
λ-Calculus
General Recursion and Polymorphism

陳亮廷 Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation (FLOLAC)
2022

Institute of Information Science, Academia Sinica

1

PCF— System of Recursive
Functions

PCF: λ→ with naturals and general recursion

Definition 1 (Terms)
Additional term formation rules are added to λ→ as follows.

zero : TermPCF
M : TermPCF

suc M : TermPCF

L : TermPCF M : TermPCF N : TermPCF x ∈ V
ifz(M; x.N) L

M : TermPCF x ∈ V
fix x.M : TermPCF

2

PCF: Typing rules

Definition 2
Additional term typing rules are added to λ→ as follows.

Γ ` zero : N
Γ ` M : N

Γ ` suc M : N

Γ ` L : N Γ ` M : τ Γ, x : N ` N : τ

Γ ` ifz(M; x.N) L : τ

Γ, x : τ ` M : τ

Γ ` fix x.M : τ

• Substitution for PCF is defined similarly.
• Substitution respects typing judgements, i.e. Γ ` N : τ and
Γ, x : τ ` M : σ, then Γ ` M[N/x] : σ.

3

PCF: Dynamics

β-conversion for PCF is extended with three rules

fix x.M −→β M[fix x.M/x]
ifz(M; x.N) zero −→β M

ifz(M; x.N) (suc L) −→β N[L/x]

Similarly, a β-reduction −→β1 extends −→β to all parts of a term and
−→β∗ indicates finitely many β-reductions.

Theorem 3
PCF enjoys type safety.

4

Example

A term which never terminates can be defined easily.

fix x. x −→β1 x[fix x. x/x]
≡ fix x. x −→β1 x[fix x. x/x]
≡ fix x. x −→β1 x[fix x. x/x]
≡ . . .

5

Example: Predecessor and negation

pred ··= λn : N.ifz(zero; x. x) n : N → N

not ··= λn : N.ifz(suc zero; x.zero) n : N → N

Exercise
Evaluate the following terms to their normal forms.

1. pred zero
2. pred (suc (suc (suc zero)))
3. not (suc (suc zero))

6

F — Polymorphic Typed
λ-Calculus

Polymorphic types

Given type variables V, τ : Type is defined by defined by

t ∈ V (tvar)t : Type

σ : Type τ : Type
(fun)

σ → τ : Type

σ : Type t ∈ V
(poly)∀t. σ : Type

where t may or may not appear in σ.

The polymorphic type ∀t. σ provides a generic type for every instance
σ[τ/t] whenever t is instantiated by an actual type τ .

7

Examples

• id : ∀t. t → t
• proj1 : ∀t. ∀u. t → u → t
• proj2 : ∀t. ∀u. t → u → u
• length : ∀t.list t → nat
• singleton : ∀t.t → list(t)

8

Free and bound variables, again

Definition 4
The free variable FV(τ) of τ is defined inductively by

FV(t) = t
FV(σ → τ) = FV(σ) ∪ FV(τ)
FV(∀t. σ) = FV(σ)− {t}

For convenience, the function extends to contexts:

FV(Γ) = { t ∈ V | ∃(x : σ) ∈ Γ ∧ t ∈ FV(σ) }.

1. FV(t1) = {t1}.
2. FV(∀t. (t → t) → t → t) = ∅.
3. FV(x : t1, y : t2, z : ∀t. t) = {t1, t2}.

9

Capture-avoiding substitution for type

Definition 5
The (capture-avoiding) substitution of a type ρ for the free
occurrence of a type variable t is defined by

t[ρ/t] = ρ

u[ρ/t] = u if u 6= t
(σ → τ)[ρ/t] = σ[ρ/t] → τ [ρ/t]
(∀t.σ)[ρ/t] = ∀t.σ
(∀u.σ)[ρ/t] = ∀u.σ[ρ/t] if u 6= t,u 6∈ FV(ρ)

Recall that u 6∈ FV(ρ) means that u is fresh for ρ.

10

Typed terms

Definition 6
On top of λ→, F has additional term formation rules as follows.

M : TermF t : V (gen)
Λ t. M : TermF

M : TermF τ : Type
(inst)M τ : TermF

1. Λt.M for type abstraction, or generalisation.
2. M τ for type application, or instantiation.

11

Example

Suppose length : ∀t.list t → nat.
Then,

1. length nat
2. length bool
3. length (nat → nat)

are instances of length with types

1. list nat → nat
2. list bool → nat
3. list (nat → nat) → nat

12

System F: Typing judgement

A type context is a sequence of type variable

t1, t2, . . . , tn

F has two kinds of typing judgements.

• ∆ ` τ for τ for a valid type under the type context ∆
• ∆; Γ ` M : τ for a well-typed term under the context Γ and the
type context ∆.

For example,
t ` t → t

is a judgement that t → is a valid type under the type context, t.

13

System F: Type formation

The justification of ∆ ` τ is constructed inductively by following
rules.

t occurs in ∆
∆ ` t

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, t ` τ

∆ ` ∀t. τ

Exercise
Derive the judgement

t ` t → t

14

System F: Typing rules

The justification of ∆; Γ ` M : σ is defined inductively by following
rules.

x : σ ∈ Γ
∆; Γ ` x : σ

∆; Γ ` M : σ → τ ∆; Γ ` N : σ
∆; Γ ` M N : τ

∆ ` σ ∆; Γ, x : σ ` M : τ

∆; Γ ` λx : σ. M : σ → τ

∆, t; Γ ` M : σ
(∀-intro)

∆; Γ ` Λt. M : ∀t. σ

∆; Γ ` M : ∀t. σ ∆ ` τ (∀-elim)
∆; Γ ` M τ : σ[τ/t]

For convenience, ` M : τ stands for ·; · ` M : τ .

15

Typing derivation

The typing judgement ` Λt.Λu. λ(x : t)(y : u). x : ∀t. ∀u. t → u → t is
derivable from the following derivation:

t,u ` t
t,u ` u t,u; x : t, y : u ` x : t
t,u; x : t ` λ(y : u). x : u → t

t,u; · ` λ(x : t)(y : u). x : t → u → t
t; · ` Λu. λ(x : t)(y : u). x : ∀u. t → u → t

` Λt.Λu. λ(x : t)(y : u). x : ∀t. ∀u. t → u → t

16

Self application

Self-application is not typable in simply typed λ-calculus.

λ(x : t). x x

However, self-application is possible in System F.

λ(x : ∀t.t → t). x (∀t.t → t) x

Exercise
Instantiate the first t with the type ∀t. t → t.

17

Exercise

Derive the following judgements:

1. ` Λt. λ(x : t). x : ∀t. t → t
2. σ;a : σ ` (Λt. λ(x : t)(y : t). x) σ a : σ → σ

3. ` Λt. λ(f : t → t)(x : t). f (f x) : ∀t. (t → t) → t → t

Hint. F is syntax-directed, so the type inversion holds.

18

System F: β-reduction

The β-conversion has two rules

(λ(x : τ).M)N −→β M[x/N] and (Λt.M) τ −→β M[τ/t]

For example,

(Λt.λx : t. x) τ a −→β (λx : t. x)[τ/t] a ≡ (λx : τ. x) a −→β x[a/x] ≡ a

Similarly, β-conversion extends to subterms of a given term,
introducing symbols −→β1 and −→β∗ in the same way.

19

Sum type

Definition 7
The sum type is defined by

σ + τ ··= ∀t.(σ → t) → (τ → t) → t

It has two injection functions: the first injection is defined by

leftσ+τ ··= λ(x : σ). Λt. λ(f : σ → t)(g : τ → t). f x
rightσ+τ

··= λ(y : τ). Λt. λ(f : σ → t)(g : τ → t).g y

Exercise
Define

either : ∀u. (σ → u) → (τ → u) → σ + τ → u

20

Product type

Definition 8 (Product Type)
The product type is defined by

σ × τ ··= ∀t.(σ → τ → t) → t

The pairing function is defined by

〈_, _〉 ··= λ(x : σ)(y : τ).Λt. λ(f : σ → τ → t). f x y

Exercise
Define projections

proj1 : σ × τ → σ and proj2 : σ × τ → τ

21

Natural numbers i

The type of Church numerals is defined by

nat ··= ∀t. (t → t) → t → t

Church numerals

cn : nat
cn ··= Λt. λ(f : t → t) (x : t). fn x

Successor

suc : nat → nat
suc ··= λ(n : nat).Λt. λ(f : t → t) (x : t) . f (n t f x)

22

Natural numbers ii

Addition

add : nat → nat → nat
add ··= λ(n : nat) (m : nat) Λt. λ(f : t → t) (x : t).

(m t f) (n t f x)

Multiplication

mul : nat → nat → nat
mul ··=?

Conditional

ifz : ∀t.nat → t → t → t
ifz ··=?

23

Natural numbers iii

System F allows us to define iterator like fold in Haskell.

foldnat : ∀t. (t → t) → t → nat → t
foldnat ··= Λt. λ(f : t → t)(e0 : t)(n : nat).n t f e0

Exercise
Define add and mul using foldnat and justify your answer.

1. add′ ··= ? : nat → nat → nat
2. mul′ ··= ? : nat → nat → nat

24

Lists

Definition 9
For any type σ, the type of lists over σ is

listσ ··= ∀t. t → (σ → t → t) → t

with “list constructors”:

nilσ ··= Λt.λ(h : t)(f : σ → t → t).h

and

consσ ··= λ(x : σ)(xs : listσ).Λt.λ(h : t)(f : σ → t → t).f x (xs t h f)

of type σ → list σ → list σ.

25

Type erasure

Definition 10
The erasing map is a function defined by

|x| = x
|λ(x : τ).M| = λx. |M|

|M N| = (|M| |N|)
|Λt.M| = |M|
|M τ | = |M|

Proposition 11
Within System F, if ` M : σ and |M| −→β1 N′, then there exists a
well-typed term N with ` N : σ and |N| = N′.

26

Type safety and normalisation

Theorem 12 (Type safety)
Suppose ` M : σ. Then,

1. M −→β1 N implies ` N : σ;
2. M is in normal form or there exists N such that M −→β1 N

Type safety is proved by induction on the derivation of ` M : σ.

Theorem 13 (Normalisation properties)
F enjoys the weak and strong normalisation properties.

Proved by Girard’s reducibility candidates.

27

Parametricity

What functions can you write for the following type?

∀t. t → t

Since t is arbitrary, we cannot inspect the content of t. What we can
do with t is simply return it.

Theorem 14
Every term M of type ∀t. t → t is observationally equivalent1 to
Λt. λx : t. x.

1The notion of observational equivalence is beyond the scope of this lecture.

28

Parametricity: Theorems for free2

Assume F extended with the list type list τ for τ and the type N of
naturals, denoted Flist,N.

Then head ◦ map f = f ◦ head for any f : τ → σ where
head : ∀t.list t → t can be proved by just reading the type of head
and tail!
Theorem 15
For any type σ in F (with lists) and · ` M : σ, then

M ∼ M : Rσ,σ

2Philip Wadler. 1989. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture (FPCA
’89). ACM, New York, NY, USA, 347–359.

29

Undecidability of type inference

Theorem 16 (Wells, 1999)
It is undecidable whether, given a closed term M of the untyped
lambda-calculus, there is a well-typed term M′ in System F such
that |M′| = M.

Two ways to retain decidable type inference:

1. Limit the expressiveness so that type inference remains
decidable. For example, Hindley-Milner type system adapted by
Haskell 98, Standard ML, etc. supports only a limited form of
polymorphism but type inference is decidable.

2. Adopt partial type inference so that type annotations are
needed for, e.g. top-level definitions and local definitions.

Check out bidirectional type inference.

30

Nameless Representation

Capture-avoiding but ill-defined substitution

The definition of capture-avoiding substitution is not well-defined.
Recall that

x[L/x] = L
y[L/x] = y if x 6= y

(MN)[L/x] = M[L/x] N[L/x]
(λx.M)[L/x] = λx.M
(λy.M)[L/x] = λy.M[L/x] if x 6= y and y 6∈ FV(L)

The function _[L/x] : TermV → TermV is not total, so it is not an
instance of structural recursion (i.e. fold). In what sense, is the
above well-defined?

1. Use nominal technique and the notion of α-structure
recursion/induction. It requires some elements of group theory.

2. Use nameless representation.

31

Well-Scoped de Bruijn index representation i

An index i starting from 0 is used as a variable to represent the i-th
enclosing λ (binder) ‘from the inside out’. For example, a term with
named variables

λa. λb. (λc. c) (λc.a b)

becomes
λλ (λ 0) (λ 2 1)

Hint. It may be easier to think of a term in its tree representation.

32

Well-Scoped de Bruijn index representation ii

Definition 17 (de Bruijn representation with a local scope)
The term formation t Termn is defined inductively for n ∈ N by

0 ≤ i < n
i Termn

t Termn+1
λ t Termn

t Termn u Termn
t u Termn

t Termn means t has at most n many free variables.

33

Exercise

Translate the following terms to its de Bruijn index representation.

1. λx. x
2. λs. λz. s z
3. λa. λb.a (λc.a b)
4. (λx. x) (λy. y)
5. λx. y
6. x y z

34

Substitution, revisited

How to reformulate β-reduction for terms in de Bruijn
representation? Consider

(λλ (λ 0) (λ 2 1)) t −→β (λ (λ 0) (λ 2 1)) [t/0]

The de Bruijn index increments under a binder so [t/i] should be
[t′/i+ 1] where t′ is the result of incrementing every index in t, e.g.,

(λ (λ 0) (λ 2 1)) [t/0] = λ (λ 0)[t′/1] (λ 2 1)[t′/1]
= λ (λ 0[t′′/2]) (λ (2 1) [t′′/2])
= λ (λ 0) (λ 2[t′′/2] 1[t′′/2])
= λ (λ 0) (λ t′′ 1)

35

Simultaneous variable renaming

Definition 18
A (variable) renaming is a function ρ between Zn and Zm.

Every renaming ρ : Zn → Zm extends to an action on terms:

〈ρ〉 i = ρ(i)
〈ρ〉 (t u) = 〈ρ〉 t 〈ρ〉u
〈ρ〉λ t = λ 〈ρ′〉 t

where ρ′ : Zn+1 → Zm+1 is defined as

ρ′(0) = 0
ρ′(1+ i) = 1+ ρ(i)

to avoid changing bound variables.

In particular, wk : Termn → Termn+1 derived by i 7→ i+ 1 ∈ Zn+1
increments every index of a free variable by 1.

36

Simultaneous substitution

Definition 19
A (simultaneous) substitution is a function σ from Zn to Termm.

Every substitution extends to an action terms:

〈σ〉 i = σ(i)
〈σ〉 (t u) = 〈σ〉 t 〈σ〉u
〈σ〉λ t = λ 〈σ′〉 t

where σ′ : Zn+1 → Termm+1 is defined as

σ′(0) = 0
σ′(1+ i) = wk (σ(i))

37

Single substitution

Definition 20
A single substitution for t is a simultaneous substitution given by

σ : Z1+n → Zn

σ(0) = t
σ(1+ i) = i

38

Exercise

1. Adopt α-equivalence to the de Bruijn representation.
2. Adopt β-equivalence to the de Bruijn representation.
3. Apply the new definition of substitution to compute not True.
4. Adopt the definitions of renaming and substitution to the de

Bruijn level representation. N.B. we may also count the i-th
enclosing binder ‘from the outside in’ using the same definition,
called the de Bruijn level.

39

Homework

1. (2.5%) Extend PCF with the type B of boolean values with
ifz(M;N) true =β M and ifz(M;N) false =β N including
term formation rules, typing rules, and dynamics for B.

2. (2.5%) Define lengthσ : list σ → nat calculating the length of
a list in System F.

40

	PCF— System of Recursive Functions
	F — Polymorphic Typed -Calculus
	Nameless Representation

