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Simply Typed λ-Calculus: Statics



Typing judgement

A typing judgement is of the form

Γ ⊢ M : σ

saying the term M is of type σ under the context Γ where

context Γ free variables x : τ available in M
term M possibly with free variables in Γ,
type σ for M

x1 : τ1, x2 : τ2 ⊢ x1 : τ1

‘Under the context consisting of variables x1 : τ1, x2 : τ2, the term x1 is
of type τ1.’
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Context

Definition 1
A typing context Γ is a sequence

Γ ≡ x1 : σ1, x2 : σ2, . . . , xn : σn

of distinct variables xi of type σi.

Definition 2
The membership judgement Γ ∋ (x : σ) is defined inductively as
follows.

(here)
Γ, x : σ ∋ x : σ

Γ ∋ x : σ (there)
Γ, y : τ ∋ x : σ
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Higher-order function type

Definition 3
Define the judgement τ : Type by

σ is a type variable
(tvar)

σ : Type
σ : Type τ : Type

(fun)
σ → τ : Type

where σ → τ represents a function type from σ to τ .

Also σ1 → τ1 = σ2 → τ2 if and only if σ1 = σ2 and τ1 = τ2.

Convention

σ1 → σ2 → . . . σn ··= σ1 → (σ2 → (· · · → (σn−1 → σn) . . . ))
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The function type is higher-order, because

1. functions can be arguments of another function;
2. functions can be the result of a computation.

Example 4
(σ1 → σ2) → τ a function type whose argument is of type σ1 → σ2;
σ1 → (σ2 → τ) a function whose return type is σ2 → τ .

For a term M, how to construct a typing judgement

Γ ⊢ M : σ → τ
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Typing rule – Curry-style typing system

A typing rule is an inference rule with its conclusion a typing
judgement.

Γ ∋ (x : σ)
(var)

Γ ⊢i x : σ

Γ, x : σ ⊢i M : τ
(abs)

Γ ⊢i λx. M : σ → τ

Γ ⊢i M : σ → τ Γ ⊢i N : σ
(app)

Γ ⊢i M N : τ

It is known as the implicit typing system and typability is a property
of a term.
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Typing derivation

The judgement ⊢ λx. x : σ → σ, for all σ ∈ T has a derivation

(var)x : σ ⊢i x : σ (abs)⊢i λx. x : (σ → σ)

The judgement ⊢ λx y. x : σ → τ → σ has a derivation

(var)x : σ, y : τ ⊢i x : σ (abs)x : σ ⊢i λy. x : τ → σ
(abs)⊢i λx y. x : σ → τ → σ

Not every λ-term has a type:

λx. x x

there is no τ satisfying ⊢ λx. x x : τ .
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Syntax-directedness

A typing system is syntax-directed if it has exactly one typing rule for
each term construct. Therefore,

Lemma 5 (Typing inversion)
Suppose

Γ ⊢i M : τ

is derivable. If

M ≡ x then x : τ occurs in Γ.
M ≡ λx.M′ then τ = σ → τ ′ for some σ and Γ, x : σ ⊢i M′ : τ ′.

M ≡ L N there is some σ such that Γ ⊢i L : σ → τ and Γ ⊢i N : σ.
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Explicit typing: Typed terms

Definition 6 (Typed terms)
The formation M Term→

V of typed terms is defined by

x ∈ V
x Term→

V

M Term→
V N Term→

V
MN Term→

V

M Term→
V x ∈ V τ Type
λx : τ . M Term→

V
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Explicit typing: Typing rules

Definition 7 (Typing Rules)
Typing derivations on typed terms are defined by

Γ ∋ (x : σ)
(var)

Γ ⊢e x : σ

Γ ⊢e M : σ → τ Γ ⊢e N : σ (app)
Γ ⊢e M N : τ

Γ, x : σ ⊢e M : τ
(abs)

Γ ⊢e λx : σ. M : σ → τ
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Explicit typing: Unicity

Proposition 8

For every typed term M, context Γ, and types σi,

Γ ⊢e M : σ1 and Γ ⊢e M : σ2 =⇒ σ1 = σ2

Proof sketch.
Use the inversion lemma and the structural induction on M.

E.g., suppose that M is of the form

L M′

By inversion there are τi such that Γ ⊢e L : τi → σi and Γ ⊢e M′ : τi.
By induction hypothesis, τ1 → σ1 = τ2 → σ2, so σ1 = σ2.
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Exercise

1. Derive the judgement

⊢ λf g x. f x (g x) : (σ → τ → ρ) → (σ → τ) → σ → ρ

for every σ, τ, ρ ∈ T.
2. Prove Proposition 8.
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Type erasure

An erasing map | − | : Term→
V → TermV is defined by

|x| = x
|M N| = |M| |N|

|λx : σ.M| = λx. |M|

Example 9
1. |λ(f : σ → τ) (x : σ). f x| = λf x. f x
2. |(λ(x : σ) (y : τ).y) z| = (λx y. y) z

| − | is an translation from Term→
V to TermV. Does | − | respect the

behaviour of Termλ→?
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From typed terms to untyped and back

Proposition 10
Let M and N be typed λ-terms in Termλ→ . Then,

Γ ⊢e M : σ implies Γ ⊢i |M| : σ
M −→β∗ N implies |M| −→β∗ |N|

Proposition 11
Let M and N be λ-terms in Termλ. Then,

1. If Γ ⊢i M : σ, then there is M′ : Termλ→ with
|M′| = M and Γ ⊢e M′ : σ

2. If M −→β∗ N and M = |M′| for some M′ : Termλ→ , then there
exists N′ with |N′| = N and M′ −→β∗ N′.
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Type inference

Can we answer the following questions

Typability Given a closed term M, is there a type σ such that
⊢ M : σ?

Type checking Given Γ and σ, is Γ ⊢ M : σ derivable?

algorithmically?

Typability is reducible to type checking problem of

x0 : τ ⊢ K1 x0 M : τ

Theorem 12
Type checking is decidable in simply typed λ-calculus.
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Programming in Simply Typed
λ-Calculus



Church encodings of natural numbers i

The type of natural numbers is of the form

natτ ··= (τ → τ) → τ → τ

for every type τ ∈ T.

Church numerals

cn ··= λf x. fnx
⊢ cn : natτ

Successor

suc ··= λn f x . f (n f x)
⊢ suc : natτ → natτ
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Church encodings of natural numbers ii

Addition

add ··= λnm f x. (m f) (n f x)
⊢ add : natτ → natτ → natτ

Muliplication

mul ··= λnm f x. (m (n f)) x
⊢ mul : natτ → natτ → natτ

Conditional

ifz ··= λn x y.n (λz. x) y
⊢ ifz :?

The type of ifz may not be as obvious as you may expect. Try to
find one as general as possible and justify your guess.
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Church encodings of boolean values

We can also define the type of Boolean values for each type variable
as

boolτ ··= τ → τ → τ

Boolean values
true ··= λx y. x and false ··= λx y. y

Conditional

cond ··= λb x y.b x y
⊢ cond : boolτ → τ → τ → τ
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Exercise

1. Define conjunction and, disjunction or, and negation not in
simply typed lambda calculus.

2. Prove that and, or, and not are well-typed.
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Properties of Simply Typed
λ-Calculus



Type safety = Preservation + Progress

“Well-typed programs cannot ‘go wrong’.”
—(Milner, 1978)

Preservation If Γ ⊢ M : σ is derivable and M −→β1 N, then Γ ⊢ N : σ.
Progress If Γ ⊢ M : σ is derivable, then either M is in normal

form or there is N with M −→β1 N.

20



Converse of Preservation i

Example 13
Recall that

1. I = λx. x
2. K1 = λx y. x
3. Ω = (λx. x x) (λx. x x)

and K1 IΩ −→β∗ I. However,

⊢ I : σ → σ ≠⇒ ⊢ K1 I Ω : σ → σ.

How to prove it?
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Converse of Preservation ii

Lemma 14 (Typability of subterms)
Let M be a term with Γ ⊢ M : τ derivable. Then, for every subterm M′

of M there exists Γ′ such that

Γ′ ⊢ M′ : σ′.

Proof.
By induction on Γ ⊢ M : σ.

Ω is not typable, so K1 IΩ is not typable.
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A prelude to the preservation proof

Weakening If Γ ⊢ M : τ and x ̸∈ Γ, then Γ, x : σ ⊢ M : τ .
Substitution If Γ, x : τ ⊢ M : σ and Γ ⊢ N : τ then Γ ⊢ M[N/x] : σ.

Corollary 15 (Variable renaming)
If Γ, x : τ ⊢ M : σ and y ̸∈ dom(Γ), then Γ, y : τ ⊢ M[y/x] : σ where
dom(Γ) denotes the set of variables which occur in Γ.

Proof.
y is not in Γ, so Γ, y : τ, x : τ ⊢ M by weakening and by definition
Γ, y : τ ⊢ y : τ . Thus, by substitution, we have

Γ, y : τ ⊢ M[x/y] : σ

23



Preservation Theorem i

Theorem 16
For any M and N if Γ ⊢ M : σ is derivable and M −→β1 N, then
Γ ⊢ N : σ.

Proof sketch.
By induction on both the derivation of Γ ⊢ M : σ and M −→β1 N.

N.B. The only non-trivial case is

Γ ⊢ (λx1 : τ.M1) N : σ

which needs the substitution lemma.
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Preservation Theorem ii

Proof.
By induction on both the derivation of Γ ⊢ M : σ and M −→β1 N.

1. Suppose Γ ⊢ x : σ. However, x ̸−→β1 N for any N. Therefore, it is
vacuously true that Γ ⊢ N : σ.

2. Suppose Γ ⊢ λx.M : σ → τ and λx.M −→β1 N. Then, N must be
λx.N′ for some N′; Γ, x : σ ⊢ M : τ and M −→β1 N′ must be
derivable. By induction hypothesis, Γ, x : σ ⊢ N′ is derivable, so
is Γ ⊢ λx.N′ : σ → τ .

3. Suppose Γ ⊢ M N. Then ...
4. ...
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Normal form

The notion of normal form can be characterised syntactically:

Definition 17
Define judgements Neutral M and Normal M mutually by

Neutral x

Neutral M Normal N
Neutral M N

Neutral M
Normal M

Normal M
Normal λx.M

Idea. Neutral M (resp. Normal M) is derivable iff

M ≡ x N1 · · ·Nk and M ≡ λx1 · · · xn. x N1 · · ·Nk

respectively where Ni’s are in normal form.
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Soundness and completeness of the inductive characterisation

Lemma 18
Let M be an untyped term.

Soundness If Normal M (resp. Neutral M) is derivable, then M is
in normal form.

Completeness If M is in normal form, then Normal M is derivable.

Proof sketch.
Soundness By mutual induction on the derivation of Normal M

and Neutral M.
Completeness By induction on the formation of M.
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Progress

Theorem 19
If Γ ⊢ M : σ is derivable, then Normal M or there is N with
M −→β1 N.

Proof sketch.
By induction on the derivation of Γ ⊢ M : σ.

28



Weak normalisation

Definition 20
M is weakly normalising denoted by M ↓ if

Normal M
M ↓

M −→β1 N N ↓
M ↓

That is, M is weakly normalising if there is a sequence

M −→β1 M1 −→β1 M2 −→β1 . . .N−̸→β1

Theorem 21 (Weak normalisation)
Every term M with Γ ⊢ M : τ is weakly normalising.
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Strong normalisation

Definition 22
M is strongly normalising denoted by M ⇓ if

∀N. (M −→β1 N =⇒ N ⇓)
M ⇓

Intuitively, strong normalisation says every sequence

M −→β1 M1 −→β1 M2 · · ·

terminates.

Theorem 23
Every term M with Γ ⊢ M : τ is strongly normalising.
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Definability

A function f : Nk → N is called λ→-definable if there is a λ-term F of
type nat → nat → . . .nat → nat such that

F cn1 . . . cnk −→β∗ cf(n1,...,nk)

for every sequence (n1,n2, . . . ,nk) ∈ Nk. Diagrammatically,

(n1,n2, . . . ,nk)
� //

_

(c−)k

��

f(n1,n2, . . . ,nk)_

c−
��

(cn1 , cn2 , . . . , cnk)
� // F cn1 cn2 . . . cnk = cf(n1,n2,...,nk)
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The limit of λ→

Theorem 24
The λ→-definable functions are the class of functions of the form
f : Nk → N closed under compositions which contains

• the constant functions,
• projections,
• additions,
• multiplications,
• and the conditional

ifz(n0,n1,n2) =

{
n1 if n0 = 0
n2 otherwise.
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Homework

1. (2.5%) Show the Progress Theorem.
2. (2.5%) Show that if M is in normal form then Normal M is

derivable.
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Appendix Takahashi’s Proof of
confluence



Confluence: Parallel reduction

Consider untyped λ-calculus.

Let M =⇒β N denote the parallel reduction defined by

x =⇒β x

M =⇒β N
λx.M =⇒β λx.N

M =⇒β M′ N =⇒β N′

M N =⇒β M′ N′

M =⇒β M′ N =⇒β N′

(λx.M) N =⇒β M′[N′/x]

For example,

(λx. (λy. y) x) ((λx. x) false) =⇒β false

because (λy. y) x =⇒β x and (λx. x) false =⇒β false.



Confluence: Properties of parallel reduction

Lemma 25
1. M =⇒β M holds for any term M,
2. M −→β1 N implies M =⇒β N, and
3. M =⇒β N implies M −→β∗ N.

Therefore, M =⇒∗
β N is equivalent to M −→β∗ N.

Lemma 26 (Substitution respects parallel reduction)
M =⇒β M′ and N =⇒β N′ imply M[N/x] =⇒β M′[N′/x].

Proof sketch.
By induction on the derivation of M =⇒β M′.



Complete development

The complete development M∗ of a λ-term M is defined by

x∗ = x
(λx.M)∗ = λx.M∗

((λx.M) N)∗ = M∗[N∗/x]
(M N)∗ = M∗ N∗ if M ̸≡ λx.M′

Theorem 27 (Triangle property)
If M =⇒β N, then N =⇒β M∗.

Proof sketch.
By induction on M =⇒β N.



Strip Lemma

Theorem 28
If L =⇒∗

β M1 and L =⇒β M2, then there exists N satisfying that
M1 =⇒β N and M2 =⇒∗

β N, i.e.

L

�$
@@

@@
@@

@

@@
@@

@@
@

∗
β z� ~~

~~
~~
~

~~
~~
~~
~

M1

�$
@@

@@
@@

@

@@
@@

@@
@

M2

∗
β
z� ~~
~~
~~
~

~~
~~
~~
~

N

Proof sketch.
By induction on L =⇒∗

β M1.



Confluence

Theorem 29
If L =⇒∗

β M1 and L =⇒∗
β M2, then there exists N such that M1 =⇒∗

β N
and M2 =⇒∗

β N.
L

∗
β
�$
@@

@@
@@

@

@@
@@

@@
@

∗
β z� ~~

~~
~~
~

~~
~~
~~
~

M1

∗
β
�$
@@

@@
@@

@

@@
@@

@@
@

M2

∗
β
z� ~~
~~
~~
~

~~
~~
~~
~

N

Corollary 30
The confluence of −→β∗ holds.
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