A-Calculus

General Recursion and Polymorphism

[R=2ZE Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation (FLOLAC)
2022

Institute of Information Science, Academia Sinica

PCF— System of Recursive
Functions

PCF: _, with naturals and general recursion

Definition 1 (Terms)
Additional term formation rules are added to _, as follows.

M : Termpcp
zero : Termpce suc M : Termpce
L: Termpcr M : Termpce N : Termpce xeV

ifz(M;x.N) L

M : Termpcr xeV
fixx.M: Termpcr

PCF: Typing rules

Definition 2
Additional term typing rules are added to A_, as follows.

Fr'EM: N
Fzero: N [FsucM:N

N-L:N Fr=Mm:r MX:NEN:7
Fr=ifz(M;x.N)L: 7

Cx:T7EM:T
M- fixx.M:r

- Substitution for PCF is defined similarly.

- Substitution respects typing judgements, i.e. ' = N : 7 and
Mx:7EM:o, thenT = M[N/X] : 0.

PCF: Dynamics

B-conversion for PCF is extended with three rules
fixx.M — 5 M[fixx. M/x]
ifz(M;x.N) zero —3 M
1fz(M;x.N) (suc L) —5 N[L/X]

Similarly, a g-reduction — 7 extends — 4 to all parts of a term and
— . indicates finitely many s-reductions.

Theorem 3
PCF enjoys type safety.

A term which never terminates can be defined easily.

fixx. x —z1 X[F1xX. x/X]
= fixx.x —p1 X[F1xX.X/X]
= fixx.x —p1 X[F1xX. X/X]

Example: Predecessor and negation

pred:= An:N.ifz(zero;x.x) n 'N—>N
not := An:N.ifz(suc zero;x.zero) n :N—>N
Exercise

Evaluate the following terms to their normal forms.

1. pred zero
2. pred (suc (suc (suc zero)))
3. not (suc (suc zero))

F — Polymorphic Typed
A-Calculus

Polymorphic types

Given type variables V, 7 : Type is defined by defined by

teV

T Type (D

o:Type T:Type
o—T1:Type

(fun)

o:Type teV
Vt.o: Type

(poly)

where t may or may not appear in o.

The polymorphic type Vt. o provides a generic type for every instance
o[r/t] whenever t is instantiated by an actual type 7.

- id:vt.t—t

- proj,:vVt.Vu.t—u—t

- proj,:Vt.Vu.t—u—u

- length:Vvt.list t — nat

- singleton : Vt.t — list(t)

Free and bound variables, again

Definition 4
The free variable FV(7) of 7 is defined inductively by
FV(t) =t
FV(oc — 7) = FV(o) U FV(7)
FV(Vt.o) = FV(o) — {t}

For convenience, the function extends to contexts:

V() ={teV|3(x:0) el Ate (o)}

1. FV(t) = {t:}.
2. FV(Vt.(t—>t) >t —1t)=0.
3. FV(x:t,y:t,z:Vt.t) = {t;,t}.

Capture-avoiding substitution for type

Definition 5

The (capture-avoiding) substitution of a type p for the free
occurrence of a type variable t is defined by

tlo/t] = p
ulp/tl=u ifu#t
(o0 = 7)lp/t] = alp/t] = 7p/1]
(Vt.o)[p/t] = Vt.o
(Vu.0)[p/t] = VYu.alp/t] ifu £t udFV(p)

Recall that u & FV(p) means that u is fresh for p.

Typed terms

Definition 6
On top of A_,, F has additional term formation rules as follows.

M : Terme t:V
ANt.M:Termg

(gen)

M : Termg T:Type

M T :Terme (inst)

1. At.M for type abstraction, or generalisation.

2. M 7 for type application, or instantiation.

1

Suppose length :Vvt. list t — nat.
Then,

1. length nat
2. Llength bool
3. length (nat — nat)

are instances of length with types

1. 1ist nat — nat
2. list bool — nat
3. list (nat — nat) — nat

System F: Typing judgement

A type context is a sequence of type variable

(E19 &g 000 g il

F has two kinds of typing judgements.

- A+ 7 for 7 for a valid type under the type context A

- A;T =M : 7 forawell-typed term under the context I and the
type context A.

For example,
tFt—t

is a judgement that t — is a valid type under the type context, t.

System F: Type formation

The justification of A F 7 is constructed inductively by following

rules.
toccursin A AtET
AFt AVt T
A}_ﬁ A"Tz
A+ ™ — T
Exercise

Derive the judgement
tFt—t

14

System F: Typing rules

The justification of A;T = M : ¢ is defined inductively by following
rules.

X:o€el AtTHEM: o

ATFx: o ATFEALM VLo (vintro)

ATEM:0 =71 N TEN: o
ATEMN: 7T

Ao AT, X:oFM:T ATEM:Vto AT
ATEM:0ooM:io—T A;TEMT:ofr/t]

(V-elim)

For convenience, - M : 7 stands for -;- = M : 7.

Typing derivation

The typing judgement F At Au. A(X: t)(y: u).x:Vt.Vu.t —u —tis
derivable from the following derivation:

t,uku tLux:ty:ukx:t
t,bukt Lu;x:tEAy:u).x:u—t
Lu-EFAX:O)(:u)x:t—=u—t
t-FAUAX:)y u). x:Vu.t—u—t
FALAUAX) (y:u). x:VEVu.t—u—t

16

Self application

Self-application is not typable in simply typed A-calculus.
A(x i t).x x
However, self-application is possible in System F.

AVttt — t). x (VEt — t) x

Exercise
Instantiate the first t with the type Vt.t — t.

Exercise

Derive the following judgements:

T FALAX:t).x:VE Tt —t
2.0;a:0b (NAX:O(y:t).X)oa:0 =0
3. FALAF:t = (X F(FX):VE (tot) ot ot

Hint. F is syntax-directed, so the type inversion holds.

System F: 5-reduction

The B-conversion has two rules

(AXx:7).M)N —5 M[x/N] and (At.M) T —p5 M[7/{]

For example,

(At :tx)Ta—g (M:tX)[r/tja=(M:T.X) a—g X[a/x] =a

Similarly, S-conversion extends to subterms of a given term,
introducing symbols — g and — g, in the same way.

19

Sum type

Definition 7
The sum type is defined by

o+T1:=Vt(c =t)=>(T—=t) =t

It has two injection functions: the first injection is defined by

leftor, == AX:0). AL A(f:o—=t)(g: 7 —1).fX
right = Ay:7).AtXf:0—=t)(g:7—=1).gy

Exercise
Define

either:Vu.(c »u) = (r—>u) = o+7—U

20

Product type

Definition 8 (Product Type)
The product type is defined by

oXT:=Vt(oc >7—>1t) >t

The pairing function is defined by

(L,)y =Ax:0)(y:7).NXf:0>7—=10).fxy

Exercise
Define projections

proj,:o X7 —oc and Pproj,:o Xt —T

21

Natural numbers i

The type of Church numerals is defined by

nat:=Vvt.(t—-t)—=t—t

Church numerals
c,: nat
Cri=ALAft—=t)(x:t).f"x
Successor

suc:nat — nat
suc:= A(n:nat). At A(f:t—=10)(x:t).f(ntfx)

22

Natural numbers ii

Addition

add : nat — nat — nat
add :=A(n:nat)(m:nat) ALA(f:t—1t)(x:1).
(mtf)y(ntfx)
Multiplication
mul: nat — nat — nat
mul :=7?
Conditional
ifz:Vt.nat =t—t—t

ifz:=7

23

Natural numbers iii

System F allows us to define iterator like fold in Haskell.

foldpat 1 VE.(t—t) >t —nat —t
foldnat :=ALA(f:t—t)(eo : t)(n:nat).ntfeg

Exercise
Define add and mul using foldnat and justify your answer.

1. add’ :=?: nat — nat — nat

2. mul’:=7?:nat — nat — nat

24

Definition 9
For any type o, the type of lists over o is

listo:=Vt.t > (c >t —1t) >t

with “list constructors”:
nil, :=AtA(h:t)(f:0 =t —1t).h
and
cons, := A(x:o)(xs: listo).AtA(h:t)(f: 0 = t = t).fx(xsthf)

of type o — list 0 — list o.

25

Definition 10
The erasing map is a function defined by

|x] = x
[A(x: 7). M| = Ax. [M]
[M NJ = (|M] [N[)
|At. M| = [M|
(M 7] = |M]

Proposition 11

Within System F, if M : o and [M| — g, N’, then there exists a
well-typed term N with = N : o and |[N| = N".

26

Type safety and normalisation

Theorem 12 (Type safety)
Suppose =M : a. Then,

1. M — g Nimplies+ N : o;

2. M is in normal form or there exists N such that M — g N

Type safety is proved by induction on the derivation of F M : o.

Theorem 13 (Normalisation properties)
F enjoys the weak and strong normalisation properties.

Proved by Girard’s reducibility candidates.

27

Parametricity

What functions can you write for the following type?
Vi.t —t

Since t is arbitrary, we cannot inspect the content of t. What we can
do with t is simply return it.
Theorem 14

Every term M of type Vt.t — t is observationally equivalent' to
N AX: tX

"The notion of observational equivalence is beyond the scope of this lecture.

28

Parametricity: Theorems for free’

Assume F extended with the list type 1ist 7 for 7 and the type N of
naturals, denoted Fyjs¢ -

Then head omap f = fo head forany f: 7 — o where
head : vt.list t — t can be proved by just reading the type of head
and tail!

Theorem 15
For any type o in F (with lists) and - = M : o, then

M~M: Ry,

2Philip Wadler. 1989. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture (FPCA
'89). ACM, New York, NY, USA, 347-359.

29

Undecidability of type inference

Theorem 16 (Wells, 1999)

It is undecidable whether, given a closed term M of the untyped
lambda-calculus, there is a well-typed term M’ in System F such
that [M'| = M.

Two ways to retain decidable type inference:

1. Limit the expressiveness so that type inference remains
decidable. For example, Hindley-Milner type system adapted by
Haskell 98, Standard ML, etc. supports only a limited form of
polymorphism but type inference is decidable.

2. Adopt partial type inference so that type annotations are
needed for, e.g. top-level definitions and local definitions.

Check out bidirectional type inference.

30

Nameless Representation

Capture-avoiding but ill-defined substitution

The definition of capture-avoiding substitution is not well-defined.
Recall that
X[L/x] =L
ylL/X] =y ifx#y
(MN)[L/X] = MIL/X] N[L/X]
(MM[L/X] = M. M
(Ay-M)[L/X] = Ay. M[L/X] ifx#yandy ¢&FV(L)
The function _[L/x]: Termy — Termy is not total, so it is not an

instance of structural recursion (i.e. fold). In what sense, is the
above well-defined?

1. Use nominal technigue and the notion of a-structure
recursion/induction. It requires some elements of group theory.
2. Use nameless representation.

31

Well-Scoped de Bruijn index representation i

An index i starting from 0 is used as a variable to represent the i-th

enclosing X (binder) ‘from the inside out. For example, a term with
named variables

Aa. Ab. (Xc.c) (Ac.a b)

becomes
AA(A0) (A27)

Hint. It may be easier to think of a term in its tree representation.

32

Well-Scoped de Bruijn index representation ii

Definition 17 (de Bruijn representation with a local scope)

The term formation is defined inductively for n € N by

0<i<n t Termp.
I Term, At Term,
t Term, u Term,
tu Term,

means t has at most n many free variables.

33

Exercise

Translate the following terms to its de Bruijn index representation.

1T AX.x

. AS.AzZ.57Z

. Aa.Ab.a (Xc.ab)
(X)) ()
AX. Y

o g~ W oN

Xyz

34

Substitution, revisited

How to reformulate S-reduction for terms in de Bruijn
representation? Consider

(AXA0) (A21) t—=p5 (N (AO) (A27))[t/0]

The de Bruijn index increments under a binder so [t/i] should be
[t'/i+ 1] where t’ is the result of incrementing every index in t, e.g,

(A(A0) (A2M)[t/0] = A(A0)[t'/A] (A2)[E'/1]
= A(AO[t"/2) (A 271)[t"/2])
= A(A\0) (A2[t"/2] 1[t"/2))
=A(\0) (At1)

35

Simultaneous variable renaming

Definition 18
A (variable) renaming is a function p between Z, and Z,.

Every renaming p: Z, — Zny extends to an action on terms:
{p)i=p(i)
(p) (tu)=(p)t (p)u
(pyAt=X(p)t
where p': Zpi1 — Zmyq 1S defined as
p'(0)=0
p(141) =1+ p(i)
to avoid changing bound variables.

In particular, wk: Term, — Term, ;1 derived by i +— i +1 € Zn,+
increments every index of a free variable by 1.

36

Simultaneous substitution

Definition 19
A (simultaneous) substitution is a function o from Z, to Term,,.

Every substitution extends to an action terms:

()i = o(i)
(o) (tu) = (o)t {o)u
(o) Xt=X{o')t

where ¢’: Zp1 — Termp 1 is defined as

37

Single substitution

Definition 20
A single substitution for t is a simultaneous substitution given by

@ Z'H—ﬂ *)Zn
o(0)=t
(141 =i

38

Exercise

1. Adopt a-equivalence to the de Bruijn representation.
Adopt B-equivalence to the de Bruijn representation.

Apply the new definition of substitution to compute not True.

= & N

Adopt the definitions of renaming and substitution to the de
Bruijn level representation. N.B. we may also count the i-th
enclosing binder ‘from the outside in" using the same definition,
called the de Bruijn level.

39

Homework

1. (2.5%) Extend PCF with the type B of boolean values with
ifz(M;N) true =g M and ifz(M;N) false =g N including
term formation rules, typing rules, and dynamics for B.

2. (2.5%) Define length, : list o — nat calculating the length of
a listin System F.

40

	PCF— System of Recursive Functions
	F — Polymorphic Typed -Calculus
	Nameless Representation

