Try expanding poly x [a, b, c, d], we get

poly x [a, b, c, d]
= sum (zipWith (×) [a, b, c, d] (iterate (×x) 1))
= { expanding iterate }

sum (zipWith (×) [a, b, c, d]
(1 : (1× x) : (1× x × x) : (1× x × x × x) :
map (×x)4 (iterate (×x) 1)))

= a + b × x + c × x × x + d × x × x × x .

where f 4 denotes f · f · f · f .
As the list gets longer, we get more (×x) accumu-

lating. Can we do better?

The main calculation
poly x (a : as)

= { definition of poly }
sum (zipWith (×) (a : as) (iterate (×x) 1))

= { definition of iterate }
sum (zipWith (×) (a : as)
(1 :map (×x) (iterate (×x) 1)))

= { definitions of zipWith and sum }
a + sum (zipWith (×) as
(map (×x) (iterate (×x) 1)))

= { see below }
a + sum (map (×x) (zipWith (×)
as (iterate (×x) 1)))

= { sum ·map (×x) = (×x) · sum }
a + (sum (zipWith (×) as (iterate (×x) 1)))× x

= { definition of poly }
a + (poly x as)× x .

Zip-Map Exchange
In the 4th step we used the property

zipWith (×) as · map (×x) = map (×x) ·
zipWith (×) as .

It applies to any operator (⊗) that is associative. For
an intuitive understanding:

zipWith (⊗) [a, b, c] (map (⊗x) [d , e, f])
= [a ⊗ (d ⊗ x), b ⊗ (e ⊗ x), c ⊗ (f ⊗ x)]
= { associativity: m ⊗ (n ⊗ k) = (m ⊗ n)⊗ k }

[(a ⊗ d)⊗ x , (b ⊗ e)⊗ x , (c ⊗ f)⊗ x]
= map (⊗x) (zipWith (⊗) [a, b, c] [d , e, f]) .

We can do a formal proof if we want.

Distributivity
In the 5th step we used the property sum ·

map (×x) = (×x) · sum . For that we need distribu-
tivity between addition and multiplication.

We used that law to push sum to the right.
This is the crucial property that allows us to speed

up poly : we are allowed to factor out common (×x).

Computing Polynomial
To conclude, we get:

poly x [] = 0
poly x (a : as) = a + (poly as)× x ,

which uses a linear number of (×).

Let the Symbols Do the Work!
How do we know what laws to use or to assume?
By observing the form of the expressions. Let the

symbols do the work.

2.3 Tupling

Steep Lists

• A steep list is a list in which every element is larger
than the sum of those to its right:

steep :: List Int → Bool
steep [] = True
steep (x : xs) = steep xs ∧ x > sum xs .

• The definition above, if executed directly, is an
O(n2) program. Can we do better?

• Just now we learned to construct a generalised
function which takes more input. This time, we
try the dual technique: to construct a function re-
turning more results.

10

Generalise by Returning More

• Recall that fst (a, b) = a and snd (a, b) = b.

• It is hard to quickly compute steep alone. But if
we define

steepsum :: List Int → (Bool × Int)
steepsum xs = (steep xs, sum xs),

• and manage to synthesise a quick definition of
steepsum , we can implement steep by steep =
fst · steepsum .

• We again proceed by case analysis. Trivially,

steepsum [] = (True, 0).

Deriving for the Non-Empty Case
For the case for non-empty inputs:

steepsum (x : xs)
= { definition of steepsum }

(steep (x : xs), sum (x : xs))
= { definitions of steep and sum }

(steep xs ∧ x > sum xs, x+ sum xs)
= { extracting sub-expressions involving xs }

let (b, y) = (steep xs, sum xs)
in (b ∧ x > y, x+ y)

= { definition of steepsum }
let (b, y) = steepsum xs
in (b ∧ x > y, x+ y).

Synthesised Program
We have thus come up with a O(n) time program:

steep = fst · steepsum
steepsum [] = (True, 0)
steepsum (x : xs) = let (b, y) = steepsum xs

in (b ∧ x > y, x+ y),

BeingQuicker by Doing More?

• A more generalised program can be implemented
more efficiently?

– A common phenomena! Sometimes the less
general function cannot be implemented in-
ductively at all!

– It also often happens that a theorem needs
to be generalised to be proved. We will see
that later.

• An obvious question: how do we know what gen-
eralisation to pick?

• There is no easy answer — finding the right gen-
eralisation one of the most difficulty act in pro-
gramming!

• Sometimes we simply generalise by examining
the form of the formula.

2.4 Accumulating Parameters

Reversing a List

• The function reverse is defined by:

reverse [] = [],
reverse (x : xs) = reverse xs ++[x].

• E.g. reverse [1, 2, 3, 4] =
((([] ++[4])++[3])++[2])++[1] = [4, 3, 2, 1].

• But how about its time complexity? Since (++) is
O(n), it takes O(n2) time to revert a list this way.

• Can we make it faster?

2.4.1 Fast List Reversal

Introducing an Accumulating Parameter

• Let us consider a generalisation of reverse . De-
fine:

revcat :: List a→ List a→ List a
revcat xs ys = reverse xs ++ ys .

• If we can construct a fast implementation of
revcat , we can implement reverse by:

reverse xs = revcat xs [].

Reversing a List, Base Case
Let us use our old trick. Consider the case when xs

is []:

revcat [] ys
= { definition of revcat }

reverse [] ++ ys
= { definition of reverse }

[] ++ ys
= { definition of (++) }

ys.

11

Reversing a List, Inductive Case
Case x : xs :

revcat (x : xs) ys
= { definition of revcat }

reverse (x : xs)++ ys
= { definition of reverse }

(reverse xs ++[x]) ++ ys
= { since (xs ++ ys)++ zs = xs ++(ys ++ zs) }

reverse xs ++([x] ++ ys)
= { definition of revcat }

revcat xs (x : ys).

Linear-Time List Reversal

• We have therefore constructed an implementa-
tion of revcat which runs in linear time!

revcat [] ys = ys
revcat (x : xs) ys = revcat xs (x : ys).

• A generalisation of reverse is easier to implement
than reverse itself? How come?

• If you try to understand revcat operationally, it is
not difficult to see how it works.

– The partially reverted list is accumulated in
ys.

– The initial value of ys is set by reverse xs =
revcat xs [].

– Hmm… it is like a loop, isn’t it?

2.4.2 Tail Recursion and Loops

Tracing Reverse

reverse [1, 2, 3, 4]
= revcat [1, 2, 3, 4] []
= revcat [2, 3, 4] [1]
= revcat [3, 4] [2, 1]
= revcat [4] [3, 2, 1]
= revcat [] [4, 3, 2, 1]
= [4, 3, 2, 1]

reverse xs = revcat xs []
revcat [] ys = ys
revcat (x : xs) ys = revcat xs (x : ys)

xs, ys ← XS , [];
while xs ̸= [] do

xs, ys ← (tail xs), (head xs : ys);
return ys

Tail Recursion

• Tail recursion: a special case of recursion in which
the last operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x′

1 . . . x′
n

• To implement general recursion, we need to keep
a stack of return addresses. For tail recursion, we
do not need such a stack.

• Tail recursive definitions are like loops. Each xi is
updated to x′

i in the next iteration of the loop.

• The first call to f sets up the initial values of each
xi.

Accumulating Parameters

• To efficiently perform a computation (e.g.
reverse xs), we introduce a generalisation with
an extra parameter, e.g.:

revcat xs ys = reverse xs ++ ys .

• Try to derive an efficient implementation of the
generalised function. The extra parameter is usu-
ally used to “accumulate” some results, hence the
name.

– To make the accumulation work, we usually
need some kind of associativity.

• A technique useful for, but not limited to, con-
structing tail-recursive definition of functions.

Accumulating Parameter: Another Example

• Recall the “sum of squares” problem:

sumsq [] = 0
sumsq (x : xs) = square x+ sumsq xs .

• The program still takes linear space (for the stack
of return addresses). Let us construct a tail recur-
sive auxiliary function.

• Introduce ssp xs n = sumsq xs + n.

• Initialisation: sumsq xs = ssp xs 0.

• Construct ssp:

ssp [] n = 0 + n = n
ssp (x : xs) n = (square x+ sumsq xs) + n

= sumsq xs + (square x+ n)
= ssp xs (square x+ n).

12

2.5 Conclusions
Conclusions

• Let the symbols do the work!

– Algebraic manipulation helps us to sepa-
rate the more mechanical parts of reasoning,
from the parts that needs real innovation.

• For more examples of fun program calculation,
see Bird [Bir10].

• For a more systematic study of algorithms using
functional program reasoning, see Bird and Gib-
bons [BG20].

3 Monads and Effects
It is a misconception that functional languages do not
allow side effects. In fact, many of them allow a variety
of effects.

It is just that side effects must be introduced in a
disciplined manner.

Disciplined? Such that we can use side effects, and
still be able to reason about programs.

Side Effects
Anything a function does other than returning a

value:

• reading/writing to a mutable variable,

• raising an exception,

• file/terminal I/O,

• asking for the current time,

• tossing a coin / generating a random number,

• partialty (possible failure),

• non-determinism,

• non-termination… and many more.

How to talk about all these effects?
Hint: in functional programming, everything is a

function!

Modelling Effects

• Given

data Maybe a = Return a | Exception Msg ,

a function mapping A to B, possibly raising an
exception, can be modelled by A→ Maybe B.

• Given a global mutable variable of type S, a com-
putation that may modify the variable can be
modelled by a function S→ S.

• A computation that emits a value of type B while
modifying the said variable is modelled by S →
(B,S).

• What about a function that maps A to B and may
possibly modify the said variable of type S?

Example: A Pure Expression Evalulator
Consider the following type of expressions:

data Expr = Num Int | Neg Expr | Add Expr Expr .

How to evaluate an expression?

eval :: Expr→ Int
eval (Num n) = n
eval (Neg e) = −(eval e)
eval (Add e1 e2) = eval e1 + eval e2 .

3.1 Exceptions
What if we have division?

data Expr = Num Int | Neg Expr | Add Expr Expr
| Div Expr Expr .

Division by zero should raise an exception.
We use the datatype Maybe in the Haskell Prelude:

data Maybe a = Just a | Nothing .

A value of type Maybe a might contain an a , or noth-
ing.

What about letting eval return Maybe Int?
Hmm… let’s try.

eval :: Expr→ Maybe Int
eval (Num n) = Just n
eval (Neg e) =

case eval e of
Just v → Just (−v)
Nothing→ Nothing

eval (Add e0 e1) =
case eval e0 of

Just v0 → case eval e1 of
Just v1 → Just (v0 + v1)
Nothing→ Nothing

Nothing→ Nothing

eval (Div e0 e1) =
case eval e1 of

Just v1 → if v1 = = 0 then Nothing
else case eval e0 of
Just v0 → Just (div v0 v1)
Nothing→ Nothing

Nothing→ Nothing

Hmmm.. a bit repetitive, isn’t it?

13

Needing some Abstraction…
The idea is to represent a function A→ B that may

fail (that is, a partial function) by a total function A→
Maybe B.

It works!
It is just rather tedious because we suddenly have

lots of repetitive details to take care of.
This is when we need some abstraction.

Return and Bind for Maybe
Observing the repetitive pattern, if we define

(>>=) :Maybe a → (a → Maybe b)→ Maybe b
mx >>= f = case mx of
Just x → f x
Nothing→ Nothing ,

(where (>>=) is pronounced “bind“) or equivalently,

(>>=) :Maybe a → (a → Maybe b)→ Maybe b
Just x >>= f = f x
Nothing >>= f = Nothing ,

and, for reasons to be clear later, let return = Just…
The function eval can be abbreviated to:

eval (Num n) = return n
eval (Neg e) = eval e >>= λv → return (−v)
eval (Add e0 e1) = eval e0 >>= λv0 →

eval e1 >>= λv1 →
return (v0 + v1)

eval (Div e0 e1) = eval e1 >>= λv1 →
if v1 = = 0 then Nothing
else eval e0 >>= λv0 →

return (v0 ‘div ‘ v1) .

Effects Are Marked by Types
Notice how we mark the existence of side effects by

types.

• a denotes a pure value;

• while Maybe a is an effectful computation that
may return a value of type a , or fail.

The principle applies to other effects in this lecture.
Each effect will be represented by a type.

Monads, Generally Speaking
Maybe is just one instance. Generally speaking,

a type constructor m and two operators return and
(>>=) constitute a monad :

class Monad m where
return :: a → m a
(>>=) ::m a → (a → m b)→ m b .

That’s not all — return and (>>=) are supposed to
satisfy some properties, to be discussed later.

Monads Denote Computation
Let m be a monad. We often use m a to denote a

computation that, if executed, might yield a result of
type a .

Executing the computation may incur some side ef-
fects.

• Failing to return a result is a side effect.

• We will see examples of other side effects.

For e :: a , return e :: m a denotes a computation
that simply returns e , with no side effects.

What Is This (>>=) All About?
Bind (>>=) is like an enhanced function application:

• f x , where f :: A→ B and x :: A, applies f to x .

• Recall that m a denotes a computation that may
yield a value of type a , while also incurs some side
effects.

• p>>=f , where f ::A→ m B and p ::m A, also “ap-
plies” f to p. However, evaluating p might incur
some side effects. If the computation succeeds,
we may extract some value of type A, which is
passed to f , which in turn yields a computation
m B.

Failure and Catching
The idea of exception handling is not tied to the

datatype Maybe. To be more general, let

fail = Nothing .

We can also define

catch ::Maybe a → Maybe a → Maybe a
catch (Just x) hdl = Just x
catch Nothing hdl = hdl .

Consecutive Product
How to multiply a sequence of numbers?

prod [] = 1
prod (x : xs) = x × prod xs .

Hmm… can we stop early when there is a zero?

work [] = return 1
work (0 : xs) = fail
work (x : xs) = work xs >>= λy →

return (x × y) ,

fastprod xs = catch (work xs) (return 0) .

How do we show that fastprod is “correct”?
We want to prove that, for all xs ,

fastprod xs = return (prod xs) .

Hmm… we need to know some more properties of
return , (>>=), fail and catch .

14

3.2 Environments
For the next example we want to allow expressions to
have let-defined local variables, e.g.

let x = 3 in x + (let x = 4 in x) + (−x)

should evaluate to 3 + 4 + (−3) = 4.

Extending Expr
To represent such expressions we extend the Expr

type

data Expr = Num Int | Neg Expr | Add Expr Expr
| Var Name | Let Name Expr Expr ,

where type Name = String.
The previous expression can be represented by:

Let "x" (Num 3)
(Add (Add "x" (Let "x" (Num 4) (Var "x")))
(Neg (Var "x"))) .

Environment
So, what is the value of x + 2?
We don’t know, unless we know the value of x .
An environment is a mapping from variables to val-

ues. For now, we denote it by:

type Env = [(Name, Int)] .

We can also define a function lookup :: Env →
Maybe Int.

The meaning of an expression is Env→ Int.

Evaluating an Expression Given an Environ-
ment

Now our eval converts an Expr to Env→ Int.

eval :: Expr→ Env→ Int
eval (Num n) env = n
eval (Neg e) env = −(eval e env)
eval (Add e0 e1) env =
eval e0 env + eval e1 env .

Looking up Variables
When we encounter a variable, we look up the envi-

ronment:

eval (Var x) env =
case lookup env x of Just v → v .

Wait, what if lookup returns Nothing?
To be discussed later. For now, we just let eval (truly)

fail.

Extending Environment
To evaluate let x = e0 in e1, we evaluate e0, and

evaluate e1 in an extended environment:

eval (Let x e0 e1) env =
let v = eval e0 env
in eval e1 ((x , v) : env) .

Env→ a is a Monad
Again, that works. However, manually passing the

environment around can be error-prone. We can hide
the details in a monad — called a Reader monad by
convention.

Define type Reader e a = e → a , and

return :: a → Reader a
return x env = x ,

(>>=) :: Reader a → (a → Reader b)→ Reader b
(mx >>= f) env = f (mx env) env .

Evaluation in a Reader Monad
Now we redefine eval using return and (>>=). The

first three cases are:

eval :: Expr→ Reader Int
eval (Num n) = return n
eval (Neg e) = eval e >>= λv → return (−v)
eval (Add e0 e1) = eval e0 >>= λv0 →

eval e1 >>= λv1 →
return (v0 + v1) .

Exactly the same as that in Maybe monad! We have
indeed discovered a common pattern.

Retrieving and Updating the Environment
For the next two cases we define two methods.
Function ask returns the envionment:

ask :: Reader Env
ask env = env ,

while local updates the environment:

local :: (Env→ Env)→ Reader a → Reader a
local f p env = p (f env) .

eval continued…
We may then define:

eval (Var x) =
ask >>= λenv →
case lookup env x of Just v → return v

eval (Let x e0 e1) =
eval e0 >>= λv →
local ((x , v):) (eval e1) .

15

A Slight Generalisation
For ease of discussion we have assumed that the

type of the environment is fixed to Env.
We can generalize Env to a parameter. That is,

type Reader e a = e → a

What are the types of return , (>>=), ask , and local?
What about their implementations?

In Reality…
To overload the same symbols (return and (>>=)) for

both Maybe and Reader, they have to be declared in-
stances of type class Monad.

However, the type system of Haskell has a limita-
tion that type synonyms cannot be instances of type
classes.

Instance Declaration
Therefore we have to wrap e → a in a data defini-

tion: 6

data Reader e a = Rdr (e → a)

instance Monad (Reader e) where
return x = Rdr (λenv → x)
Rdr mx >>= f = Rdr (λenv → f (mx env) env) .

Functor and Applicative Instances
Furthermore, a monad is also an instance of some

other useful mathematical structures, such as an ap-
plicative functor, that are also useful in Haskell.

To reflect that, Haskell wants us to declare:

instance Functor (Reader e) where
fmap = liftM

instance Applicative (Reader e) where
pure = return
(⟨∗⟩) = ap

You need to do so for every monad you define.
We cannot cover the details in this lecture, unfortu-

nately.

What About Missing Variables?
But wait… what if lookup cannot find the variable?
Our program has to return an exception.
Therefore we actually need a monad that allows two

effects.
Hmmm… what about the following type:

type RE e a = e → Maybe a ?

How do we implement the following functions?

6In fact people generally use a newtype in this case, which is
different fromdata in subtle ways. But we choose not to complicate
the matter.

return :: a → RE e a
(>>=) :: RE e a → (a → RE e b)→ RE e b
fail :: RE e a
catch :: RE e a → RE e a → RE e a
ask :: RE e e
local :: (e → e)→ RE e a → RE e a

3.3 A Top-Down View of Monads
So far we have seen two examples of talking about ef-
fects using monads.

• Exception is modelled by the type Maybe, with
two methods fail and catch .

• Reading from a context is modelled by the type
Reader, with methods ask and local .

• Wait… we actually have three examples: we
needed a monad having both effects, and both
their methods.

What about the general pattern?

To Talk About An Effect
Say you want to model an effect (or the combination

of some effects) in your program.

• Think about what operations (methods) this ef-
fect may need,

• and what properties they should satisfy.

• Create a datatype modelling this effect.

• Implement its return and (>>=),

• and its methods, such that all properties are in-
deed satisfied.

Monad Laws
return and (>>=) cannot be implemented arbitrarily.

To model computations property, it is demanded that
they satisfy the following monad laws:

left identity return x >>= k = k x ,

right identity mx >>= return = mx ,

associativity (mx >>= k1)>>= k2 =

mx >>= (λx → k1 x >>= k2) .

Laws Regarding Exceptions
For exceptions, we may want the following proper-

ties:

catch fail h = h ,

catch mx fail = m ,

catch mx (catch h h ′) = catch (catch m h) h ′ .

16

Note that means catch and fail form a monoid.
And this is how catch and fail interact with return

and (>>=).

catch (return x) h = return x ,

fail >>= f = fail ,

Looks reasonable… what about when catch meets
(>>=)? Do we have

catch mx h >>= f = catch (mx >>= f) (h >>= f) ?

Unfortunately no. See the practicals.

Laws Regarding Readers
For readers, we may want the following properties.

Firstly, regarding ask ,

ask >>= λv → return e = return e ,
ask >>= λv0 → ask >>= λv1 → f v0 v1 =
ask >>= λv → f v v .

Secondly, regarding local :

local g (return e) = return e ,
local g (p >>= f) = local g p >>= (local g · f) .

Finally, when local meets ask :

local g ask = ask >>= (return · g) .

Separation of Concerns
The laws are used to reason about monadic pro-

grams — assuming that the monad exists and obey the
laws.

Independently, we design a datatype for the monad
and implement the methods, ensuring that they satisfy
the laws.

Combining Effects?
It is known that monads are difficult to compose, in

the sense that once two monads are implemented, it
is hard to combine them to form a monad having both
their effects.

However, properties of effects are easy to compose:
just take the union (and “tensor”) of all their proper-
ties.

3.4 Interlude: Alternative Notations
The do Notation

To simplify and encourage the use of monads,
Haskell provides a more concise notation, enclosed in
the keyword do. For example:

eval :: Expr→ Reader Int
eval (Num n) = return n
eval (Neg e) = do v ← eval e

return (−v)
eval (Add e0 e1) = do v0 ← eval e0

v1 ← eval e1
return (v0 + v1)

eval (Var x) = do env ← ask
case lookup env x of Just v → return v

eval (Let x e0 e1) = do v ← eval e0
local ((x , v):) (eval e1) .

Not Assignments!
It gives you an impression that you were writing an

imperative program. Doesn’t v ← eval e look like
“assign the value of eval e to variable e?

In fact, v ← eval e is closer to let in nature: it
declares a new local variable v , whose scope extends to
the end of the do-block. It can be shadowed by other
bindings, like in let.

Translation
To be more precise, this is how a program using do

is translated to monadic operators:

do {e } = e
do {e; es } = e >>= \ → do {es }
do {x ← e; es } = e >>= λx → do {es }
do {let x = e; es } = let x = e in do {es } .

Monad Laws with do Notation
In this course we do not use do a lot, since I prefer to

see the (>>=) operator for reasoning. However, use of
do notation is predominant in practical monadic pro-
grams.

It is certainly possible to reason about programs us-
ing do notation. The monad laws, for example, are
written:

do {y ← return x ; k y } = do {k x } ,
do {x ← mx ; return x } = do {mx } ,
do {x ← mx ; y ← k1 x ; k2 y } =
do {y ← do {x ← mx ; k1 x }; k2 y } .

Which do you prefer?

Functor and Applicative, Again
To another extreme, we have operators that makes

monadic programs more like expressions.

(⟨$⟩) :: ...⇒ (a → b)→ m a → m b
f ⟨$⟩mx = mx >>= λx → return (f x) ,

(⟨∗⟩) :: ...⇒ m (a → b)→ m a → m b
mf ⟨∗⟩mx = mf >>= λf → mx >>= λx →

return (f x) .

17

They are related to the Functor and Applicative
class, but we do not go into the details.

With them, eval can be defined as:

eval (Num n) = return n
eval (Neg e) = (0−) ⟨$⟩ eval e
eval (Add e0 e1) = (+) ⟨$⟩ eval e0 ⟨∗⟩ eval e1
...

3.5 State
In the state effect, we have one, anonymous global mu-
table variable of type s , and two methods:

• get retrieves the value of the mutable variable;

• put v assigns the value v to the mutable variable.

State, get , and put
If “a program that returns a value of type a while

having access to a mutable variable of type s” is rep-
resented by a type State s a , the two methods have
type:

get :: State s s
put :: s → State s () .

The monad operators have types:

return :: a → State s a
(>>=) :: State s a → (a → State s b)→ State s b .

The “Semicolon”
Note that put returns (), since put itself does not

yield information. We use it merely for its side effect.
The value returned by put can be discarded.
Since it happens a lot we define a variation of (>>=):

(>>) ::Monad m ⇒ m a → m b → m b
mx >>my = mx >>= \ → my .

It is like a ”semicolon” in imperative programs.

Laws For get and put
It should be reasonable to demand that they satisfy

the following laws:

get-put get >>= put = return () ,

put-get put e >> get = put e >> return e ,

put-put put e0 >> put e1 = put e1 ,

and a law similar to that of ask :

get-get get >>= λv0 →
get >>= λv1 → f v0 v1 =

get >>= λv → f v v

Reasoning about Stateful Programs
With these laws we can already reason about pro-

grams that manipulate states.
See the practicals.

Implementation of State
And how do we implement State?
“A program that returns a value of type a while be-

ing able to read from and write to a mutable variable
of type s” can be represented by a function:

type State s = s → (a, s) .

• Like Reader, the function takes the initial value of
the variable as its input;

• unlike Reader, it returns not just an a , but also the
new value of the mutable variable.

Implementing return and (>>=) for State
How do we implement the monad operators for

State? Try it yourself before checking the answers be-
low..!

return :: a → State s a
return x s = (x , s) ,

(>>=) :: State s a → (a → State s b)→ State s b
(mx >>= k) s0 = let (y , s1) = mx s0

in k y s1 .

Implementing get and put

And how do we implement get and put?

get :: State s s
get s = (s, s) ,

put :: s → State s ()
put s1 s0 = ((), s1) .

In Reality…
Again, due to the limitation of Haskell’s type sys-

tem, the real code is not that sleek…

data State s a = St (s → (a, s)) .

instance Monad (State s) where
return x = St ...
St mx >>= k = St ...

Try finishing them yourself!

18

References
[BG20] Richard S. Bird and Jeremy Gibbons. Algo-

rithm Design with Haskell. Cambridge Uni-
versity Press, 2020.

[Bir98] Richard S. Bird. Introduction to Functional
Programming using Haskell. Prentice Hall,
1998.

[Bir10] Richard S. Bird. Pearls of Functional Algo-
rithm Design. Cambridge University Press,
2010.

[Hut16] Graham Hutton. Programming in Haskell,
2nd Edition. Cambridge University Press,
2016.

[Lip11] Miran Lipovača. Learn You a
Haskell for Great Good! No Starch
Press, 2011. Available online at
http://learnyouahaskell.com/.

[Oka99] Chris Okasaki. Red-black trees in a func-
tional setting. Journal of Functional Program-
ming, 9(4):471–477, 1999.

[OSG98] Bryan O’Sullivan, Don Stewart, and John
Goerzen. Real World Haskell. O’Reilly,
1998. Available online at http://book.

realworldhaskell.org/.

19

A GHCi Commands

⟨statement⟩ evaluate/run ⟨statement⟩
: repeat last command
:\{\n ..lines.. \n:\}\n} multiline command
:add [*]<module> ... add module(s) to the current target set
:browse[!] [[*]<mod>] display the names defined by module <mod> (!: more details; *: all

top-level names)
:cd <dir> change directory to <dir>

:cmd <expr> run the commands returned by <expr>::IO String

:ctags[!] [<file>] create tags file for Vi (default: "tags") (!: use regex instead of line
number)

:def <cmd> <expr> define command :<cmd> (later defined command has precedence,
::<cmd> is always a builtin command)

:edit <file> edit file
:edit edit last module
:etags [<file>] create tags file for Emacs (default: "TAGS")
:help, :? display this list of commands
:info [<name> ...] display information about the given names
:issafe [<mod>] display safe haskell information of module <mod>
:kind <type> show the kind of <type>
:load [*]<module> ... load module(s) and their dependents
:main [<arguments> ...] run the main function with the given arguments
:module [+/-] [*]<mod> ... set the context for expression evaluation
:quit exit GHCi
:reload reload the current module set
:run function [<arguments> ...] run the function with the given arguments
:script <filename> run the script <filename>
:type <expr> show the type of <expr>
:undef <cmd> undefine user-defined command :<cmd>

:!<command> run the shell command <command>

Commands for debugging

:abandon at a breakpoint, abandon current computation
:back go back in the history (after :trace)
:break [<mod>] <l> [<col>] set a breakpoint at the specified location
:break <name> set a breakpoint on the specified function
:continue resume after a breakpoint
:delete <number> delete the specified breakpoint
:delete * delete all breakpoints
:force <expr> print <expr>, forcing unevaluated parts
:forward go forward in the history (after :back)
:history [<n>] after :trace, show the execution history
:list show the source code around current breakpoint
:list identifier show the source code for <identifier>
:list [<module>] <line> show the source code around line number <line>
:print [<name> ...] prints a value without forcing its computation
:sprint [<name> ...] simplifed version of :print
:step single-step after stopping at a breakpoint
:step <expr> single-step into <expr>

:steplocal single-step within the current top-level binding
:stepmodule single-step restricted to the current module
:trace trace after stopping at a breakpoint

20

:trace <expr> evaluate <expr> with tracing on (see :history)

Commands for changing settings

:set <option> ... set options
:seti <option> ... set options for interactive evaluation only
:set args <arg> ... set the arguments returned by System.getArgs

:set prog <progname> set the value returned by System.getProgName

:set prompt <prompt> set the prompt used in GHCi
:set editor <cmd> set the command used for :edit
:set stop [<n>] <cmd> set the command to run when a breakpoint is hit
:unset <option> ... unset options

Options for :set and :unset

+m allow multiline commands
+r revert top-level expressions after each evaluation
+s print timing/memory stats after each evaluation
+t print type after evaluation
-<flags> most GHC command line flags can also be set here (eg. -v2,

-fglasgow-exts, etc). For GHCi-specific flags, see User’s Guide,
Flag reference, Interactive-mode options.

Commands for displaying information

:show bindings show the current bindings made at the prompt
:show breaks show the active breakpoints
:show context show the breakpoint context
:show imports show the current imports
:show modules show the currently loaded modules
:show packages show the currently active package flags
:show language show the currently active language flags
:show <setting> show value of <setting>, which is one of [args, prog, prompt,

editor, stop]
:showi language show language flags for interactive evaluation

21

