
Basic Complexity Theory
FLOLAC 2023 Summer School
21 August – 1 September 2023
National Taiwan University

Taipei, Taiwan

Tony Tan
Department of Computer Science

University of Liverpool

Basic complexity theory FLOLAC Summer school 2023

Contents

1 Preliminaries 3
1.1 The big-Oh notations . 3
1.2 Turing machines . 3
1.3 Universal Turing machines . 4
1.4 Church-Turing thesis . 4

2 Basic complexity classes 5
2.1 Time complexity . 5
2.2 Space complexity . 6
2.3 Logarithmic space complexity . 7
2.4 Some basic relations between complexity classes 7

3 NP-complete languages 8
3.1 An alternative definition of the class NP . 8
3.2 NP-complete languages . 8
3.3 More NP-complete problems . 12
3.4 coNP-complete languages . 12

4 The class NL and PSPACE 14
4.1 NL-complete languages . 14
4.2 PSPACE-complete languages . 16

5 P-complete languages 17

6 Alternating Turing machines 18
6.1 Definition . 18
6.2 Time and space complexity for ATM . 18

7 The polynomial hierarchy 20

8 The complexity of counting 21
8.1 The class FP . 21
8.2 The class]P . 21
8.3 The complexity of computing the permanent . 22
8.4 Reduction from 3-SAT to cycle cover . 23
8.5 Reduction from matrices over Z to matrices over {0, 1} 26
8.6]P-hardness of PERM – Putting all the pieces together 26

9 Diagonalization on the class NP 27
9.1 Ladner’s theorem: NP-intermediate language . 27
9.2 Limit of diagonalization . 29

A The notion of computable functions 30

B Time and space constructible functions 30

C Hardness via log space reduction 31

2/31

Preliminaries FLOLAC Summer school 2023

1 Preliminaries

1.1 The big-Oh notations

Let N denote the set of natural numbers {0, 1, 2, . . .}. Let f and g be functions from N to N. We
will use the following notations.

• f = O(g) means that there is c and n0 such that for every n > n0, f(n) 6 c · g(n).

It is usually phrased as “there is c such that for (all) sufficiently large n,” f(n) 6 c · g(n).

• f = Ω(g) means g = O(f).

• f = Θ(g) means g = O(f) and f = O(g).

• f = o(g) means for every c > 0, f(n) 6 c · g(n) for sufficiently large n.

Equivalently, f = o(g) means f = O(g) and g 6= O(f).

Another equivalent definition is f = o(g) means limn→∞
f(n)
g(n) = 0.

• f = ω(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω
notations. We also write f(n) = poly(n) to denote that f(n) = c · nk for some c and k > 1.

Throughout the course, for an integer n > 0, we will denote by bnc the binary representation
of n. Likewise, bGc the binary encoding of a graph G. In general, we write bXc to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we
often write X instead of bXc.

We usually use Σ to denote a finite input alphabet. Often Σ = {0, 1}. Recall also that for a
word w ∈ Σ∗, |w| denotes the length of w. For a DTM/NTMM, we write L(M) to denote the
language {w :M accepts w}.

We often view a language L ⊆ Σ∗ as a boolean function, i.e., L : Σ∗ → {true, false}, where
L(x) = true if and only if x ∈ L, for every x ∈ Σ∗.

1.2 Turing machines

Let k > 1. A k-tape Turing machine is a systemM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉,

• Σ is a finite alphabet, called the input alphabet, where t, / /∈ Σ.

• Γ is a finite alphabet, called the tape alphabet, where Σ ⊆ Γ and t, / ∈ Γ.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• qacc, qrej ∈ Q are two special states called the accept and reject states, respectively.

• δ : (Q− {qacc, qrej})× Γk → Q× Γk × {Left, Right}k is the transition function.

A transition in δ is written in the form:

(q, a1, . . . , ak)→ (p, b1, . . . , bk, α1, . . . , αk).

Intuitively, it means that if the TM is in state q, and on each i = 1, . . . , k, the head on tape i is
reading ai, then it enters state p, and for i = 1, . . . , k, the head on tape i writes the symbol bi
and moves according to αi. If αi is Left, it moves left. If αi is Right, it moves right.

A configuration ofM is a string of the form (q, u1, . . . , uk), where q ∈ Q, each ui is a string
over Γ∪{•} and the symbol • appears exactly once in each ui. The symbol • denotes the position
of the head.

3/31

Preliminaries FLOLAC Summer school 2023

The initial configuration ofM on input w is (q0, / •w, /•, . . . , /•), i.e., the first tape initially
contains the input word and all the other tapes are initially blank. A configuration is accepting,
if the state is the accept state and rejecting, if the state is the reject state. It is a halting
configuration, if it is accepting or rejecting configuration.

A configuration C yields another configuration C ′, denoted by C ` C ′, if C ′ is the configura-
tion obtained after applying the transition function on C. On input word w, a run ofM on w
is a sequence C0 ` C1 ` C2 ` · · · where C0 is the initial configuration on w. It is an accepting
run, if it ends with an accepting configuration.

Remark 1.1

• We will often assume that the input alphabet of a Turing machine is Σ = {0, 1} and the
tape alphabet is Γ = {0, 1,t}.

• bMc denotes the encoding of a TMM.

1.3 Universal Turing machines

Definition 1.2 A Universal Turing machine (UTM) is a k-tape DTM U , for some k > 1, such
that L(U) = {bMc$w | M accepts w and w ∈ {0, 1}∗}.

The following theorem will be useful, but we will not prove it in the class.

Theorem 1.3 There is a UTM U such that for every DTMM and every word w, ifM decides
w in time t, then U decides bMc$w in time (α · t · log t), where α does not depends |w|, but on
size of the tape alphabet ofM as well as the number of tapes and states ofM.

1.4 Church-Turing thesis

Church-Turing thesis states that any “algorithm” is equivalent to a Turing machine. To be more
concrete, we can view an algorithm is just a C++ program. Note that a C++ program can only
use a fixed number of variables and each variable can only store a string. Multi-tape Turing
machines and C++ programs are equivalent in the sense that a k-tape Turing machine can be
viewed as a C++ program that uses k variables, and conversely, a C++ program that uses k
variables can be viewed as a k-tape Turing machine. In this note we will often use the terms
Turing machine and algorithm interchangeably depending on our convenience. When we try to
show that a certain problem is in certain class, we often simply describe its algorithm. However,
in some proofs, e.g., when we try to prove SAT is NP-complete, it will be easier to use Turing
machines.

4/31

Basic complexity classes FLOLAC Summer school 2023

2 Basic complexity classes

2.1 Time complexity

Definition 2.4 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if every run ofM on w has length at most t. That
is, for every run ofM on w:

C0 ` C1 ` · · · ` Cm where Cm is a halting configuration,

we have m 6 t.

• M runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w,M decides
w in time c · f(|w|).

• M decides/accepts a language L in time O(f(n)), if L(M) = L andM runs in timeO(f(n)).

• Dtime[f(n)]
def
= {L : there is a DTMM that decides L in time O(f(n))}.

• Ntime[f(n)]
def
= {L : there is an NTMM that decides L in time O(f(n))}.

Note that Definition 2.4 applies in similar manner for both DTM and NTM. The only difference
is that a DTM has one run for each input word w, whereas NTM can have many runs for each
input word w.

We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

P def
=

⋃
f(n)=poly(n)

Dtime[f(n)] EXP def
=

⋃
f(n)=poly(n)

Dtime[2f(n)]

NP def
=

⋃
f(n)=poly(n)

Ntime[f(n)] NEXP def
=

⋃
f(n)=poly(n)

Ntime[2f(n)]

coNP def
= {L : Σ∗ − L ∈ NP} coNEXP def

= {L : Σ∗ − L ∈ NEXP}

Theorem 2.5 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

Proof. We will only prove the first statement, i.e., “if NP = P, then NEXP = EXP.”
Suppose NP = P. We will show that NEXP ⊆ EXP. Let L ∈ NEXP. LetM be an NTM

that decides L in time 2p(n), where p(n) = poly(n). Consider the following language:

L′
def
= {w0 11 · · · 1︸ ︷︷ ︸

m

: w ∈ L and m = 2p(|w|)}

We will first show that L′ ∈ NP. Consider Algorithm 1.
Since M is non-deterministic, Algorithm 1 is also non-deterministic. We can show that

Algorithm 1 runs in polynomial time (in the length of the input u). Thus, L′ ∈ NP. By our
assumption that NP = P, we obtain that L′ ∈ P. Let M′ be a DTM that decides L′ in
polynomial time.

To show that L ∈ EXP, consider the following algorithm that we denote by Algorithm 2.

5/31

Basic complexity classes FLOLAC Summer school 2023

Algorithm 1
Input: u ∈ Σ∗.
Task: Decide if u ∈ L′.
1: Check if u is of the form w0 11 · · · 1︸ ︷︷ ︸

m

for some m. and that m = 2p(|w|).

If not, REJECT. Otherwise, continue.
2: RunM on w.
3: ACCEPT if and only ifM accepts w.

Algorithm 2
Input: w ∈ Σ∗.
Task: Decide if w ∈ L.
1: Compute m def

= 2p(|w|).
2: RunM′ on input w01m.
3: ACCEPT if and only ifM accepts w.

Note that by the definition of L′, Algorithm 2 decides the language L. It is deterministic
because M′ is deterministic. Moreover, it runs in exponential time in the length of the input
word w. Therefore, L ∈ EXP, as desired. This completes the proof that NP = P implies
NEXP = EXP. �

2.2 Space complexity

Definition 2.6 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in t space (or, using t cells/space), if for every run ofM on w:

C0 ` C1 ` · · · ` CN where CN is an accepting/rejecting configuration,

the length |Ci| 6 t, for each i = 0, . . . , N .

• M uses O(f(n)) space, if there is c > 0 such that for sufficiently long word w,M decides
w using c · f(|w|) space.

• M decides/accepts a language L in space O(f(n)), if L(M) = L and M uses O(f(n))
space.

• Dspace[f(n)]
def
= {L : there is a DTMM that decides L using O(f(n)) space}.

• Nspace[f(n)]
def
= {L : there is an NTMM that decides L using O(f(n)) space}.

Again, note that the notion ofM uses space O(f(n)) is the same for DTM and NTM. The
only difference is that a DTM has only one run for each input word w, whereas NTM can have
many runs for each input word w. In both cases, we can only say thatM uses space O(f(n)), if
for each input word w, for every run of M on w, the length of each configuration in the run is
always 6 cf(|w|).

We say that M uses polynomial and exponential space, if there is f(n) = poly(n) such that
M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential space TM. The following are some of the important classes in complexity

6/31

Basic complexity classes FLOLAC Summer school 2023

theory.

PSPACE def
=

⋃
f(n)=poly(n)

Dspace[f(n)]

EXPSPACE def
=

⋃
f(n)=poly(n)

Dspace[2f(n)]

2.3 Logarithmic space complexity

Another interesting classes are L and NL. We say that a language L is in L, if there is a 2-tape
DTMM that decides L and a constant c > 0 such that for every input word w:

• The first tape always contains only the input word w, i.e.,M never changes the content of
the first tape.

• M uses c · log(|w|) space in its second tape.

Likewise, we say that a language L is in NL, if there is a 2-tape NTM M that decides L such
that the above two conditions are satisfied.

2.4 Some basic relations between complexity classes

Obviously, we have L ⊆ NL, P ⊆ NP, and PSPACE ⊆ NPSPACE.

Proposition 2.7

• L ⊆ P.

• NP ⊆ PSPACE.

Deterministic/non-deterministic time/space hierarchy theorem states that for every k > 1,
the following holds.∗

Dtime[nk] (Dtime[nk+1] Dspace[nk] (Dspace[nk+1]

Ntime[nk] (Ntime[nk+1] Nspace[nk] (Nspace[nk+1]

Some classic results in complexity theory are: (They will be proved later on.)

• NL ⊆ P.

• If L ∈ Nspace[nk], then Σ∗ − L ∈ Nspace[nk].

• Nspace[nk] ⊆ Dspace[n2k].

The third bullet is the reason why we only have the class PSPACE.
Combining all these inclusions together, we obtain:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

From the deterministic/non-deterministic space hierarchy, it is also known that L (PSPACE
and NL (PSPACE. So, we know that at least one of the inclusions must be strict, but we
don’t know which one.

∗Due to time constraint, we will not prove the hierarchy theorem in this class.

7/31

NP-complete languages FLOLAC Summer school 2023

3 NP-complete languages

3.1 An alternative definition of the class NP

Recall that for a string w, the length of w is denoted by |w|. In the previous lesson, we define
the class NP as follows.

Definition 3.8 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L andM runs in time O(f(n)).

Definition 3.9 below is an alternative definition of NP.

Definition 3.9 A language L ⊆ Σ∗ is in NP if there is a language K ⊆ Σ∗ · {#} · Σ∗, where
/∈ Σ, such that the following holds.

• For every w ∈ Σ∗, w ∈ L if and only if there is v ∈ Σ∗ such that w#v ∈ K.

• There is f(n) = poly(n) such that for every w#v ∈ K, |v| 6 f(|w|).
• The language K is accepted by a polynomial time DTM.

For w#v ∈ K, the string v is called the certificate/witness for w. We call the language K the
certificate/witness language for L.

Indeed Def. 3.8 and 3.9 are equivalent. That is, for every language L, L is in NP in the sense
of Def. 3.8 if and only if L is in NP in the sense of Def. 3.9.

3.2 NP-complete languages

Recall that a DTMM computes a function F : Σ∗ → Σ∗ in time O(g(n)), if there is a constant
c > 0 such that on every word w,M computes F (w) in time 6 cg(|w|). If g(n) = poly(n), such
function F is called polynomial time computable function. Moreover, ifM uses only logarithmic
space, it is called logarithmic space computable function. See Appendix A for more details.

The following definition is one of the most important definitions in computer science.

Definition 3.10 A language L1 is polynomial time reducible to another language L2, denoted
by L1 6p L2, if there is a polynomial time computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L1 is log-space reducible to L2,

denoted by L1 6log L2.
If L1 and L2 are in NP with certificate languages K1 and K2, respectively, we say that F is

parsimonious, if for every w ∈ Σ∗, w has the same number of certificates in K1 as F (w) in K2.

Definition 3.11 Let L be a language.

• L is NP-hard, if for every L′ ∈ NP, L′ 6p L.

• L is NP-complete, if L ∈ NP and L is NP-hard.

8/31

NP-complete languages FLOLAC Summer school 2023

Recall that a propositional formula (Boolean formula) with variables x1, . . . , xn is in Con-
junctive Normal Form (CNF), if it is of the form:

∧
i (`i,1 ∨ · · · ∨ `i,ki) where each `i,j is a literal,

i.e., a variable xk or its negation ¬xk. It is in 3-CNF, if it is of the form
∧
i

(
`i,1 ∨ `i,2 ∨ `i,3

)
. A

formula ϕ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ϕ that evaluates to true.

SAT

Input: A propositional formula ϕ in CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

SAT can be viewed as a language, i.e., SAT def
= {ϕ : ϕ is satisfiable CNF formula}.

Theorem 3.12 (Cook 1971, Levin 1973) SAT is NP-complete.

Proof. We have to show that SAT ∈ NP and SAT is NP-hard. We first show that SAT ∈ NP.
Consider the following non-deterministic algorithm that decides SAT. On input formula ϕ, do
the following.

• Let x1, . . . , xn be the variables in ϕ.

• For each i = 1, . . . , n do:

– Non-deterministically assign the value of xi to either true or false.

• Check if the formula ϕ evaluates to true under the assignment.

• If the formula evaluates to true, then ACCEPT.

If the formula evaluates to false, then REJECT.

It is not difficult to show that the algorithm above accepts a formula ϕ if and only if it is
satisfiable. This completes the proof that SAT ∈ NP.

Now we show that SAT is NP-hard. That is, for every L ∈ NP, L 6p SAT.
Let L ∈ NP. Let M = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉 be the NTM that decides L in time f(n) =

poly(n), where Σ is the input alphabet, Γ is the tape alphabet, Q is the set of states, q0 is the
initial state, qacc is the accepting state, qrej is the rejecting state and δ is the set of transitions.
We denote by t the blank symbol. We may assume thatM has only 1 tape.

We will describe a deterministic algorithm A such that on every word w, it output a CNF
formula ϕ such that the following holds.

w ∈ L if and only if ϕ is satisfiable.

Intuitively, ϕ “describes” the accepting run of M on w such that it is satisfiable if and only if
there is an accepting run ofM on w. Let n = |w|. See Figure 1.

To describe the run, it uses the following boolean variables for every q ∈ Q, for every σ ∈ Γ,
for every 1 6 i, j 6 f(|w|):

Xq,σ,i,j and Xσ,i,j

Intuitively, Xq,σ,i,j is true if and only if in step-j the head is in cell-i reading symbol σ and the
TM is in state q; and Xσ,i,j is true if and only if in step-j the content of cell-i is σ.

Essentially the formula ϕ states the following.

9/31

NP-complete languages FLOLAC Summer school 2023

cell

time

`1

`2

`3

`8

`

`4

`7

`6

`5

1 6 j 6 f(n)

1 6 i 6 f(n)

(i, j)

Figure 1: Each point (i, j) is labeled with a symbol ` ∈ (Q × Γ) ∪ Γ. If ` = (q, σ) ∈ Q × Γ, it
means in time-j the NTMM is in state q and the head is in cell-i reading symbol σ. If ` = σ ∈ Γ,
it means in time-j the content of cell-i is σ. The labels ` and those in the neighboring points
`1, . . . , `8 must obey the transitions in of the NTMM.

• In time-1 the labels of the points (1, 1), . . . , (1, f(n)) is the initial configuration. It can be
expressed as the following formula.

Xq0,a1 ∧Xa2 ∧ · · · ∧Xan ∧
f(n)∧
i=n+1

Xt (1)

• The accepting state must appear somewhere. It can be expressed as the following formula.∨
16i,j6f(n)

∨
σ∈Γ

Xqacc,σ,i,j (2)

• For every 1 6 i, j 6 f(n), the labels in (i − 1, j), (i, j), (i + 1, j + 1) and the labels in
(i− 1, j + 1), (i, j + 1), (i+ 1, j + 1) must obey the transitions inM.

For example, if (q, σ)→ (p, α, left) and (q, σ)→ (r, β, right) are transitions inM, then the
formula states the following.∧

16i,j6f(n)

∧
σ1,σ2,σ3∈Γ

Xσ1,i−1,j ∧Xq,σ2,i,j ∧Xσ3,i+1,j

→

 (Xp,σ1,i−1,j+1 ∧Xα,i,j+1 ∧Xσ3,i+1,j+1)
∨

(Xσ1,i−1,j+1 ∧Xβ,i,j+1 ∧Xr,σ3,i+1,j+1)

 (3)

• For every time j, there is exactly one i such that the label of (i, j) is of the form (q, σ) ∈

10/31

NP-complete languages FLOLAC Summer school 2023

Q× Γ. It can be expressed as the following formula.∧
p,q∈Q and σ,σ′∈Γ

∧
16j6f(n)

∧
16i<i′6f(n)

Xq,σ,i,j → ¬Xp,σ′,i′,j (4)

∧
∧

16j6f(n)

∨
q∈Σ

∨
σ∈Γ

∨
16i6f(n)

Xq,σ,i,j (5)

The formula (4) states that there is at most one head and the formula (5) states that there
is at least one head.

Formally, the algorithm A works as follows. On input w, it outputs the formula ϕ which is
the conjunction of the formulas (1)– (5). It is not difficult to show that w ∈ L if and only if ϕ is
satisfiable. �

Remark 3.13 We note that in the proof of Theorem 3.12, the formula ϕ produced in the re-
duction from L to SAT satisfies the following.

The number of accepting run ofM on w = The number of satisfying assignment of ϕ

Thus, the reduction in Theorem 3.12 is parsimonious.

Remark 3.14 There are two ways to show that a language L is NP-hard.

• The first is by definition, i.e., we show that for every language K ∈ NP, there is a polyno-
mial time reduction from K to L.

• The second is by choosing an appropriate NP-hard language, say SAT, and show that there
is a polynomial time reduction from SAT to L.

3-SAT

Input: A propositional formula ϕ in 3-CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

Note that we can also view 3-SAT as the language 3-SAT def
= {ϕ : ϕ is satisfiable 3-CNF formula}.

Theorem 3.15 3-SAT is NP-complete.

Proof. That is 3-SAT is in NP follows immediately from Theorem 3.12. To show that it is
NP-hard, we reduce it from SAT. On input a CNF formula ϕ, if it has a clause of length greater
than 3:

`1 ∨ · · · ∨ `k where k > 4

split it into two clauses, where z is a new variable:

(`1 ∨ · · · ∨ `bk/2c ∨ z) ∧ (`bk/2c+1 ∨ · · · ∨ `k ∨ ¬z)

Repeat it on each clause of length > 4 until we get 3-CNF. �

11/31

NP-complete languages FLOLAC Summer school 2023

3.3 More NP-complete problems

We need a few terminologies. Let G = (V,E) be a (undirected) graph.

• G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored
with one color) such that no two adjacent vertices have the same color.

• A set C ⊆ V is a clique in G, if every pair of vertices in C are adjacent.

• A set W ⊆ V is a vertex cover, if every edge in E is adjacent to at least one vertex in W .

• A set I ⊆ V is independent, if every pair of vertices in I are non-adjacent.

• A set D ⊆ V is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are NP-complete.

3-COL

Input: A (undirected) graph G = (V,E).
Task: Output true, if G is 3-colorable. Otherwise, output false.

CLIQUE

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has a clique of size > k. Otherwise, output false.

IND-SET

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has an independent set of size > k.

Otherwise, output false.

VERT-COVER

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has a vertex cover of size 6 k. Otherwise, output false.

DOM-SET

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has an dominating set of size 6 k.

Otherwise, output false.

3.4 coNP-complete languages

Analogous to NP-complete, we can also define coNP-complete problems.

Definition 3.16 Let K be a language.

• K is coNP-hard, if for every L ∈ coNP, L 6p K.

• K is coNP-complete, if K ∈ coNP and K is coNP-hard.

12/31

NP-complete languages FLOLAC Summer school 2023

Theorem 3.17 For every language K over the alphabet Σ, K is NP-complete if and only if its
complement K is coNP-complete, where K def

= Σ∗ −K.

Proof. Let K be a language. By definition, K is NP if and only if K is in coNP.
To show the hardness part, we first note that L 6p K if and only if L 6p K. Thus, if K is

NP-hard, by definition, L 6p K, for every language L ∈ NP, which means L 6p K, for every
language L ∈ NP. Therefore, L 6p K, for every language L ∈ coNP, i.e., K is coNP-hard.
The direction that K is coNP-hard implies K is NP-hard is similar. �

Corollary 3.18 SAT def
= {ϕ : ϕ is not satisfiable} is coNP-complete.

13/31

On the class NL and PSPACE FLOLAC Summer school 2023

4 The class NL and PSPACE

4.1 NL-complete languages

Let F : Σ∗ → Σ∗ be a function. We say that F is computable in logarithmic space, if there is a
3-tape DTMM such that on input word w, it works as follows.

• Tape 1 contains the input word w and its content never changes.

• There is a constant c such thatM uses only c log |w| space in tape 2.

• The head in tape 3 can only “write” and move right, i.e., once it writes a symbol to a cell,
the content of that cell will not change.

Tape 1 is called the input tape, tape 2 the work tape and tape 3 the output tape.

Definition 4.19 A language L is log-space reducible to another language K, denoted by L 6log

K, if there is a function F : Σ∗ → Σ∗ computable in logarithmic space such that for every w ∈ Σ∗,
w ∈ L if and only if F (w) ∈ K.

Remark 4.20 The relation 6log is transitive in the sense that if L1 6log L2 and L2 6log L3,
then L1 6log L3.

Definition 4.21 Let K be a language.

• K is NL-hard, if for every language L ∈ NL, L 6log K.

• K is NL-complete, if K ∈ NL and K is NL-hard.

Define the following language PATH.

PATH def
= {(G, s, t) : G is directed graph and there is a path in G from vertex s to vertex t}

Theorem 4.22 PATH is NL-complete.

Theorem 4.23 (Savitch 1970) NL ⊆ Dspace[log2 n].

Proof. To prove Theorem 4.23, it suffices to show that PATH ∈ Dspace[log2 n].
Consider procedure CheckG that decides whether there is a path from vertex u to vertex v

with length at most 2k. When running CheckG(u, x, k−1) and CheckG(x, v, k−1), Procedure
CheckG can use the same space. So it uses only O(k log n) space. Since deciding whether there
is a path from u to v can be done using CheckG with k = dlog ne, we can decide PATH using
O(log2 n) space in total.

�

Theorem 4.24 (Immerman 1988 and Szelepcsényi 1987) NL = coNL.

Proof. Consider the complement of PATH:

PATH def
= {(G, s, t) : G is directed graph and there is no path in G from vertex s to vertex t}

Since PATH is coNL-complete, to prove Theorem 4.24, it suffices to show that PATH ∈ NL.
We sketch an NL algorithm for PATH. On input graph G and two vertices s and t, do the

following.

14/31

On the class NL and PSPACE FLOLAC Summer school 2023

Procedure CheckG
Input: (u, v, k) where u and v are two vertices in G, and k is an integer > 0.
Task: Return true, if there is a path in G of length 6 2k from u to v. Otherwise, return false.
1: if k = 0 then
2: return true iff (u = v or (u, v) is an edge in G).
3: for all vertex x in G do
4: b := CheckG(u, x, k − 1).
5: if b = true then
6: b := CheckG(x, v, k − 1).
7: if b = true then
8: return true.
9: return false.

• Assume that we can count the number of vertices reachable from the vertex s in logarithmic
space, which we denote by ℘.

• For every vertex u in G, guess whether u is reachable from s.

– If the guess is “reachable,” guess the path from s to u (in logarithmic space).
– Decrease the value ℘ by 1.

• ACCEPT if and only if the vertex t is not one of the “reachable” vertices and the value ℘
is zero.

We will now show how to count the number of vertices reachable from s in logarithmic space.
The idea is to count ℘k, the number of vertices from s in distance k for each k ∈ {1, . . . , n} where
n is the number of vertices in G. It works by recursion on k.

• If k = 1, count the number of outgoing edges from the vertex s.

• If k > 2:

Let ℘k−1 be the number of vertices reachable from s in distance 6 k − 1.

Initialize ℘k with 0.

For each vertex v in G, guess whether it is reachable from s in distance 6 k.

If the guess is “reachable,” then guess the path from s to v of length 6 k and increase ℘k
by 1.

If the guess is “not reachable,” we need to verify that indeed there is no path from s to v
of length 6 k as follows.

– Let z be a dummy variable to store ℘k−1.
– For every vertex w in G, guess whether w is reachable from s of length 6 k − 1 .

∗ If the guess is “reachable,” guess the path from s to u (in logarithmic space).
∗ Check that indeed there is no edge (u,w) in G.
∗ Decrease the value z by 1.

After the iteration, we also insist that the value z must be zero. Otherwise, the algorithm
REJECTS immediately.

Note that ℘n is the number of vertices reachable from vertex s. Note also that to compute ℘k,
it suffices to remember only ℘k−1. Thus, the algorithm uses only logarithmic space. �

15/31

On the class NL and PSPACE FLOLAC Summer school 2023

4.2 PSPACE-complete languages

Definition 4.25 Let K be a language.

• K is PSPACE-hard, if for every language L ∈ PSPACE, L 6p K.

• K is PSPACE-complete, if K ∈ PSPACE and K is PSPACE-hard.

Quantified Boolean formulas (QBF) are formulas of the form:

Q1x1 Q2x2 · · · Qnxn ϕ(x1, . . . , xn)

where each Qi ∈ {∀,∃} and ϕ(x1, . . . , xn) is a Boolean formula with variables x1, . . . , xn.
The intuitive meaning of each Qi is as follows.

• ∀x ψ means that for all x ∈ {true, false}, ψ is true.

• ∃x ψ means that there is x ∈ {true, false} such that ψ is true.

We define the problem TQBF:

TQBF

Input: A QBF ϕ.
Task: Return true, if ϕ is true. Otherwise, return false.

As usual, it can be viewed as a language TQBF def
= {ψ : ψ is a true QBF}. Note also that the

usual Boolean formula can be viewed as a QBF, where each Qi is ∃. Thus, TQBF is a more
general problem than SAT.

Theorem 4.26 (Stockmeyer and Meyer 1973) TQBF is PSPACE-complete.

Theorems 4.27 and 4.28 below are the polynomial space analog of Theorem 4.23 and 4.24,
respectively. In fact, they can be easily generalized to the so called time and space constructible
functions. See Appendix B.

Theorem 4.27 (Savitch 1970) Nspace[nk] ⊆ Dspace[n2k].

Theorem 4.28 (Immerman 1988 and Szelepcsényi 1987) Nspace[nk] = coNspace[nk].

Note that Theorem 4.27 implies PSPACE = NPSPACE = coNPSPACE.

16/31

P-complete languages FLOLAC Summer school 2023

5 P-complete languages

Boolean circuits. Let n ∈ N, where n > 1. An n-input Boolean circuit C is a directed acyclic
graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex
with no outgoing edge).

The source vertices are labelled with x1, . . . , xn. The non-source vertices, called gates, are
labelled with one of ∧,∨,¬. The vertices labelled with ∧ and ∨ have two incoming edges, whereas
the vertices labelled with ¬ have one incoming edge. The size of C, denoted by |C|, is the number
of vertices in C.

On input w = x1 · · ·xn, where each xi ∈ {0, 1}, we write C(w) to denote the output of C on
w, where ∧,∨,¬ are interpreted as “and,” “or” and “negation,” respectively and 0 and 1 as false
and true, respectively.

(Boolean) straight line programs. It is sometimes more convenient to view a boolean circuit
as a straight line program. The following is an example of straight line program, where the input
is w = x1 · · ·xn.

1: p1 := x1 ∧ x3.
2: p2 := ¬x4.
3: p3 := p1 ∨ p2.
...
`: p` := pi ∧ pj .

Intuitively, straight line programs are programs without if branch and while loop, hence, the
name “straight line” programs. It is assumed that such program always outputs the value in the
variable in the last line. In our example above, it outputs the value of variable p`.

Define the following problem.

CIRCUIT-EVAL

Input: An n input boolean circuit C and w ∈ {0, 1}n.
Task: Output C(w).

It can also be defined as the language CIRCUIT-EVAL def
= {(C,w) : C(w) = 1}.

For our proof of Theorem 5.29 below, it is also convenient to assume that vertices labelled
with ∧ and ∨ can have more than 2 incoming edges.

Theorem 5.29 CIRCUIT-EVAL is P-complete via log-space reductions.

Proof. Follows the reduction for the NP-completeness of SAT. �

17/31

Alternating Turing machines FLOLAC Summer school 2023

6 Alternating Turing machines

6.1 Definition

A 1-tape alternating Turing machine (ATM) is a systemM = 〈Σ,Γ, Q, U, q0, qacc, qrej, δ〉, where
each component is as follows.

• Σ = {0, 1} and Γ = {0, 1,t} are the input and tape alphabets, respectively.

• Q is a finite set of states.

• U ⊆ Q is a finite subset of Q.

• q0, qacc, qrej are the initial state, accepting state and rejecting state, respectively.

• δ ⊆ (Q− {qacc, qrej})× Γ×Q× Γ× {Left, Right}.

Note that ATM is very much like NTM, except that it has one extra component U . The states
in U are called universal states, and the states in Q− U are called existential states.

The notions of initial/halting/accepting/rejecting configuration are defined similarly as in
NTM/DTM. A configuration C is called existential/universal configuration, if the the state in C
is an existential/universal state. The notion of “one step computation” C ` C ′ for ATM is also
similar to the one for DTM/NTM. When C ` C ′, we say that C ′ is one of the next configuration
of C (w.r.t. M).

On input word w, the run ofM on w is a tree T where each node in the tree is labelled with
a configuration ofM according to the following rules.

• The root node of T is labelled with the initial configuration ofM on w.

• Every other node x in T is labelled as follows.

If x is labelled with a configuration C and C1, . . . , Cn are all the next configurations of C,
then x has n children y1, . . . , yn labelled with C1, . . . , Cn, respectively.

Note that if x is labelled with C that does not have next configuration, then it is a leaf node,
i.e., it does not have any children.

Let T be the run ofM on w and let x be a node in T . We say that x leads to acceptance, if
the following holds.

• x is a leaf node labelled with an accepting configuration.

• If x is labelled with an existential configuration, then one of its children leads to acceptance.

• If x is labelled with a universal configuration, then all of its children lead to acceptance.

We say that T is accepting run, if its root node leads to acceptance. The ATMM accepts w, if
the run ofM on w is accepting run. As before, L(M)

def
= {w :M accepts w}.

Note that NTM is simply ATM where all the states are existential, and DTM is simply NTM
where every configuration (except the accepting/rejecting configuration) has exactly one next
configuration. The generalization of ATM to multiple tapes is straightforward.

6.2 Time and space complexity for ATM

LetM be a ATM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if the run ofM on w has depth at most t.

• M decides w in space t (or, uses t cells/space), if in the run of M on w, every node is
labelled with configuration of length t.

18/31

Alternating Turing machines FLOLAC Summer school 2023

• M runs in time/space O(f(n)), if there is c > 0 such that for sufficiently long word w,M
decides w in time/space c · f(|w|).

• M decides a language L in time/space O(f(n)), if M runs in time/space O(f(n)) and
L(M) = L.

• Atime[f(n)]
def
= {L : there is ATMM that decides L in time O(f(n))}.

• Aspace[f(n)]
def
= {L : there is ATMM that decides L in space O(f(n))}.

Analogous to the DTM/NTM, we can define the classes of languages accepted by ATM run in
algorithmic/polynomial/exponential time/space.

AL def
= {L : there is ATMM that decides L in space O(log n)}

AP def
=

⋃
f(n)=poly(n)

Atime[f(n)]

APSPACE def
=

⋃
f(n)=poly(n)

Aspace[f(n)]

AEXP def
=

⋃
f(n)=poly(n)

Atime[2f(n)]

The following lemma links time/space complexity classes for ATM with those for DTM.

Lemma 6.30 Let T : N→ N and S : N→ N such that T (n) > n and S(n) > log n, for every n.

(a) Atime[T (n)] ⊆ Dspace[T (n)].

(b) Dspace[S(n)] ⊆ Atime[S(n)2].

(c) Aspace[S(n)] ⊆ Dtime[2O(S(n))].

(d) Dtime[T (n)] ⊆ Aspace[log T (n)].

Proof. (a) and (c) is by straightforward simulation of ATM with DTM. (b) is similar to the
proof of Savitch’s theorem. (d) is similar to the proof of Theorem 5.29 below, i.e., by viewing
the computation of DTM as a boolean circuit. �

Theorem 6.31 (Chandra, Kozen, Stockmeyer 1981)

• AL = P.

• AP = PSPACE.

• APSPACE = EXP.

• AEXP = EXPSPACE.

• · · · .

19/31

The polynomial hierarchy FLOLAC Summer school 2023

7 The polynomial hierarchy

For every integer i > 1, the class Σp
i is defined as follows. A language L ⊆ {0, 1}∗ is in Σp

i ,
if there is a polynomial q(n) and a polynomial time DTM M such that for every w ∈ {0, 1}∗,
w ∈ L if and only if the following holds.

∃y1 ∈ {0, 1}q(|w|) ∀y2 ∈ {0, 1}q(|w|) · · · Qyi ∈ {0, 1}q(|w|) M accepts (w, y1, . . . , yi) (6)

where Q = ∃, if i is odd and Q = ∀, if i is even.
The class Πp

i is defined as above, but the sequence of quantifiers in (6) starts with ∀. Alter-
natively, it can also be defined as Πp

i
def
= {L : L ∈ Σp

i }. Note that NP = Σp
1 and coNP = Πp

1.

Remark 7.32 The class Σp
i can also be defined as follows. A language L is in Σp

i , if there is a
polynomial time ATMM that decides L such that for every input word w ∈ {0, 1}∗, the run of
M on w can be divided into i layers. Each layer consists of nodes of the same depth in the run.
(Recall that the run of an ATM is a tree.) In the first layer all nodes are labeled with existential
configurations, in the second layer with universal configurations, and so on. It is not difficult to
show that this definition is equivalent to the one above.

The polynomial time hierarchy (or, in short, polynomial hierarchy) is defined as the following
class.

PH def
=

∞⋃
i=1

Σp
i

Note that PH ⊆ PSPACE.
It is conjectured that Σp

1 (Σp
2 (Σp

3 (· · · . In this case, we say that the polynomial
hierarchy does not collapse. We say that the polynomial hierarchy collapses, if there is i such that
PH = Σp

i , in which case we also say that the polynomial hierarchy collapses to level i.
We define the notion of hardness and completeness for each Σp

i as follows. For i > 1, a
language K is Σp

i -hard, if for every L ∈ Σp
i , L 6p K. It is Σp

i -complete, if it is in Σp
i and it is

Σp
i -hard. The same notion can be defined analogously for PH and each Πp

i .
Define the language Σi-SAT as consisting of true QBF of the form:

∃x̄1 ∀x̄2 · · · Qx̄i ϕ(x̄1, . . . , x̄i)

where ϕ(x̄1, . . . , x̄i) is quantifier-free Boolean formula and Q = ∃, if i is odd, and Q = ∀, if i is
even. Here x̄1, . . . , x̄i are all vectors of boolean variables. In other words, Σi-SAT is a subset of
TQBF where the number of quantifier alternation is limited to (i − 1). The language Πi-SAT is
defined analogously with the starting quantifiers being ∀.

Theorem 7.33

• For every i > 1, Σi-SAT is Σp
i -complete and Πi-SAT is Πp

i -complete.

• If Σp
i = Πp

i for some i > 1, then the polynomial hierarchy collapses.

• If there is language that is PH-complete, then the polynomial hierarchy collapses.

20/31

The complexity of counting FLOLAC Summer school 2023

8 The complexity of counting

8.1 The class FP

We denote by FP the class of functions f : {0, 1}∗ → N computable by polynomial time DTM.
Here the convention is that a natural number is always represented in binary form. So, when we
say that a DTMM computes a function f : {0, 1}∗ → N, on input word w, the output ofM on
w is f(w) in the binary representation.

Let]CYCLE be the following problem.

]CYCLE

Input: A directed graph G.
Task: Output the number of cycles in G.

As before,]CYCLE can also be viewed as a function. Note also that the number of cycles in a
graph with n vertices is at most exponential in n, thus, its binary representation only requires
polynomially many bits.

Theorem 8.34 If]CYCLE is in FP, then P = NP.

Proof. Let G be a (directed) graph with n vertices. We construct a graph G′ obtained by
replacing every edge (u, v) in G with the following gadget:

u

a1

b1

a2

b2

. . .

. . .

am−1

bm−1

am

bm

v

Note that every simple cycle in G of length ` becomes (2m)` cycles in G′. Now, let m def
= n log n.

It is not difficult to show that G has a hamiltonian cycle (i.e., a simple cycle of length n) if
and only if G′ has more than n(n2) cycles. So, if]CYCLE ∈ FP, then checking hamiltonian cycle
can be done is in P. �

Note that checking whether a graph has a cycle itself can be done in polynomial time. How-
ever, as Theorem 8.34 above states, it is unlikely that counting the number of cycles can be done
in polynomial time.

8.2 The class]P

Definition 8.35 A function f : {0, 1}∗ → N is in]P, if there is a polynomial q(n) and a
polynomial time DTMM such that for every word w ∈ {0, 1}∗, the following holds.

f(w) = |{y :M accepts (w, y) and y ∈ {0, 1}q(|w|)}|

Alternatively, we can say that f is in]P, if there is a polynomial time NTM M such that for
every word w ∈ {0, 1}∗, f(w) = the number of accepting runs ofM on w.

For a function f : {0, 1}∗ → N, the language associated with the function f , denoted by Of ,
is defined as Of

def
= {(w, i) : the ith bit of f(w) is 1}. When we say that a TM M has oracle

access to a function f , we mean that it has oracle access to the language Of .
We define FPf as the class of functions g : {0, 1}∗ → N computable by a polynomial time

DTM with oracle access to f .

21/31

The complexity of counting FLOLAC Summer school 2023

Definition 8.36 Let f : {0, 1}∗ → N be a function.

• f is]P-hard, if]P ⊆ FPf , i.e., every function in]P is computable by a polynomial time
DTM with oracle access to f .

• f is]P-complete, if f ∈]P and f is]P-hard.

Let]SAT be the following problem.

]SAT

Input: A boolean formula ϕ.
Task: Output the number of satisfying assignments for ϕ.

As before, the output numbers are to be written in binary form. We can also view]SAT as a
function]SAT : {0, 1}∗ → N, where]SAT(ϕ) = the number of satisfying assignment for ϕ.

Theorem 8.37]SAT is]P-complete.

Proof. Cook-Levin reduction (to prove the NP-hardness of SAT) is parsimonious. �

There are usually two ways to prove a certain function is]P-hard, as stated in Remark 8.38
and 8.39 below.

Remark 8.38 Let f1 and f2 be functions from {0, 1}∗ to N. Suppose L1 and L2 be languages in
NP such that f1 and f2 are the functions for the number of certificates for L1 and L2, respectively.
That is, for every word w ∈ {0, 1}∗,

fi(w) = the number of certificates of w in Li, for i = 1, 2.

If f1 is]P-hard and there is a parsimonious (polynomial time) reduction from L1 to L2, then
f2 is]P-hard.

Remark 8.39 Let f and g be two functions from {0, 1}∗ to N. If f is]P-hard and f ∈ FPg,
then g is]P-hard.

Since there is a parsimonious reduction from SAT to 3-SAT, by Theorem 8.37 and Remark 8.38,
we have the following corollary.

Corollary 8.40]3-SAT is]P-complete.

Corollary 8.40 can also be proved by showing]SAT ∈ FP]3-SAT.

8.3 The complexity of computing the permanent

The definition of permanent

For an integer n > 1, let [n] = {1, . . . , n}. The permanent of an n× n matrix A over integers is
defined as:

per(A)
def
=

∑
σ

n∏
i=1

Ai,σ(i)

where σ ranges over all permutation on [n]. Here Ai,j denotes the entry in row i and column j
in matrix A.

Consider the following problem.

22/31

The complexity of counting FLOLAC Summer school 2023

PERM

Input: A square matrix A over integers.
Task: Output the permanent of A.

We denote it by 0|1-PERM, when the entries in the input matrix A are restricted to 0 or 1.

Theorem 8.41 (Valiant 1979) 0|1-PERM is]P-complete.

To show that 0|1-PERM is in]P, consider the following algorithm.

Input: A 0-1 matrix A.
1: Guess a permutation σ on [n], i.e., for each i ∈ [n], guess a value vi ∈ [n].
2: If the guessed σ is not a permutation, REJECT.
3: Compute the value

∏n
i=1Ai,σ(i).

4: ACCEPT if and only if the value is 1.

It is obvious that on input A, the number of accepting runs is the same as per(A).

A combinatorial view of permanent

Let G = (V,E,w) be a complete directed graph, i.e., E = V × V , and each edge (u, v) has a
weight w(u, v) ∈ Z. We write a (simple) cycle as a sequence p = (u1, . . . , u`), and its weight is
defined as:

w(p)
def
= w(u1, u2) · w(u2, u3) · . . . · w(u`−1, u`) · w(u`, u1)

A loop (u, u) is considered a cycle.
A cycle cover of G is a set R = {p1, . . . , pk} of pairwise disjoint cycles such that for every

vertex u ∈ V , there is a cycle pj ∈ R such that u appears in pj . The weight R is defined as:

w(R)
def
=

∏
pj∈R

w(Cj)

Note that a cycle or a cycle cover can also be viewed as a set of edges.
Assuming that the vertices in G are {1, . . . , n}, let A be the adjacency matrix of G, i.e., A is

an (n× n) matrix over Z such that Ai,j = w(i, j).
A permutation σ = (d1,1, . . . , d1,k1), . . . , (dl,1, · · · , dl,kl) on [n] can be viewed as a cycle cover

whose weight is exactly the value
∏
i∈[n]Ai,σ(i). Thus, we have the equation:

per(A) =
∑

R is a cycle cover of G

w(R)

8.4 Reduction from 3-SAT to cycle cover

In this section we will show how to encode 3-SAT as the cycle cover problem.

An overview of the main idea

Let Ψ be a formula in 3-CNF. Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses. We
will construct a complete directed graph G = (V,E,w), where the weight of each edge can be
arbitrary integer and every boolean assignment φ : {x1, . . . , xn} → {0, 1} is associated with a set
Fφ of cycle covers of G such that the following holds.

23/31

The complexity of counting FLOLAC Summer school 2023

• For two different assignments φ1, φ2, the sets Fφ1 and Fφ2 are disjoint.
• If φ is a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 43m, i.e.,∑

R∈Fφ

w(R) = 43m

• If φ is not a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 0, i.e.,∑
R∈Fφ

w(R) = 0

• The total weight of cycle covers not in any Fφ is 0, i.e.,∑
R/∈Fφ for any φ

w(R) = 0

If A is the adjacency matrix of G, it is clear that:

per(A) = 43m × (the number of satisfying assignment for Ψ)

The construction of the graph G

In the following we will draw an edge with a label indicating its weight. If the label is missing,
it means the weight is 1. When an edge is not drawn, it means the weight is 0.

Variable gadget. For each variable xi, we have the following “variable gadget”:

si

ai,1

bi,1

ai,2

bi,2

. . .

. . .

ai,m

bi,m

ai,m+1

bi,m+1

ti

The upper edges, i.e., (ai,1, ai,2), . . . , (ai,m, ai,m+1), are called the external “true” edges of xi, and
the lower edges, i.e., (bi,1, bi,2), . . . , (bi,m, bi,m+1), the external “false” edges of xi.

Clause gadget. For each clause Cj , we have the following “clause gadget”:

zj

dj

ej fj

The “outer” edges (dj , ej), (ej , fj), (fj , dj) are intended to represent the literals in Cj . If `1, `2, `3
are the literals in Cj , then their associated edges are (dj , ej), (ej , fj), (fj , dj), respectively. To
avoid clutter, we will call those edges `1-edge, `2-edge and `3-edge, respectively.

24/31

The complexity of counting FLOLAC Summer school 2023

The XOR operator. We also have the “XOR operator” between two edges (u1, u2) and (v1, v2):

u1 u2

α1

α2

α3

α4

v2 v1
−1

-1

2

3

−1

Definition 8.42 Let H be a graph, and let (u1, u2) and (v1, v2) are two non-adjacent edges in
H.

• For a cycle cover R of H, we say that R respects the property (u1, u2)⊕(v1, v2), if R contains
exactly one of (u1, u2) or (v1, v2).

• Let H ′ denotes the graph obtained from H by replacing the edges (u1, u2), (v1, v2) with the
edges in the XOR operator above.

A cycle cover R′ of H ′ is an associated cycle cover of R, if it satisfies the following condiiton.

– If R contains (u1, u2), then R′ contains a path from u1 to u2.
– If R contains (v1, v2), then R′ contains a path from v1 to v2.
– R \ {(u1, u2), (v1, v2)} ⊆ R′.

Lemma 8.43 Let H,H ′, R and (u1, u2), (v1, v2) be as in Definition 8.42. Then, the following
holds. ∑

R′ is associated with R

w(R′) =

{
4w(R), if R respects (u1, u2)⊕ (v1, v2)
0, otherwise

Constructing the graph G. The graph G is defined as the disjoint union of all the variable
and clause gadgets and the following additional edges to connect them: For every clause Cj , for
every literal ` in Cj , if ` = xi, we “connect” the `-edge in the clause gadget of Cj with the edge
(ai,j , ai,j+1) via the XOR operator; and if ` = ¬xi, we “connect” it with the edge (bi,j , bi,j+1).

For an assignment φ : {x1, . . . , xn} → {0, 1}, we say that a cycle cover R is associated with
φ, if the following holds for every variable xi.

• If φ(xi) = 1, the cycle (si, ai,1, . . . , ai,m+1, ti) is in R.

• If φ(xi) = 0, the cycle (si, bi,1, . . . , bi,m+1, ti) is in R.

Lemma 8.44 For every assignment φ : {x1, . . . , xn} → {0, 1}, the following holds.∑
R is associated with φ

w(R) =

{
43m, if φ is satisfying assignment for Ψ
0, if φ is not

25/31

The complexity of counting FLOLAC Summer school 2023

Combining Lemmas 8.43 and 8.44, it is immediate that the following holds.

per(A) = 43m × (the number of satisfying assignments for Ψ)

Here A is the adjacency matrix of G.

8.5 Reduction from matrices over Z to matrices over {0, 1}

Reduction to matrices over integers of the form −2k, 0 or 2k. For each edge (u, v) with
weight 2k + 2l, we can replace it with 2 “parallel” edges with weights 2k and 2l, respectively.

u v

z1

z2

2k

2l

Reduction to matrices over integers of the form −1, 0 or 1. For each edge (u, v) with
weight 2k, we can replace it with k “series” edges, each with weights 2.

u v
z1 z2 zk−1

. . .2 2 2

Each weight 2 edge can be further reduced to weight 1 edge as above.

Reduction to matrices over {0, 1} (but on modular arithmetic). The permanent of an
n×n matrix A over {−1, 0, 1} can only in between −n! and n!. Let m = n2. Since 2m+ 1 > 2n!,
it is sufficient to compute per(A) in Z2m+1. Since −1 ≡ 2m (mod 2m+1), we can replace each −1
with 2m, which can then be reduced to 1 as above.

8.6]P-hardness of PERM – Putting all the pieces together

Putting together all the pieces from Sections 8.4 and 8.5, we design a polynomial time algo-
rithm to compute]3-SAT (with oracle access to language Oper, i.e., the language associated with
permanent). On input 3-CNF formula Ψ, do the following.

• Let n and m be the number of variables and clauses in Ψ.

• Construct a matrix A over {−1, 0, 1} such that per(A) is 43m times the number of satisfying
assignments for Ψ.

• Let m be an integer for which we can compute per(A) modulo 2m + 1.

• Let A′ be the matrix obtained by replacing every −1 in A with 2m.

• Compute per(A′) by querying the oracle on each bit.

• Let Z be the remainder of per(A′) divided by 2m + 1.

• Divide Z by 43m and output it.

26/31

Diagonalization on the class NP FLOLAC Summer school 2023

9 Diagonalization on the class NP

In this section we will show two classical results on the class NP proved by the “diagonalization”
method.

9.1 Ladner’s theorem: NP-intermediate language

Theorem 9.45 (Ladner 1975) If P 6= NP, then there is L ∈ NP such that L /∈ P and L is
not NP-complete.

For a function f : N→ N, we say that it is polynomial time computable (in unary representa-
tion), if there is a polynomial time algorithm that on input 1n, outputs 1f(n).

For a function f : N→ N, define SATf as follows.

SATf
def
= {ϕ0 1 · · · 1︸ ︷︷ ︸

nf(n)

: ϕ ∈ SAT and |ϕ| = n}

We first prove the following lemma.

Lemma 9.46 Suppose NP 6= P. If h : N → N is polynomial time computable (in unary repre-
sentation), non-decreasing and unbounded, i.e., limn→∞ h(n) =∞, then SATh is not NP-hard.

Proof. Suppose to the contrary that SATh is NP-hard. Let F be a polynomial time reduction
from SAT to SATh that runs in time cnk. Let N be an integer such that for every n > N , the
following holds.

• h(n) > 2k. (This is possible because h is non-decreasing and unbounded.)

• cn1/2 < n.

Claim 1 For every ϕ ∈ SAT with length at least N , the output of F on ϕ, denoted by F (ϕ) =

ψ01|ψ|
h(|ψ|) , satisfies the following: If |ψ| > N , then |ψ| < |ϕ|.

Proof.(of claim) Since F runs in cnk time, it follows that:

|ψ|h(|ψ|) < |ψ|+ 1 + |ψ|h(|ψ|) 6 c|ϕ|k

Thus,

|ψ| < c|ϕ|k/h(|ψ|) 6 c|ϕ|1/2 < |ϕ|

The second and third inequalities come from the fact that |ψ|, |ϕ| > N . �

We now present a polynomial time algorithm for SAT, which contradicts the assumption that
NP 6= P. On input ϕ, do the following.

• If |ϕ| 6 N , check by brute force if it is satisfiable. Otherwise, continue.

• Run F on ϕ, and let the output be ψ01m, for some m.

• Check if m = |ψ|h(|ψ|) by doing the following.

1. Let ` = h(1|ψ|). (Recall that h is polynomial time computable.)
2. Convert |ψ| in its binary form and compute |ψ|` (in binary form).
3. Then, compare it with m.

27/31

Diagonalization on the class NP FLOLAC Summer school 2023

• If m 6= |ψ|h(|ψ|), then REJECT immediately.

• Suppose m = |ψ|h(|ψ|).

If |ψ| 6 N , check if ψ is satisfiable by brute force.

If |ψ| > N , recursively call the algorithm on ψ. (Note that here |ψ| < |ϕ|.)

Each step in the algorithm takes polynomial time and the number of recursive call in this algo-
rithm is at most |ϕ|. So, overall the algorithm runs in polynomial time. �

Next, consider the following lemma.

Lemma 9.47 Suppose NP 6= P. If h : N → N is polynomial time computable (in unary repre-
sentation) and bounded, i.e., there is a constant c such that h(n) 6 c for every n, then SATh /∈ P.

Proof. Suppose SATh ∈ P. We will show that SAT ∈ P, which contradicts the assumption that
NP 6= P. Consider the following algorithm. On input ϕ, do the following.

• Check if ϕ01i ∈ SATh, for some 0 6 i 6 |ϕ|c.
• ACCEPT iff there is i where ϕ01i ∈ SATh.

�

Combined with Lemmas 9.46 and 9.47, the following lemma implies Ladner’s theorem, i.e.,
SATh is the desired intermediate NP language.

Lemma 9.48 Suppose NP 6= P. There is a non-decreasing function h : N→ N such that:

• h is polynomial time computable (in unary representation).

• SATh ∈ NP.

• SATh ∈ P if and only if h is bounded.

The function h for Lemma 9.48 is defined as follow. For every n > 1, the value h(n) is deter-
mined by Algorithm 1 below. HereMi is the DTM whose encoding is the binary representation
of i.

Algorithm 1
Input: 1n, where n > 1.
Task: Compute 1h(n).
1: for i = 1, . . . , log log(n)− 1 do
2: LetMi be the ith (1-tape) DTM.
3: for all x ∈ {0, 1}∗ where |x| 6 log n do
4: Compute SATh(x) (i.e., recursively check if x ∈ SATh).
5: SimulateMi on x in i|x|i steps (using the UTM in Theorem 1.3).
6: if the results in lines 4 and 5 agree on all x ∈ {0, 1}∗ where |x| 6 log n then
7: return i (in unary).
8: return log logn (in unary).

28/31

Diagonalization on the class NP FLOLAC Summer school 2023

9.2 Limit of diagonalization

A TMM with oracle access to a language K, denoted byMK , is a TM with a special tape called
oracle tape and three special states qquery, qyes, qno. Each time it is in qquery, it moves to qyes, if
w ∈ K and to qno, if w /∈ K, where w is the string found in the oracle tape. In other words, when
it is in qquery, the machine can “query” the membership of the language K. Regardless of the
choice of K, such query counts only as one step. We denote by L(MK) the language accepted
byMK .

For a language K, we define the classes P and NP relativized to K as follows.

PK def
= {L : there is a polynomial time DTMMK such that L(MK) = L}

NPK def
= {L : there is a polynomial time NTMMK such that L(MK) = L}

Theorem 9.49 (Baker, Gill, Solovay 1975) There is language A and B such that PA = NPA

and PB 6= NPB.

Proof. For a PSPACE-complete language A, we can show that PA = NPA. (We will show in
Lesson 4 that PSPACE-complete languages exist.)

To show the existence of B, we need the following notation. For a language C ⊆ {0, 1}∗,
define unary(C)

def
= {1n : there is w ∈ C with length n}. Obviously, for every C ⊆ {0, 1}∗,

unary(C) ∈ NPC .
The language B will be defined as B def

=
⋃
i∈NBi where each Bi is a finite set defined inductively

as follows. Each Bi is associated with an integer ki such that Bi = B∩{0, 1}6ki . Here {0, 1}6ki def
=

{w ∈ {0, 1}∗ : |w| 6 ki}.
The base case is B0 = ∅ and k0 = 0. For the induction step, Bi+1 is defined as follows, where

we assume an enumeration of all oracle DTMM0,M1,

• Let n = ki + 1.

• Simulate oracle TMMi+1 on 1n within 2n/10 steps.

During the simulationMi+1 may query the oracle. For the query strings with length 6 ki,
the oracle answers are according to Bi. For the query strings with length > ki, the oracle
answers are “no.”

• Let ki+1 be as follows.

ki+1
def
=

{
n, if all the query strings has length 6 ki
m, m is the maximal length of the query string with length > n

• IfMi+1 accepts 1n within 2n/10 steps, we set Bi+1
def
= Bi.

• IfMi+1 does not accept 1n within 2n/10 steps, we set Bi+1
def
= Bi∪{w}, where w ∈ {0, 1}n

and w is not one of the query strings.

From the definition of B, we can show that unary(B) /∈ PB. �

29/31

Appendix FLOLAC Summer school 2023

Appendix

A The notion of computable functions

Polynomial time computable functions. Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗.
LetM be a 2-tape DTM.

• M computes the function F , ifM accepts every word w ∈ Σ∗ and when it halts, the content
of its second tape is F (w).

• M computes F in time O(g(n)), if there is a constant c > 0 such that on every word w,
M decides w in time c · g(|w|).

• M computes F in polynomial time, if M computes F in time O(g(n)) for some g(n) =
poly(n).

• F is computable in polynomial time, if there is a DTMM that computes F in polynomial
time.

Logarithmic space computable function. A function F : Σ∗ → Σ∗ is computable in log-
arithmic space, if there is a 3-tape DTM M and a constant c such that on every w ∈ Σ∗ the
following holds.

• M accepts w.

• M never change the content of tape-1, i.e., tape-1 always contains the input word w.

In other words, tape-1 is “read-only” tape.

• M only uses at most c log |w| cells in tape-2.

• Tape-3 is “write-only” tape, i.e., the head in tape-3 can only write and move right.

• WhenM halts, the content of tape-3 is F (w).

B Time and space constructible functions

Definition B.50 Let T : N→ N be a function.

• We say that T is time constructible, if for every n, T (n) > n and there is a DTM that on
input 1n computes 1T (n) in time O(T (n)).

• We say that T is space constructible, if there is a DTM that on input 1n computes 1T (n) in
space O(T (n)).

Intuitively, when we say that M runs in time/space O(T (n)), where T is time/space con-
structible function, we can assume that on input word w, M first “computes” the amount of
time/space needed to decide w, before going on to process w.

Theorems 4.27 and 4.28 can be easily generalized to space constructible functions as follows.

Theorem B.51 Let f : N → N be space constructible function such that f(n) > log n, for
every n.

• (Savitch 1970) Nspace[f(n)] ⊆ Dspace[f(n)2].

• (Immerman 1988 and Szelepcsényi 1987) Nspace[f(n)] = coNspace[f(n)].

30/31

Appendix FLOLAC Summer school 2023

C Hardness via log space reduction

In our definition of hardness for NP, coNP and PSPACE, we require that the reduction is
polynomial time reduction. It is also common to define hardness by insisting the reduction is
log-space reduction. That is, we can define K as NP-hard by insisting L 6log K, for every
L ∈ NP, rather than L 6p K. Similarly, for coNP and PSPACE.

Most NP-, coNP- and PSPACE-complete problems are known to remain complete even
under log-space reduction, including SAT, 3-SAT and TQBF.

• SAT and 3-SAT are NP-complete under log-space reduction.

• TQBF is PSPACE-complete under log-space reduction.

31/31

	Preliminaries
	The big-Oh notations
	Turing machines
	Universal Turing machines
	Church-Turing thesis

	Basic complexity classes
	Time complexity
	Space complexity
	Logarithmic space complexity
	Some basic relations between complexity classes

	NP-complete languages
	An alternative definition of the class NP
	NP-complete languages
	More NP-complete problems
	coNP-complete languages

	The class NL and PSPACE
	NL-complete languages
	PSPACE-complete languages

	P-complete languages
	Alternating Turing machines
	Definition
	Time and space complexity for ATM

	The polynomial hierarchy
	The complexity of counting
	The class FP
	The class P
	The complexity of computing the permanent
	Reduction from 3-SAT to cycle cover
	Reduction from matrices over Z to matrices over {0,1}
	P-hardness of PERM – Putting all the pieces together

	Diagonalization on the class NP
	Ladner's theorem: NP-intermediate language
	Limit of diagonalization

	The notion of computable functions
	Time and space constructible functions
	Hardness via log space reduction

