
Functional Programming
Practicals 0

Shin-Cheng Mu

FLOLAC 2022

Reviews…
1. A practice on curried functions.

(a) Define a function poly such that poly a b c x = a× x2 + b× x + c. All the inputs and the
result are of type Float .

(b) Reuse poly to define a function poly1 such that poly1 x = x2 + 2× x + 1.

(c) Reuse poly to define a function poly2 such that poly2 a b c = a× 22 + b × 2 + c.

2. Type in the definition of square in your working file.

(a) Define a function quad :: Int → Int such that quad x computes x4.

(b) Type in this definition into your working file. Describe, in words, what this function
does.

twice :: (a → a) → (a → a)
twice f x = f (f x) .

(c) Define quad using twice.

3. Replace the previous twice with this definition:

twice :: (a → a) → (a → a)
twice f = f · f .

(a) Does quad still behave the same?

(b) Explain in words what this operator (·) does.

4. Functions as arguments, and a quick practice on sectioning.

1

(a) Type in the following definition to your working file, without giving the type.

forktimes f g x = f x × g x .

Use : t in GHCi to find out the type of forktimes. You will end up getting a complex type
which, for now, can be seen as equivalent to

(t → Int) → (t → Int) → t → Int .

Can you explain this type?

(b) Define a function that, given input x , use forktimes to compute x2 + 3 × x + 2. Hint:
x2 + 3× x + 2 = (x + 1)× (x + 2).

(c) Type in the following definition into your working file: lift2 h f g x = h (f x) (g x). Find
out the type of lift2. Can you explain its type?

(d) Use lift2 to compute x2 + 3× x + 2.

1 Definitions and Proofs by Induction
1. Prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys .

2. Prove: sum · concat = sum ·map sum.

3. Prove: filter p ·map f = map f · filter (p · f).
Hint: for calculation, it might be easier to use this definition of filter :

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

and use the law that in the world of total functions we have:

f (if q then e1 else e2) = if q then f e1 else f e2

You may also carry out the proof using the definition of filter using guards:

…
filter p (x : xs) | p x = …

| otherwise = …

You will then have to distinguish between the two cases: p x and ¬ (p x), which makes the
proof more fragmented. Both proofs are okay, however.

Page 2

4. Reflecting on the law we used in the previous exercise:

f (if q then e1 else e2) = if q then f e1 else f e2

Can you think of a counterexample to the law above, when we allow the presence of ⊥?
What additional constraint shall we impose on f to make the law true?

5. Prove: take n xs ++ drop n xs = xs, for all n and xs.

6. Define a function fan :: a → List a → List (List a) such that fan x xs inserts x into the 0th,
1st. . .nth positions of xs, where n is the length of xs. For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]] .

7. Prove: map (map f) · fan x = fan (f x) · map f , for all f and x . Hint: you will need the
map-fusion law, and to spot that map f · (y :) = (f y :) ·map f (why?).

8. Define perms :: List a → List (List a) that returns all permutations of the input list. For
example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

9. Prove: map (map f) · perm = perm · map f . You may need previously proved results, as well
as a property about concat and map: for all g, we have map g · concat = concat ·map (map g).

10. Define inits :: List a → List (List a) that returns all prefixes of the input list.

inits "abcde" = ["", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

11. Define tails :: List a → List (List a) that returns all suffixes of the input list.

tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

12. The function splits :: List a → List (List a, List a) returns all the ways a list can be split into
two. For example,

splits [1, 2, 3, 4] = [([], [1, 2, 3, 4]), ([1], [2, 3, 4]), ([1, 2], [3, 4]),
([1, 2, 3], [4]), ([1, 2, 3, 4], [])] .

Define splits inductively on the input list. Hint: you may find it useful to define, in awhere-
clause, an auxiliary function f (ys, zs) = … that matches pairs. Or you may simply use
(λ (ys, zs) → …).

Page 3

13. An interleaving of two lists xs and ys is a permutation of the elements of both lists such that
the members of xs appear in their original order, and so does the members of ys. Define
interleave :: List a → List a → List (List a) such that interleave xs ys is the list of interleaving
of xs and ys. For example, interleave [1, 2, 3] [4, 5] yields:

[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 3, 5], [1, 4, 2, 5, 3],
[1, 4, 5, 2, 3], [4, 1, 2, 3, 5], [4, 1, 2, 5, 3], [4, 1, 5, 2, 3], [4, 5, 1, 2, 3]].

14. A list ys is a sublist of xs if we can obtain ys by removing zero or more elements from xs. For
example, [2, 4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all sublists of [1, 2, 3] is:

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a → List (List a) that computes the list of all sublists of the
given list. Hint: to form a sublist of xs, each element of xs could either be kept or dropped.

15. Consider the following datatype for internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a) .

(a) Given (↓) :: Nat → Nat → Nat , which yields the smaller one of its arguments, define
minT :: Tree Nat → Nat , which computes the minimal element in a tree. (Note: (↓) is
actually called min in the standard library. In the lecture we use the symbol (↓) to be
brief.)

(b) Define mapT :: (a → b) → Tree a → Tree b, which applies the functional argument to
each element in a tree.

(c) Can you define (↓) inductively on Nat?

(d) Prove that for all n and t , minT (mapT (n+) t) = n +minT t . That is, minT ·mapT (n+) =
(n+) ·minT .

2 Simple Program Calculation
1. Given the definition below, pos x xs yields the index of the first occurrence of x in xs, provided

that x occurs in xs:

pos :: Eq a ⇒ a → List a → Int
pos x = length · takeWhile (x ̸≡)

(What happens when x does not occur in xs?) Construct an inductive definition of pos.

2. Zipping and mapping.

(a) Let second f (x , y) = (x , f y). Prove that zip xs (map f ys) = map (second f) (zip xs ys).

Page 4

(b) Consider the following definition

delete :: List a → List (List a)
delete [] = []
delete (x : xs) = xs :map (x :) (delete xs) ,

such that

delete [1, 2, 3, 4] = [[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]] .

That is, each element in the input list is deleted in turns. Let select ::List a → List (a, List a)
be defined by select xs = zip xs (delete xs). Come up with an inductive definition of
select . Hint: you may find second useful.

(c) An alternative specification of delete is

delete xs = map (del xs) [0 .. length xs − 1]
where del xs i = take i xs ++ drop (1 + i) xs ,

(here we take advantage of the fact that [0 .. n] returns [] when n is negative). From
this specification, derive the inductive definition of delete given above. Hint: you may
need the following property:

[0 .. n] = 0 :map (1+) [0 .. n− 1], if n ⩾ 0, (1)

and the map-fusion law (2) given below.

3. Prove the following map-fusion law:

map f ·map g = map (f · g) . (2)

4. Assume that multiplication (×) is a constant-time operation. One possible definition for
exp m n = mn could be:

exp :: Nat → Nat → Nat
exp m 0 = 1
exp m (1+ n) = m× exp m n .

Therefore, to compute exp m n, multiplication is called n times: m× m … m× 1. Can we do
better? Yet another way to represent a natural number is to use the binary representation.

(a) The function binary :: Nat → List Bool returns the reversed binary representation of a
natural number. For example:

binary 0 = [] ,
binary 1 = [T] ,
binary 2 = [F, T] ,

Page 5

binary 3 = [T, T] ,
binary 4 = [F, F, T] ,

where T and F abbreviates True and False. Given the following functions:

even :: Nat → Bool, returning true iff the input is even,

odd :: Nat → Bool, returning true iff the input is odd, and

div :: Nat → Nat → Nat , for integral division,

define binary . You may just present the code.
Hint One possible implementation discriminates between 3 cases – the input is 0, the
input is odd, and the input is even.

(b) Briefly explain in words whether your implementation of binary terminates for all input
in Nat, and why.

(c) Define a function decimal :: List Bool → Nat that takes the reversed binary representa-
tion and returns the corresponding natural number. E.g. decimal [T, T, F, T] = 11. You
may just present the code.

(d) Let roll m = exp m · decimal. Assuming we have proved that exp m n satisfies all
arithmetic laws for mn. Construct (with algebraic calculation) a definition of roll that
does not make calls to exp or decimal.

Remark If the fusion succeeds, we have derived a program computing mn:

fastexp m = roll m · binary .

The algorithm runs in time proportional to the length of the list generated by binary , which
is O(log2 n).

3 Program Calculation Techniques
1. Consider the internally labelled binary tree:

data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Define sumT :: ITree Int → Int that computes the sum of labels in an ITree.

(b) A baobab tree is a kind of tree with very thick trunks. An Itree Int is called a baobab
tree if every label in the tree is larger than the sum of the labels in its two subtrees. The
following function determines whether a tree is a baobab tree:

baobab :: ITree Int → Bool
baobab Null = True
baobab (Node x t u) = baobab t ∧ baobab u ∧

x > (sumT t + sumT u) .

What is the time complexity of baobab? Define a variation of baobab that runs in time
proportional to the size of the input tree by tupling.

Page 6

2. Recall the externally labelled binary tree:

data Etree a = Tip a | Bin (ETree a) (ETree a) .

The function size computes the size (number of labels) of a tree, while repl t xs tries to relabel
the tips of t using elements in xs. Note the use of take and drop in repl:

size (Tip) = 1
size (Bin t u) = size t + size u .

repl :: ETree a → List b → ETree b
repl (Tip) xs = Tip (head xs)
repl (Bin t u) xs = Bin (repl t (take n xs)) (repl u (drop n xs))

where n = size t .

The function repl runs in time O(n2) where n is the size of the input tree. Can we do bet-
ter? Try discovering a linear-time algorithm that computes repl. Hint: try calculating the
following function:

repTail :: ETree a → List b → (ETree b, List b)
repTail s xs = (???, ???) ,

where n = size s ,

where the function repTail returns a tree labelled by some prefix of xs, together with the
suffix of xs that is not yet used (how to specify that formally?).

You might need properties including:

take m (take (m + n) xs) = take m xs ,

drop m (take (m + n) xs) = take n (drop m xs) ,

drop (m + n) xs = drop n (drop m xs) .

3. The function tags returns all labels of an internally labelled binary tree:

tags :: ITree a → List a
tags Null = []
tags (Node x t u) = tags t ++ [x] ++ tags u .

Try deriving a faster version of tags by calculating

tagsAcc :: ITree a → List a → List a
tagsAcc t ys = tags t ++ ys .

4. Recall the standard definition of factorial:

fact :: Nat → Nat
fact 0 = 1
fact (1+ n) = 1+ n× fact n .

This program implicitly uses space linear to n in the call stack.

Page 7

1. Introduce factAcc n m = … where m is an accumulating parameter.

2. Express fact in terms of factAcc.

3. Construct a space efficient implementation of factAcc.

5. Define the following function expAcc:

expAcc :: Nat → Nat → Nat → Nat
expAcc b n x = x × exp b n .

(a) Calculate a definition of expAcc that uses only O(log n) multiplications to compute bn.
You may assume all the usual arithmetic properties about exponentials. Hint: consider
the cases when n is zero, non-zero even, and odd.

(b) The derived implementation of expAcc shall be tail-recursive. What imperative loop does
it correspond to?

6. Recall the standard definition of Fibonacci:

fib :: Nat → Nat
fib 0 = 0
fib 1 = 1
fib (1+ (1+ n)) = fib (1+ n) + fib n .

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

1. Given the definition ffib n x y = fib n× x + fib (1+ n)× y , Express fib using ffib.

2. Derive a linear-time version of ffib.

Page 8

