

λ -Calculus

Untyped λ -Calculus

陳亮廷 Chen, Liang-Ting

Formosan Summer School on Logic, Language, and Computation (FLOLAC) 2022

Institute of Information Science, Academia Sinica

Deadline 17:00,10 Aug Assessment Assignment (15%) Exam (100%) Email liang.ting.chen.tw(at)gmail(dot)com

Please follow the instructions below.

- 1. Use A4 paper.
- 2. Write down your name and student id.
- 3. Be clear and brief.

 4. Submit assignments in person or by email as PDF with subject [FLOLAC] PL HW%x% attachment PL-HW%x% - %STDNO% - %NAME%.pdf body (optional)

Untyped λ -Calculus: Statics

λ -calculus: Term

Definition 1 (Syntax of λ -calculus)

Given a set V of variables, the term formation judgement is defined by

Variable

$$\frac{x \text{ is in } V}{x \text{ Term}_V}$$
 (var)

Application of M to the argument N

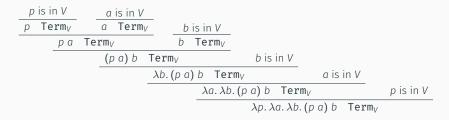
$$\frac{M \text{ Term}_V N \text{ Term}_V}{M N \text{ Term}_V} (\text{app})$$
Abstraction with an argument x and a function body M
$$\frac{M \text{ Term}_V x \text{ is in } V}{\lambda x M \text{ Term}_V} (\text{abs})$$

An Example

The judgement

 $\lambda p. \lambda a. \lambda b. (p a) b$ Term_V

is justified by the following derivation



N.B. brackets '(' and ')' are not parts of terms and they are used only to group a term.

More Example and non-examples

- 1. (*x y*) *z*
- 2. x (y z)
- 3. λx.y
- 4. λx.x
- 5. λs. (λz. (s z))
- 6. λa.(λb.(a (λc.a b)))
- 7. $(\lambda x. x) (\lambda y. y)$

The following are NOT examples

- 1. $\lambda(\lambda x. x). y$
- 2. λx.
- 3. λ.x
- 4. ...

Consecutive abstractions

$$\lambda x_1 x_2 \dots x_n. M \equiv \lambda x_1. (\lambda x_2. (\dots (\lambda x_n. M) \dots))$$

Consecutive applications

$$M_1 M_2 M_3 \ldots M_n \equiv (\ldots ((M_1 M_2) M_3) \ldots) M_n$$

Function body extends as far right as possible

 $\lambda x. M N := \lambda x. (M N)$

instead of $(\lambda x. M) N$.

For example, λx_1 . $(\lambda x_2, x_1) \equiv \lambda x_1 x_2, x_1$ and x y z means (x y) z.

Examples

1.
$$(x y) z \equiv x y z$$

2.
$$\lambda$$
s. (λ z. (s z)) $\equiv \lambda$ s z. s z

3.
$$\lambda a. (\lambda b. (a (\lambda c. a b))) \equiv \lambda a b. a (\lambda c. a b)$$

4.
$$(\lambda x. x) (\lambda y. y) \equiv (\lambda x. x) \lambda y. y$$

Meta-language and object-language

- *Meta-language* is the language we use to describe the object of study. E.g. English, or naive set theory.
- Object-language is the object of study. E.g., arithmetic expressions and λ -terms.

Naming a function is *not* supported in λ -calculus, so the following

$$id := \lambda x. x$$

happens in the meta-language.

- 1. **id** is a symbol different from ' $\lambda x. x$ ' in the meta-language.
- 2. **id** and $\lambda x. x$ are syntactically equivalent denoted by

$$id \equiv \lambda x.x$$

Example 2 (Identity function)

$$\mathsf{id} := \lambda x. x$$

Example 3 (Projections)

$$fst := \lambda x. \lambda y. x$$
 and $snd := \lambda x. \lambda y. y$

Remember that there are only three constructs in λ -calculus. For convenience, we normally use a surface language to generate terms in the object-language.

α -equivalence, informally

Definition 4

Two terms *M* an *N* are α -equivalent

 $M =_{\alpha} N$

if variables *bound* by abstractions can be renamed to derive the same term.

Example 5

- 1. $\lambda x. x$ and $\lambda y. y$ are distinct λ -terms but $\lambda x. x =_{\alpha} \lambda y. y.$
- 2. $\lambda x. \lambda y. y =_{\alpha} \lambda z. \lambda y. y.$
- 3. $\lambda x. \lambda y. x \neq_{\alpha} \lambda x. \lambda y. y.$

 $\alpha\text{-}\mathsf{equivalent}$ terms are programs of the same structure modulo the name of bound variables.

Evaluation, informally

The evaluation of λ -calculus is of this form

For example, $(\lambda x. x + 1) 3 \rightarrow 3 + 1$.

How to evaluate the following terms?

- 1. $(\lambda x.x)z$
- 2. $(\lambda x y. x) y$
- 3. $(\lambda y y. y) x$

Structural recursion: Free variables

Definition 6

The set FV of free variables of a term M is inductively defined by

$$FV: \Lambda_V \to \mathcal{P}(V)$$
$$FV(x) = \{x\}$$
$$FV(\lambda x. M) = FV(M) - \{x\}$$
$$FV(M N) = FV(M) \cup FV(N)$$

Definition 7

- 1. A variable y in M is free if $y \in FV(M)$.
- 2. A λ -term *M* is closed if $FV(M) = \emptyset$.

Exercise

The set of free variables of a term is calculated by definition readily, e.g.,

$$FV(x (\lambda y. y) z) = FV(x (\lambda y. y)) \cup FV(z)$$

= FV(x) \cup (FV(y) - {y}) \cup {z}
= {x} \cup ({y} - {y}) \cup {z}
= {x, z}

Calculate the set of free variables of following terms:

- 1. x(yz)
- 2. λx.y
- 3. λx.x
- 4. λsz.sz
- 5. (λx.x) λy.y

The height of a term is given informally as follows:

- 1. the height of a variable is zero;
- 2. the height of an application is the maximum of the heights of its subterms plus 1;
- 3. the height of an abstraction is the height of its body plus 1.

Define the height function $h: \mathbf{Term}_V \to \mathbb{N}$ inductively.

Untyped λ -Calculus: Substitution

A substitution is a process of replacing *free* variables by another terms on the meta-level. Hence, a substitution of *N* for a free variable *x* is a function

 $[N/x]: \operatorname{Term}_V \to \operatorname{Term}_V$

The name of a variable does not matter but its location does.

- 1. bound variables should remain bound after substitution.
- 2. free variables which are not *x* should remain free after substitution.

Concretely, we want to avoid ...

- 1. $(\lambda y. y)[x/y] \equiv (\lambda y. x)$
- 2. $(\lambda y. x)[y/x] \equiv (\lambda y. y)$

Naive substitution I

For $x \in V$ and L: **Term**_V, the substitution of L for x is defined by

$$x[L/x] = L$$

$$y[L/x] = y$$
 if $x \neq y$

$$(M N)[L/x] = M[L/x] N[L/x]$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x]$$

A bound variable may become free after substitution, e.g.,

$$(\lambda x. x)[y/x] = \lambda x. y$$

so this is not the one we want.

Naive substitution II

For $x \in V$ and L : **Term**_V, the substitution of L for x is defined by

$$x[L/x] = L$$

$$y[L/x] = y$$

$$(M N)[L/x] = M[L/x] N[L/x]$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x]$$

$$if x \neq y$$

$$(\lambda y. M)[L/x] = \lambda y. M$$

$$if x = y$$

A variable may be captured by an abstraction after substitution, e.g.,

$$(\lambda x.y)[x/y] = \lambda x.x$$

so again it is not the desired definition.

Definition 8

Capture-avoiding substitution¹ of *L* for the free occurrences of *x* is a *partial* function [L/x]: Term_V \rightarrow Term_V defined by

$$\begin{aligned} x[L/x] &= L \\ y[L/x] &= y & \text{if } x \neq y \\ (M N)[L/x] &= M[L/x] N[L/x] \\ (\lambda x. M)[L/x] &= \lambda x. M \\ (\lambda y. M)[L/x] &= \lambda y. M[L/x] & \text{if } x \neq y \text{ and } y \notin FV(L) \end{aligned}$$

¹Sign, this definition is still not rigorous.

Renaming of bound variables

Definition 9 (Freshness)

A variable y is fresh for L if $y \notin FV(L)$.

If a variable y is *fresh* for M, the bound variable x of λx . M can be renamed to y without changing the meaning.

Definition 10 (α -conversion)

 α -conversion is an judgement $M \rightarrow_{\alpha} N$ between terms defined by

y is fresh for M $\lambda x. M \longrightarrow_{\alpha} \lambda y. M[y/x]$

Yet, $M(\lambda x. x) \longrightarrow_{\alpha} M(\lambda y. y)$ does not follow by definition, so we introduce a new judgement to allow α -conversion in any subterm of a term.

α -equivalence

Definition 11x is a variable $M_1 =_{\alpha} M_2$ $N_1 =_{\alpha} N_2$ $X =_{\alpha} X$ $M_1 =_{\alpha} M_2 N_2$ $M_1 =_{\alpha} M_2 N_2$ $M_1 \rightarrow_{\alpha} M_2$ $M_1 =_{\alpha} \lambda x. M_2$

 α -equivalence is an *equivalence*, i.e.

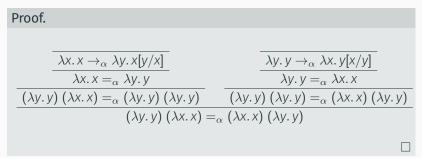
reflexivity $M =_{\alpha} M$ for any term M; symmetry $N =_{\alpha} M$ if $M =_{\alpha} N$; transitivity $L =_{\alpha} N$ if $L =_{\alpha} M$ and $M =_{\alpha} N$.

All of these can be proved by induction on the derivation of $M =_{\alpha} M$.

Example 12

$(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda x. x) (\lambda y. y)$

Why? We use the fact that $=_{\alpha}$ is an equivalence!



Exercise

Which of the following pairs are α -equivalent? Why?

- 1. *x* and *y*
- 2. $\lambda x y. y$ and $\lambda z y. y$
- 3. $\lambda x y. x$ and $\lambda y x. y$
- 4. $\lambda x y. x$ and $\lambda x y. y$

Convention

 α -equivalent terms are identified.

In the following development, we do not distinguish M and N if $M =_{\alpha} N$ at all. Feel free to rename any bound variable whenever convenient.

Untyped λ -Calculus: Dynamics

β -conversion

Definition 13 (β -conversion)

 β -conversion is a judgement $M \longrightarrow_{\beta} N$ defined by

 $\frac{M[N/x] \text{ is defined}}{(\lambda x. M) N \longrightarrow_{\beta} M[N/x]}$

for any x, M and N.

By definition, we can conclude that

$$\begin{aligned} (\lambda x. \lambda y. x) & M \longrightarrow_{\beta} (\lambda y. x)[M/x] \\ & \equiv \lambda y. x[M/x] \equiv \lambda y. M \end{aligned}$$

but not $((\lambda x y. x) M) N \longrightarrow_{\beta} (\lambda y. M) N$, since the above judgement is defined only for β -redexes.

One-step β -reduction

One-step β -reduction extends β -conversion to any subterm of a term.

Definition 14

The one-step (full) β -reduction is defined inductively by

M[N/x] is defined	$M_1 \longrightarrow_{\beta 1} M_2$
$(\lambda x. M) N \longrightarrow_{\beta 1} M[N/x]$	$M_1 N \longrightarrow_{\beta 1} M_2 N$
$M_1 \longrightarrow_{\beta 1} M_2$	$N_1 \longrightarrow_{\beta 1} N_2$
$\lambda x. M_1 \longrightarrow_{\beta 1} \lambda x. M_2$	$M N_1 \longrightarrow_{\beta 1} M N_2$

 $((\lambda x y. x) M) N \longrightarrow_{\beta 1} (\lambda y. M) N \longrightarrow_{\beta 1} M[N/y]$

It is convenient to represents a sequence of β -reductions

$$M \longrightarrow_{\beta_1} M_1 \longrightarrow_{\beta_1} \ldots \longrightarrow_{\beta_1} N$$

by a single judgement $M \longrightarrow_{\beta*} N$.

Definition 15

The multi-step (full) β -reduction is defined inductively by

$$\overline{M \longrightarrow_{\beta *} M}$$
 (0-step)

$$\frac{L \longrightarrow_{\beta_1} M \quad M \longrightarrow_{\beta_*} N}{L \longrightarrow_{\beta_*} N} (n+1\text{-step})$$

$M \longrightarrow_{\beta*} N$ is transitive

Lemma 16

For every derivations of $L \longrightarrow_{\beta*} M$ and $M \longrightarrow_{\beta*} N$, there is a derivation of $L \longrightarrow_{\beta*} N$.

We often omit the term "derivation" and say "if $L \longrightarrow_{\beta*} M$ and $M \longrightarrow_{\beta*} N$ then $L \longrightarrow_{\beta*} N$ " instead.

Proof.

By induction on the derivation d of $L \longrightarrow_{\beta*} M$.

- 1. If d is given by (0-step), then $L =_{\alpha} M$ (by convention).
- 2. If *d* is given by (n+1-step), i.e. there exists *M'* such that $L \longrightarrow_{\beta_1} M'$ and $M' \longrightarrow_{\beta_*} M$. By induction hypothesis, every derivation $M \longrightarrow_{\beta_*} N$ gives rise to a derivation of $M' \longrightarrow_{\beta_*} N$. Hence, by (n+1-step), we have a derivation of $L \longrightarrow_{\beta_*} N$.

Renaming of bound variables may need to happen during reduction:

$(\lambda y. y y) (\lambda z x. z x) \longrightarrow_{\beta 1}$	$(\lambda z x. z x) (\lambda z x. z x)$
$\longrightarrow_{\beta 1}$	$\lambda x. (\lambda z x. z x) x$
$=_{\alpha}$	$\lambda x. (\lambda z y. z y) x$
$\longrightarrow_{\beta 1}$	$\lambda x. (\lambda y. x y)$

Even worse, we actually need infinitely many variables:

 $(\lambda y. y \le y) (\lambda t z x. z (t x) z)$

Exercise

Evaluate the above term.

Two terms *M* and *N* may not have the same structure or even not reducible from one to the other, but they may have the same meaning with respect to computation.

Definition 17

M and N have the same computational meaning if $M =_{\beta} N$ which is defined inductively by

$$\frac{M \longrightarrow_{\beta 1} N}{M =_{\beta} N} \qquad \qquad \frac{M =_{\beta} N}{N =_{\beta} M}$$

$$\frac{M =_{\beta} M}{M =_{\beta} M} \qquad \qquad \frac{L =_{\beta} M}{L =_{\beta} N}$$

SUMMARISE HERE ALL THE RELATIONS JUST INTRODUCED.

Programming in λ -Calculus

Church encoding of boolean values

Boolean and conditional can be encoded as combinators.

Boolean

True	:=	λx y. x
False	:=	$\lambda x y. y$

Conditional

 $if := \lambda b \times y. \ b \times y$ $if True \ M \ N \longrightarrow_{\beta*} M$ $if False \ M \ N \longrightarrow_{\beta*} N$

for any two λ -terms *M* and *N*.

Church Encoding of natural numbers i

Natural numbers as well as arithmetic operations can be encoded in untyped lambda calculus.

Church numerals

C ₀	:=	$\lambda f x. x$
C ₁	:=	$\lambda f x. f x$
C ₂	:=	$\lambda f x. f(f x)$
C _{n+1}	:=	$\lambda f x. f^{n+1}(x)$

where $f^{1}(x) := f x$ and $f^{n+1}(x) := f(f^{n}(x))$.

Church Encoding of natural numbers ii

Successor

	succ	:=	$\lambda n. \lambda f x. f(n f x)$		
	succ c _n	\longrightarrow_{β}	c _{n+1}		
for any natural number $n \in \mathbb{N}$.					
Addition					
	add	:=	$\lambda n m. \lambda f x. n f (m f x)$		
	add $c_n c_m$	$\longrightarrow_{\beta*}$	C <i>n</i> + <i>m</i>		
Conditional					
	ifz		$:= \lambda n x y. n (\lambda z. y) x$		
	$ifz c_0 M N$		$\longrightarrow_{\beta*} M$		
	$ifz c_{n+1} M$	Ν	$\longrightarrow_{\beta*} N$		

Exercise

- 1. Define Boolean operations **not**, **and**, and **or**.
- 2. Evaluate succ c_0 and add $c_1 c_2$.
- 3. Define the multiplication **mult** over Church numerals.

General Recursion via self-reference

The summation $\sum_{i=0}^{n} i$ for $n \in \mathbb{N}$ is usually described by self-reference in mathematics as follows.

$$sum(n) = \begin{cases} 0 & \text{if } n = 0\\ n + sum(n-1) & \text{otherwise} \end{cases}$$

This cannot be done in λ -calculus directly. (Why?)

Observation

If sum is unfolded as many times as it requires, then

$$sum(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 + sum(0) & n = 1\\ 2 + sum(1) & n = 2\\ \dots & \\ n + sum(n-1) & \text{otherwise.} \end{cases}$$

Curry's paradoxical combinator

The Y combinator is defined as a term

 $\mathbf{Y} := \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x)).$

Proposition 18 Y is a fixed-point operator, i.e.

> $YF \longrightarrow_{\beta_1} (\lambda x. F(x x)) (\lambda x. F(x x))$ $\longrightarrow_{\beta_1} F((\lambda x. F(x x)) (\lambda x. F(x x)))$

for every λ -term F. In particular, $YF =_{\beta} F(YF)$.

Intuitively, YF defines recursion where F describes each iteration.

Summation via Y

We encode the following recursion

$$sum(n) = \begin{cases} 0 & \text{if } n = 0\\ n + sum(n-1) & \text{otherwise.} \end{cases}$$

by generalising each iteration G with an additional function f

$$G := \lambda f n. ifz n c_0 (add n (f (pred n)))$$

so that **sum** := **Y**G. For example,

$$sum c_{1} \equiv (YG) c_{1}$$

$$\longrightarrow_{\beta 1} G' c_{1}$$

$$\longrightarrow_{\beta 1} G G' c_{1}$$

$$\longrightarrow_{\beta 1} (\lambda n. ifz n c_{0} (add n (G' (pred n)))) c_{1}$$

$$\longrightarrow_{\beta 1} ifz c_{1} c_{0} (add c_{1} (G' (pred c_{1})))$$

$$\longrightarrow_{\beta 1} \dots$$

where $G' := ((\lambda x. G (x x)) (\lambda x. G (x x))).$

Turing's fixed-point combinator

Recall that $YG =_{\beta} G(Y G)$ but $YG \longrightarrow_{\beta*} G(Y G)$ does not hold. Here is a fixed-point operator such that $\Theta F \longrightarrow_{\beta*} F(\Theta F)$.

Proposition 19

Define

$$\Theta := (\lambda x f. f(x x f)) (\lambda x f. f(x x f))$$

Then,

$$\Theta F \longrightarrow_{\beta *} F(\Theta F)$$

Try Turing's fixed-point combinator with G to define $\sum_{i=0}^{n} i$.

$$G := \lambda f n. ifz n c_0 (add n (f(pred n)))$$
$$sum := \Theta G$$

Exercise

- 1. Evaluate ${\color{black}{sum}}\,{\color{black}{c_1}}$ to its normal form in detail.
- 2. Define the factorial *n*! with Church numerals.

Properties of λ -Calculus

Example 20

Suppose $M \operatorname{Term}_{\lambda}$ and $y \notin FV(M)$. Then, consider

 $(\lambda y. M) ((\lambda x. xx)(\lambda x. xx))$

Observations:

- Some evaluation may diverge while some may converge.
- Full β -reduction lacks for determinacy.

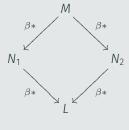
Question:

• Does every path give the same evaluation?

Confluence

Theorem 21 (Church-Rosser)

Given N_1 and N_2 with $M \longrightarrow_{\beta*} N_1$ and $M \longrightarrow_{\beta*} N_2$, there is L such that $N_1 \longrightarrow_{\beta*} L$ and $N_2 \longrightarrow_{\beta*} L$.



No matter which way we choose we can always find a confluent term.

Normal form

Definition 22

M is in normal form if there is no N such that $M \longrightarrow_{\beta 1} N$, abbreviated to $M \xrightarrow{}_{\beta 1}$.

Lemma 23

Suppose that M is in normal form. Then $M \longrightarrow_{\beta*} N$ implies $M =_{\alpha} N$.

Proof.

By induction on the derivation d of $M \longrightarrow_{\beta*} N$.

- 1. If d is given by (0-step), then $M \longrightarrow_{\beta^*} N$ where $M =_{\alpha} N$ by definition.
- 2. If *d* is given by (n+1-step), then $M \longrightarrow_{\beta_1} M'$ and $M' \longrightarrow_{\beta_*} N$ are derivable for some *M'*. By assumption $M \longrightarrow_{\beta_1} N$ is not derivable for any *N*, so by contradiction the statement follows.

Corollaries of confluence

Corollary 24 (Uniqueness of normal forms)

Let M be a term with $M \longrightarrow_{\beta*} N_1$ and $M \longrightarrow_{\beta*} N_2$ where N_i 's are in normal form. Then, $N_1 =_{\alpha} N_2$.

Corollary 25 (Computationally equal terms have a confluent term) If $M =_{\beta} N$, then there exists L satisfying

Proof sketch.

By induction on the derivation of $M =_{\beta} N$.

Homework

- 1. (2.5%) Show Corollary 24
- 2. (2.5%) Show Corollary 25.

Appendix: Evaluation strategy

Evaluation strategies i

An evaluation strategy is a procedure of selecting β -redexes to reduce. It is a subset \longrightarrow_{ev} of the full β -reduction $\longrightarrow_{\beta 1}$.

Innermost β **-redex** does not contain any β -redex. **Outermost** β **-redex** is not contained in any other β -redex.

Evaluation strategies ii

the leftmost-outermost (*normal order***) strategy** reduces the leftmost outermost β-redex in a term first. For example,

 $\frac{(\lambda x. (\lambda y. y)x)}{(\lambda x. (\lambda y. yy)x)} \frac{(\lambda x. (\lambda y. yy)x)}{(\lambda x. (\lambda y. yy)x)}$ $\longrightarrow_{\beta 1} \lambda x. \frac{(\lambda y. yy)}{(\lambda x. xx)} \xrightarrow{X}$ $\longrightarrow_{\beta 1} (\lambda x. xx)$

Evaluation strategies iii

the leftmost-innermost strategy reduces the leftmost innermost β -redex in a term first. For example,

 $(\lambda x. (\underline{\lambda y. y}) \underline{x}) (\lambda x. (\lambda y. y y) x)$ $\longrightarrow_{\beta_1} (\lambda x. x) (\lambda x. (\underline{\lambda y. y y}) \underline{x})$ $\longrightarrow_{\beta_1} (\underline{\lambda x. x}) (\underline{\lambda x. xx})$ $\longrightarrow_{\beta_1} (\lambda x. xx)$ $\xrightarrow{}_{\beta_1} (\lambda x. x)$

the rightmost-innermost/outermost strategy are defined similarly where terms are reduced from right to left instead. Call-by-value strategy rightmost-outermost but not under any abstraction

Call-by-name strategy leftmost-outermost but not under any abstraction

Proposition 26 (Determinacy)

Each of evaluation strategies is deterministic, i.e. if $M \longrightarrow_{\beta 1} N_1$ and $M \longrightarrow_{\beta 1} N_2$ then $N_1 = N_2$.

Exercise

Define following terms

$$\Omega := (\lambda x. xx) (\lambda x. xx)$$
$$K_1 := \lambda xy. x$$

Evaluate

 $K_1 Z \Omega$

using the call-by-value and the call-by-name strategy respectively.

Normalisation

Definition 27

- 1. *M* is in *normal form* if $M \rightarrow_{\beta 1} N$ for any *N*.
- 2. *M* is weakly normalising if $M \longrightarrow_{\beta*} N$ for some *N* in normal form.
- 1. Ω is not weakly normalising.
- 2. K_1 is normal and thus weakly normalising.
- 3. $K_1 z \Omega$ is weakly normalising.

Theorem 28

The normal order strategy reduces every weakly normalising term to a normal form.