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TO BEGIN WITH...



PREREQUISITES

If you have done the homework requested before this summer
school, you should have familiarised yourself with

• values and types, and basic list processing,
• basics of type classes,
• defining functions by pattern matching,
• guards, case, local definitions by where and let,
• recursive definition of functions,
• and higher order functions.
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RECOMMANDED TEXTBOOKS

• Introduction to Functional Programming using Haskell.
My recommended book. Covers equational reasoning very
well.

• Programming in Haskell. A thin but complete textbook.
• Learn You a Haskell for Great Good! , a nice tutorial with
cute drawings!

• Real World Haskell.
• Algorithm Design with Haskell.
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DEFINITION AND PROOF BY INDUCTION



TOTAL FUNCTIONAL PROGRAMMING

• The next few lectures concerns inductive definitions and
proofs of datatypes and programs.

• While Haskell provides allows one to define
nonterminating functions, infinite data structures, for now
we will only consider its total, finite fragment.

• That is, we temporarily
• consider only finite data structures,
• demand that functions terminate for all value in its input
type, and

• provide guidelines to construct such functions.

• Infinite datatypes and non-termination can be modelled
with more advanced theory, which we cannot cover in this
course.
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RECALLING “MATHEMATICAL INDUCTION”

• Let P be a predicate on natural numbers.
• We’ve all learnt this principle of proof by induction: to
prove that P holds for all natural numbers, it is sufficient
to show that

• P 0 holds;
• P (1+ n) holds provided that Pn does.
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PROOF BY INDUCTION ON NATURAL NUMBERS

• We can see the above inductive principle as a result of
seeing natural numbers as defined by the datatype 1

data Nat = 0 | 1+ Nat .

• That is, any natural number is either 0, or 1+ n where n is
a natural number.

• In this lecture, 1+ is written in bold font to emphasise that
it is a data constructor (as opposed to the function (+), to
be defined later, applied to a number 1).

1Not a real Haskell definition.
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A PROOF GENERATOR

Given P 0 and Pn⇒ P (1+ n), how does one prove, for
example, P 3?

P (1+ (1+ (1+ 0)))
⇐ { P (1+ n)⇐ Pn }

P (1+ (1+ 0))
⇐ { P (1+ n)⇐ Pn }

P (1+ 0)
⇐ { P (1+ n)⇐ Pn }

P 0 .

Having done math. induction can be seen as having designed
a program that generates a proof — given any n :: Nat we can
generate a proof of Pn in the manner above.
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INDUCTIVELY DEFINED FUNCTIONS

• Since the type Nat is defined by two cases, it is natural to
define functions on Nat following the structure:

exp :: Nat→ Nat→ Nat
exp b 0 = 1
exp b (1+ n) = b× exp b n .

• Even addition can be defined inductively

(+) :: Nat→ Nat→ Nat
0+ n = n
(1+ m) + n = 1+ (m+ n) .

• Exercise: define (×)?
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A VALUE GENERATOR

Given the definition of exp, how does one compute exp b 3?

exp b (1+ (1+ (1+ 0)))
= { definition of exp }

b× exp b (1+ (1+ 0))
= { definition of exp }

b× b× exp b (1+ 0)
= { definition of exp }

b× b× b× exp b 0
= { definition of exp }

b× b× b× 1 .

It is a program that generates a value, for any n :: Nat.
Compare with the proof of P above.
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MORAL: PROVING IS PROGRAMMING

An inductive proof is a program that generates a proof for any
given natural number.

An inductive program follows the same structure of an
inductive proof.

Proving and programming are very similar activities.

9 / 129



WITHOUT THE n+ k PATTERN

• Unfortunately, newer versions of Haskell abandoned the
“n+ k pattern” used in the previous slides:

exp :: Int→ Int→ Int
exp b 0 = 1
exp b n = b× exp b (n− 1) .

• Nat is defined to be Int in MiniPrelude.hs. Without
MiniPrelude.hs you should use Int.

• For the purpose of this course, the pattern 1+ n reveals
the correspondence between Nat and lists, and matches
our proof style. Thus we will use it in the lecture.

• Remember to remove them in your code.
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PROOF BY INDUCTION

• To prove properties about Nat, we follow the structure as
well.

• E.g. to prove that exp b (m+ n) = exp b m× exp b n.
• One possibility is to preform induction on m. That is,
prove Pm for all m :: Nat, where
Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).
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PROOF BY INDUCTION

Recall Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).

Case m := 0. For all n, we reason:
exp b (0+ n)

= { defn. of (+) }
exp b n

= { defn. of (×) }
1× exp b n

= { defn. of exp }
exp b 0× exp b n .

We have thus proved P 0.
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PROOF BY INDUCTION

Recall Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).

Case m := 1+ m. For all n, we reason:

exp b ((1+ m) + n)

= { defn. of (+) }
exp b (1+ (m+ n))

= { defn. of exp }
b× exp b (m+ n)

= { induction }
b× (exp b m× exp b n)

= { (×) associative }
(b× exp b m)× exp b n

= { defn. of exp }
exp b (1+ m)× exp b n .

We have thus proved P (1+ m), given P m.
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STRUCTURE PROOFS BY PROGRAMS

• The inductive proof could be carried out smoothly,
because both (+) and exp are defined inductively on its
lefthand argument (of type Nat).

• The structure of the proof follows the structure of the
program, which in turns follows the structure of the
datatype the program is defined on.
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LISTS AND NATURAL NUMBERS

• We have yet to prove that (×) is associative.
• The proof is quite similar to the proof for associativity of
(++), which we will talk about later.

• In fact, Nat and lists are closely related in structure.
• Most of us are used to think of numbers as atomic and
lists as structured data. Neither is necessarily true.

• For the rest of the course we will demonstrate induction
using lists, while taking the properties for Nat as given.
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AN INDUCTIVELY DEFINED SET?

• For a set to be “inductively defined”, we usually mean that
it is the smallest fixed-point of some function.

• What does that maen?
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FIXED-POINT AND PREFIXED-POINT

• A fixed-point of a function f is a value x such that f x = x.
• Theorem. f has fixed-point(s) if f is a monotonic function
defined on a complete lattice.

• In general, given f there may be more than one fixed-point.
• A prefixed-point of f is a value x such that f x ⩽ x.

• Apparently, all fixed-points are also prefixed-points.

• Theorem. the smallest prefixed-point is also the smallest
fixed-point.
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EXAMPLE: Nat

• Recall the usual definition: Nat is defined by the following
rules:
1. 0 is in Nat;
2. if n is in Nat, so is 1+ n;
3. there is no other Nat.

• If we define a function F from sets to sets:
F X = {0} ∪ {1+ n | n ∈ X}, 1. and 2. above means that
FNat ⊆ Nat. That is, Nat is a prefixed-point of F.

• 3. means that we want the smallest such prefixed-point.
• Thus Nat is also the least (smallest) fixed-point of F.
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LEAST PREFIXED-POINT

Formally, let F X = {0} ∪ {1+ n | n ∈ X}, Nat is a set such that

FNat ⊆ Nat , (1)
(∀X : F X ⊆ X ⇒ Nat ⊆ X) , (2)

where (1) says that Nat is a prefixed-point of F, and (2) it is the
least among all prefixed-points of F.
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MATHEMATICAL INDUCTION, FORMALLY

• Given property P, we also denote by P the set of elements
that satisfy P.

• That P 0 and Pn⇒ P (1+n) is equivalent to {0} ⊆ P and
{1+ n | n ∈ P} ⊆ P,

• which is equivalent to F P ⊆ P. That is, P is a
prefixed-point!

• By (2) we have Nat ⊆ P. That is, all Nat satisfy P!
• This is “why mathematical induction is correct.”
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COINDUCTION?

There is a dual technique called coinduction where, instead of
least prefixed-points, we talk about greatest postfixed points.
That is, largest x such that x ⩽ f x.

With such construction we can talk about infinite data
structures.
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INDUCTIVELY DEFINED LISTS

• Recall that a (finite) list can be seen as a datatype defined
by: 2

data List a = [] | a : List a .

• Every list is built from the base case [ ], with elements
added by (:) one by one: [1, 2, 3] = 1 : (2 : (3 : [ ])).

2Not a real Haskell definition.
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ALL LISTS TODAY ARE FINITE

But what about infinite lists?

• For now let’s consider finite lists only, as having infinite
lists make the semantics much more complicated. 3

• In fact, all functions we talk about today are total
functions. No ⊥ involved.

3What does that mean? Other courses in FLOLAC might cover semantics in
more detail.
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SET-THEORETICALLY SPEAKING...

The type List a is the smallest set such that

1. [ ] is in List a;
2. if xs is in List a and x is in a, x : xs is in List a as well.
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INDUCTIVELY DEFINED FUNCTIONS ON LISTS

• Many functions on lists can be defined according to how a
list is defined:

sum :: List Int→ Int
sum [ ] = 0
sum (x : xs) = x+ sum xs .

map :: (a→ b)→ List a→ List b
map f [ ] = [ ]

map f (x : xs) = F X : map f xs .
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LIST APPEND

• The function (++) appends two lists into one

(++) :: List a→ List a→ List a
[ ] ++ ys = ys
(x : xs)++ ys = x : (xs++ ys) .

• Compare the definition with that of (+)!
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PROOF BY STRUCTURAL INDUCTION ON LISTS

• Recall that every finite list is built from the base case [ ],
with elements added by (:) one by one.

• To prove that some property P holds for all finite lists, we
show that
1. P [ ] holds;
2. forall x and xs, P (x : xs) holds provided that P xs holds.
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FOR A PARTICULAR LIST...

Given P [ ] and P xs⇒ P (x : xs), for all x and xs, how does one
prove, for example, P [1, 2, 3]?

P (1 : 2 : 3 : [ ])
⇐ { P (x : xs)⇐ P xs }

P (2 : 3 : [ ])
⇐ { P (x : xs)⇐ P xs }

P (3 : [ ])
⇐ { P (x : xs)⇐ P xs }

P [ ] .
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APPENDING IS ASSOCIATIVE

To prove that xs++(ys++ zs) = (xs++ ys)++ zs.

Let P xs = (∀ys, zs :: xs++(ys++ zs) = (xs++ ys)++ zs), we
prove P by induction on xs.

Case xs := [ ]. For all ys and zs, we reason:

[ ] ++(ys++ zs)
= { defn. of (++) }

ys++ zs
= { defn. of (++) }

([ ] ++ ys)++ zs .

We have thus proved P [].
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APPENDING IS ASSOCIATIVE

Case xs := x : xs. For all ys and zs, we reason:

(x : xs)++(ys++ zs)
= { defn. of (++) }

x : (xs++(ys++ zs))
= { induction }

x : ((xs++ ys)++ zs)
= { defn. of (++) }

(x : (xs++ ys))++ zs
= { defn. of (++) }

((x : xs)++ ys)++ zs .

We have thus proved P (x : xs), given P xs.
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DO WE HAVE TO BE SO FORMAL?

• In our style of proof, every step is given a reason. Do we
need to be so pedantic?

• Being formal helps you to do the proof:
• In the proof of exp b (m+ n) = exp b m× exp b n, we
expect that we will use induction to somewhere. Therefore
the first part of the proof is to generate exp b (m+ n).

• In the proof of associativity, we were working toward
generating xs++(ys++ zs).

• By being formal we can work on the form, not the
meaning. Like how we solved the knight/knave problem

• Being formal actually makes the proof easier!
• Make the symbols do the work.
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LENGTH

• The function length defined inductively:

length :: List a→ Nat
length [ ] = 0
length (x : xs) = 1+ (length xs) .

• Exercise: prove that length distributes into (++):

length (xs++ ys) = length xs+ length ys
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CONCATENATION

• While (++) repeatedly applies (:), the function concat
repeatedly calls (++):

concat :: List (List a)→ List a
concat [ ] = [ ]

concat (xs : xss) = xs++ concat xss .
• Compare with sum.
• Exercise: prove sum · concat = sum ·map sum.
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DEFINITION BY INDUCTION/RECURSION

• Rather than giving commands, in functional programming
we specify values; instead of performing repeated actions,
we define values on inductively defined structures.

• Thus induction (or in general, recursion) is the only
“control structure” we have. (We do identify and abstract
over plenty of patterns of recursion, though.)

• To inductively define a function f on lists, we specify a
value for the base case (f [ ]) and, assuming that f xs has
been computed, consider how to construct f (x : xs) out of
f xs.
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FILTER

• filter p xs keeps only those elements in xs that satisfy p.

filter :: (a→ Bool)→ List a→ List a
filter p [ ] = [ ]

filter p (x : xs) | p x = x : filter p xs
| otherwise = filter p xs .
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TAKE AND DROP

• Recall take and drop, which we used in the previous
exercise.

take :: Nat→ List a→ List a
take 0 xs = [ ]

take (1+ n) [ ] = [ ]

take (1+ n) (x : xs) = x : take n xs .

drop :: Nat→ List a→ List a
drop 0 xs = xs
drop (1+ n) [ ] = [ ]

drop (1+ n) (x : xs) = drop n xs .
• Prove: take n xs++drop n xs = xs, for all n and xs.
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TAKEWHILE AND DROPWHILE

• takeWhile p xs yields the longest prefix of xs such that p
holds for each element.

takeWhile :: (a→ Bool)→ List a→ List a
takeWhile p [ ] = [ ]

takeWhile p (x : xs) | p x = x : takeWhile p xs
| otherwise = [ ] .

• dropWhile p xs drops the prefix from xs.

dropWhile :: (a→ Bool)→ List a→ List a
dropWhile p [ ] = [ ]

dropWhile p (x : xs) | p x = dropWhile p xs
| otherwise = x : xs .

• Prove: takeWhile p xs++dropWhile p xs = xs.
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LIST REVERSAL

• reverse [1, 2, 3, 4] = [4, 3, 2, 1].

reverse :: List a→ List a
reverse [ ] = [ ]

reverse (x : xs) = reverse xs++[x] .
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ALL PREFIXES AND SUFFIXES

• inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]]

inits :: List a→ List (List a)
inits [ ] = [[ ]]

inits (x : xs) = [ ] : map (x :) (inits xs) .
• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]]

tails :: List a→ List (List a)
tails [ ] = [[ ]]

tails (x : xs) = (x : xs) : tails xs .

39 / 129



TOTALITY

• Structure of our definitions so far:
f [ ] = . . .

f (x : xs) = . . . f xs . . .
• Both the empty and the non-empty cases are covered,
guaranteeing there is a matching clause for all inputs.

• The recursive call is made on a “smaller” argument,
guranteeing termination.

• Together they guarantee that every input is mapped to
some output. Thus they define total functions on lists.
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VARIATIONS WITH THE BASE CASE

• Some functions discriminate between several base cases.
E.g.

fib :: Nat→ Nat
fib 0 = 0
fib 1 = 1
fib (2+ n) = fib (1+n) + fib n .
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• Some functions make more sense when it is defined only
on non-empty lists:

f [x] = . . .

f (x : xs) = . . .

• What about totality?
• They are in fact functions defined on a different datatype:

data List+ a = Singleton a | a : List+ a .

• We do not want to define map, filter again for List+ a. Thus
we reuse List a and pretend that we were talking about
List+ a.

• It’s the same with Nat. We embedded Nat into Int.
• Ideally we’d like to have some form of subtyping. But that
makes the type system more complex.
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LEXICOGRAPHIC INDUCTION

• It also occurs often that we perform lexicographic
induction on multiple arguments: some arguments
decrease in size, while others stay the same.

• E.g. the function merge merges two sorted lists into one
sorted list:
merge :: List Int→ List Int→ List Int
merge [ ] [ ] = [ ]

merge [ ] (y : ys) = y : ys
merge (x : xs) [ ] = x : xs
merge (x : xs) (y : ys) | x ⩽ y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys .
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ZIP

Another example:

zip :: List a→ List b→ List (a,b)
zip [ ] [ ] = [ ]

zip [ ] (y : ys) = [ ]

zip (x : xs) [ ] = [ ]

zip (x : xs) (y : ys) = (x, y) : zip xs ys .
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NON-STRUCTURAL INDUCTION

• In most of the programs we’ve seen so far, the recursive
call are made on direct sub-components of the input (e.g.
f (x : xs) = ..f xs..). This is called structural induction.

• It is relatively easy for compilers to recognise structural
induction and determine that a program terminates.

• In fact, we can be sure that a program terminates if the
arguments get “smaller” under some (well-founded)
ordering.
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MERGESORT

• In the implemenation of mergesort below, for example,
the arguments always get smaller in size.

msort :: List Int→ List Int
msort [ ] = [ ]

msort [x] = [x]
msort xs = merge (msort ys) (msort zs) ,
where n = length xs ‘div‘ 2

ys = take n xs
zs = drop n xs .

• What if we omit the case for [x]?

• If all cases are covered, and all recursive calls are applied
to smaller arguments, the program defines a total
function.
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A NON-TERMINATING DEFINITION

• Example of a function, where the argument to the
recursive does not reduce in size:

f :: Int→ Int
f 0 = 0
f n = f n .

• Certainly f is not a total function. Do such definitions
“mean” something? We will talk about these later.
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INTERNALLY LABELLED BINARY TREES

• This is a possible definition of internally labelled binary
trees:

data ITree a = Null | Node a (ITree a) (ITree a) ,

• on which we may inductively define functions:

sumT :: ITree Nat→ Nat
sumT Null = 0
sumT (Node x t u) = x+ sumT t+ sumT u .
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Exercise: given (↓) :: Nat→ Nat→ Nat, which yields the
smaller one of its arguments, define the following functions

1. minT :: Tree Nat→ Nat, which computes the minimal
element in a tree.

2. mapT :: (a→ b)→ Tree a→ Tree b, which applies the
functional argument to each element in a tree.

3. Can you define (↓) inductively on Nat? 4

4In the standard Haskell library, (↓) is called min.
49 / 129



INDUCTION PRINCIPLE FOR Tree

• What is the induction principle for Tree?
• To prove that a predicate P on Tree holds for every tree, it
is sufficient to show that

1. P Null holds, and;
2. for every x, t, and u, if P t and P u holds, P (Node x t u)
holds.

• Exercise: prove that for all n and t,
minT (mapT (n+) t) = n+minT t. That is,
minT ·mapT (n+) = (n+) ·minT.
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INDUCTION PRINCIPLE FOR OTHER TYPES

• Recall that data Bool = False | True. Do we have an
induction principle for Bool?

• To prove a predicate P on Bool holds for all booleans, it is
sufficient to show that

1. P False holds, and
2. P True holds.

• Well, of course.
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• What about (A× B)? How to prove that a predicate P on
(A× B) is always true?

• One may prove some property P1 on A and some property
P2 on B, which together imply P.

• That does not say much. But the “induction principle” for
products allows us to extract, from a proof of P, the proofs
P1 and P2.
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• Every inductively defined datatype comes with its
induction principle.

• We will come back to this point later.
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PROGRAM DERIVATION



DATA REPRESENTATION

• So far we have (surprisingly) been talking about
mathematics without much concern regarding efficiency.
Time for a change.

• Take lists for example. Recall the definition:
data List a = [ ] | a : List a.

• Our representation of lists is biased. The left most
element can be fetched immediately.

• Thus. (:), head, and tail are constant-time operations,
while init and last takes linear-time.

• In most implementations, the list is represented as a
linked-list.
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LIST CONCATENATION TAKES LINEAR TIME

• Recall (++):

[ ] ++ ys =

ys

(x : xs)++ ys =

x : (xs++ ys)

• Consider [1, 2, 3] ++[4, 5]:

(1 : 2 : 3 : [ ])++(4 : 5 : [ ])
= 1 : ((2 : 3 : [ ])++(4 : 5 : [ ]))
= 1 : 2 : ((3 : [ ])++(4 : 5 : [ ]))
= 1 : 2 : 3 : ([ ] ++(4 : 5 : [ ]))
= 1 : 2 : 3 : 4 : 5 : [ ]

• (++) runs in time proportional to the length of its left
argument.
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FULL PERSISTENCY

• Compound data structures, like simple values, are just
values, and thus must be fully persistent.

• That is, in the following code:

let xs = [1, 2, 3]
ys = [4, 5]
zs = xs++ ys

in . . .body . . .
• The body may have access to all three values. Thus ++
cannot perform a destructive update.
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LINKED V.S. BLOCK DATA STRUCTURES

• Trees are usually represented in a similar manner, through
links.

• Fully persistency is easier to achieve for such linked data
structures.

• Accessing arbitrary elements, however, usually takes
linear time.

• In imperative languages, constant-time random access is
usually achieved by allocating lists (usually called arrays
in this case) in a consecutive block of memory.
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LINKED V.S. BLOCK DATA STRUCTURES

• Consider the following code, where xs is an array
(implemented as a block), and ys is like xs, apart from its
10th element:

let xs = [1..100]
ys = update xs 10 20

in . . .body . . .
• To allow access to both xs and ys in body, the update
operation has to duplicate the entire array.

• Thus people have invented some smart data structure to
do so, in around O(log n) time.

• On the other hand, update may simply overwrite xs if we
can somehow make sure that nobody other than ys uses
xs.

• Both are advanced topics, however.
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ANOTHER LINEAR-TIME OPERATION

• Taking all but the last element of a list:

init [x] =

[ ]

init (x : xs) =

x : init xs

• Consider init [1, 2, 3, 4]:

init (1 : 2 : 3 : 4 : [ ])

= 1 : init (2 : 3 : 4 : [ ])

= 1 : 2 : init (3 : 4 : [ ])

= 1 : 2 : 3 : init (4 : [ ])

= 1 : 2 : 3 : [ ]
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SUM, MAP, ETC

• Functions like sum, maximum, etc. needs to traverse
through the list once to produce a result. So their running
time is definitely O(n).

• If f takes time O(t), map f takes time O(n× t) to complete.
Similarly with filter p.

• In a lazy setting, map f produces its first result in O(t) time.
We won’t need lazy features for now, however.
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SUM OF SQUARES

• Given a sequence a1,a2,…,an, compute a21 + a22 + . . .+ a2n.
Specification: sumsq = sum ·map square.

• The spec. builds an intermediate list. Can we eliminate it?
• The input is either empty or not. When it is empty:

sumsq [ ]

= { definition of sumsq }
(sum ·map square) [ ]

= { function composition }
sum (map square [ ])

= { definition of map }
sum [ ]

= { definition of sum }
0
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SUM OF SQUARES, THE INDUCTIVE CASE

• Consider the case when the input is not empty:

sumsq (x : xs)

= { definition of sumsq }
sum (map square (x : xs))

= { definition of map }
sum (square x : map square xs)

= { definition of sum }
square x+ sum (map square xs)

= { definition of sumsq }
square x+ sumsq xs
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ALTERNATIVE DEFINITION FOR sumsq

• From sumsq = sum ·map square, we have proved that

sumsq [ ] = 0
sumsq (x : xs) = square x+ sumsq xs

• Equivalently, we have shown that sum ·map square is a
solution of

f [ ] = 0
f (x : xs) = square x+ f xs

• However, the solution of the equations above is unique.
• Thus we can take it as another definition of sumsq.
Denotationally it is the same function; operationally, it is
(slightly) quicker.

• Exercise: try calculating an inductive definition of count.
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REMARK: WHY FUNCTIONAL PROGRAMMING?

• Time to muse on the merits of functional programming.
Why functional programming?

• Algebraic datatype? List comprehension? Lazy evaluation?
Garbage collection? These are just language features that
can be migrated.

• No side effects.5 But why taking away a language feature?
• By being pure, we have a simpler semantics in which we
are allowed to construct and reason about programs.

• In an imperative language we do not even have
f 4+ f 4 = 2× f 4.

• Ease of reasoning. That’s the main benefit we get.

5Unless introduced in disciplined ways. For example, through a monad.
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EXAMPLE: COMPUTING POLYNOMIAL

Given a list as = [a0,a1,a2 . . . an] and x :: Int, the aim is to
compute:

a0 + a1x+ a2x2 + ...+ anxn.

This can be specified by

poly x as = sum (zipWith (×) as (iterate (×x) 1)) ,

where iterate can be defined by

iterate :: (a→ a)→ a→ List a
iterate f x = x :map f (iterate f x) .
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ITERATING A LIST

To get some intuition about iterate let us try expanding it:

iterate f x
= { definition of iterate }
x :map f (iterate f x)

= { definition of map }
x :map f (x :map f (iterate f x))

= { map fusion }
x : f x :map (f · f) (iterate f x)

= { definitions of iterate and map }
x : f x : f (f x) :map (f · f) (map f (iterate f x))

= { map fusion }
x : f x : f (f x) :map (f · f · f) (iterate f x) . . .
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ZIPPING WITH A BINARY OPERATOR

While iterate generate a list, it is immediately truncated by
zipWith:

zipWith :: (a→ b→ c)→ List a→ List b→ List c
zipWith (⊕) [ ] = [ ]

zipWith (⊕) (x : xs) [ ] = [ ]

zipWith (⊕) (x : xs) (y : ys) = x⊕ y : zipWith (⊕) xs ys .
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RUNNING THE SPECIFICATION

Try expanding poly x [a,b, c,d], we get

poly x [a,b, c,d]
= sum (zipWith (×) [a,b, c,d] (iterate (×x) 1))
= { expanding iterate }
sum (zipWith (×) [a,b, c,d]

(1 : (1× x) : (1× x× x) : (1× x× x× x) :
map (×x)4 (iterate (×x) 1)))

= a + b× x + c× x× x + d× x× x× x .

where f4 denotes f · f · f · f.

As the list gets longer, we get more (×x) accumulating. Can we
do better?
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THE MAIN CALCULATION

poly x (a : as)
= { definition of poly }
sum (zipWith (×) (a : as) (iterate (×x) 1))

= { definition of iterate }
sum (zipWith (×) (a : as) (1 :map (×x) (iterate (×x) 1)))

= { definitions of zipWith and sum }
a+ sum (zipWith (×) as (map (×x) (iterate (×x) 1)))

= { see the next slide }
a+ sum (map (×x) (zipWith (×) as (iterate (×x) 1)))

= { sum ·map (×x) = (×x) · sum }
a+ (sum (zipWith (×) as (iterate (×x) 1)))× x

= { definition of poly }
a+ (poly x as)× x .
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ZIP-MAP EXCHANGE

In the 4th step we used the property
zipWith (×) as ·map (×x) = map (×x) · zipWith (×) as.

It applies to any operator (⊗) that is associative. For an
intuitive understanding:

zipWith (⊗) [a,b, c] (map (⊗x) [d, e, f])
= [a⊗ (d⊗ x),b⊗ (e⊗ x), c⊗ (f⊗ x)]
= { associativity: m⊗ (n⊗ k) = (m⊗ n)⊗ k }

[(a⊗ d)⊗ x, (b⊗ e)⊗ x, (c⊗ f)⊗ x]
= map (⊗x) (zipWith (⊗) [a,b, c] [d, e, f]) .

We can do a formal proof if we want.
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DISTRIBUTIVITY

In the 5th step we used the property
sum ·map (×x) = (×x) · sum. For that we need distributivity
between addition and multiplication.

We used that law to push sum to the right.

This is the crucial property that allows us to speed up poly: we
are allowed to factor out common (×x).
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COMPUTING POLYNOMIAL

To conclude, we get:

poly x [ ] = 0
poly x (a : as) = a+ (poly as)× x ,

which uses a linear number of (×).
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LET THE SYMBOLS DO THE WORK!

How do we know what laws to use or to assume?

By observing the form of the expressions. Let the symbols do
the work.
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STEEP LISTS

• A steep list is a list in which every element is larger than
the sum of those to its right:

steep :: List Int→ Bool
steep [ ] = True
steep (x : xs) = steep xs ∧ x > sum xs.

• The definition above, if executed directly, is an O(n2)
program. Can we do better?

• Just now we learned to construct a generalised function
which takes more input. This time, we try the dual
technique: to construct a function returning more results.
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GENERALISE BY RETURNING MORE

• Recall that fst (a,b) = a and snd (a,b) = b.
• It is hard to quickly compute steep alone. But if we define

steepsum :: List Int→ (Bool× Int)
steepsum xs = (steep xs, sum xs),

• and manage to synthesise a quick definition of steepsum,
we can implement steep by steep = fst · steepsum.

• We again proceed by case analysis. Trivially,

steepsum [ ] = (True, 0).
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DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (x : xs)

= { definition of steepsum }
(steep (x : xs), sum (x : xs))

= { definitions of steep and sum }
(steep xs ∧ x > sum xs, x+ sum xs)

= { extracting sub-expressions involving xs }
let (b, y) = (steep xs, sum xs)
in (b ∧ x > y, x+ y)

= { definition of steepsum }
let (b, y) = steepsum xs
in (b ∧ x > y, x+ y).
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SYNTHESISED PROGRAM

We have thus come up with a O(n) time program:

steep = fst · steepsum
steepsum [ ] = (True, 0)
steepsum (x : xs) = let (b, y) = steepsum xs

in (b ∧ x > y, x+ y),
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BEING QUICKER BY DOING MORE?

• A more generalised program can be implemented more
efficiently?

• A common phenomena! Sometimes the less general
function cannot be implemented inductively at all!

• It also often happens that a theorem needs to be
generalised to be proved. We will see that later.

• An obvious question: how do we know what generalisation
to pick?

• There is no easy answer — finding the right generalisation
one of the most difficulty act in programming!

• Sometimes we simply generalise by examining the form of
the formula.
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REVERSING A LIST

• The function reverse is defined by:

reverse [ ] = [ ],
reverse (x : xs) = reverse xs++[x].

• E.g. reverse [1, 2, 3, 4] = ((([ ] ++[4])++[3])++[2])++[1] =
[4, 3, 2, 1].

• But how about its time complexity? Since (++) is O(n), it
takes O(n2) time to revert a list this way.

• Can we make it faster?
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INTRODUCING AN ACCUMULATING PARAMETER

• Let us consider a generalisation of reverse. Define:

revcat :: List a→ List a→ List a
revcat xs ys = reverse xs++ ys.

• If we can construct a fast implementation of revcat, we
can implement reverse by:

reverse xs = revcat xs [ ].
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REVERSING A LIST, BASE CASE

Let us use our old trick. Consider the case when xs is [ ]:

revcat [ ] ys

= { definition of revcat }
reverse [ ] ++ ys

= { definition of reverse }
[ ] ++ ys

= { definition of (++) }
ys.
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REVERSING A LIST, INDUCTIVE CASE

Case x : xs:
revcat (x : xs) ys

= { definition of revcat }
reverse (x : xs)++ ys

= { definition of reverse }
(reverse xs++[x])++ ys

= { since (xs++ ys)++ zs = xs++(ys++ zs) }
reverse xs++([x] ++ ys)

= { definition of revcat }
revcat xs (x : ys).
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LINEAR-TIME LIST REVERSAL

• We have therefore constructed an implementation of
revcat which runs in linear time!

revcat [ ] ys = ys
revcat (x : xs) ys = revcat xs (x : ys).

• A generalisation of reverse is easier to implement than
reverse itself? How come?

• If you try to understand revcat operationally, it is not
difficult to see how it works.

• The partially reverted list is accumulated in ys.
• The initial value of ys is set by reverse xs = revcat xs [ ].
• Hmm... it is like a loop, isn’t it?
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TRACING REVERSE

reverse [1, 2, 3, 4]
= revcat [1, 2, 3, 4] [ ]
= revcat [2, 3, 4] [1]
= revcat [3, 4] [2, 1]
= revcat [4] [3, 2, 1]
= revcat [ ] [4, 3, 2, 1]
= [4, 3, 2, 1]

reverse xs = revcat xs [ ]
revcat [ ] ys = ys
revcat (x : xs) ys = revcat xs (x : ys)

xs, ys ← XS, [ ];
while xs ̸= [ ] do

xs, ys ← (tail xs), (head xs : ys);
return ys
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TAIL RECURSION

• Tail recursion: a special case of recursion in which the last
operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x′1 . . . x′n

• To implement general recursion, we need to keep a stack
of return addresses. For tail recursion, we do not need
such a stack.

• Tail recursive definitions are like loops. Each xi is updated
to x′i in the next iteration of the loop.

• The first call to f sets up the initial values of each xi.
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ACCUMULATING PARAMETERS

• To efficiently perform a computation (e.g. reverse xs), we
introduce a generalisation with an extra parameter, e.g.:

revcat xs ys = reverse xs++ ys.

• Try to derive an efficient implementation of the
generalised function. The extra parameter is usually used
to “accumulate” some results, hence the name.

• To make the accumulation work, we usually need some
kind of associativity.

• A technique useful for, but not limited to, constructing
tail-recursive definition of functions.
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ACCUMULATING PARAMETER: ANOTHER EXAMPLE

• Recall the “sum of squares” problem:
sumsq [ ] = 0
sumsq (x : xs) = square x+ sumsq xs.

• The program still takes linear space (for the stack of
return addresses). Let us construct a tail recursive
auxiliary function.

• Introduce ssp xs n =

sumsq xs+ n

.
• Initialisation: sumsq xs =

ssp xs 0

.
• Construct ssp:

ssp [ ] n = 0+ n = n
ssp (x : xs) n = (square x+ sumsq xs) + n

= sumsq xs+ (square x+ n)
= ssp xs (square x+ n).
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CONCLUSIONS

• Let the symbols do the work!
• Algebraic manipulation helps us to separate the more
mechanical parts of reasoning, from the parts that needs
real innovation.

• For more examples of fun program calculation, see Bird
(2010).

• For a more systematic study of algorithms using functional
program reasoning, see Bird and Gibbons (2020).
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FOLDS ON LISTS



A COMMON PATTERN WE’VE SEEN MANY TIMES…

sum [ ] = 0
sum (x : xs) = x+ sum xs

length [ ] = 0
length (x : xs) = 1+ length xs
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map f [ ] = [ ]

map f (x : xs) = f x : map f xs

This pattern is extracted and called foldr:

foldr f e [ ] = e,
foldr f e (x : xs) = f x (foldr f e xs).
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REPLACING CONSTRUCTORS

foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

• One way to look at foldr (⊕) e is that it replaces [ ] with e
and (:) with (⊕):

foldr (⊕) e [1, 2, 3, 4]
= foldr (⊕) e (1 : (2 : (3 : (4 : [ ]))))

= 1⊕ (2⊕ (3⊕ (4⊕ e))).

• sum = foldr (+) 0.
• length = foldr (λx n.1+ n) 0.
• map f = foldr (λx xs.f x : xs) [ ].
• One can see that id = foldr (:) [ ].
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SOME TRIVIAL FOLDS ON LISTS

• Function max returns the least upper bound of elements
in a list:

max [ ] = -∞,
max (x : xs) = x ↑ max xs.

max = foldr (↑) -∞.

• Function prod returns the product of a list:

prod [ ] = 1,
prod (x : xs) = x× prod xs.

prod = foldr (×) 1.
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• Function and returns the conjunction of a list:

and [ ] = true,
and (x : xs) = x ∧ and xs.

and = foldr (∧) true.

• Lets emphasise again that id on lists is a fold:

id [ ] = [ ],
id (x : xs) = x : id xs.

id = foldr (:) [ ].
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SOME FUNCTIONS WE HAVE SEEN…

• (++ ys) = foldr (:) ys

.

(++) :: [a]→ [a]→ [a]
[ ] ++ ys = ys
(x : xs)++ ys = x : (xs++ ys) .

• concat =

foldr (++) [ ]

.

concat :: [[a]]→ [a]
concat [ ] = [ ]

concat (xs : xss) = xs++ concat xss .
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REPLACING CONSTRUCTORS

• Understanding foldr from its type. Recall

data [a] = [ ] | a : [a] .

• Types of the two constructors: [ ] :: [a], and
(:) :: a→ [a]→ [a].

• foldr replaces the constructors:

foldr :: (a→ b→ b)→ b→ [a]→ b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs) .
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WHY FOLDS?

• “What are the three most important factors in a
programming language?”

Abstraction, abstraction, and
abstraction!

• Control abstraction, procedure abstraction, data
abstraction,…can programming patterns be abstracted
too?
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• Program structure becomes an entity we can talk about,
reason about, and reuse.

• We can describe algorithms in terms of fold, unfold, and
other recognised patterns.

• We can prove properties about folds,
• and apply the proved theorems to all programs that are
folds, either for compiler optimisation, or for mathematical
reasoning.

• Among the theorems about folds, the most important is
probably the fold-fusion theorem.
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THE FOLD-FUSION THEOREM

The theorem is about when the composition of a function and
a fold can be expressed as a fold.

Theorem (foldr-Fusion)
Given f :: a→ b→ b, e :: b, h :: b→ c, and g :: a→ c→ c, we
have:

h · foldr f e = foldr g (h e) ,

if h (f x y) = g x (h y) for all x and y.

For program derivation, we are usually given h, f, and e, from
which we have to construct g.
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TRACING AN EXAMPLE

Let us try to get an intuitive understand of the theorem:

h (foldr f e [a,b, c])
= { definition of foldr }

h (f a (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (h (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (h (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a,b, c] .
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SUM OF SQUARES, AGAIN

• Consider sum ·map square again. This time we use the
fact that map f = foldr (mf f) [ ], where mf f x xs = f x : xs.

• sum ·map square is a fold, if we can find a ssq such that
sum (mf square x xs) = ssq x (sum xs). Let us try:

sum (mf square x xs)
= { definition of mf }

sum (square x : xs)
= { definition of sum }

square x+ sum xs
= { let ssq x y = square x+ y }

ssq x (sum xs) .

Therefore, sum ·map square = foldr ssq 0.
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SUM OF SQUARES, WITHOUT FOLDS

Recall that this is how we derived the inductive case of sumsq
yesterday:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)
= { definition of sum }

square x+ sum (map square xs)
= { definition of sumsq }

square x+ sumsq xs .

Comparing the two derivations, by using fold-fusion we supply
only the “important” part. 104 / 129



MORE ON FOLDS AND FOLD-FUSION

• Compare the proof with the one yesterday. They are
essentially the same proof.

• Fold-fusion theorem abstracts away the common parts in
this kind of inductive proofs, so that we need to supply
only the “important” parts.

• Tupling can be seen as a kind of fold-fusion. The
derivation of steepsum, for example, can be seen as
fusing:

steepsum · id = steepsum · foldr (:) [ ].
• Recall that steepsum xs = (steep xs, sum xs).
Reformulating steepsum into a fold allows us to compute it
in one traversal.

• Not every function can be expressed as a fold. For
example, tail :: [a]→ [a] is not a fold!

105 / 129



LONGEST PREFIX

• The function call takeWhile p xs returns the longest prefix
of xs that satisfies p:

takeWhile p [ ] = [ ]

takeWhile p (x : xs) =

if p x then x : takeWhile p xs
else [ ] .

• E.g. takeWhile (⩽ 3) [1, 2, 3, 4, 5] = [1, 2, 3].
• It can be defined by a fold:

takeWhile p = foldr (tke p) [ ],
tke p x xs = if p x then x : xs else [ ].

• Its dual, dropWhile (⩽ 3) [1, 2, 3, 4, 5] = [4, 5], is not a fold.
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ALL PREFIXES

• The function inits returns the list of all prefixes of the
input list:

inits [ ] = [[ ]],
inits (x : xs) = [ ] : map (x :) (inits xs).

• E.g. inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]].
• It can be defined by a fold:

inits = foldr ini [[ ]],
ini x xss = [ ] : map (x :) xss.
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ALL SUFFIXES

• The function tails returns the list of all suffixes of the
input list:

tails [ ] = [[ ]],
tails (x : xs) = let (ys : yss) = tails xs

in (x : ys) : ys : yss.
• E.g. tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]].
• It can be defined by a fold:

tails = foldr til [[ ]],
til x (ys : yss) = (x : ys) : ys : yss.
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SCAN

• scanr f e = map (foldr f e) · tails.
• E.g.

scanr (+) 0 [1, 2, 3]
= map sum (tails [1, 2, 3])
= map sum [[1, 2, 3], [2, 3], [3], [ ]]
= [6, 5, 3, 0].

• Of course, it is slow to actually perform map (foldr f e)
separately. By fold-fusion, we get a faster implementation:

scanr f e = foldr (sc f) [e],
sc f x (y : ys) = f x y : y : ys.
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FOLDS ON OTHER ALGEBRAIC DATATYPES



• Folds are a specialised form of induction.
• Inductive datatypes: types on which you can perform
induction.

• Every inductive datatype give rise to its fold.
• In fact, an inductive type can be defined by its fold.
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FOLD ON NATURAL NUMBERS

• Recall the definition:

data Nat = 0 | 1+ Nat .

• Constructors: 0 :: Nat, (1+) :: Nat→ Nat.
• What is the fold on Nat?

foldN ::

(a→ a)→ a

→ Nat→ a

foldN f e 0 = e
foldN f e (1+ n) = f (foldN f e n) .
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EXAMPLES OF foldN

• (+n) = foldN (1+) n

.

0+ n = n
(1+ m) + n = 1+ (m+ n) .

• (×n) = foldN (n+) 0

.

0× n = 0
(1+ m)× n = n+ (m× n) .

• even = foldN not True

.

even 0 = True
even (1+ n) = not (even n) .
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FOLD-FUSION FOR NATURAL NUMBERS

Theorem (foldN-Fusion)
Given f :: a→ a, e :: a, h :: a→ b, and g :: b→ b, we have:

h · foldN f e = foldN g (h e) ,

if h (f x) = g (h x) for all x.

Exercise: fuse even into (+)?
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FOLDS ON TREES

• Example: internally labelled binary tree:

data ITree a = Null
| Node a (ITree a) (ITree a) .

• Fold for ITree:

foldIT :: (a→ b→ b→ b)→ b→ ITree a→ b
foldIT f e Null = e
foldIT f e (Node a t u) =
f a (foldIT f e t) (foldIT f e u) .
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FOLDS ON TREES

• Example: externally labelled binary tree:
• Some datatypes for trees:

data ETree a = Tip a
| Bin (ETree a) (ETree a) .

• Fold for ETree:

foldET :: (b→ b→ b)→ (a→ b)
→ ETree a→ b

foldET f g (Tip x) = g x
foldET f g (Bin t u) =
f (foldET f g t) (foldET f g u) .
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SOME SIMPLE FUNCTIONS ON TREES

• To compute the size of an ITree:

sizeIT = foldIT (λx m n→ 1+ (m+ n)) 0 .

• To sum up labels in an ETree:

sizeET = foldET (+) id .

• To compute a list of all labels in an ITree and an ETree:

flattenIT =

foldIT (λx xs ys→ xs++ [x] ++ ys) [ ] ,

flattenET = foldET (++) (λx→ [x]) .

• Exercise: what are the fusion theorems for foldIT and
foldET?

116 / 129



MAXIMUM SEGMENT SUM



MAXIMUM SEGMENT SUM

• The maximum segment sum is a classical problem, often
used to demonstrate the effectness of program derivation.

• Given: a list of numbers — positive, zero, or negative.
• Compute: the maximum possible sum of a consecutive
segment of the list.
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SPECIFYING MAXIMUM SEGMENT SUM

• A segment can be seen as a prefix of a suffix.
• The function segs computes the list of all the segments.

segs = concat ·map inits · tails.

• Therefore, mss is specified by:

mss = max ·map sum · segs.
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THE DERIVATION!

We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f) }
map · concat ·map (map sum) ·
map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails .

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scanr, which has a faster implementation.
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MAXIMUM PREFIX SUM

Concentrate on max ·map sum · inits:

max ·map sum · inits
= { def. of inits, let ini x xss = [ ] :map (x:) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, see below }
max · foldr zplus [0] .

The fold fusion works because:

map sum (ini x xss)
= map sum ([ ] : map (x :) xss)
= 0 : map (sum · (x :)) xss
= 0 : map (x+) (map sum xss) .

Define zplus x yss = 0 :map (x+) yss.
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MAXIMUM PREFIX SUM, 2ND FOLD FUSION

Concentrate on max ·map sum · inits:

max ·map sum · inits
= { def. of inits, let ini x xss = [ ] :map (x:) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, zplus x yss = 0 :map (x+) yss }
max · foldr zplus [0]

= { fold fusion, let zmax x y = 0 ‘max‘ (x+ y) }
foldr zmax 0 .

The fold fusion works because ↑ distributes into (+):

max (0 : map (x+) xs)
=0 ↑ max (map (x+) xs)
=0 ↑ (x+max xs) .
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BACK TO MAXIMUM SEGMENT SUM

We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f) }
map · concat ·map (map sum) ·
map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·
map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails

= { previous reasoning }
max ·map (foldr zmax 0) · tails

= { introducing scanr }
max · scanr zmax 0 .
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MAXIMUM SEGMENT SUM IN LINEAR TIME!

• We have derived mss = max · scanr zmax 0, where
zmax x y = 0 ↑ (x+ y).

• The algorithm runs in linear time, but takes linear space.
• A tupling transformation eliminates the need for linear
space.

mss = fst ·maxhd · scanr zmax 0

where maxhd xs = (max xs,head xs). We omit this last
step in the lecture.

• The final program is mss = fst · foldr step (0, 0), where
step x (m, y) = ((0 ↑ (x+ y)) ↑ m, 0 ↑ (x+ y)).
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RED-BLACK TREE

• A self-balancing binary search tree, often used to
represent sets.

• Supports O(log n)-time searching, insertion, and deletion.
• One possible representation:

data RBTree a = E |
N Color (RBTree a) a (RBTree a) ,

data Color = R | B .
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CONSTRAINTS

• It is a binary search tree.
• In N t x u, every label in t is less than x, every label in u is
more than x. The same holds for t and u.

• Each node is either colored red or black.
• E is implicitly considered black.

• The root is black.
• Red nodes do not have red children.
• The number of black nodes from the root to each leaf is
the same.

125 / 129



SEARCHING

Searching in a red-black tree is just like that in a binary search
tree:

search :: Int→ RBTree Int→ Bool
search E = False
search (N t x u) | k< x = ...

| k = = x = ...

| k> x = ...

Exercise: what if we want to return the found element in a
Maybe?
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INSERTION

• To insert a new element, perform a search to determine
where to insert.

• The inserted node shall have color red.
• This would temporarily break the constraint that a red
node shall not have a red children. We perform balancing
upwards to restore the constraint. See the next slide.

• Finally we set the root to black.
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TREE BALANCING

• The re-balancing strategy is not unique.
• The strategy we will consider, shown in the next slide, was
presented by Okasaki [?].

• Having only four rules, it is significantly simpler than
those you’d find in most textbooks (which needs 8 rules or
more)!

• Why?
• More will be discussed in the practicals.
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