
Functional Programming
Practicals 2: Red-Black Tree

Shin-Cheng Mu

FLOLAC 2022

In this practical we aim to prove some essential properties about red-black tree insertion in
order to establish the correctness of the insertion algorithm. Some notes:

• In most proofs there could be many repetitive cases. It is sufficient to show only some
representative cases.

• Proof about properties of the function balance are mostly routine, tedious, non-inductive
proofs. However, these properties are needed in other proofs.

The code are adapted from Okasaki [Oka99]. Those who interested in figuring out how to per-
form deletion in red-black trees may check out Germane and Might [GM14].

1. Complete the definitions in the file RedBlackOkasaki.hs.

2. On (black) heights.

(a) Prove that forall t , u and z , bheight (balance t z u) = 1 + (bheight t ↑ bheight u).
(b) Prove that for all k and t , bheight (ins k t) = bheight t .

Note: as a corollary, we have bheight (insert k t) equals either bheight t or 1+bheight t ,
depending on the root color of ins k t .

3. On balancing.

(a) The function isBalanced , when taken literally as an algorithm, has time complexity
O(n2), where n is the size of the input tree. Define

isBalHeight :: RBTree a → (Bool, Nat)
isBalHeight t = (isBalanced t , bHeight t) .

Derive an implementation of isBalHeight that runs in time linear to the size of the input
tree.

(b) Prove that for all t and u,

isBalanced t ∧ isBalanced u ∧
bheight t = bheight u ⇒ isBalanced (balance t x u) .

1



(c) Prove that for all k and t , isBalanced t ⇒ isBalanced (ins k t).
Note: since isBalanced t ⇒ isBalanced (blacken t), as a corollarywe have isBalanced t ⇒
isBalanced (insert k t).

4. On color invariants.

(a) Prove that for all t and u, isIRB t ∧ isRB u ⇒ isRB (balance t x u).

(b) Prove that for all t :

1. isRB t ∧ color t = R ⇒ isIRB (ins k t),
2. isRB t ∧ color t = B ⇒ isRB (ins k t).

Hints: 1. The two properties shall be proved simultaneously in one inductive proof. 2.
Since isRB t ⇒ isIRB t , the two properties above imply that isRB t ⇒ isIRB (ins k t),
which you may need in the proof.
Note: since isIRB t ⇒ isRB (blacken t), as a corollary we have isRB t ⇒ isRB (insert k t).

References
[GM14] Kimball Germane andMatthewMight. Deletion: the curse of the red-black tree. Journal

of Functional Programming, 24(4):423–433, 2014.

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of Functional Program-
ming, 9(4):471–477, 1999.

Page 2


