Functional Programming Practicals 1

Shin-Cheng Mu

FLOLAC 2022

Folds and Fold-Fusion

- 1. Express the following functions by *foldr*:
 - 1. *all* $p :: List a \rightarrow Bool$, where $p :: a \rightarrow Bool$.
 - 2. *elem z* :: List $a \rightarrow Bool$, where z :: a.
 - 3. $concat :: List (List a) \rightarrow List a$.
 - 4. *filter* $p :: List a \rightarrow List a$, where $p :: a \rightarrow Bool$.
 - 5. *takeWhile* $p :: List a \rightarrow List a$, where $p :: a \rightarrow Bool$.
 - 6. $id :: List a \rightarrow List a$.

In case you haven't seen them, all p xs is True iff. all elements in xs satisfy p, and $elem\ z\ xs$ is True iff. x is a member of xs.

- 2. Given $p :: a \to Bool$, can *dropWhile* $p :: List a \to List a$ be written as a *foldr*?
- 3. Express the following functions by *foldr*:
 - 1. *inits* :: List $a \rightarrow \text{List (List } a)$.
 - 2. $tails :: List a \rightarrow List (List a)$.
 - 3. $perms :: List a \rightarrow List (List a)$.
 - 4. *sublists* :: List $a \rightarrow \text{List (List } a)$.
 - 5. *splits* :: List $a \rightarrow \text{List (List } a, \text{List } a)$.
- 4. Prove the *foldr*-fusion theorem. To recite the theorem: given $f :: a \to b \to b$, $e :: b, h :: b \to c$ and $g :: a \to c \to c$, we have

$$h \cdot foldr f e = foldr g (h e)$$
,

if $h(f \times y) = g \times (h y)$ for all x and y.

- 5. Prove the map-fusion rule map $f \cdot map \ g = map \ (f \cdot g)$ by foldr-fusion.
- 6. Prove that $sum \cdot concat = sum \cdot map \ sum$ by foldr-fusion, twice. Compare the proof with you previous proof in earlier parts of this course.
- 7. The map fusion theorem is an instance of the foldr-map fusion theorem: foldr $f e \cdot map g = foldr (f \cdot g) e$.
 - (a) Prove the theorem.
 - (b) Express $sum \cdot map(2\times)$ as a foldr.
 - (c) Show that $(2\times)$ · sum reduces to the same foldr as the one above.
- 8. Prove that $map\ f\ (xs + ys) = map\ f\ xs + map\ f\ ys$ by foldr-fusion. **Hint**: this is equivalent to $map\ f\cdot (+ys) = (+map\ f\ ys)\cdot map\ f$. You may need to do (any kinds of) fusion twice.
- 9. Prove that $length \cdot concat = sum \cdot map \ length$ by fusion.
- 10. Let scanr $f = map (foldr f e) \cdot tails$. Construct, by foldr-fusion, an implementation of scanr whose number of calls to f is proportional to the length of the input list.
- 11. Recall the function $binary :: Nat \rightarrow [Nat]$ that returns the *reversed* binary representation of a natural number, for example $binary \ 4 = [0,0,1]$. Also, we talked about a function $decimal :: [Nat] \rightarrow Nat$ that converts the representation back to a natural number.
 - (a) This time, express decimal using a foldr.
 - (b) Recall the function $exp \ m \ n = m^n$. Use foldr-fusion to construct step and base such that

 $exp \ m \cdot decimal = foldr \ step \ base$.

If the fusion succeeds, we have derived a hylomorphism computing m^n :

 $fastexp m = foldr step base \cdot binary .$

- 12. Express reverse:: List $a \to \text{List } a$ by a foldr. Let reveat = (+) reverse. Express reveat as a foldr.
- 13. Fold on natural numbers.
 - (a) The predicate *even* :: Nat \rightarrow Bool yields True iff. the input is an even number. Define *even* in terms of *foldN*.
 - (b) Express the identity function on natural numbers id n = n in terms of foldN.
- 14. Fuse *even* into (+n). This way we get a function that checks whether a natural number is even after adding n.

15. The famous Fibonacci number is defined by:

$$fib 0 = 0$$

 $fib 1 = 1$
 $fib (2 + n) = fib (1 + n) + fib n$.

The definition above, when taken directly as an algorithm, is rather slow. Define $fib2 \ n = (fib \ (1 + n), fib \ n)$. Derive an O(n) implementation of fib2 by fusing it with $id :: Nat \rightarrow Nat$.

16. What are the fold fusion theorems for ETree and ITree?