FUNCTIONAL PROGRAMMING

Shin-Cheng Mu FLOLAC 2022

Academia Sinica

To Begin With...

PREREQUISITES

If you have done the homework requested before this summer school, you should have familiarised yourself with

- · values and types, and basic list processing,
- · basics of type classes,
- · defining functions by pattern matching,
- · guards, case, local definitions by where and let,
- · recursive definition of functions,
- · and higher order functions.

RECOMMANDED TEXTBOOKS

- Introduction to Functional Programming using Haskell.
 My recommended book. Covers equational reasoning very well.
- · Programming in Haskell. A thin but complete textbook.
- Learn You a Haskell for Great Good!, a nice tutorial with cute drawings!
- · Real World Haskell.
- · Algorithm Design with Haskell.

DEFINITION AND PROOF BY INDUCTION

TOTAL FUNCTIONAL PROGRAMMING

- The next few lectures concerns inductive definitions and proofs of datatypes and programs.
- While Haskell provides allows one to define nonterminating functions, infinite data structures, for now we will only consider its total, finite fragment.
- That is, we temporarily
 - · consider only finite data structures,
 - demand that functions terminate for all value in its input type, and
 - · provide guidelines to construct such functions.
- Infinite datatypes and non-termination can be modelled with more advanced theory, which we cannot cover in this course.

RECALLING "MATHEMATICAL INDUCTION"

- · Let P be a predicate on natural numbers.
- We've all learnt this principle of proof by induction: to prove that P holds for all natural numbers, it is sufficient to show that
 - · P0 holds;
 - P(1+n) holds provided that Pn does.

PROOF BY INDUCTION ON NATURAL NUMBERS

 We can see the above inductive principle as a result of seeing natural numbers as defined by the datatype ¹

data
$$Nat = 0 \mid \mathbf{1}_{+} Nat$$
.

- That is, any natural number is either 0, or 1₊ n where n is a natural number.
- In this lecture, 1₊ is written in bold font to emphasise that it is a data constructor (as opposed to the function (+), to be defined later, applied to a number 1).

¹Not a real Haskell definition.

A PROOF GENERATOR

Given P0 and $Pn \Rightarrow P(1+n)$, how does one prove, for example, P3?

$$P (1_{+} (1_{+} (1_{+} 0))) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P (1_{+} (1_{+} 0)) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P (1_{+} 0) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P 0 .$$

Having done math. induction can be seen as having designed a program that generates a proof — given any n :: Nat we can generate a proof of Pn in the manner above.

INDUCTIVELY DEFINED FUNCTIONS

 Since the type Nat is defined by two cases, it is natural to define functions on Nat following the structure:

$$exp$$
 :: $Nat \rightarrow Nat \rightarrow Nat$
 $exp \ b \ 0 = 1$
 $exp \ b \ (\mathbf{1}_{+} \ n) = b \times exp \ b \ n$.

· Even addition can be defined inductively

(+) ::
$$Nat \rightarrow Nat \rightarrow Nat$$

 $0 + n = n$
 $(\mathbf{1}_+ m) + n = \mathbf{1}_+ (m + n)$.

• Exercise: define (\times) ?

A VALUE GENERATOR

Given the definition of exp, how does one compute exp b 3?

```
exp \ b \ (1_+ \ (1_+ \ 0)))
= \{ definition of exp \} 
b \times exp \ b \ (1_+ \ (1_+ \ 0))
= \{ definition of exp \} 
b \times b \times exp \ b \ (1_+ \ 0)
= \{ definition of exp \} 
b \times b \times b \times exp \ b \ 0
= \{ definition of exp \} 
b \times b \times b \times 1 .
```

It is a program that generates a value, for any n :: Nat. Compare with the proof of P above.

MORAL: PROVING IS PROGRAMMING

An inductive proof is a program that generates a proof for any given natural number.

An inductive program follows the same structure of an inductive proof.

Proving and programming are very similar activities.

WITHOUT THE n + k PATTERN

 Unfortunately, newer versions of Haskell abandoned the "n + k pattern" used in the previous slides:

```
exp :: Int \rightarrow Int \rightarrow Int
exp b 0 = 1
exp b n = b \times exp b (n - 1).
```

- Nat is defined to be Int in MiniPrelude.hs. Without MiniPrelude.hs you should use Int.
- For the purpose of this course, the pattern 1 + n reveals the correspondence between Nat and lists, and matches our proof style. Thus we will use it in the lecture.
- · Remember to remove them in your code.

- To prove properties about Nat, we follow the structure as well.
- E.g. to prove that $exp\ b\ (m+n) = exp\ b\ m \times exp\ b\ n$.
- One possibility is to preform induction on m. That is, prove Pm for all m:Nat, where $Pm \equiv (\forall n:: exp\ b\ (m+n) = exp\ b\ m \times exp\ b\ n)$.

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 0. For all n, we reason:
exp \ b \ (0+n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).

Case m := 0. For all n, we reason:
exp \ b \ (0+n)
= \{ defn. of (+) \}
exp \ b \ n
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).

Case m := 0. For all n, we reason:
exp \ b \ (0+n)
= \{ defn. of (+) \}
exp \ b \ n
= \{ defn. of (×) \}
1 \times exp \ b \ n
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 0. For all n, we reason:
          exp b (0+n)
      = { defn. of (+) }
          exp b n
      = { defn. of (x) }
          1 \times \exp b n
      = { defn. of exp }
          \exp b 0 \times \exp b n.
```

We have thus proved P 0.

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := \mathbf{1}_+ \ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ \ m) + n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := \mathbf{1}_+ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ \ m) + n)
= \{ defn. of (+) \}
exp \ b \ (\mathbf{1}_+ \ (m+n))
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := \mathbf{1}_+ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ m) + n)
= \{ defn. \ of \ (+) \}
exp \ b \ (\mathbf{1}_+ (m+n))
= \{ defn. \ of \ exp \}
b \times exp \ b \ (m+n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 1_+ m. For all n, we reason:
           \exp b ((1 + m) + n)
      = { defn. of (+) }
           \exp b (1 + (m + n))
      = { defn. of exp }
           b \times \exp b (m + n)
      = { induction }
           b \times (exp \ b \ m \times exp \ b \ n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 1_+ m. For all n, we reason:
           \exp b ((1_+ m) + n)
      = { defn. of (+) }
           \exp b (1_{+} (m+n))
      = { defn. of exp }
           b \times \exp b (m + n)
      = { induction }
           b \times (exp \ b \ m \times exp \ b \ n)
      = \{ (x) \text{ associative } \}
           (b \times exp \ b \ m) \times exp \ b \ n
```

Recall $Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).$

Case $m := \mathbf{1}_+ m$. For all n, we reason:

$$exp b ((1+m)+n)$$

$$= \{ defn. of (+) \}$$

$$exp b (1+(m+n))$$

$$= \{ defn. of exp \}$$

$$b \times exp b (m+n)$$

$$= \{ induction \}$$

$$b \times (exp b m \times exp b n)$$

$$= \{ (x) associative \}$$

$$(b \times exp b m) \times exp b n$$

$$= \{ defn. of exp \}$$

$$exp b (1+m) \times exp b n .$$

We have thus proved P(1+m), given Pm.

STRUCTURE PROOFS BY PROGRAMS

- The inductive proof could be carried out smoothly, because both (+) and exp are defined inductively on its lefthand argument (of type Nat).
- The structure of the proof follows the structure of the program, which in turns follows the structure of the datatype the program is defined on.

LISTS AND NATURAL NUMBERS

- We have yet to prove that (\times) is associative.
- The proof is quite similar to the proof for associativity of (++), which we will talk about later.
- In fact, Nat and lists are closely related in structure.
- Most of us are used to think of numbers as atomic and lists as structured data. Neither is necessarily true.
- For the rest of the course we will demonstrate induction using lists, while taking the properties for *Nat* as given.

AN INDUCTIVELY DEFINED SET?

- For a set to be "inductively defined", we usually mean that it is the *smallest* fixed-point of some function.
- · What does that maen?

FIXED-POINT AND PREFIXED-POINT

- A fixed-point of a function f is a value x such that fx = x.
- **Theorem**. *f* has fixed-point(s) if *f* is a *monotonic function* defined on a complete lattice.
 - In general, given f there may be more than one fixed-point.
- A prefixed-point of f is a value x such that $fx \leq x$.
 - · Apparently, all fixed-points are also prefixed-points.
- **Theorem**. the smallest prefixed-point is also the smallest fixed-point.

- Recall the usual definition: Nat is defined by the following rules:
 - 1. 0 is in *Nat*:
 - 2. if n is in Nat, so is $\mathbf{1}_{+}$ n;
 - 3. there is no other Nat.
- · 3. means that we want the smallest such prefixed-point.
- Thus *Nat* is also the least (smallest) fixed-point of *F*.

LEAST PREFIXED-POINT

Formally, let $FX = \{0\} \cup \{1_+ \ n \mid n \in X\}$, Nat is a set such that

$$FNat \subseteq Nat$$
 , (1)

$$(\forall X : FX \subseteq X \Rightarrow Nat \subseteq X) , \qquad (2)$$

where (1) says that Nat is a prefixed-point of F, and (2) it is the least among all prefixed-points of F.

MATHEMATICAL INDUCTION, FORMALLY

- Given property *P*, we also denote by *P* the set of elements that satisfy *P*.
- That P0 and Pn \Rightarrow P (1+n) is equivalent to {0} \subseteq P and {1+ n | n \in P} \subseteq P,
- which is equivalent to $FP \subseteq P$. That is, P is a prefixed-point!
- By (2) we have $Nat \subseteq P$. That is, all Nat satisfy P!
- This is "why mathematical induction is correct."

COINDUCTION?

There is a dual technique called *coinduction* where, instead of least prefixed-points, we talk about *greatest postfixed points*. That is, largest x such that $x \le fx$.

With such construction we can talk about infinite data structures.

INDUCTIVELY DEFINED LISTS

 \cdot Recall that a (finite) list can be seen as a datatype defined by: 2

```
data \ List \ a = [] \mid a : List \ a.
```

• Every list is built from the base case [], with elements added by (:) one by one: [1, 2, 3] = 1 : (2 : (3 : [])).

²Not a real Haskell definition.

ALL LISTS TODAY ARE FINITE

But what about infinite lists?

- For now let's consider finite lists only, as having infinite lists make the *semantics* much more complicated. ³
- In fact, all functions we talk about today are total functions. No \perp involved.

³What does that mean? Other courses in FLOLAC might cover semantics in more detail.

SET-THEORETICALLY SPEAKING...

The type *List a* is the *smallest* set such that

- 1. [] is in *List* a;
- 2. if xs is in List a and x is in a, x: xs is in List a as well.

INDUCTIVELY DEFINED FUNCTIONS ON LISTS

 Many functions on lists can be defined according to how a list is defined:

```
sum :: List Int \rightarrow Int

sum [] = 0

sum (x : xs) = x + sum xs .

map :: (a \rightarrow b) \rightarrow List a \rightarrow List b

map f [] = []

map f (x : xs) = FX : map f xs .
```

LIST APPEND

The function (++) appends two lists into one

```
(++) :: List a \rightarrow \text{List } a \rightarrow \text{List } a

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys).
```

• Compare the definition with that of (+)!

PROOF BY STRUCTURAL INDUCTION ON LISTS

- Recall that every finite list is built from the base case [], with elements added by (:) one by one.
- To prove that some property P holds for all finite lists, we show that
 - P [] holds;
 - 2. forall x and xs, P(x:xs) holds provided that Pxs holds.

FOR A PARTICULAR LIST...

Given P[] and $Pxs \Rightarrow P(x:xs)$, for all x and xs, how does one prove, for example, P[1,2,3]?

```
P(1:2:3:[])

← { P(x:xs) \leftarrow Pxs }

P(2:3:[])

← { P(x:xs) \leftarrow Pxs }

P(3:[])

← { P(x:xs) \leftarrow Pxs }

P[].
```

APPENDING IS ASSOCIATIVE

```
To prove that xs ++(ys ++ zs) = (xs ++ ys) ++ zs.
```

Let $P xs = (\forall ys, zs :: xs ++ (ys ++ zs) = (xs ++ ys) ++ zs)$, we prove P by induction on xs.

Case xs := []. For all ys and zs, we reason:

We have thus proved P [].

APPENDING IS ASSOCIATIVE

Case xs := x : xs. For all ys and zs, we reason:

We have thus proved P(x:xs), given Pxs.

DO WE HAVE TO BE SO FORMAL?

- In our style of proof, every step is given a reason. Do we need to be so pedantic?
- · Being formal helps you to do the proof:
 - In the proof of $exp\ b\ (m+n) = exp\ b\ m \times exp\ b\ n$, we expect that we will use induction to somewhere. Therefore the first part of the proof is to generate $exp\ b\ (m+n)$.
 - In the proof of associativity, we were working toward generating xs ++(ys ++ zs).
- By being formal we can work on the form, not the meaning. Like how we solved the knight/knave problem
- Being formal actually makes the proof easier!
- · Make the symbols do the work.

• The function *length* defined inductively:

```
length :: List a \rightarrow Nat

length [] = 0

length (x : xs) = \mathbf{1}_+ (length xs).
```

• Exercise: prove that *length* distributes into (++):

length(xs + ys) = length(xs + length(ys))

CONCATENATION

 While (++) repeatedly applies (:), the function concat repeatedly calls (++):

```
concat :: List (List a) \rightarrow List a concat [] = [] concat (xs : xss) = xs ++ concat xss .
```

- · Compare with sum.
- Exercise: prove $sum \cdot concat = sum \cdot map sum$.

DEFINITION BY INDUCTION/RECURSION

- Rather than giving commands, in functional programming we specify values; instead of performing repeated actions, we define values on inductively defined structures.
- Thus induction (or in general, recursion) is the only "control structure" we have. (We do identify and abstract over plenty of patterns of recursion, though.)
- To inductively define a function f on lists, we specify a value for the base case (f []) and, assuming that f xs has been computed, consider how to construct f (x : xs) out of f xs.

FILTER

• filter p xs keeps only those elements in xs that satisfy p.

```
filter :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a

filter p [] = []

filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs .
```

TAKE AND DROP

 Recall take and drop, which we used in the previous exercise.

```
take
         :: Nat \rightarrow List a \rightarrow List a
take 0 xs = []
take (1_+ n) [] = []
take (1_+ n) (x : xs) = x : take n xs.
             :: Nat \rightarrow List a \rightarrow List a
drop
drop 0 xs
          = XS
drop (1_+ n) [] = []
drop(\mathbf{1}_{+} n)(x:xs) = drop n xs.
```

• Prove: take $n \times x + drop \times n \times x = x x$, for all $n \times x = x x$.

TAKEWHILE AND DROPWHILE

• *takeWhile p xs* yields the longest prefix of xs such that *p* holds for each element.

```
takeWhile :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a
takeWhile p [] = []
takeWhile p (x : xs) | p x = x : takeWhile \ p xs
| otherwise = [] .
```

· dropWhile p xs drops the prefix from xs.

```
dropWhile :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a
dropWhile p [] = []
dropWhile p (x : xs) | p \ x = dropWhile \ p \ xs
| otherwise = x : xs .
```

• Prove: takeWhile $p \times s ++ dropWhile p \times s = xs$.

LIST REVERSAL

```
• reverse [1,2,3,4] = [4,3,2,1].

reverse :: List a \rightarrow List a

reverse [] = []

reverse (x : xs) = reverse xs ++[x].
```

ALL PREFIXES AND SUFFIXES

```
• inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]]
        inits :: List a \rightarrow List (List a)
        inits [] = []
        inits (x : xs) = [] : map(x :) (inits xs).
• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []]
        tails :: List a \rightarrow List (List a)
        tails [] = [[]]
        tails (x : xs) = (x : xs) : tails xs.
```

TOTALITY

· Structure of our definitions so far:

```
f[] = \dots

f(x : xs) = \dots f xs \dots
```

- Both the empty and the non-empty cases are covered, guaranteeing there is a matching clause for all inputs.
- The recursive call is made on a "smaller" argument, guranteeing termination.
- Together they guarantee that every input is mapped to some output. Thus they define *total* functions on lists.

VARIATIONS WITH THE BASE CASE

Some functions discriminate between several base cases.
 E.g.

```
fib :: Nat \rightarrow Nat

fib 0 = 0

fib 1 = 1

fib (2+n) = fib (1+n) + fib n.
```

 Some functions make more sense when it is defined only on non-empty lists:

$$f[x] = \dots$$

 $f(x : xs) = \dots$

- · What about totality?
 - They are in fact functions defined on a different datatype:

$$data List^+ a = Singleton a | a : List^+ a$$
.

- We do not want to define map, filter again for List⁺ a. Thus
 we reuse List a and pretend that we were talking about
 List⁺ a.
- · It's the same with Nat. We embedded Nat into Int.
- Ideally we'd like to have some form of *subtyping*. But that makes the type system more complex.

LEXICOGRAPHIC INDUCTION

- It also occurs often that we perform *lexicographic induction* on multiple arguments: some arguments decrease in size, while others stay the same.
- E.g. the function *merge* merges two sorted lists into one sorted list:

```
merge :: List Int \rightarrow List Int \rightarrow List Int merge [] [] = []

merge [] (y : ys) = y : ys

merge (x : xs) [] = x : xs

merge (x : xs) (y : ys) | x \le y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys .
```

Another example:

```
zip :: List \ a \rightarrow List \ b \rightarrow List \ (a, b)
zip [] [] = []
zip [] (y : ys) = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys.
```

Non-Structural Induction

- In most of the programs we've seen so far, the recursive call are made on direct sub-components of the input (e.g. f(x:xs) = ..fxs..). This is called *structural induction*.
 - It is relatively easy for compilers to recognise structural induction and determine that a program terminates.
- In fact, we can be sure that a program terminates if the arguments get "smaller" under some (well-founded) ordering.

• In the implemenation of mergesort below, for example, the arguments always get smaller in size.

```
msort :: List Int \rightarrow List Int

msort [] = []

msort [x] = [x]

msort xs = merge (msort ys) (msort zs) ,

where n = length xs 'div' 2

ys = take n xs

zs = drop n xs .
```

- What if we omit the case for [x]?
- If all cases are covered, and all recursive calls are applied to smaller arguments, the program defines a total function.

A Non-Terminating Definition

• Example of a function, where the argument to the recursive does not reduce in size:

```
f :: Int \rightarrow Int

f0 = 0

fn = fn.
```

• Certainly *f* is not a total function. Do such definitions "mean" something? We will talk about these later.

INTERNALLY LABELLED BINARY TREES

 This is a possible definition of internally labelled binary trees:

```
data ITree a = \text{Null} \mid \text{Node } a \text{ (ITree } a) \text{ (ITree } a),
```

· on which we may inductively define functions:

```
sumT :: ITree\ Nat \rightarrow Nat

sumT\ Null = 0

sumT\ (Node\ x\ t\ u) = x + sumT\ t + sumT\ u .
```

Exercise: given (\downarrow) :: $Nat \rightarrow Nat$, which yields the smaller one of its arguments, define the following functions

- 1. $minT :: Tree \ Nat \rightarrow Nat$, which computes the minimal element in a tree.
- 2. $mapT :: (a \rightarrow b) \rightarrow Tree \ a \rightarrow Tree \ b$, which applies the functional argument to each element in a tree.
- 3. Can you define (\(\psi \) inductively on Nat? 4

⁴In the standard Haskell library, (\downarrow) is called *min*.

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate P on Tree holds for every tree, it is sufficient to show that

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate P on Tree holds for every tree, it is sufficient to show that
 - 1. P Null holds, and;
 - 2. for every x, t, and u, if P t and P u holds, P (Node x t u) holds.

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate P on Tree holds for every tree, it is sufficient to show that
 - 1. P Null holds, and;
 - 2. for every x, t, and u, if P t and P u holds, P (Node x t u) holds.
- Exercise: prove that for all n and t, minT(mapT(n+)t) = n + minTt. That is, $minT \cdot mapT(n+) = (n+) \cdot minT$.

INDUCTION PRINCIPLE FOR OTHER TYPES

- Recall that data Bool = False | True. Do we have an induction principle for Bool?
- To prove a predicate P on Bool holds for all booleans, it is sufficient to show that

INDUCTION PRINCIPLE FOR OTHER TYPES

- Recall that data Bool = False | True. Do we have an induction principle for Bool?
- To prove a predicate P on Bool holds for all booleans, it is sufficient to show that
 - 1. P False holds, and
 - 2. P True holds.
- Well, of course.

- What about $(A \times B)$? How to prove that a predicate P on $(A \times B)$ is always true?
- One may prove some property P_1 on A and some property P_2 on B, which together imply P.
- That does not say much. But the "induction principle" for products allows us to extract, from a proof of P, the proofs P_1 and P_2 .

- Every inductively defined datatype comes with its induction principle.
- · We will come back to this point later.

PROGRAM DERIVATION

DATA REPRESENTATION

- So far we have (surprisingly) been talking about mathematics without much concern regarding efficiency.
 Time for a change.
- Take lists for example. Recall the definition:
 data List a = [] | a : List a.
- Our representation of lists is biased. The left most element can be fetched immediately.
 - Thus. (:), *head*, and *tail* are constant-time operations, while *init* and *last* takes linear-time.
- In most implementations, the list is represented as a linked-list.

LIST CONCATENATION TAKES LINEAR TIME

```
· Recall (++):

[] ++ ys =

(x:xs) ++ ys =
```

LIST CONCATENATION TAKES LINEAR TIME

• Recall (++): [] + ys = ys(x : xs) + ys = x : (xs + ys)

LIST CONCATENATION TAKES LINEAR TIME

Recall (++):
 [] ++ ys = ys
 (x:xs) ++ ys = x: (xs ++ ys)

• Consider [1, 2, 3] ++[4, 5]:

• (++) runs in time proportional to the length of its left argument.

FULL PERSISTENCY

- Compound data structures, like simple values, are just values, and thus must be *fully persistent*.
- That is, in the following code:

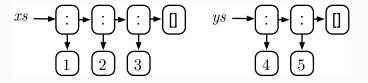
```
let xs = [1, 2, 3]

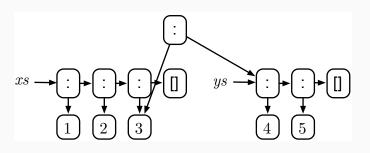
ys = [4, 5]

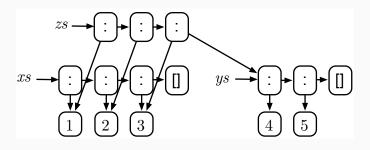
zs = xs ++ ys

in ... body ...
```

• The *body* may have access to all three values. Thus ++ cannot perform a destructive update.







LINKED V.S. BLOCK DATA STRUCTURES

- Trees are usually represented in a similar manner, through links.
- Fully persistency is easier to achieve for such linked data structures.
- Accessing arbitrary elements, however, usually takes linear time.
- In imperative languages, constant-time random access is usually achieved by allocating lists (usually called arrays in this case) in a consecutive block of memory.

LINKED V.S. BLOCK DATA STRUCTURES

 Consider the following code, where xs is an array (implemented as a block), and ys is like xs, apart from its 10th element:

```
let xs = [1..100]

ys = update xs 10 20

in ...body...
```

- To allow access to both xs and ys in body, the update operation has to duplicate the entire array.
- Thus people have invented some smart data structure to do so, in around O(log n) time.
- On the other hand, update may simply overwrite xs if we can somehow make sure that nobody other than ys uses xs.
- · Both are advanced topics, however.

ANOTHER LINEAR-TIME OPERATION

· Taking all but the last element of a list:

```
init[x] = init(x:xs) =
```

• Consider *init* [1, 2, 3, 4]:

ANOTHER LINEAR-TIME OPERATION

· Taking all but the last element of a list:

```
init[x] = []
init(x : xs) = x : init xs
```

• Consider *init* [1, 2, 3, 4]:

ANOTHER LINEAR-TIME OPERATION

· Taking all but the last element of a list:

```
init[x] = []
init(x : xs) = x : init xs
```

• Consider *init* [1, 2, 3, 4]:

```
init (1:2:3:4:[])
= 1: init (2:3:4:[])
= 1:2: init (3:4:[])
= 1:2:3: init (4:[])
= 1:2:3:[]
```

SUM, MAP, ETC

- Functions like *sum*, *maximum*, etc. needs to traverse through the list once to produce a result. So their running time is definitely O(n).
- If f takes time O(t), map f takes time $O(n \times t)$ to complete. Similarly with filter p.
 - In a lazy setting, *map f* produces its first result in *O*(*t*) time. We won't need lazy features for now, however.

- Given a sequence $a_1, a_2, ..., a_n$, compute $a_1^2 + a_2^2 + ... + a_n^2$. Specification: $sumsq = sum \cdot map \ square$.
- The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

sumsq[]

- Given a sequence $a_1, a_2, ..., a_n$, compute $a_1^2 + a_2^2 + ... + a_n^2$. Specification: $sumsq = sum \cdot map \ square$.
- The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

```
sumsq []
= { definition of sumsq }
  (sum · map square) []
```

- Given a sequence $a_1, a_2, ..., a_n$, compute $a_1^2 + a_2^2 + ... + a_n^2$. Specification: $sumsq = sum \cdot map \ square$.
- The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

```
sumsq []
= { definition of sumsq }
    (sum · map square) []
= { function composition }
    sum (map square [])
```

- Given a sequence $a_1, a_2, ..., a_n$, compute $a_1^2 + a_2^2 + ... + a_n^2$. Specification: $sumsq = sum \cdot map \ square$.
- The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

```
sumsq []
= { definition of sumsq }
    (sum · map square) []
= { function composition }
    sum (map square [])
= { definition of map }
    sum []
```

- Given a sequence $a_1, a_2, ..., a_n$, compute $a_1^2 + a_2^2 + ... + a_n^2$. Specification: $sumsq = sum \cdot map \ square$.
- The spec. builds an intermediate list. Can we eliminate it?
- The input is either empty or not. When it is empty:

```
sumsq []
= { definition of sumsq }
  (sum · map square) []
= { function composition }
  sum (map square [])
= { definition of map }
  sum []
= { definition of sum }
```

SUM OF SQUARES, THE INDUCTIVE CASE

· Consider the case when the input is not empty:

sumsq(x:xs)

```
sumsq (x : xs)
= { definition of sumsq }
sum (map square (x : xs))
```

```
sumsq (x : xs)
= { definition of sumsq }
sum (map square (x : xs))
= { definition of map }
sum (square x : map square xs)
```

```
sumsq (x : xs)
= { definition of sumsq }
sum (map square (x : xs))
= { definition of map }
sum (square x : map square xs)
= { definition of sum }
square x + sum (map square xs)
```

```
sumsq(x:xs)
 = { definition of sumsg }
   sum (map square (x : xs))
= { definition of map }
   sum (square x : map square xs)
= { definition of sum }
   square x + sum (map square xs)
= { definition of sumsg }
   square x + sumsq xs
```

ALTERNATIVE DEFINITION FOR SUMS

• From $sumsq = sum \cdot map \ square$, we have proved that

```
sumsq[] = 0

sumsq(x:xs) = square x + sumsq xs
```

 Equivalently, we have shown that sum · map square is a solution of

$$f[] = 0$$

 $f(x : xs) = square x + fxs$

- · However, the solution of the equations above is unique.
- Thus we can take it as another definition of sumsq.
 Denotationally it is the same function; operationally, it is (slightly) quicker.
- Exercise: try calculating an inductive definition of count.

REMARK: WHY FUNCTIONAL PROGRAMMING?

- Time to muse on the merits of functional programming. Why functional programming?
 - Algebraic datatype? List comprehension? Lazy evaluation? Garbage collection? These are just language features that can be migrated.
 - No side effects.⁵ But why taking away a language feature?
- By being pure, we have a simpler semantics in which we are allowed to construct and reason about programs.
 - In an imperative language we do not even have $f + f + f = 2 \times f + 4$.
- · Ease of reasoning. That's the main benefit we get.

⁵Unless introduced in disciplined ways. For example, through a monad.

EXAMPLE: COMPUTING POLYNOMIAL

Given a list $as = [a_0, a_1, a_2 \dots a_n]$ and x :: Int, the aim is to compute:

$$a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$
.

This can be specified by

poly x as = sum (zipWith (
$$\times$$
) as (iterate (\times x) 1)),

where iterate can be defined by

iterate ::
$$(a \rightarrow a) \rightarrow a \rightarrow \text{List } a$$

iterate $f x = x : map f (iterate f x)$.

ITERATING A LIST

To get some intuition about *iterate* let us try expanding it:

```
iterate f x
= { definition of iterate }
 x: map f (iterate f x)
= { definition of map }
 x: map f(x: map f(iterate f x))
= { map fusion }
 x: fx: map(f \cdot f) (iterate fx)
= { definitions of iterate and map }
 x:fx:f(fx):map(f\cdot f)(mapf(iteratefx))
= { map fusion }
 x:fx:f(fx):map(f\cdot f\cdot f) (iterate fx) ...
```

ZIPPING WITH A BINARY OPERATOR

While *iterate* generate a list, it is immediately truncated by *zipWith*:

```
zipWith :: (a \rightarrow b \rightarrow c) \rightarrow List \ a \rightarrow List \ b \rightarrow List \ c
zipWith (\oplus) [] = []
zipWith (\oplus) (x : xs) [] = []
zipWith (\oplus) (x : xs) (y : ys) = x \oplus y : zipWith (\oplus) xs ys .
```

RUNNING THE SPECIFICATION

Try expanding poly x [a, b, c, d], we get

```
poly x [a, b, c, d]
= sum (zipWith (×) [a, b, c, d] (iterate (×x) 1))
= \{ expanding iterate \}
sum (zipWith (×) [a, b, c, d]
(1: (1 × x): (1 × x × x): (1 × x × x × x):
map (×x)^4 (iterate (×x) 1)))
= a + b × x + c × x × x + d × x × x × x .
```

where f^4 denotes $f \cdot f \cdot f \cdot f$.

As the list gets longer, we get more $(\times x)$ accumulating. Can we do better?

THE MAIN CALCULATION

```
poly x (a: as)
= { definition of poly }
 sum (zipWith (\times) (a : as) (iterate (\timesx) 1))
= { definition of iterate }
 sum (zipWith (\times) (a : as) (1 : map (\timesx) (iterate (\timesx) 1)))
= { definitions of zipWith and sum }
 a + sum (zipWith (x) as (map (xx) (iterate (xx) 1)))
= { see the next slide }
 a + sum (map (xx) (zipWith (x) as (iterate (xx) 1)))
= \{ sum \cdot map (\times x) = (\times x) \cdot sum \}
 a + (sum (zipWith (x) as (iterate (xx) 1))) \times x
= { definition of poly }
 a + (polv \times as) \times x.
```

ZIP-MAP EXCHANGE

In the 4th step we used the property zipWith(x) as $\cdot map(xx) = map(xx) \cdot zipWith(x)$ as.

It applies to any operator (\otimes) that is associative. For an intuitive understanding:

We can do a formal proof if we want.

DISTRIBUTIVITY

In the 5th step we used the property $sum \cdot map(\times x) = (\times x) \cdot sum$. For that we need distributivity between addition and multiplication.

We used that law to push sum to the right.

This is the crucial property that allows us to speed up *poly*: we are allowed to factor out common $(\times x)$.

COMPUTING POLYNOMIAL

To conclude, we get:

$$poly x [] = 0$$

 $poly x (a : as) = a + (poly as) \times x$,

which uses a linear number of (\times) .

LET THE SYMBOLS DO THE WORK!

How do we know what laws to use or to assume?

By observing the form of the expressions. Let the symbols do the work.

STEEP LISTS

• A steep list is a list in which every element is larger than the sum of those to its right:

```
steep :: List Int \rightarrow Bool
steep [] = True
steep (x : xs) = steep xs \land x > sum xs.
```

- The definition above, if executed directly, is an $O(n^2)$ program. Can we do better?
- Just now we learned to construct a generalised function which takes more input. This time, we try the dual technique: to construct a function returning more results.

GENERALISE BY RETURNING MORE

- Recall that fst(a, b) = a and snd(a, b) = b.
- It is hard to quickly compute steep alone. But if we define

```
steepsum :: List Int \rightarrow (Bool \times Int) steepsum xs = (steep xs, sum xs),
```

- and manage to synthesise a quick definition of *steepsum*, we can implement *steep* by *steep* = *fst* · *steepsum*.
- · We again proceed by case analysis. Trivially,

```
steepsum [] = (True, 0).
```

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (x:xs)

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

```
steepsum (x : xs)
= { definition of steepsum }
  (steep (x : xs), sum (x : xs))
```

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

```
steepsum (x : xs)
= { definition of steepsum }
  (steep (x : xs), sum (x : xs))
= { definitions of steep and sum }
  (steep xs \lambda x > sum xs, x + sum xs)
```

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

```
steepsum (x : xs)
= { definition of steepsum }
  (steep (x : xs), sum (x : xs))
= { definitions of steep and sum }
  (steep xs \wedge x > sum xs, x + sum xs)
= { extracting sub-expressions involving xs }
let (b,y) = (steep xs, sum xs)
in (b \wedge x > y, x + y)
```

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

```
steepsum (x : xs)
= { definition of steepsum }
    (steep (x : xs), sum (x : xs))
= { definitions of steep and sum }
    (steep xs \land x > sum xs, x + sum xs)
= { extracting sub-expressions involving xs }
    let (b, y) = (steep xs, sum xs)
    in (b \land x > y, x + y)
= { definition of steepsum }
    let (b, y) = steepsum xs
    in (b \land x > y, x + y).
```

SYNTHESISED PROGRAM

We have thus come up with a O(n) time program:

```
steep = fst \cdot steepsum

steepsum [] = (True, 0)

steepsum (x : xs) = let (b, y) = steepsum xs

in (b \land x > y, x + y),
```

BEING QUICKER BY DOING MORE?

- A more generalised program can be implemented more efficiently?
 - A common phenomena! Sometimes the less general function cannot be implemented inductively at all!
 - It also often happens that a theorem needs to be generalised to be proved. We will see that later.
- An obvious question: how do we know what generalisation to pick?
- There is no easy answer finding the right generalisation one of the most difficulty act in programming!
- Sometimes we simply generalise by examining the form of the formula.

REVERSING A LIST

· The function reverse is defined by:

```
reverse [] = [],
reverse (x : xs) = reverse xs ++[x].
```

- E.g. reverse [1,2,3,4] = ((([] ++[4]) ++[3]) ++[2]) ++[1] = [4,3,2,1].
- But how about its time complexity? Since (++) is O(n), it takes $O(n^2)$ time to revert a list this way.
- · Can we make it faster?

INTRODUCING AN ACCUMULATING PARAMETER

• Let us consider a generalisation of reverse. Define:

```
revcat :: List a \rightarrow List \ a \rightarrow List \ a
revcat xs ys = reverse xs ++ ys.
```

• If we can construct a fast implementation of *revcat*, we can implement *reverse* by:

```
reverse xs = revcat xs [].
```

Let us use our old trick. Consider the case when xs is []: revcat [] ys

Let us use our old trick. Consider the case when xs is []:

```
revcat [] ys
= { definition of revcat }
reverse [] ++ ys
```

Let us use our old trick. Consider the case when xs is []:

```
revcat [] ys
= { definition of revcat }
reverse [] ++ ys
= { definition of reverse }
[] ++ ys
```

Let us use our old trick. Consider the case when xs is []:

```
revcat [] ys
= { definition of revcat }
reverse [] ++ ys
= { definition of reverse }
[] ++ ys
= { definition of (++) }
ys.
```

```
Case x : xs:

revcat(x : xs) ys
```

```
Case x : xs:
    revcat (x : xs) ys
= { definition of revcat }
    reverse (x : xs) ++ ys
= { definition of reverse }
    (reverse xs ++[x]) ++ ys
```

```
Case x : xs:
    revcat (x : xs) ys
= { definition of revcat }
    reverse (x : xs) ++ ys
= { definition of reverse }
    (reverse xs ++[x]) ++ ys
= { since (xs ++ ys) ++ zs = xs ++(ys ++ zs) }
```

reverse xs ++([x] ++ ys)

```
Case x : xs:
         revcat (x : xs) ys
     = { definition of revcat }
         reverse (x : xs) + ys
     = { definition of reverse }
         (reverse xs ++[x]) ++ ys
     = \{ since (xs ++ ys) ++ zs = xs ++ (ys ++ zs) \}
         reverse xs ++([x] ++ ys)
     = { definition of revcat }
         revcat xs(x:ys).
```

LINEAR-TIME LIST REVERSAL

 We have therefore constructed an implementation of revcat which runs in linear time!

```
revcat[] ys = ys

revcat(x:xs) ys = revcat(x:ys).
```

- A generalisation of reverse is easier to implement than reverse itself? How come?
- If you try to understand revcat operationally, it is not difficult to see how it works.
 - The partially reverted list is accumulated in ys.
 - The initial value of ys is set by reverse xs = revcat xs [].
 - · Hmm... it is like a loop, isn't it?

TRACING REVERSE

```
reverse [1, 2, 3, 4]

= revcat [1, 2, 3, 4] []

= revcat [2, 3, 4] [1]

= revcat [3, 4] [2, 1]

= revcat [4] [3, 2, 1]

= revcat [] [4, 3, 2, 1]

= [4, 3, 2, 1]

reverse xs = revcat xs []

reverse xs = revcat xs []

revcat (x : xs) ys = revcat xs (x : ys)

revcat (x : xs) ys = revcat xs (x : ys)

revcat (x : xs) ys = revcat xs (x : ys)

revcat (x : xs) ys = revcat xs []

xs, ys \leftarrow xs, [];

while xs \neq [] do

xs, ys \leftarrow (tail xs), (head xs : ys);

return ys
```

TAIL RECURSION

• Tail recursion: a special case of recursion in which the last operation is the recursive call.

$$f x_1 \dots x_n = \{ \text{base case} \}$$

 $f x_1 \dots x_n = f x'_1 \dots x'_n$

- To implement general recursion, we need to keep a stack of return addresses. For tail recursion, we do not need such a stack.
- Tail recursive definitions are like loops. Each x_i is updated to x_i' in the next iteration of the loop.
- The first call to f sets up the initial values of each x_i .

ACCUMULATING PARAMETERS

• To efficiently perform a computation (e.g. *reverse xs*), we introduce a generalisation with an extra parameter, e.g.:

```
revcat xs ys = reverse xs ++ ys.
```

- Try to derive an efficient implementation of the generalised function. The extra parameter is usually used to "accumulate" some results, hence the name.
 - To make the accumulation work, we usually need some kind of associativity.
- A technique useful for, but not limited to, constructing tail-recursive definition of functions.

· Recall the "sum of squares" problem:

```
sumsq[] = 0

sumsq(x:xs) = square x + sumsq xs.
```

 The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

```
• Introduce ssp xs n =  .
```

- Initialisation: sumsq xs = .
- Construct ssp:

· Recall the "sum of squares" problem:

```
sumsq[] = 0

sumsq(x:xs) = square x + sumsq xs.
```

- The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.
- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs =
- Construct ssp:

· Recall the "sum of squares" problem:

```
sumsq[] = 0

sumsq(x:xs) = square x + sumsq xs.
```

- The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.
- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs = ssp xs 0.
- Construct ssp:

· Recall the "sum of squares" problem:

```
sumsq [] = 0

sumsq (x : xs) = square x + sumsq xs.
```

- The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.
- Introduce ssp xs n = sumsq xs + n.
- Initialisation: sumsq xs = ssp xs 0.
- · Construct ssp:

$$ssp[] n = 0 + n = n$$

 $ssp(x:xs) n = (square x + sumsq xs) + n$
 $= sumsq xs + (square x + n)$
 $= ssp xs (square x + n).$

CONCLUSIONS

- · Let the symbols do the work!
 - Algebraic manipulation helps us to separate the more mechanical parts of reasoning, from the parts that needs real innovation.
- For more examples of fun program calculation, see Bird (2010).
- For a more systematic study of algorithms using functional program reasoning, see Bird and Gibbons (2020).

A COMMON PATTERN WE'VE SEEN MANY TIMES...

```
sum [] = 0
sum (x : xs) = x + sum xs
length [] = 0
length (x : xs) = 1 + length xs
```

```
map f[] = []

map f(x : xs) = fx : map fxs
```

This pattern is extracted and called *foldr*:

```
foldr f e [] = e,
foldr f e (x : xs) = f x (foldr f e xs).
```

REPLACING CONSTRUCTORS

```
foldr f e [] = e

foldr f e (x : xs) = f x (foldr f e xs)
```

• One way to look at foldr (\oplus) e is that it replaces [] with e and (:) with (\oplus):

```
foldr(\oplus) e [1,2,3,4]
= foldr(\oplus) e (1 : (2 : (3 : (4 : []))))
= 1 \oplus (2 \oplus (3 \oplus (4 \oplus e))).
```

- sum = foldr(+) 0.
- $length = foldr (\lambda x n.1 + n) 0.$
- $map f = foldr (\lambda x xs.f x : xs) [].$
- One can see that id = foldr(:)[].

SOME TRIVIAL FOLDS ON LISTS

• Function *max* returns the least upper bound of elements in a list:

```
max[] = -\infty,

max(x:xs) = x \uparrow max xs.
```

• Function *prod* returns the product of a list:

```
prod[] = 1,

prod(x : xs) = x \times prod xs.
```

SOME TRIVIAL FOLDS ON LISTS

• Function *max* returns the least upper bound of elements in a list:

```
max[] = -\infty,

max(x:xs) = x \uparrow max xs.

max = foldr(\uparrow) -\infty.
```

• Function *prod* returns the product of a list:

```
prod[] = 1,

prod(x : xs) = x \times prod xs.
```

SOME TRIVIAL FOLDS ON LISTS

 Function max returns the least upper bound of elements in a list:

```
max[] = -\infty,

max(x:xs) = x \uparrow max xs.

max = foldr(\uparrow) -\infty.
```

• Function *prod* returns the product of a list:

$$prod[] = 1,$$

 $prod(x : xs) = x \times prod xs.$
 $prod = foldr(x) 1.$

Function and returns the conjunction of a list:

and [] = true,
and
$$(x : xs) = x \land and xs$$
.

· Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

 $id (x : xs) = x : id xs.$

Function and returns the conjunction of a list:

and [] = true,
and
$$(x : xs) = x \land and xs$$
.
and = foldr (\land) true.

· Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

 $id (x : xs) = x : id xs.$

• Function and returns the conjunction of a list:

and
$$[]$$
 = true,
and $(x : xs) = x \land and xs$.
and = foldr (\land) true.

· Lets emphasise again that *id* on lists is a fold:

$$id [] = [],$$

 $id (x : xs) = x : id xs.$
 $id = foldr (:) [].$

SOME FUNCTIONS WE HAVE SEEN...

```
(++) \qquad :: [a] \rightarrow [a] \rightarrow [a]
[] ++ys \qquad = ys
(x:xs) ++ys = x:(xs ++ys)
\cdot concat \qquad :: [[a]] \rightarrow [a]
concat \qquad :: [[a]] \rightarrow [a]
concat (xs:xss) = xs ++ concat xss
```

SOME FUNCTIONS WE HAVE SEEN...

```
\cdot (++ ys) = foldr (:) ys.
       (++) :: [a] \rightarrow [a] \rightarrow [a]
       [] ++ ys = ys
       (x : xs) + ys = x : (xs + ys).
\cdot concat =
       concat :: [[a]] \rightarrow [a]
       concat[] = []
       concat(xs:xss) = xs ++ concat xss.
```

SOME FUNCTIONS WE HAVE SEEN...

```
\cdot (++ ys) = foldr (:) ys.
       (++) :: [a] \rightarrow [a] \rightarrow [a]
       [] ++ ys = ys
       (x : xs) + ys = x : (xs + ys).
• concat = foldr(++)[].
       concat :: [[a]] \rightarrow [a]
       concat[] = []
       concat(xs:xss) = xs ++ concat xss.
```

REPLACING CONSTRUCTORS

· Understanding foldr from its type. Recall

$$data[a] = [] | a : [a] .$$

- Types of the two constructors: [] :: [a], and (:) :: $a \rightarrow [a] \rightarrow [a]$.
- foldr replaces the constructors:

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr <math>f e xs).
```

WHY FOLDS?

 "What are the three most important factors in a programming language?"

WHY FOLDS?

 "What are the three most important factors in a programming language?" Abstraction, abstraction, and abstraction!

WHY FOLDS?

- "What are the three most important factors in a programming language?" Abstraction, abstraction, and abstraction!
- Control abstraction, procedure abstraction, data abstraction,...can programming patterns be abstracted too?

- Program structure becomes an entity we can talk about, reason about, and reuse.
 - We can describe algorithms in terms of fold, unfold, and other recognised patterns.
 - · We can prove properties about folds,
 - and apply the proved theorems to all programs that are folds, either for compiler optimisation, or for mathematical reasoning.

- Program structure becomes an entity we can talk about, reason about, and reuse.
 - We can describe algorithms in terms of fold, unfold, and other recognised patterns.
 - · We can prove properties about folds,
 - and apply the proved theorems to all programs that are folds, either for compiler optimisation, or for mathematical reasoning.
- Among the theorems about folds, the most important is probably the fold-fusion theorem.

THE FOLD-FUSION THEOREM

The theorem is about when the composition of a function and a fold can be expressed as a fold.

Theorem (*foldr***-Fusion)** Given $f :: a \to b \to b$, $e :: b, h :: b \to c$, and $g :: a \to c \to c$, we have:

$$h \cdot foldr f e = foldr g (h e)$$
,

if
$$h(f \times y) = g \times (h y)$$
 for all x and y .

For program derivation, we are usually given h, f, and e, from which we have to construct g.

```
h (foldr f e [a, b, c])
= { definition of foldr }
h (f a (f b (f c e)))
```

```
h (foldr f e [a, b, c])
= { definition of foldr }
h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }
g a (h (f b (f c e)))
```

```
h (foldr f e [a, b, c])
= { definition of foldr }
h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }
g a (h (f b (f c e)))
= { since h (f x y) = g x (h y) }
g a (g b (h (f c e)))
```

```
h (foldr f e [a, b, c])
= \{ definition of foldr \}
   h (f a (f b (f c e)))
= \{ \text{ since } h (f x y) = q x (h y) \}
   ga(h(fb(fce)))
= \{ \text{ since } \mathbf{h} (f x y) = g x (\mathbf{h} y) \}
   g a (g b (h (f c e)))
= \{ \text{ since } h (f x y) = q x (h y) \}
   q a (q b (q c (h e)))
```

```
h (foldr f e [a, b, c])
= { definition of foldr }
   h (f a (f b (f c e)))
= \{ \text{ since } h (f x y) = q x (h y) \}
   g a (h (f b (f c e)))
= \{ \text{ since } \mathbf{h} (f x y) = g x (\mathbf{h} y) \}
    q a (q b (h (f c e)))
= \{ \text{ since } h (f x y) = q x (h y) \}
    q a (q b (q c (h e)))
= { definition of foldr }
   foldr q(h e)[a,b,c].
```

SUM OF SQUARES, AGAIN

- Consider $sum \cdot map\ square\ again$. This time we use the fact that $map\ f = foldr\ (mf\ f)\ []$, where $mf\ f \times xs = f \times xs$.
- sum · map square is a fold, if we can find a ssq such that
 sum (mf square x xs) = ssq x (sum xs). Let us try:

```
sum (mf square x xs)
= { definition of mf }
sum (square x : xs)
= { definition of sum }
square x + sum xs
= { let ssq x y = square x + y }
ssq x (sum xs) .
```

Therefore, $sum \cdot map \ square = foldr \ ssq \ 0$.

Sum of Squares, without Folds

Recall that this is how we derived the inductive case of *sumsq* yesterday:

```
sumsq(x:xs)
= { definition of sumsq }
  sum (map square (x : xs))
= { definition of map }
  sum (square x : map square xs)
= { definition of sum }
  square x + sum (map square xs)
= { definition of sumsq }
  square x + sumsq xs.
```

Comparing the two derivations, by using fold-fusion we supply only the "important" part.

104 / 129

More on Folds and Fold-fusion

- Compare the proof with the one yesterday. They are essentially the same proof.
- Fold-fusion theorem abstracts away the common parts in this kind of inductive proofs, so that we need to supply only the "important" parts.
- Tupling can be seen as a kind of fold-fusion. The derivation of steepsum, for example, can be seen as fusing:

```
steepsum \cdot id = steepsum \cdot foldr (:) [].
```

- Recall that steepsum xs = (steep xs, sum xs).
 Reformulating steepsum into a fold allows us to compute it in one traversal.
- Not every function can be expressed as a fold. For example, tail :: [a] → [a] is not a fold!

LONGEST PREFIX

• The function call *takeWhile p xs* returns the longest prefix of *xs* that satisfies *p*:

```
takeWhile p[] = []
takeWhile p(x : xs) =
if p x then x : takeWhile p xs
else [].
```

- E.g. takeWhile (\leq 3) [1, 2, 3, 4, 5] = [1, 2, 3].
- It can be defined by a fold:

```
takeWhile p = foldr (tke p) [],
tke p \times xs = if p \times then \times x : xs else [].
```

• Its dual, *dropWhile* (\leq 3) [1, 2, 3, 4, 5] = [4, 5], is not a fold.

ALL PREFIXES

 The function *inits* returns the list of all prefixes of the input list:

```
inits [] = [[]],
inits (x : xs) = [] : map (x :) (inits xs).
```

- E.g. inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]].
- It can be defined by a fold:

```
inits = foldr ini [[]],
ini x xss = [] : map(x :) xss.
```

ALL SUFFIXES

• The function *tails* returns the list of all suffixes of the input list:

```
tails [] = [[]],

tails (x : xs) = let (ys : yss) = tails xs

in (x : ys) : ys : yss.
```

- E.g. tails [1,2,3] = [[1,2,3],[2,3],[3],[]].
- It can be defined by a fold:

```
tails = foldr til [[]],

til x (ys : yss) = (x : ys) : ys : yss.
```

- scanr $f e = map (foldr f e) \cdot tails$.
- E.g.

```
scanr (+) 0 [1,2,3]
= map sum (tails [1,2,3])
= map sum [[1,2,3],[2,3],[3],[]]
= [6,5,3,0].
```

• Of course, it is slow to actually perform map (foldr f e) separately. By fold-fusion, we get a faster implementation:

```
scanr f e = foldr (sc f) [e],

sc f x (y : ys) = f x y : y : ys.
```

FOLDS ON OTHER ALGEBRAIC DATATYPES

- Folds are a specialised form of induction.
- Inductive datatypes: types on which you can perform induction.
- · Every inductive datatype give rise to its fold.
- In fact, an inductive type can be defined by its fold.

FOLD ON NATURAL NUMBERS

· Recall the definition:

data
$$Nat = 0 \mid \mathbf{1}_{+} Nat$$
.

- Constructors: 0 :: Nat, (1_+) :: Nat \rightarrow Nat.
- · What is the fold on Nat?

foldN ::
$$\rightarrow Nat \rightarrow a$$

FOLD ON NATURAL NUMBERS

· Recall the definition:

data
$$Nat = 0 \mid \mathbf{1}_{+} Nat$$
.

- Constructors: $0 :: Nat, (1_+) :: Nat \rightarrow Nat.$
- · What is the fold on Nat?

foldN ::
$$(a \rightarrow a) \rightarrow a \rightarrow Nat \rightarrow a$$

FOLD ON NATURAL NUMBERS

· Recall the definition:

data
$$Nat = 0 \mid \mathbf{1}_{+} Nat$$
.

- Constructors: $0 :: Nat, (1_+) :: Nat \rightarrow Nat.$
- · What is the fold on Nat?

```
foldN :: (a \rightarrow a) \rightarrow a \rightarrow Nat \rightarrow a

foldN f e 0 = e

foldN f e (1_+ n) = f (foldN f e n).
```

•
$$(+n) = foldN (1_{+}) n$$
.
 $0 + n = n$
 $(1_{+} m) + n = 1_{+} (m + n)$.
• $(\times n) = foldN (n+) 0$.
 $0 \times n = 0$
 $(1_{+} m) \times n = n + (m \times n)$.
 $even 0 = True$
 $even (1_{+} n) = not (even n)$.

$$\cdot$$
 $(+n) = foldN (1_{+}) n.$
 $0 + n = n$
 $(1_{+} m) + n = 1_{+} (m + n) .$
 \cdot $(\times n) = foldN (n+) 0.$
 $0 \times n = 0$
 $(1_{+} m) \times n = n + (m \times n) .$
 \cdot even = foldN not True.
even $0 = True$
even $(1_{+} n) = not (even n) .$

FOLD-FUSION FOR NATURAL NUMBERS

```
Theorem (foldN-Fusion)
Given f :: a \to a, e :: a, h :: a \to b, and g :: b \to b, we have:
h \cdot foldN \ f \ e = foldN \ g \ (h \ e) \ ,
if h \ (f \ x) = g \ (h \ x) for all x.

Exercise: fuse even into (+)?
```

FOLDS ON TREES

• Example: internally labelled binary tree:

```
data ITree a = \text{Null}
| Node a (ITree a) (ITree a) .
```

· Fold for ITree:

```
foldIT:: (a \rightarrow b \rightarrow b \rightarrow b) \rightarrow b \rightarrow lTree \ a \rightarrow b

foldIT f e Null = e

foldIT f e (Node a t u) =

f a (foldIT f e t) (foldIT f e u) .
```

FOLDS ON TREES

- · Example: externally labelled binary tree:
- · Some datatypes for trees:

```
data ETree a = \text{Tip } a
| Bin (ETree a) (ETree a) .
```

· Fold for ETree:

```
foldET:: (b \rightarrow b \rightarrow b) \rightarrow (a \rightarrow b)

\rightarrow ETree a \rightarrow b

foldET f g (Tip x) = g x

foldET f g (Bin t u) =

f (foldET f g t) (foldET f g u).
```

SOME SIMPLE FUNCTIONS ON TREES

• To compute the size of an ITree:

sizeIT = foldIT (
$$\lambda x m n \rightarrow \mathbf{1}_{+} (m+n)$$
) 0.

• To sum up labels in an ETree:

$$sizeET = foldET(+) id$$
.

• To compute a list of all labels in an ITree and an ETree:

 Exercise: what are the fusion theorems for foldIT and foldET? MAXIMUM SEGMENT SUM

MAXIMUM SEGMENT SUM

- The *maximum segment sum* is a classical problem, often used to demonstrate the effectness of program derivation.
- Given: a list of numbers positive, zero, or negative.
- Compute: the maximum possible sum of a consecutive segment of the list.

SPECIFYING MAXIMUM SEGMENT SUM

- · A segment can be seen as a prefix of a suffix.
- The function segs computes the list of all the segments.

```
segs = concat \cdot map inits \cdot tails.
```

• Therefore, mss is specified by:

```
mss = max \cdot map \ sum \cdot segs.
```

THE DERIVATION!

We reason:

```
max · map sum · concat · map inits · tails
= { since map f · concat = concat · map (map f) }
map · concat · map (map sum) ·
map inits · tails
= { since max · concat = max · map max }
max · map max · map (map sum) · map inits · tails
= { since map f · map g = map (f · g) }
max · map (max · map sum · inits) · tails .
```

Recall the definition $scanr f e = map (foldr f e) \cdot tails$. If we can transform $max \cdot map \ sum \cdot inits$ into a fold, we can turn the algorithm into a scanr, which has a faster implementation.

MAXIMUM PREFIX SUM

Concentrate on $max \cdot map \ sum \cdot inits$:

```
max · map sum · inits
= { def. of inits, let ini x xss = [] : map (x:) xss }
max · map sum · foldr ini [[]]
= { fold fusion, see below }
max · foldr zplus [0] .
```

MAXIMUM PREFIX SUM

Concentrate on $max \cdot map \ sum \cdot inits$:

```
max · map sum · inits
= { def. of inits, let ini x xss = [] : map (x:) xss }
max · map sum · foldr ini [[]]
= { fold fusion, see below }
max · foldr zplus [0] .
```

The fold fusion works because:

```
map sum (ini x xss)
= map sum ([] : map (x :) xss)
= 0 : map (sum \cdot (x :)) xss
= 0 : map (x+) (map sum xss) .
```

Define zplus x yss = 0 : map(x+) yss.

MAXIMUM PREFIX SUM, 2ND FOLD FUSION

Concentrate on $max \cdot map \ sum \cdot inits$:

```
max \cdot map \ sum \cdot inits
= { def. of inits, let ini x xss = [] : map (x:) xss }

max \cdot map \ sum \cdot foldr \ ini [[]]
= { fold fusion, zplus x yss = 0 : map (x+) yss }

max \cdot foldr \ zplus [0]
= { fold fusion, let zmax x y = 0 'max' (x + y) }

foldr \ zmax \ 0 .
```

The fold fusion works because \uparrow distributes into (+):

```
\max_{x \in \mathbb{R}} (0 : map(x+) xs)
= 0 \uparrow \max_{x \in \mathbb{R}} (map(x+) xs)
= 0 \uparrow (x + \max_{x \in \mathbb{R}} xs).
```

BACK TO MAXIMUM SEGMENT SUM

We reason:

```
max \cdot map \ sum \cdot concat \cdot map \ inits \cdot tails
= \{ \text{ since map } f \cdot \text{ concat} = \text{ concat} \cdot \text{ map } (\text{map } f) \}
  map \cdot concat \cdot map (map sum) \cdot
     map inits · tails
= \{ since max \cdot concat = max \cdot map max \}
  max \cdot map \ max \cdot map \ (map \ sum) \cdot
     map inits · tails
= \{ \text{ since map } f \cdot \text{map } q = \text{map } (f \cdot q) \}
  max \cdot map (max \cdot map sum \cdot inits) \cdot tails
= { previous reasoning }
  max \cdot map (foldr zmax 0) \cdot tails
= { introducing scanr }
  max \cdot scanr zmax 0.
```

MAXIMUM SEGMENT SUM IN LINEAR TIME!

- We have derived $mss = max \cdot scanr zmax 0$, where $zmax x y = 0 \uparrow (x + y)$.
- The algorithm runs in linear time, but takes linear space.
- A tupling transformation eliminates the need for linear space.

$$mss = fst \cdot maxhd \cdot scanr zmax 0$$

where maxhd xs = (max xs, head xs). We omit this last step in the lecture.

• The final program is $mss = fst \cdot foldr step (0,0)$, where $step \times (m,y) = ((0 \uparrow (x+y)) \uparrow m, 0 \uparrow (x+y))$.

RED-BLACK TREE

RED-BLACK TREE

- A self-balancing binary search tree, often used to represent sets.
- Supports $O(\log n)$ -time searching, insertion, and deletion.
- · One possible representation:

```
data RBTree a = E \mid
N Color (RBTree a) a (RBTree a),
data Color = R \mid B.
```

CONSTRAINTS

- · It is a binary search tree.
 - In N _ t x u, every label in t is less than x, every label in u is more than x. The same holds for t and u.
- · Each node is either colored red or black.
 - E is implicitly considered black.
- · The root is black.
- · Red nodes do not have red children.
- The number of black nodes from the root to each leaf is the same.

SEARCHING

Searching in a red-black tree is just like that in a binary search tree:

```
search :: Int \rightarrow RBTree Int \rightarrow Bool
search E = False
search (N t x u) | k < x = ...
| k = x = ...
| k > x = ...
```

Exercise: what if we want to return the found element in a Maybe?

Insertion

- To insert a new element, perform a search to determine where to insert.
- · The inserted node shall have color red.
- This would temporarily break the constraint that a red node shall not have a red children. We perform balancing upwards to restore the constraint. See the next slide.
- Finally we set the root to black.

TREE BALANCING

- The re-balancing strategy is *not* unique.
- The strategy we will consider, shown in the next slide, was presented by Okasaki [?].
- Having only four rules, it is significantly simpler than those you'd find in most textbooks (which needs 8 rules or more)!
- · Why?
- · More will be discussed in the practicals.

