
λ-Calculus
Higher-Order Functions

陳亮廷 Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation (FLOLAC)
2022

Institute of Information Science, Academia Sinica

1

Simply Typed λ-Calculus: Statics

Typing judgement

A typing judgement is of the form

Γ ⊢ M : σ

saying the term M is of type σ under the context Γ where

context Γ free variables x : τ available in M
term M possibly with free variables in Γ,
type σ for M

x1 : τ1, x2 : τ2 ⊢ x1 : τ1

‘Under the context consisting of variables x1 : τ1, x2 : τ2, the term x1 is
of type τ1.’

2

Context

Definition 1
A typing context Γ is a sequence

Γ ≡ x1 : σ1, x2 : σ2, . . . , xn : σn

of distinct variables xi of type σi.

Definition 2
The membership judgement Γ ∋ (x : σ) is defined inductively as
follows.

(here)
Γ, x : σ ∋ x : σ

Γ ∋ x : σ (there)
Γ, y : τ ∋ x : σ

3

Higher-order function type

Definition 3
Define the judgement τ : Type by

σ is a type variable
(tvar)

σ : Type
σ : Type τ : Type

(fun)
σ → τ : Type

where σ → τ represents a function type from σ to τ .

Also σ1 → τ1 = σ2 → τ2 if and only if σ1 = σ2 and τ1 = τ2.

Convention

σ1 → σ2 → . . . σn ··= σ1 → (σ2 → (· · · → (σn−1 → σn) . . .))

4

The function type is higher-order, because

1. functions can be arguments of another function;
2. functions can be the result of a computation.

Example 4
(σ1 → σ2) → τ a function type whose argument is of type σ1 → σ2;
σ1 → (σ2 → τ) a function whose return type is σ2 → τ .

For a term M, how to construct a typing judgement

Γ ⊢ M : σ → τ

5

Typing rule – Curry-style typing system

A typing rule is an inference rule with its conclusion a typing
judgement.

Γ ∋ (x : σ)
(var)

Γ ⊢i x : σ

Γ, x : σ ⊢i M : τ
(abs)

Γ ⊢i λx. M : σ → τ

Γ ⊢i M : σ → τ Γ ⊢i N : σ
(app)

Γ ⊢i M N : τ

It is known as the implicit typing system and typability is a property
of a term.

6

Typing derivation

The judgement ⊢ λx. x : σ → σ, for all σ ∈ T has a derivation

(var)x : σ ⊢i x : σ (abs)⊢i λx. x : (σ → σ)

The judgement ⊢ λx y. x : σ → τ → σ has a derivation

(var)x : σ, y : τ ⊢i x : σ (abs)x : σ ⊢i λy. x : τ → σ
(abs)⊢i λx y. x : σ → τ → σ

Not every λ-term has a type:

λx. x x

there is no τ satisfying ⊢ λx. x x : τ .

7

Syntax-directedness

A typing system is syntax-directed if it has exactly one typing rule for
each term construct. Therefore,

Lemma 5 (Typing inversion)
Suppose

Γ ⊢i M : τ

is derivable. If

M ≡ x then x : τ occurs in Γ.
M ≡ λx.M′ then τ = σ → τ ′ for some σ and Γ, x : σ ⊢i M′ : τ ′.

M ≡ L N there is some σ such that Γ ⊢i L : σ → τ and Γ ⊢i N : σ.

8

Explicit typing: Typed terms

Definition 6 (Typed terms)
The formation M Term→

V of typed terms is defined by

x ∈ V
x Term→

V

M Term→
V N Term→

V
MN Term→

V

M Term→
V x ∈ V τ Type
λx : τ . M Term→

V

9

Explicit typing: Typing rules

Definition 7 (Typing Rules)
Typing derivations on typed terms are defined by

Γ ∋ (x : σ)
(var)

Γ ⊢e x : σ

Γ ⊢e M : σ → τ Γ ⊢e N : σ (app)
Γ ⊢e M N : τ

Γ, x : σ ⊢e M : τ
(abs)

Γ ⊢e λx : σ. M : σ → τ

10

Explicit typing: Unicity

Proposition 8

For every typed term M, context Γ, and types σi,

Γ ⊢e M : σ1 and Γ ⊢e M : σ2 =⇒ σ1 = σ2

Proof sketch.
Use the inversion lemma and the structural induction on M.

E.g., suppose that M is of the form

L M′

By inversion there are τi such that Γ ⊢e L : τi → σi and Γ ⊢e M′ : τi.
By induction hypothesis, τ1 → σ1 = τ2 → σ2, so σ1 = σ2.

11

Exercise

1. Derive the judgement

⊢ λf g x. f x (g x) : (σ → τ → ρ) → (σ → τ) → σ → ρ

for every σ, τ, ρ ∈ T.
2. Prove Proposition 8.

12

Type erasure

An erasing map | − | : Term→
V → TermV is defined by

|x| = x
|M N| = |M| |N|

|λx : σ.M| = λx. |M|

Example 9
1. |λ(f : σ → τ) (x : σ). f x| = λf x. f x
2. |(λ(x : σ) (y : τ).y) z| = (λx y. y) z

| − | is an translation from Term→
V to TermV. Does | − | respect the

behaviour of Termλ→?

13

From typed terms to untyped and back

Proposition 10
Let M and N be typed λ-terms in Termλ→ . Then,

Γ ⊢e M : σ implies Γ ⊢i |M| : σ
M −→β∗ N implies |M| −→β∗ |N|

Proposition 11
Let M and N be λ-terms in Termλ. Then,

1. If Γ ⊢i M : σ, then there is M′ : Termλ→ with
|M′| = M and Γ ⊢e M′ : σ

2. If M −→β∗ N and M = |M′| for some M′ : Termλ→ , then there
exists N′ with |N′| = N and M′ −→β∗ N′.

14

Type inference

Can we answer the following questions

Typability Given a closed term M, is there a type σ such that
⊢ M : σ?

Type checking Given Γ and σ, is Γ ⊢ M : σ derivable?

algorithmically?

Typability is reducible to type checking problem of

x0 : τ ⊢ K1 x0 M : τ

Theorem 12
Type checking is decidable in simply typed λ-calculus.

15

Programming in Simply Typed
λ-Calculus

Church encodings of natural numbers i

The type of natural numbers is of the form

natτ ··= (τ → τ) → τ → τ

for every type τ ∈ T.

Church numerals

cn ··= λf x. fnx
⊢ cn : natτ

Successor

suc ··= λn f x . f (n f x)
⊢ suc : natτ → natτ

16

Church encodings of natural numbers ii

Addition

add ··= λnm f x. (m f) (n f x)
⊢ add : natτ → natτ → natτ

Muliplication

mul ··= λnm f x. (m (n f)) x
⊢ mul : natτ → natτ → natτ

Conditional

ifz ··= λn x y.n (λz. x) y
⊢ ifz :?

The type of ifz may not be as obvious as you may expect. Try to
find one as general as possible and justify your guess.

17

Church encodings of boolean values

We can also define the type of Boolean values for each type variable
as

boolτ ··= τ → τ → τ

Boolean values
true ··= λx y. x and false ··= λx y. y

Conditional

cond ··= λb x y.b x y
⊢ cond : boolτ → τ → τ → τ

18

Exercise

1. Define conjunction and, disjunction or, and negation not in
simply typed lambda calculus.

2. Prove that and, or, and not are well-typed.

19

Properties of Simply Typed
λ-Calculus

Type safety = Preservation + Progress

“Well-typed programs cannot ‘go wrong’.”
—(Milner, 1978)

Preservation If Γ ⊢ M : σ is derivable and M −→β1 N, then Γ ⊢ N : σ.
Progress If Γ ⊢ M : σ is derivable, then either M is in normal

form or there is N with M −→β1 N.

20

Converse of Preservation i

Example 13
Recall that

1. I = λx. x
2. K1 = λx y. x
3. Ω = (λx. x x) (λx. x x)

and K1 IΩ −→β∗ I. However,

⊢ I : σ → σ ≠⇒ ⊢ K1 I Ω : σ → σ.

How to prove it?

21

Converse of Preservation ii

Lemma 14 (Typability of subterms)
Let M be a term with Γ ⊢ M : τ derivable. Then, for every subterm M′

of M there exists Γ′ such that

Γ′ ⊢ M′ : σ′.

Proof.
By induction on Γ ⊢ M : σ.

Ω is not typable, so K1 IΩ is not typable.

22

A prelude to the preservation proof

Weakening If Γ ⊢ M : τ and x ̸∈ Γ, then Γ, x : σ ⊢ M : τ .
Substitution If Γ, x : τ ⊢ M : σ and Γ ⊢ N : τ then Γ ⊢ M[N/x] : σ.

Corollary 15 (Variable renaming)
If Γ, x : τ ⊢ M : σ and y ̸∈ dom(Γ), then Γ, y : τ ⊢ M[y/x] : σ where
dom(Γ) denotes the set of variables which occur in Γ.

Proof.
y is not in Γ, so Γ, y : τ, x : τ ⊢ M by weakening and by definition
Γ, y : τ ⊢ y : τ . Thus, by substitution, we have

Γ, y : τ ⊢ M[x/y] : σ

23

Preservation Theorem i

Theorem 16
For any M and N if Γ ⊢ M : σ is derivable and M −→β1 N, then
Γ ⊢ N : σ.

Proof sketch.
By induction on both the derivation of Γ ⊢ M : σ and M −→β1 N.

N.B. The only non-trivial case is

Γ ⊢ (λx1 : τ.M1) N : σ

which needs the substitution lemma.

24

Preservation Theorem ii

Proof.
By induction on both the derivation of Γ ⊢ M : σ and M −→β1 N.

1. Suppose Γ ⊢ x : σ. However, x ̸−→β1 N for any N. Therefore, it is
vacuously true that Γ ⊢ N : σ.

2. Suppose Γ ⊢ λx.M : σ → τ and λx.M −→β1 N. Then, N must be
λx.N′ for some N′; Γ, x : σ ⊢ M : τ and M −→β1 N′ must be
derivable. By induction hypothesis, Γ, x : σ ⊢ N′ is derivable, so
is Γ ⊢ λx.N′ : σ → τ .

3. Suppose Γ ⊢ M N. Then ...
4. ...

25

Normal form

The notion of normal form can be characterised syntactically:

Definition 17
Define judgements Neutral M and Normal M mutually by

Neutral x

Neutral M Normal N
Neutral M N

Neutral M
Normal M

Normal M
Normal λx.M

Idea. Neutral M (resp. Normal M) is derivable iff

M ≡ x N1 · · ·Nk and M ≡ λx1 · · · xn. x N1 · · ·Nk

respectively where Ni’s are in normal form.

26

Soundness and completeness of the inductive characterisation

Lemma 18
Let M be an untyped term.

Soundness If Normal M (resp. Neutral M) is derivable, then M is
in normal form.

Completeness If M is in normal form, then Normal M is derivable.

Proof sketch.
Soundness By mutual induction on the derivation of Normal M

and Neutral M.
Completeness By induction on the formation of M.

27

Progress

Theorem 19
If Γ ⊢ M : σ is derivable, then Normal M or there is N with
M −→β1 N.

Proof sketch.
By induction on the derivation of Γ ⊢ M : σ.

28

Weak normalisation

Definition 20
M is weakly normalising denoted by M ↓ if

Normal M
M ↓

M −→β1 N N ↓
M ↓

That is, M is weakly normalising if there is a sequence

M −→β1 M1 −→β1 M2 −→β1 . . .N−̸→β1

Theorem 21 (Weak normalisation)
Every term M with Γ ⊢ M : τ is weakly normalising.

29

Strong normalisation

Definition 22
M is strongly normalising denoted by M ⇓ if

∀N. (M −→β1 N =⇒ N ⇓)
M ⇓

Intuitively, strong normalisation says every sequence

M −→β1 M1 −→β1 M2 · · ·

terminates.

Theorem 23
Every term M with Γ ⊢ M : τ is strongly normalising.

30

Definability

A function f : Nk → N is called λ→-definable if there is a λ-term F of
type nat → nat → . . .nat → nat such that

F cn1 . . . cnk −→β∗ cf(n1,...,nk)

for every sequence (n1,n2, . . . ,nk) ∈ Nk. Diagrammatically,

(n1,n2, . . . ,nk)
� //

_

(c−)k

��

f(n1,n2, . . . ,nk)_

c−
��

(cn1 , cn2 , . . . , cnk)
� // F cn1 cn2 . . . cnk = cf(n1,n2,...,nk)

31

The limit of λ→

Theorem 24
The λ→-definable functions are the class of functions of the form
f : Nk → N closed under compositions which contains

• the constant functions,
• projections,
• additions,
• multiplications,
• and the conditional

ifz(n0,n1,n2) =

{
n1 if n0 = 0
n2 otherwise.

32

Homework

1. (2.5%) Show the Progress Theorem.
2. (2.5%) Show that if M is in normal form then Normal M is

derivable.

33

Appendix Takahashi’s Proof of
confluence

Confluence: Parallel reduction

Consider untyped λ-calculus.

Let M =⇒β N denote the parallel reduction defined by

x =⇒β x

M =⇒β N
λx.M =⇒β λx.N

M =⇒β M′ N =⇒β N′

M N =⇒β M′ N′

M =⇒β M′ N =⇒β N′

(λx.M) N =⇒β M′[N′/x]

For example,

(λx. (λy. y) x) ((λx. x) false) =⇒β false

because (λy. y) x =⇒β x and (λx. x) false =⇒β false.

Confluence: Properties of parallel reduction

Lemma 25
1. M =⇒β M holds for any term M,
2. M −→β1 N implies M =⇒β N, and
3. M =⇒β N implies M −→β∗ N.

Therefore, M =⇒∗
β N is equivalent to M −→β∗ N.

Lemma 26 (Substitution respects parallel reduction)
M =⇒β M′ and N =⇒β N′ imply M[N/x] =⇒β M′[N′/x].

Proof sketch.
By induction on the derivation of M =⇒β M′.

Complete development

The complete development M∗ of a λ-term M is defined by

x∗ = x
(λx.M)∗ = λx.M∗

((λx.M) N)∗ = M∗[N∗/x]
(M N)∗ = M∗ N∗ if M ̸≡ λx.M′

Theorem 27 (Triangle property)
If M =⇒β N, then N =⇒β M∗.

Proof sketch.
By induction on M =⇒β N.

Strip Lemma

Theorem 28
If L =⇒∗

β M1 and L =⇒β M2, then there exists N satisfying that
M1 =⇒β N and M2 =⇒∗

β N, i.e.

L

�$
@@

@@
@@

@

@@
@@

@@
@

∗
β z� ~~

~~
~~
~

~~
~~
~~
~

M1

�$
@@

@@
@@

@

@@
@@

@@
@

M2

∗
β
z� ~~
~~
~~
~

~~
~~
~~
~

N

Proof sketch.
By induction on L =⇒∗

β M1.

Confluence

Theorem 29
If L =⇒∗

β M1 and L =⇒∗
β M2, then there exists N such that M1 =⇒∗

β N
and M2 =⇒∗

β N.
L

∗
β
�$
@@

@@
@@

@

@@
@@

@@
@

∗
β z� ~~

~~
~~
~

~~
~~
~~
~

M1

∗
β
�$
@@

@@
@@

@

@@
@@

@@
@

M2

∗
β
z� ~~
~~
~~
~

~~
~~
~~
~

N

Corollary 30
The confluence of −→β∗ holds.

	Simply Typed -Calculus: Statics
	Exercise

	Programming in Simply Typed -Calculus
	Properties of Simply Typed -Calculus
	Appendix
	Appendix Takahashi's Proof of confluence

