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Schematic of Finite Automata
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Figure 1: Schematic of Finite Automata

• A finite automaton has a finite set of control states.

• A finite automaton reads input symbols from left to right.

• A finite automaton accepts or rejects an input after reading the input.
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Finite Automaton M1
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Figure 2: A Finite Automaton M1

Figure 2 shows the state diagram of a finite automaton M1. M1 has

• 3 states: q1, q2, q3;

• a start state: q1;

• an accept state: q2;

• 6 transitions: q1
0−→ q1, q1

1−→ q2, q2
1−→ q2, q2

0−→ q3, q3
0−→ q2, and q3

1−→ q2.
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Accepted and Rejected String
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• Consider an input string 1100.
• M1 processes the string from the start state q1.
• It takes the transition labeled by the current symbol and moves to the next state.
• At the end of the string, there are two cases:

• If M1 is at an accept state, M1 outputs accept;
• Otherwise, M1 outputs reject.

• Strings accepted by M1: 1,01,11,1100,1101, ....
• Strings rejected by M1: 0,00,10,010,1010, ....
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Finite Automaton – Formal Definition

• A finite automaton is a 5-tuple (Q,Σ, δ, q0, F) where
• Q is a finite set of states;
• Σ is a finite set called alphabet;
• δ : Q × Σ → Q is the transition function;
• q0 ∈ Q is the start state; and
• F ⊆ Q is the set of accept states.

• The set of strings accepted by M is called the language of machine M (written L(M)).
• Hence a language is a set of strings.

• We also say M recognizes (or accepts) L(M).
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M1 – Formal Definition

• The finite automaton M1 = (Q,Σ, δ, q1, F) consists of
• Q = {q1, q2, q3};
• Σ = {0,1};

• δ : Q × Σ → Q is

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

• q1 is the start state; and
• F = {q2}.

• Moreover, we have

L(M1) = {w : w contains at least one 1 and an even number of 0’s follow the last 1}
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Finite Automaton M2
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Figure 3: Finite Automaton M2

• Figure 3 shows M2 = ({q1, q2}, {0,1}, δ, q1, {q2}) where δ is
0 1

q1 q1 q2

q2 q1 q2

• What is L(M2)?
• L(M2) = {w : w ends in a 1}.
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Finite Automaton M3
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Figure 4: Finite Automaton M3

• Figure 4 shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ is
0 1

q1 q1 q2

q2 q1 q2

• What is L(M3)?
• L(M3) = {w : w is the empty string ϵ or ends in a 0}.
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Finite Automaton M3

q1start q2

0
1

1

0

Figure 4: Finite Automaton M3

• Figure 4 shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ is
0 1

q1 q1 q2

q2 q1 q2

• What is L(M3)?
• L(M3) = {w : w is the empty string ϵ or ends in a 0}.
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Finite Automaton M5
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Figure 5: Finite Automaton M5

• Figure 5 shows M5 =
({q0, q1, q2}, {0,1,2, ⟨RESET⟩}, δ, q0, {q0}).

• Strings accepted by M5:
0,00,12,21,012,102,120,021, 201,
210, 111, 222, ....

• M5 computes the sum of input symbols
modulo 3. It resets upon the input
symbol ⟨RESET⟩. Hence M5 accepts
strings whose sum is a multiple of 3
after ⟨RESET⟩.
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Computation – Formal Definition

• Let M = (Q,Σ, δ, q0, F) be a finite automaton and w = w1w2 · · ·wn a string where wi ∈ Σ

for every i = 1, ... , n.

• We say M accepts w if there is a sequence of states r0, r1, ... , rn such that
• r0 = q0;
• δ(ri, wi+1) = ri+1 for i = 0, ... , n − 1; and
• rn ∈ F.

• M recognizes language A if A = {w : M accepts w}.

Definition 1
A language is called a regular language if some finite automaton recognizes it.

FLOLAC 2023 Bow-Yaw Wang王柏堯
10/57



Institute of Information Science, Academia Sinica

Regular Operations

Definition 2
Let A and B be languages. We define the following operations:

• Union: A ∪ B = {x : x ∈ A or x ∈ B}.

• Concatenation: A ◦ B = {xy : x ∈ A and y ∈ B}.

• Star: A∗ = {x1x2 · · · xk : k ≥ 0 and every xi ∈ A}.

• Complementation: A = {x : x ∈ Σ∗ but x ̸∈ A}.

• Note that ϵ ∈ A∗ for every language A.
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Closure Property – Union

Theorem 3
The class of regular languages is closed under the union operation. That is, A1 ∪ A2 is
regular if A1 and A2 are.

Proof.
Let Mi = (Qi,Σ, δi, qi, Fi) recognize Ai for i = 1, 2. Construct M = (Q,Σ, δ, q0, F) where

• Q = Q1 × Q2 = {(r1, r2) : r1 ∈ Q1, r2 ∈ Q2};

• δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a));

• q0 = (q1, q2);

• F = (F1 × Q2) ∪ (Q1 × F2) = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2}.

• Why is L(M) = A1 ∪ A2?
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Nondeterminism

• When a machine is at a given state and reads an input symbol, there is precisely one
choice of its next state.

• This is call deterministic computation.

• In nondeterministic machines, multiple choices may exist for the next state.

• A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite
automaton is abbreviated as NFA.

• A DFA is also an NFA.

• Since NFA allow more general computation, they can be much smaller than DFA.
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NFA N4
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Figure 6: NFA N4

• On input string baa, N4 has several possible computation:

• q1
b−→ q2

a−→ q2
a−→ q2;

• q1
b−→ q2

a−→ q2
a−→ q3; or

• q1
b−→ q2

a−→ q3
a−→ q1.
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Nondeterministic Finite Automaton – Formal Definition

• For any set Q, P(Q) = {R : R ⊆ Q} denotes the power set of Q.

• For any alphabet Σ, define Σϵ to be Σ ∪ {ϵ}.

• A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F) where
• Q is a finite set of states;
• Σ is a finite alphabet;
• δ : Q × Σϵ → P(Q) is the transition function;
• q0 ∈ Q is the start state; and
• F ⊆ Q is the accept states.

• Note that the transition function accepts the empty string as an input symbol.
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NFA N4 – Formal Definition
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• N4 = (Q,Σ, δ, q1, {q1}) is a nondeterministic finite automaton where
• Q = {q1, q2, q3};

• Its transition function δ is

ϵ a b

q1 {q3} ∅ {q2}
q2 ∅ {q2, q3} {q3}
q3 ∅ {q1} ∅
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Nondeterministic Computation – Formal Definition

• Let N = (Q,Σ, δ, q0, F) be an NFA and w a string over Σ. We say N accepts w if w can
be rewritten as w = y1y2 · · · ym with yi ∈ Σϵ and there is a sequence of states
r0, r1, ... , rm such that

• r0 = q0;
• ri+1 ∈ δ(ri, yi+1) for i = 0, ... , m − 1; and
• rm ∈ F.

• Note that finitely many empty strings can be inserted in w.

• Also note that one sequence satisfying the conditions suffices to show the acceptance
of an input string.

• Strings accepted by N4: a,baa, ....
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Equivalence of NFA’s and DFA’s

Theorem 4
Every nondeterministic finite automaton has an equivalent deterministic finite automaton.
That is, for every NFA N, there is a DFA M such that L(M) = L(N).

Proof.
Let N = (Q,Σ, δ, q0, F) be an NFA. For R ⊆ Q, define
E(R) = {q : q can be reached from R along 0 or more ϵ transitions }. Construct a DFA
M = (Q′,Σ, δ′, q′0, F′) where

• Q′ = P(Q);

• δ′(R, a) = {q ∈ Q : q ∈ E(δ(r, a)) for some r ∈ R};

• q′0 = E({q0});

• F′ = {R ∈ Q′ : R ∩ F ̸= ∅}.

• Why is L(M) = L(N)?
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A DFA Equivalent to N4
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Figure 7: A DFA Equivalent to N4
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Closure Properties – Revisited

Theorem 5
The class of regular languages is closed under the union operation.

Proof.
Let Ni = (Qi,Σ, δi, qi, Fi) recognize Ai for i = 1, 2. Construct N = (Q,Σ, δ, q0, F) where

• Q = {q0} ∪ Q1 ∪ Q2;

• F = F1 ∪ F2; and

• δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ϵ

∅ q = q0 and a ̸= ϵ

• Why is L(N) = L(N1) ∪ L(N2)?
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Closure Properties – Revisited

Theorem 6
The class of regular languages is closed under the concatenation operation.

Proof.
Let Ni = (Qi,Σ, δi, qi, Fi) recognize Ai for i = 1, 2. Construct N = (Q,Σ, δ, q1, F2) where

• Q = Q1 ∪ Q2; and

• δ(q, a) =


δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ϵ

δ1(q, a) ∪ {q2} q ∈ F1 and a = ϵ

δ2(q, a) q ∈ Q2

• Why is L(N) = L(N1) ◦ L(N2)?
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Closure Properties – Revisited

Theorem 7
The class of regular languages is closed under the star operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1. Construct N = (Q,Σ, δ, q0, F) where

• Q = {q0} ∪ Q1;

• F = {q0} ∪ F1; and

• δ(q, a) =



δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ϵ

δ1(q, a) ∪ {q1} q ∈ F1 and a = ϵ

{q1} q = q0 and a = ϵ

∅ q = q0 and a ̸= ϵ

• Why is L(N) = [L(N1)]∗?
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Closure Properties – Revisited

Theorem 8
The class of regular languages is closed under complementation.

Proof.
Let M = (Q,Σ, δ, q0, F) be a DFA recognizing A. Consider M = (Q,Σ, δ, q0, Q \ F). We have
w ∈ L(M) if and only if w ̸∈ L(M). That is, L(M) = A as required.
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Regular Expressions i

Definition 9
R is a regular expression if R is

• a for some a ∈ Σ;

• ϵ;

• ∅;

• (R1 ∪ R2) where Ri’s are regular expressions;

• (R1 ◦ R2) where Ri’s are regular expressions; or

• (R∗
1 ) where R1 is a regular expression.
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Regular Expressions ii

• We write R+ for R ◦ R∗. Hence R∗ = R+ ∪ ϵ.

• Moreover, write Rk for

k︷ ︸︸ ︷
R ◦ R ◦ · · · ◦ R.

• Define R0 = ϵ. We have R∗ = R0 ∪ R1 ∪ · · · ∪ Rn ∪ · · · .

• L(R) denotes the language described by the regular expression R.

• Note that ∅ ≠ {ϵ}.
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Examples of Regular Expressions

• For convenience, we write RS for R ◦ S.

• We may also write the regular expression R to denote its language L(R).

• L(0∗10∗) = {w : w contains a single 1}.

• L(Σ∗1Σ∗) = {w : w has at least one 1}.

• L((ΣΣ)∗) = {w : w is a string of even length }.

• (0 ∪ ϵ)(1 ∪ ϵ) = {ϵ,0,1,01}.

• 1∗∅ = ∅.

• ∅∗ = {ϵ}.

• For any regular expression R, we have R ∪ ∅ = R and R ◦ ϵ = R.
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Regular Expressions and Finite Automata

Lemma 10
If a language is described by a regular expression, it is regular.

Proof.
We prove by induction on the regular expression R.

• R = a for some a ∈ Σ. Consider the NFA Na = ({q1, q2},Σ, δ, q1, {q2}) where

δ(r, y) =

{
{q2} r = q1 and y = a
∅ otherwise

• R = ϵ. Consider the NFA Nϵ = ({q1},Σ, δ, q1, {q1}) where δ(r, y) = ∅ for any r and y.

• R = ∅. Consider the NFA N∅ = ({q1},Σ, δ, q1, ∅) where δ(r, y) = ∅ for any r and y.

• R = R1 ∪ R2, R = R1 ◦ R2, or R = R∗
1 . By inductive hypothesis and the closure properties

of finite automata.
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Regular Expressions and Finite Automata

a
start

a

b
start

b

ab
start

a ϵ b

ab ∪ a

start

ϵ

ϵ

a ϵ b

a
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(ab ∪ a)∗
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Regular Expressions and Finite Automata

Lemma 11
If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.
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Generalized Nondeterministic Finite Automata i

Definition 12
A generalized nondeterministic finite automaton is a 5-tuple (Q,Σ, qstart, qaccept) where

• Q is the finite set of states;

• Σ is the input alphabet;

• δ : Q × Q → R is the transition function, where R denotes the set of regular
expressions;

• qstart is the start state; and

• qaccept is the accept state.
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Generalized Nondeterministic Finite Automata ii

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 · · ·wk where wi ∈ Σ∗ and there is a sequence
of states r0, r1, ... , rk such that

• r0 = qstart;

• rk = qaccept; and

• for every i, wi ∈ L(Ri) where Ri = δ(qi−1, qi).
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Regular Expressions and Finite Automata

Proof of Lemma.
Let M be the DFA for the regular language. Construct an equivalent GNFA G by adding
qstart, qaccept and necessary ϵ-transitions.

CONVERT (G):

1. Let k be the number of states of G.

2. If k = 2, then return the regular expression R labeling the transition from qstart to qaccept.

3. If k > 2, select qrip ∈ Q \ {qstart, qaccept}. Construct G′ = (Q′,Σ, δ′, qstart, qaccept) where
• Q′ = Q \ {qrip};
• for any qi ∈ Q′ \ {qaccept} and qj ∈ Q′ \ {qstart}, define δ′(qi, qj) = (R1)(R2)∗(R3) ∪ R4 where

R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4. return CONVERT (G′).
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Regular Expressions and Finite Automata

Lemma 13
For any GNFA G, CONVERT (G) is equivalent to G.

Proof.
We prove by induction on the number k of states of G.

• k = 2. Trivial.

• Assume the lemma holds for k − 1 states. We first show G′ is equivalent to G.
Suppose G accepts an input w. Let qstart, q1, q2, ... , qaccept be an accepting computation

of G. We have qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1−→ qrip · · · qrip

wj−1−→ qrip
wj−→ qj · · · qaccept.

Hence qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1···wj−→ qj · · · qaccept is a computation of G′. Conversely,

any string accepted by G′ is also accepted by G since the transition between qi and qj

in G′ describes the strings taking qi to qj in G. Hence G′ is equivalent to G. By
inductive hypothesis, CONVERT (G′) is equivalent to G′.
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Regular Expressions and Finite Automata

q1start q2

a

b

a, b

(a) DFA M

qsstart q1 q2 qa
ϵ

a

b

a, b

ϵ

(b) GNFA G

qsstart q1 qa
ϵ

a

b(a ∪ b)∗

(c) GNFA

qsstart qa
a∗b(a ∪ b)∗

(d) GNFA

Figure 8: Finite Automaton to Regular Expression
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Regular Expressions and Finite Automata

Theorem 14
A language is regular if and only if some regular expression describes it.

FLOLAC 2023 Bow-Yaw Wang王柏堯
36/57



Institute of Information Science, Academia Sinica

Equivalence and Minimization
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Equivalence of Descriptions

• Let M be a DFA, N an NFA, and R a regular expression.

• We would like to answer the following questions:
• Is L(M) = L(N)?
• Is L(M) = L(R)?
• Is L(N) = L(R)?

• Recall that there are DFA’s MN and MR such that L(MN) = L(N) and L(MR) = L(R).

• It suffices to solve the following problem:
Given two DFA’s M0 and M1, is L(M0) = L(M1)?
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Equivalence of States

• Let us start with a simpler question.

• Give a DFA M = (Q,Σ, δ, q0, F) and p, q ∈ Q, is it true that p w−→ p′ ∈ F if and only if
q w−→ q′ ∈ F for all w ∈ Σ∗?

• Note that p′ need not be q′.
• We only ask if p′ and q′ are both in F or not.

• If the answer is “yes,” then p and q are equivalent.

• Otherwise, p and q are distinguishable.
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Table-Filling Algorithm i

q1start

q2

q3 q4

1

0, 1

0
1

0 0, 1

• Consider the DFA on the left.

• Since q1 ̸∈ F but q2 ∈ F, we know q1 and
q2 are distinguishable.

• Similarly, {q1, q4}, {q3, q2}, {q3, q4} are
all distinguishable.

• Moreover, q2 and q4 all have self loops
labeled by 0, 1. {q2, q4} are equivalent.

• What about q1 and q3?
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Table-Filling Algorithm ii

• Here is an algorithm to find all equivalent states.
• (Basis) If p ∈ F but q ̸∈ F, then {p, q} is distinguishable;
• (Inductive) Let p, q ∈ Q, a ∈ Σ, r = δ(p, a), and s = δ(q, a). If {r, s} is distinguishable, then

{p, q} is distinguishable.

• Proof sketch:
• If p ∈ F but q ̸∈ F, p = δ(p, ϵ) ∈ F and q = δ(q, ϵ) ̸∈ F. {p, q} is distinguishable.
• By inductive hypothesis, there is a w such that r w−→ r′ ∈ F but s w−→ s′ ̸∈ F (the other case

is symmetric). Then p aw−→ r′ ∈ F and q aw−→ s′ ̸∈ F. {p, q} is distinguishable.
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Table-Filling Algorithm iii

q1start

q2

q3 q4

1

0, 1

0
1

0 0, 1

q1

q2 X
q3 X
q4 X X

q1 q2 q3 q4

• By the algorithm, we see {q1, q3} and
{q2, q4} are equivalent.

• We know how to find equivalent states
in a DFA.
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Equivalence of DFA’s i

• Now consider two DFA’s M0 and M1.

• How do we know if L(M0) = L(M1)?

• Put M0 and M1 together and check if the start states are equivalent.
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Equivalence of DFA’s ii

q1start

q2

q3 q4

1

0, 1

0
1

0 0, 1

p1start p2
1

0 0, 1

q1

q2 X
q3 X
q4 X X
p1 X X
p2 X X X

q1 q2 q3 q4 p1 p2

• Since q1 and p1 are equivalent, both
DFA’s accept the same language.

• Moreover, we know {q1, q3, p1} are
equivalent and {q2, q4, p2} are
equivalent.
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Minimization of DFA’s i

• Given a DFA M, can we find a DFA M′ with the minimum number of states and
L(M) = L(M′)?

• Surprisingly, the table-filling algorithm can solve the minimization problem.

• Here is the algorithm:

• Remove all states unreachable from the initial state;
• Use the table-filling algorithm to find equivalent states;
• Construct M′ with equivalent classes as states.
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Minimization of DFA’s ii

q1start

q2

q3 q4

1

0, 1

0
1

0 0, 1

q1

q2 X
q3 X
q4 X X

q1 q2 q3 q4

• Equivalent classes are E1 = {q1, q3} and
E2 = {q2, q4}.

• M′ = ({E1, E2}, {0, 1}, δ′, E1, {E2}) and
δ′ 0 1
E1 E1 E2

E2 E2 E2
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Nonregular Languages
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Pumping Lemma

Lemma 15
If A is a regular language, then there is a number p such that for any s ∈ A of length at
least p, there is a partition s = xyz with

1. for each i ≥ 0, xyiz ∈ A;

2. |y| > 0; and

3. |xy| ≤ p.

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p = |Q|.

Consider any string s = s1s2 · · · sn ∈ L(M) of length n ≥ p. Let r1 = q1, ... , rn+1 be the
sequence of states such that ri+1 = δ(ri, si) for 1 ≤ i ≤ n. Since n + 1 ≥ p + 1 = |Q| + 1, there
are 1 ≤ j < l ≤ p + 1 such that rj = rl (why?). Choose x = s1 · · · sj−1, y = sj · · · sl−1, and

z = sl · · · sn. Note that r1
x−→ rj, rj

y−→ rl, and rl
z−→ rn+1 ∈ F. Thus M accepts xyiz for i ≥ 0.

Since j ̸= l, |y| > 0. Finally, |xy| ≤ p for l ≤ p + 1.
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Applications of Pumping Lemma

Example 16
B = {0n1n : n ≥ 0} is not a regular language.

Proof.
Suppose B is regular. Let p be the pumping length given by the pumping lemma. Choose
s = 0p1p. Then s ∈ B and |s| ≥ p, there is a partition s = xyz such that xyiz ∈ B for i ≥ 0.
Since |xy| ≤ p and |y| > 0, y ∈ 0+. xz ̸∈ B. A contradiction.

Corollary 17
C = {w : w has an equal number of 0’s and 1’s} is not a regular language.

Proof.
Suppose C is regular. Then B = C ∩ 0∗1∗ is regular.
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Applications of Pumping Lemma

Example 18
F = {ww : w ∈ {0,1}∗} is not a regular language.

Proof.
Suppose F is a regular language and p the pumping length. Choose s = 0p10p1. By the
pumping lemma, there is a partition s = xyz such that |xy| ≤ p and xyiz ∈ F for i ≥ 0. Since
|xy| ≤ p, y ∈ 0+. But then xz ̸∈ F. A contradiction.
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Applications of Pumping Lemma

Example 19
D = {1n2

: n ≥ 0} is not a regular language.

Proof.
Suppose D is a regular language and p the pumping length. Choose s = 1p2

. By the
pumping lemma, there is a partition s = xyz such that |y| > 0, |xy| ≤ p, and xyiz ∈ D for
i ≥ 0. Consider the strings xyz and xy2z. We have |xyz| = p2 and
|xy2z| = p2 + |y| ≤ p2 + p < p2 + 2p + 1 = (p + 1)2. Since |y| > 0, we have
p2 = |xyz| < |xy2z| < (p + 1)2. Thus xy2z ̸∈ D. A contradiction.
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Applications of Pumping Lemma

Example 20
E = {0i1j : i > j} is not a regular language.

Proof.
Suppose E is a regular language and p the pumping length. Choose s = 0p+11p. By the
pumping lemma, there is a partition s = xyz such that |y| > 0, |xy| ≤ p, and xyiz ∈ E for
i ≥ 0. Since |xy| ≤ p, y ∈ 0+. But then xz ̸∈ E for |y| > 0. A contradiction.
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ω-Automata

• We would like to generalize inputs to finite automata.

• Instead of finite input strings, let us consider an infinite input strings
α = a1a2 · · · an · · · over Σ.

• Let M = (Q,Σ, δ, q0, F) be a finite automaton.

• As before, define a run ρ = q0q1 · · · qn · · · on α to be an infinite sequence of states such
that

for all i ≥ 0, (qi, ai+1, qi+1) ∈ δ.

• What is an accepting run then?
• Problem: there is no “final” state in an infinite run.
• We cannot reuse the old definition.
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Büchi Acceptance

• Let ρ = q0q1 · · · qn · · · be an infinite run.

• Define
Inf(ρ) = {q ∈ Q : q occurs infinitely many times in ρ}.

• An infinite run ρ over α on M = (Q,Σ, δ, q0, F) is accepting if Inf(ρ) ∩ F ̸= ∅.
• This is called Büchi acceptance

• An infinite input string α is accepted by M if there is an accepting infinite run ρ over
α on M.

• Finally, define

Lω(M) = {α : α is an infinite input string accepted by M}.
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Example

q1start q2

0, 1

1

1

Figure 9: NFA N6

• Lω(N6) = {α : α has only finitely many 0’s}.
• If there are infintiely many 0’s, N6 has to stay in q1. It cannot pass q2 infinitely many times.

• We will write the expression (0 + 1)∗1ω to denote L(N6).
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Nondeterminism

• For finite automata over finite input strings, we know nondeterminism does not give
us more expressive power.

• However, nondeterministic finite automata over infinite input strings can recognize
more languages than deterministic ones.

Theorem 21
(0 + 1)∗1ω cannot be accepted by any deterministic finite automata.

Proof.
Suppose D = (Q,Σ, δ, q0, F) is a DFA and L(D) = (0 + 1)∗1ω . Consider 1ω . There is n0 such
that 1n0 causes D to reach an accepting state. Now consider 1n0 01ω . There is n1 such that
1n0 01n2 causes D to reach an accepting state. We can therefore construct 1n0 01n1 01n2 0 · · · to
cause D to pass through F infinitely many times. A contradiction.
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Remark

q1start q2

0, 1

1

1

Figure 10: NFA N6

• The proof does not work for NFA.
• Consider again the NFA N6.
• 1 causes N6 to reach q2. 101 causes N6 to reach q2, etc. There is no problem.
• However, 101 passes q2 only once. Similarly, 10101, 1010101, ... pass q2 only once.
• Because N6 is nondeterministic, infinite runs may not be the “limit” of their finite

prefixes.
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The Class of Regular ω-Languages

• Define
Rω = {Lω(M) : M is an NFA with Büchi acceptance }.

• Rω is called the class of regular ω-languages.

• Moreover, it is known the class of regular ω-language is closed under intersection,
union, and complement.

• Under Büchi acceptance, nondeterminism increases the expressive power. We have

{Lω(D) : D is a DFA with Büchi acceptance } ⊊ Rω.
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Concluding Remarks
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Where to Go

• Automata theory is a rich field.

• It is widely studied in computational complexity, formal verification, and natural
language processing.

• You will see applications of automata theory in formal verification later.
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