
Functional Programming
Practicals 1

Shin-Cheng Mu

FLOLAC 2022

Folds and Fold-Fusion
1. Express the following functions by foldr :

1. all p :: List a → Bool, where p :: a → Bool.

2. elem z :: List a → Bool, where z :: a.

3. concat :: List (List a) → List a.

4. filter p :: List a → List a, where p :: a → Bool.

5. takeWhile p :: List a → List a, where p :: a → Bool.

6. id :: List a → List a.

In case you haven’t seen them, all p xs is True iff. all elements in xs satisfy p, and elem z xs
is True iff. x is a member of xs.

Solution:

1. all p = foldr (λx b → p x ∧ b) True .

2. elem x = foldr (λy b → x = = y ∨ b) False ,

3. concat = foldr (++) [] .

4. filter p = foldr (λx xs → if p x then x : xs else xs) [] ,

5. takeWhile p = foldr (λx xs → if p x then x : xs else []) [] ,

6. id = foldr (:) [] .

2. Given p :: a → Bool, can dropWhile p :: List a → List a be written as a foldr?

1

Solution: No. Consider dropWhile even [5, 4, 2, 1], which ought to be [5, 4, 1, 1]. Mean-
while, dropWhile even [4, 2, 1] = [1], and the lost elements cannot be recovered.

3. Express the following functions by foldr :

1. inits :: List a → List (List a).

2. tails :: List a → List (List a).

3. perms :: List a → List (List a).

4. sublists :: List a → List (List a).

5. splits :: List a → List (List a, List a).

Solution:

1. inits = foldr (λx xss → [] :map (x :) xss) [[]] .

2. tails = foldr (λx xss → (x : head xss) : xss) [[]] ,

3. perms = foldr (λx xss → concat (map (fan x) xss)) [[]]

4. sublists = foldr (λx xss → xss ++map (x :) xss) [[]]

5. splits can be defined by:

splits = foldr spl [([], [])] ,
where spl x ((xs, ys) : zss) =

([], x : xs ++ ys) :map ((x :)× id) ((xs, ys) : zss) .

where (f × g) (x , y) = (f x , g y).

4. Prove the foldr-fusion theorem. To recite the theorem: given f :: a → b → b, e :: b, h :: b → c
and g :: a → c → c, we have

h · foldr f e = foldr g (h e) ,

if h (f x y) = g x (h y) for all x and y .

Solution: The aim is to prove that h (foldr f e xs) = foldr g (h e) xs for all xs, assuming
that h (f x y) = g x (h y).

Case xs := []:

Page 2

h (foldr f e [])
= h e
= foldr g (h e) [] .

Case xs := x : xs:

h (foldr f e (x : xs))
= { definition of foldr }
h (f x (foldr f e xs))

= { fusion condition: h (f x y) = g x (h y) }
g x (h (foldr f e xs))

= { induction }
g x (foldr g (h e) xs)

= { definition of foldr }
foldr g (h e) (x : xs) .

5. Prove the map-fusion rule map f ·map g = map (f · g) by foldr-fusion.

Solution: Since map g is a foldr , we proceed as follows:

map f ·map g
= { map g is a foldr }
map f · foldr (λx ys → g x : ys) []

= { foldr-fusion }
foldr (λx ys → f (g x) : ys) []

= { definition of map as a foldr }
map (f · g) .

The fusion condition is proved below:

map f (g x : ys)
= { definition map }
f (g x) :map f ys .

6. Prove that sum · concat = sum ·map sum by foldr-fusion, twice. Compare the proof with you
previous proof in earlier parts of this course.

Page 3

Solution:

sum · concat
= sum · foldr (++) []
= { foldr-fusion }
foldr (λxs n → sum xs + n) 0

= { foldr-map fusion, see Exercise 7 }
foldr (+) 0 ·map sum

= sum ·map sum .

Fusion conditions for the foldr-fusion is

sum (xs ++ ys) = sum xs + sum ys ,

which is the key property we needed in the early part of this term to prove the same
property. We have proved the property before, by induction on xs. We omit the proof
here. (Note that we can also prove it by two more foldr-fusion, noting that (++ys) is a
foldr , and so is sum.)

See Exercise 7 for foldr-map fusion. The penultimate equality holds because (+) · sum =
(λxs n → sum xs + n). Instead of foldr-map fusion we cal also use foldr fusion alone. The
fusion condition is sum (sum xs : xss) = sum xs + sum xss.

The foldr-fusion theorem captures the common pattern in these proofs. We only need to
fill in the problem-dependent proofs.

7. The map fusion theorem is an instance of the foldr-map fusion theorem: foldr f e · map g =
foldr (f · g) e.
(a) Prove the theorem.

Solution: Since map g is a foldr , we proceed as follows:

foldr f e ·map g
= { map g is a foldr }
foldr f e · foldr (λx ys → g x : ys) []

= { foldr-fusion }
foldr (f · g) (foldr f e [])

= { definition of foldr }
foldr (f · g) e .

The fusion condition is proved below:

foldr f e (g x : ys)
= { definition foldr }
f (g x) (foldr f e ys) .

Page 4

(b) Express sum ·map (2×) as a foldr .

Solution:

sum ·map (2×)
= foldr (+) 0 ·map (2×)
= { foldr-map fusion }
foldr ((+) · (2×)) 0 .

(c) Show that (2×) · sum reduces to the same foldr as the one above.

Solution:

(2×) · sum
= (2×) · foldr (+) 0
= { foldr fusion }
foldr ((+) · (2×)) 0 .

The fusion condition is

2× (x + y)
= { distributivity }
2× x + 2× y

= { definition of (·) }
((+) · (2×)) x (2× y) .

8. Prove that map f (xs ++ ys) = map f xs ++ map f ys by foldr-fusion. Hint: this is equivalent
to map f · (++ys) = (++map f ys) ·map f . You may need to do (any kinds of) fusion twice.

Solution: Recall that (++ys) is a foldr . Use foldr fusion and foldr-map fusion:

(++map f ys) ·map f
= { foldr-map fusion }
foldr ((:) · f) (map f ys)

= { foldr fusion }
map f · (++ys) .

The fusion condition of the last step is:

map f (x : zs)
= { definition of map }

Page 5

f x :map f zs
= { definition of (·) }
((:) · f) x (map f zs) .

9. Prove that length · concat = sum ·map length by fusion.

Solution: We caculate

length · concat
= length · foldr (++) []
= { foldr-fusion }
foldr ((+) · length) 0

= {| sum = foldr (+) 0 |, | foldr | − |map | fusion}
sum ·map length .

The fusion condition is proved below:

length (xs ++ ys)
= { (++) and (+) homorphic }
length xs + length ys

= { definition of (·) }
((+) · length) xs (length ys) .

10. Let scanr f e = map (foldr f e) · tails. Construct, by foldr-fusion, an implementation of scanr
whose number of calls to f is proportional to the length of the input list.

Solution: Recall that tails is a foldr :

tails = foldr (λx xss → (x : head xss) : xss) [[]] ,

We try to fuse map (foldr f e) into tails. For the base value, notice that

map (foldr f e) [[]] = [e] .

To construct the step function, we work on the fusion condition:

map (foldr f e) ((x : head xss) : xss)
= { definition of map }
foldr f e (x : head xss) :map (foldr f e) xss

Page 6

= { definition of foldr }
f x (foldr f e (head xss)) :map (foldr f e) xss

= { foldr f e (head xss) = head (map (foldr f e) xss) }
let ys = map (foldr f e) xss
in f x (head ys) : ys .

We have therefore constructed:

scanr f e = foldr (λx ys → f x (head ys) : ys) [e] .

You may find the inductive definition easier to comprehend:

scanr f e [] = [e]
scanr f e (x : xs) = f x (head ys) : ys ,

where ys = scanr f e xs .

11. Recall the function binary :: Nat → [Nat] that returns the reversed binary representation
of a natural number, for example binary 4 = [0, 0, 1]. Also, we talked about a function
decimal :: [Nat] → Nat that converts the representation back to a natural number.

(a) This time, express decimal using a foldr .

Solution:

decimal = foldr (λd n → d + 2× n) 0 .

(b) Recall the function exp m n =mn. Use foldr-fusion to construct step and base such that

exp m · decimal = foldr step base .

If the fusion succeeds, we have derived a hylomorphism computing mn:

fastexp m = foldr step base · binary .

Solution: For the base value, we have base = exp m 0 = 1.
For the step function, we calculate

exp m (d + 2× n)
= { since mx+y = mx ×my }
exp m d × exp m (2× n)

Page 7

= { since m2n = (mn)2, let square x = x × x }
exp m d × square (exp m n)

= { d is either 0 or 1. Expand the definition }
if d = = 0 then square (exp m n) else m× square (exp m n) .

Therefore we conclude

exp m · decimal = foldr (λd x → if d = = 0 then square x
else m× square x) 1 .

12. Express reverse :: List a → List a by a foldr . Let revcat = (++) · reverse. Express revcat as a foldr .

Solution: reverse = foldr (λx xs → xs ++ [x]) [].

To fuse (++) into reverse, the base value is (++) [] = id . To construct the step function, we
try to meet the fusion condition:

(++) ((λx xs → xs ++ [x]) x xs) = step x ((++) xs) .

If we calculate:

(++) ((λx xs → xs ++ [x]) x xs)
= (++) (xs ++ [x]) ,

it is hard to figure out how to proceed, since (++) expects another argument. It is easier
to calculate if we supply it another argument ys. We restart and calculate:

(++) ((λx xs → xs ++ [x]) x xs) ys
= (++) (xs ++ [x]) ys
= (xs ++ [x]) ++ ys
= { (++) associative }
xs ++ ([x] ++ ys)

= { definition of (·) }
(((++) xs) · (x :)) ys

= { factor out x , ((++) xs), and ys }
(λx f → f · (x :)) x ((++) xs) ys .

We conclude that

revcat = foldr (λx f → f · (x :)) id .

Page 8

13. Fold on natural numbers.

(a) The predicate even :: Nat → Bool yields True iff. the input is an even number. Define
even in terms of foldN .

Solution:

even = foldN not True .

(b) Express the identity function on natural numbers id n = n in terms of foldN .

Solution:

id = foldN 1+ 0 .

14. Fuse even into (+n). This way we get a function that checks whether a natural number is
even after adding n.

Solution: Recall that (+n) = foldN 1+ n. To fuse even · (+n) into one foldN , the base value
is even n. To find out the step function, recall that even (1+ n) = not (even n). We may
then conclude:

even · (+n) = foldN not (even n) .

15. The famous Fibonacci number is defined by:

fib 0 = 0
fib 1 = 1
fib (2 + n) = fib (1 + n) + fib n .

The definition above, when taken directly as an algorithm, is rather slow. Define fib2 n =
(fib (1 + n), fib n). Derive an O(n) implementation of fib2 by fusing it with id :: Nat → Nat.

Solution: Recall that id = foldN (1+) 0. Fusing fib2 into id , the base value is fib2 0 =
(1, 0). To construct the step function we calculate

fib2 (1+ n)
= (fib (1+ (1+ n)), fib (1+ n))
= { definition of fib }

Page 9

(fib (1+ n) + fib n, fib (1+ n))
= (λ(x , y) → (x + y , x)) (fib2 n) .

Therefore we conclude that

fib2 = foldN (λ(x , y) → (x + y , x)) (1, 0) .

16. What are the fold fusion theorems for ETree and ITree?

Solution:

h · foldIT f e = foldIT g (h e) ⇐ h (f x y z) = g x (h y) (h z) ,

h · foldET f k = foldET g (h · k) ⇐ h (f x y) = g (h x) (h y) .

Page 10

