

λ -Calculus

Higher-Order Functions

陳亮廷 Chen, Liang-Ting

Formosan Summer School on Logic, Language, and Computation (FLOLAC) 2022

Institute of Information Science, Academia Sinica

Simply Typed λ -Calculus: Statics

A typing judgement is of the form

 $\Gamma \vdash M : \sigma$

saying the term M is of type σ under the context Γ where

context Γ free variables x : τ available in M
term M possibly with free variables in Γ,
type σ for M

 $X_1 : \tau_1, X_2 : \tau_2 \vdash X_1 : \tau_1$

'Under the context consisting of variables $x_1 : \tau_1, x_2 : \tau_2$, the term x_1 is of type τ_1 .'

Context

Definition 1

A typing context Γ is a sequence

$$\Gamma \equiv X_1 : \sigma_1, X_2 : \sigma_2, \ldots, X_n : \sigma_n$$

of *distinct variables* x_i of type σ_i .

Definition 2

The membership judgement $\Gamma \ni (x : \sigma)$ is defined inductively as follows.

$$\frac{1 \ni x : \sigma}{\Gamma, x : \sigma \ni x : \sigma} \text{ (here)} \qquad \frac{1 \ni x : \sigma}{\Gamma, y : \tau \ni x : \sigma} \text{ (there)}$$

Higher-order function type

Definition 3 Define the judgement τ : **Type** by $\frac{\sigma \text{ is a type variable}}{\sigma : \text{Type}} (\text{tvar}) \qquad \frac{\sigma : \text{Type}}{\sigma \to \tau : \text{Type}} (\text{fun})$ where $\sigma \to \tau$ represents a function type from σ to τ . Also $\sigma_1 \to \tau_1 = \sigma_2 \to \tau_2$ if and only if $\sigma_1 = \sigma_2$ and $\tau_1 = \tau_2$.

Convention

$$\sigma_1 \rightarrow \sigma_2 \rightarrow \ldots \sigma_n \quad := \quad \sigma_1 \rightarrow (\sigma_2 \rightarrow (\cdots \rightarrow (\sigma_{n-1} \rightarrow \sigma_n) \ldots))$$

The function type is higher-order, because

- 1. functions can be arguments of another function;
- 2. functions can be the result of a computation.

Example 4

 $(\sigma_1 \rightarrow \sigma_2) \rightarrow \tau$ a function type whose argument is of type $\sigma_1 \rightarrow \sigma_2$; $\sigma_1 \rightarrow (\sigma_2 \rightarrow \tau)$ a function whose return type is $\sigma_2 \rightarrow \tau$.

For a term M, how to construct a typing judgement

 $\Gamma \vdash M: \sigma \to \tau$

Typing rule – Curry-style typing system

A *typing rule* is an inference rule with its conclusion a typing judgement.

$$\frac{\Gamma \ni (x:\sigma)}{\Gamma \vdash_i x:\sigma} \text{ (var)}$$

$$\frac{\Gamma, x: \sigma \vdash_i M: \tau}{\Gamma \vdash_i \lambda x. M: \sigma \to \tau}$$
(abs)

$$\frac{\Gamma \vdash_{i} M : \sigma \to \tau \qquad \Gamma \vdash_{i} N : \sigma}{\Gamma \vdash_{i} M N : \tau}$$
(app)

It is known as the implicit typing system and typability is a property of a term.

The judgement $\vdash \lambda x. x : \sigma \rightarrow \sigma$, for all $\sigma \in \mathbb{T}$ has a derivation

$$\frac{\overline{x:\sigma\vdash_{i} x:\sigma}}{\vdash_{i} \lambda x. x: (\sigma \to \sigma)}$$
(var)

The judgement $\vdash \lambda x y. x : \sigma \rightarrow \tau \rightarrow \sigma$ has a derivation

$$\frac{\overline{x:\sigma,y:\tau\vdash_{i}x:\sigma}}{x:\sigma\vdash_{i}\lambda y.x:\tau\to\sigma}$$
(abs)
$$\frac{\overline{x:\sigma\vdash_{i}\lambda y.x:\tau\to\sigma}}{\vdash_{i}\lambda xy.x:\sigma\to\tau\to\sigma}$$
(abs)

Not every λ -term has a type:

 $\lambda x. x x$

there is no τ satisfying $\vdash \lambda x. x x : \tau$.

A typing system is *syntax-directed* if it has *exactly* one typing rule for each term construct. Therefore,

```
Lemma 5 (Typing inversion)

Suppose

\Gamma \vdash_i M : \tau

is derivable. If

M \equiv x then x : \tau occurs in \Gamma.

M \equiv \lambda x. M' then \tau = \sigma \rightarrow \tau' for some \sigma and \Gamma, x : \sigma \vdash_i M' : \tau'.

M \equiv L N there is some \sigma such that \Gamma \vdash_i L : \sigma \rightarrow \tau and \Gamma \vdash_i N : \sigma.
```

Explicit typing: Typed terms

Definition 6 (Typed terms)

The formation $M \operatorname{Term}_V^{\rightarrow}$ of typed terms is defined by

 $\frac{x \in V}{x \; \operatorname{Term}_V^{\rightarrow}}$

 $\frac{M \text{ Term}_V^{\rightarrow} N \text{ Term}_V^{\rightarrow}}{M N \text{ Term}_V^{\rightarrow}}$

 $\frac{M \quad \operatorname{Term}_V^{\rightarrow} \quad x \in V \quad \tau \quad \operatorname{Type}}{\lambda \mathbf{X} : \tau. M \quad \operatorname{Term}_V^{\rightarrow}}$

Explicit typing: Typing rules

Definition 7 (Typing Rules)

Typing derivations on typed terms are defined by

$$\frac{\Gamma \ni (x:\sigma)}{\Gamma \vdash_e x:\sigma} \text{ (var)}$$

$$\frac{\Gamma \vdash_{e} M : \sigma \to \tau \qquad \Gamma \vdash_{e} N : \sigma}{\Gamma \vdash_{e} M N : \tau}$$
(app)

$$\frac{\Gamma, \mathbf{X} : \boldsymbol{\sigma} \vdash_{\boldsymbol{e}} \boldsymbol{M} : \boldsymbol{\tau}}{\Gamma \vdash_{\boldsymbol{e}} \boldsymbol{\lambda} \mathbf{X} : \boldsymbol{\sigma} \cdot \boldsymbol{M} : \boldsymbol{\sigma} \to \boldsymbol{\tau}}$$
(abs)

Explicit typing: Unicity

Proposition 8

For every typed term M, context Γ , and types σ_i ,

```
\Gamma \vdash_e M : \sigma_1 and \Gamma \vdash_e M : \sigma_2 \implies \sigma_1 = \sigma_2
```

Proof sketch.

Use the inversion lemma and the structural induction on M.

E.g., suppose that *M* is of the form

L M'

By inversion there are τ_i such that $\Gamma \vdash_e L : \tau_i \to \sigma_i$ and $\Gamma \vdash_e M' : \tau_i$. By induction hypothesis, $\tau_1 \to \sigma_1 = \tau_2 \to \sigma_2$, so $\sigma_1 = \sigma_2$.

Exercise

1. Derive the judgement

$$\vdash \lambda fg x. fx (g x) : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho$$

for every $\sigma, \tau, \rho \in \mathbb{T}$.

2. Prove Proposition 8.

Type erasure

An erasing map $|-|: \operatorname{Term}_V^{\rightarrow} \rightarrow \operatorname{Term}_V$ is defined by

$$|x| = x$$
$$|M N| = |M| |N|$$
$$\lambda x : \sigma. M| = \lambda x. |M|$$

Example 9

1.
$$|\lambda(f: \sigma \to \tau)(x: \sigma).fx| = \lambda fx.fx$$

2.
$$|(\lambda(x : \sigma)(y : \tau).y) z| = (\lambda x y. y) z$$

|-| is an translation from $\text{Term}_V^{\rightarrow}$ to Term_V . Does |-| respect the behaviour of $\text{Term}_{\lambda_{\rightarrow}}$?

From typed terms to untyped and back

Proposition 10

Let M and N be typed λ -terms in $\operatorname{Term}_{\lambda_{\rightarrow}}$. Then,

```
 \Gamma \vdash_{e} M : \sigma \text{ implies } \Gamma \vdash_{i} |M| : \sigma  M \longrightarrow_{\beta*} N \text{ implies } |M| \longrightarrow_{\beta*} |N|
```

Proposition 11

Let M and N be λ -terms in **Term** $_{\lambda}$. Then,

1. If
$$\Gamma \vdash_i M : \sigma$$
, then there is $M' : \operatorname{Term}_{\lambda_{\rightarrow}}$ with $|M'| = M$ and $\Gamma \vdash_e M' : \sigma$

2. If $M \longrightarrow_{\beta*} N$ and M = |M'| for some $M' : \operatorname{Term}_{\lambda \to}$, then there exists N' with |N'| = N and $M' \longrightarrow_{\beta*} N'$.

Can we answer the following questions

Typability Given a closed term *M*, is there a type σ such that $\vdash M : \sigma$?

Type checking Given Γ and σ , is $\Gamma \vdash M : \sigma$ derivable?

algorithmically?

Typability is reducible to type checking problem of

 $x_0: \tau \vdash \mathbf{K}_1 \, x_0 \, M : \tau$

Theorem 12 Type checking is decidable in simply typed λ -calculus.

Programming in Simply Typed λ -Calculus

Church encodings of natural numbers i

The type of natural numbers is of the form

$$\mathsf{nat}_{\tau} \mathrel{\mathop:}= (\tau \to \tau) \to \tau \to \tau$$

for every type $\tau \in \mathbb{T}$.

Church numerals

$$\mathbf{c}_n := \lambda f x. f^n x$$

- $\mathbf{c}_n : \mathsf{nat}_{\tau}$

Successor

 $suc := \lambda n f x . f (n f x)$ $\vdash suc : nat_{\tau} \rightarrow nat_{\tau}$

Church encodings of natural numbers ii

Addition

 $add := \lambda n \, m f x. \, (m \, f) \, (n \, f \, x)$ $\vdash add : nat_{\tau} \rightarrow nat_{\tau} \rightarrow nat_{\tau}$

Muliplication

 $mul := \lambda n m f x. (m (n f)) x$ $\vdash mul : nat_{\tau} \rightarrow nat_{\tau} \rightarrow nat_{\tau}$

Conditional

 $ifz := \lambda n x y. n (\lambda z. x) y$ $\vdash ifz :?$

The type of **ifz** may not be as obvious as you may expect. Try to find one as general as possible and justify your guess.

Church encodings of boolean values

We can also define the type of Boolean values for each type variable as

 $\mathsf{bool}_\tau := \tau \to \tau \to \tau$

Boolean values

true := $\lambda x y. x$ and false := $\lambda x y. y$

Conditional

 $cond := \lambda b x y. b x y$ $\vdash cond : bool_{\tau} \rightarrow \tau \rightarrow \tau \rightarrow \tau$

Exercise

- Define conjunction and, disjunction or, and negation not in simply typed lambda calculus.
- 2. Prove that and, or, and not are well-typed.

Properties of Simply Typed λ -Calculus

"Well-typed programs cannot 'go wrong'"

—(Milner, 1978)

Preservation If $\Gamma \vdash M : \sigma$ is derivable and $M \longrightarrow_{\beta 1} N$, then $\Gamma \vdash N : \sigma$. **Progress** If $\Gamma \vdash M : \sigma$ is derivable, then either M is in *normal* form or there is N with $M \longrightarrow_{\beta 1} N$.

Converse of Preservation i

Example 13

Recall that

1. $I = \lambda x. x$ 2. $K_1 = \lambda x y. x$ 3. $\Omega = (\lambda x. x x) (\lambda x. x x)$ and $K_1 I \Omega \longrightarrow_{\beta*} I$. However,

$$\vdash \mathsf{I}: \sigma \to \sigma \implies \vdash \mathsf{K}_1 \mathsf{I} \Omega : \sigma \to \sigma.$$

How to prove it?

Converse of Preservation ii

Lemma 14 (Typability of subterms)

Let M be a term with $\Gamma \vdash M : \tau$ derivable. Then, for every subterm M' of M there exists Γ' such that

 $\Gamma' \vdash M' : \sigma'.$

Proof.

By induction on $\Gamma \vdash M : \sigma$.

 Ω is not typable, so $K_1 \, I \, \Omega$ is not typable.

Weakening If $\Gamma \vdash M : \tau$ and $x \notin \Gamma$, then $\Gamma, x : \sigma \vdash M : \tau$. Substitution If $\Gamma, x : \tau \vdash M : \sigma$ and $\Gamma \vdash N : \tau$ then $\Gamma \vdash M[N/x] : \sigma$.

Corollary 15 (Variable renaming)

If $\Gamma, x : \tau \vdash M : \sigma$ and $y \notin \text{dom}(\Gamma)$, then $\Gamma, y : \tau \vdash M[y/x] : \sigma$ where $\text{dom}(\Gamma)$ denotes the set of variables which occur in Γ .

Proof.

y is not in Γ , so Γ , *y* : τ , *x* : $\tau \vdash M$ by weakening and by definition Γ , *y* : $\tau \vdash y$: τ . Thus, by substitution, we have

 $\Gamma, y: \tau \vdash M[x/y]: \sigma$

Preservation Theorem i

Theorem 16

For any M and N if $\Gamma \vdash M : \sigma$ is derivable and $M \longrightarrow_{\beta 1} N$, then $\Gamma \vdash N : \sigma$.

Proof sketch.

By induction on both the derivation of $\Gamma \vdash M : \sigma$ and $M \longrightarrow_{\beta 1} N$. \Box

N.B. The only non-trivial case is

 $\Gamma \vdash (\lambda X_1 : \tau. M_1) N : \sigma$

which needs the substitution lemma.

Preservation Theorem ii

Proof.

By induction on both the derivation of $\Gamma \vdash M : \sigma$ and $M \longrightarrow_{\beta 1} N$.

- 1. Suppose $\Gamma \vdash x : \sigma$. However, $x \not\longrightarrow_{\beta 1} N$ for any *N*. Therefore, it is vacuously true that $\Gamma \vdash N : \sigma$.
- 2. Suppose $\Gamma \vdash \lambda x. M : \sigma \to \tau$ and $\lambda x. M \longrightarrow_{\beta 1} N$. Then, N must be $\lambda x. N'$ for some N'; $\Gamma, x : \sigma \vdash M : \tau$ and $M \longrightarrow_{\beta 1} N'$ must be derivable. By induction hypothesis, $\Gamma, x : \sigma \vdash N'$ is derivable, so is $\Gamma \vdash \lambda x. N' : \sigma \to \tau$.

```
3. Suppose \Gamma \vdash M N. Then ...
```

4. ...

Normal form

The notion of normal form can be characterised syntactically:

Definition 17

Define judgements Neutral M and Normal M mutually by

Neutral x

Neutral M Normal M

Neutral M Normal N Neutral M N

Normal MNormal $\lambda x. M$

Idea. Neutral M (resp. Normal M) is derivable iff

 $M \equiv x N_1 \cdots N_k$ and $M \equiv \lambda x_1 \cdots x_n \cdot x N_1 \cdots N_k$

respectively where N_i 's are in normal form.

Soundness and completeness of the inductive characterisation

Lemma 18

Let M be an untyped term.

Soundness If Normal M (resp. Neutral M) is derivable, then M is in normal form.

Completeness If M is in normal form, then **Normal** M is derivable.

Proof sketch.

Soundness By mutual induction on the derivation of Normal *M* and Neutral *M*.

Completeness By induction on the formation of *M*.

Progress

Theorem 19

If $\Gamma \vdash M : \sigma$ is derivable, then **Normal** M or there is N with $M \longrightarrow_{\beta_1} N$.

Proof sketch.

By induction on the derivation of $\Gamma \vdash M : \sigma$.

Weak normalisation

That is, M is weakly normalising if there is a sequence

$$M \longrightarrow_{\beta_1} M_1 \longrightarrow_{\beta_1} M_2 \longrightarrow_{\beta_1} \dots N \xrightarrow{/}_{\beta_1}$$

Theorem 21 (Weak normalisation) Every term M with $\Gamma \vdash M : \tau$ is weakly normalising.

Strong normalisation

Definition 22

M is strongly normalising denoted by $M \Downarrow if$

$$\frac{\forall N. (M \longrightarrow_{\beta 1} N \implies N \Downarrow)}{M \Downarrow}$$

Intuitively, strong normalisation says every sequence

$$M \longrightarrow_{\beta_1} M_1 \longrightarrow_{\beta_1} M_2 \cdots$$

terminates.

Theorem 23

Every term M with $\Gamma \vdash M : \tau$ is strongly normalising.

Definability

A function $f: \mathbb{N}^k \to \mathbb{N}$ is called λ_{\to} -*definable* if there is a λ -term F of type $nat \to nat \to \dots nat \to nat$ such that

$$F \mathbf{c}_{n_1} \ldots \mathbf{c}_{n_k} \longrightarrow_{\beta*} \mathbf{c}_{f(n_1,\ldots,n_k)}$$

for every sequence $(n_1, n_2, \ldots, n_k) \in \mathbb{N}^k$. Diagrammatically,

The limit of λ_{\rightarrow}

Theorem 24

The λ_{\rightarrow} -definable functions are the class of functions of the form $f\colon \mathbb{N}^k \to \mathbb{N}$ closed under compositions which contains

- the constant functions,
- projections,
- additions,
- multiplications,
- and the conditional

$$\operatorname{ifz}(n_0, n_1, n_2) = \begin{cases} n_1 & \text{if } n_0 = 0\\ n_2 & \text{otherwise.} \end{cases}$$

Homework

- 1. (2.5%) Show the Progress Theorem.
- 2. (2.5%) Show that if *M* is in normal form then **Normal** *M* is derivable.

Appendix Takahashi's Proof of confluence

Consider untyped λ -calculus.

Let $M \Longrightarrow_{\beta} N$ denote the *parallel reduction* defined by

$$\frac{M \Longrightarrow_{\beta} M' \qquad N \Longrightarrow_{\beta} N'}{M \bowtie_{\beta} M N'}$$

$$\frac{M \Longrightarrow_{\beta} M' \qquad N \Longrightarrow_{\beta} N'}{M \bowtie_{\beta} M' N'}$$

$$\frac{M \Longrightarrow_{\beta} M' \qquad N \Longrightarrow_{\beta} M' N'}{(\lambda x. M) N \Longrightarrow_{\beta} M' [N'/x]}$$

For example,

 $(\lambda x. (\lambda y. y) x) ((\lambda x. x) \text{ false}) \Longrightarrow_{\beta} \text{ false}$ because $(\lambda y. y) x \Longrightarrow_{\beta} x$ and $(\lambda x. x) \text{ false} \Longrightarrow_{\beta} \text{ false}.$

Confluence: Properties of parallel reduction

Lemma 25

1.
$$M \Longrightarrow_{\beta} M$$
 holds for any term M ,

2.
$$M \longrightarrow_{\beta_1} N$$
 implies $M \Longrightarrow_{\beta} N$, and

3.
$$M \Longrightarrow_{\beta} N$$
 implies $M \longrightarrow_{\beta*} N$.

Therefore, $M \Longrightarrow_{\beta}^{*} N$ is equivalent to $M \longrightarrow_{\beta^{*}} N$.

Lemma 26 (Substitution respects parallel reduction) $M \Longrightarrow_{\beta} M' \text{ and } N \Longrightarrow_{\beta} N' \text{ imply } M[N/x] \Longrightarrow_{\beta} M'[N'/x].$

Proof sketch.

By induction on the derivation of $M \Longrightarrow_{\beta} M'$.

Complete development

The complete development M^* of a λ -term M is defined by

$$x^* = x$$

$$(\lambda x. M)^* = \lambda x. M^*$$

$$((\lambda x. M) N)^* = M^* [N^*/x]$$

$$(M N)^* = M^* N^* \qquad \text{if } M \neq \lambda x. M'$$

Theorem 27 (Triangle property) If $M \Longrightarrow_{\beta} N$, then $N \Longrightarrow_{\beta} M^*$.

Proof sketch.

By induction on $M \Longrightarrow_{\beta} N$.

Strip Lemma

Theorem 28

If $L \Longrightarrow_{\beta}^{*} M_{1}$ and $L \Longrightarrow_{\beta} M_{2}$, then there exists N satisfying that $M_{1} \Longrightarrow_{\beta} N$ and $M_{2} \Longrightarrow_{\beta}^{*} N$, i.e.

Proof sketch.

By induction on $L \Longrightarrow_{\beta}^{*} M_{1}$.

Confluence

Theorem 29

If $L \Longrightarrow_{\beta}^{*} M_{1}$ and $L \Longrightarrow_{\beta}^{*} M_{2}$, then there exists N such that $M_{1} \Longrightarrow_{\beta}^{*} N$ and $M_{2} \Longrightarrow_{\beta}^{*} N$.

Corollary 30 The confluence of $\longrightarrow_{\beta*}$ holds.